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Abstract

Embedding parameterized optimization problems
as layers into machine learning architectures
serves as a powerful inductive bias. Training
such architectures with stochastic gradient
descent requires care, as degenerate derivatives
of the embedded optimization problem often
render the gradients uninformative. We propose
Lagrangian Proximal Gradient Descent (LPGD)
a flexible framework for training architectures
with embedded optimization layers that seam-
lessly integrates into automatic differentiation
libraries. LPGD efficiently computes meaningful
replacements of the degenerate optimization
layer derivatives by re-running the forward solver
oracle on a perturbed input. LPGD captures
various previously proposed methods as special
cases, while fostering deep links to traditional
optimization methods. We theoretically analyze
our method and demonstrate on historical and
synthetic data that LPGD converges faster than
gradient descent even in a differentiable setup.

1. Introduction
Optimization at inference is inherent to many prediction
tasks, including autonomous driving (Paden et al., 2016),
modeling physical systems (Cranmer et al., 2020), or robotic
control (Kumar et al., 2016). Therefore, embedding opti-
mization algorithms as building blocks of machine learning
models serves as a powerful inductive bias. A recent trend
has been to embed parameterized constrained optimization
problems that can efficiently be solved to optimality (Amos
& Kolter, 2017a; Agrawal et al., 2019a;b; Vlastelica et al.,
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2020; Sun et al., 2023; Sahoo et al., 2023).

Training such a parameterized optimization model is an
instance of bi-level optimization (Gould et al., 2016),
which is generally challenging. Whenever it is possible
to propagate gradients through the optimization problem
via an informative derivative of the solution mapping,
the task is typically approached with standard stochastic
gradient descent (GD) (Amos & Kolter, 2017a; Agrawal
et al., 2019b). However, when the optimization problem has
discrete solutions, the derivatives are typically degenerate,
as small perturbations of the input do not affect the optimal
solution. Previous works have proposed several methods
to overcome this challenge, ranging from differentiable
relaxations (Wang et al., 2019; Wilder et al., 2019a; Mandi
& Guns, 2020; Djolonga & Krause, 2017) and stochastic
smoothing (Berthet et al., 2020; Dalle et al., 2022), over
proxy losses (Paulus et al., 2021), to finite-difference based
techniques (Vlastelica et al., 2020).

The main contribution of this work is the unification of
a variety of previous methods (McAllester et al., 2010;
Vlastelica et al., 2020; Domke, 2010; Sahoo et al., 2023;
Elmachtoub & Grigas, 2022; Blondel et al., 2020) into a
general framework called Lagrangian Proximal Gradient
Descent (LPGD). Motivated by traditional proximal op-
timization techniques (Moreau, 1962; Rockafellar, 1970;
Nesterov, 1983; Figueiredo et al., 2007; Tseng, 2008; Beck
& Teboulle, 2009; Combettes & Pesquet, 2011; Bauschke
& Combettes, 2011; Nesterov, 2014; Parikh & Boyd, 2014),
we derive LPGD as gradient descent on a smoothed enve-
lope of a loss linearization. This fosters deep links between
traditional and contemporary methods. We provide theo-
retical insights into the asymptotic behavior of our method,
capturing a trade-off between smoothness and tightness of
the introduced envelope.

We identify multiple practical use-cases of LPGD. On the
one hand, when non-degenerate derivatives of the solution
mapping exist, they can be computed as the limit of the
LPGD update, providing a fast and simple alternative to
previous methods based on differentiating the optimality
conditions (Amos & Kolter, 2017a; Agrawal et al., 2019b;
Wilder et al., 2019a; Mandi & Guns, 2020). On the other
hand, when the derivatives are degenerate and GD fails,
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LPGD still allows learning the optimization parameters.
This generalizes Vlastelica et al. (2020) to non-linear ob-
jectives, saddle-point problems, and learnable constraint
parameters. Finally, we explore a new experimental direc-
tion by demonstrating on synthetic and historical data that
LPGD can result in faster convergence than GD even when
non-degenerate derivatives of the solution mapping exist.

2. Related work
Numerous implicit layers have been proposed in recent
years, including neural ODEs (Chen et al., 2018; Dupont
et al., 2019) and root-solving-based layers (Bai et al., 2019;
2020; Gu et al., 2020; Winston & Kolter, 2020; Fung et al.,
2021; Ghaoui et al., 2021; Geng et al., 2021). In this
work, we focus on optimization-based layers. A lot of
research has been done on obtaining the gradient of such
a layer, either by using the implicit function theorem to
differentiate quadratic programs (Amos & Kolter, 2017a),
conic programs (Agrawal et al., 2019b), ADMM (Sun et al.,
2023), dynamic time warping (Xu et al., 2023), or by finite-
differences (Domke, 2010; McAllester et al., 2010; Song
et al., 2016; Lorberbom et al., 2019).

Another direction of related work has investigated optimiza-
tion problems with degenerate derivatives of the solution
mapping. The techniques developed for training these mod-
els range from continuous relaxations of SAT problems
(Wang et al., 2019) and submodular optimization (Djolonga
& Krause, 2017), over regularization of linear programs
(Amos et al., 2019; Wilder et al., 2019a; Mandi & Guns,
2020; Paulus et al., 2020) to stochastic smoothing (Berthet
et al., 2020; Dalle et al., 2022), learnable proxies (Wilder
et al., 2019b) and generalized straight-through-estimators
(Jang et al., 2017; Sahoo et al., 2023). Other works have
built on geometric proxy losses (Paulus et al., 2021) and,
again, finite-differences (Vlastelica et al., 2020; Niepert
et al., 2021; Minervini et al., 2023).

Finally, a special case of an optimization layer is to embed
an optimization algorithm as the final component of the
prediction pipeline. This encompasses energy-based models
(LeCun & Huang, 2005; Blondel et al., 2022), structured
prediction (McAllester et al., 2010; Blondel, 2019; Blon-
del et al., 2020), smart predict-then-optimize (Ferber et al.,
2020; Elmachtoub & Grigas, 2022) and symbolic methods
such as SMT solvers (Fredrikson et al., 2023). Additional
details of the closest related methods are in Appendix B.

3. Problem Setup
We consider a parameterized embedded constrained opti-
mization problem of the form

L∗(w) :=min
x∈X

max
y∈Y
L(x, y, w) (1)

where w ∈ Rk are the parameters, X ⊆ Rn and Y ⊆
Rm are the primal and dual feasible set, and L ∈ C1 is a
Lagrangian. The corresponding optimal solution is

z∗(w) = (x∗, y∗)(w) := argmin
x∈X

max
y∈Y
L(x, y, w). (2)

We assume strong duality holds for (1). For instance,
this setup covers conic programs and quadratic programs,
see Appendix C for details. Note, that the solution of (2)
is in general set-valued. We assume that the solution set
is non-empty and has a selection z∗(w) continuous at w.1

Throughout the paper, we assume access to an oracle that ef-
ficiently solves (2) to high accuracy. In our experiments, (2)
is a conic program that we efficiently solve to high accuracy
using the SCS solver (O’Donoghue et al., 2016).2

Our aim is to embed optimization problem (2) into a larger
prediction pipeline. Given an input µ ∈ Rp (e.g. an im-
age), the parameters of the embedded optimization prob-
lem w are predicted by a parameterized backbone model
Wθ : Rp → Rk (e.g. a neural network with weights θ ∈ Rr)
as w = Wθ(µ). The embedded optimization problem (2)
is then solved on the predicted parameters w returning the
predicted solution x∗(w), and its quality is measured by
a loss function ℓ : Rn → R. The backbone and the loss
function are assumed to be continuously differentiable.

Our goal is to train the prediction pipeline by minimizing
the loss on a dataset of inputs {µi}Ni=1

min
θ∈Rr

∑N
i=1 ℓ

(
x∗(Wθ(µi))

)
(3)

using gradient backpropagation as in stochastic gradient de-
scent or variations thereof (Kingma & Ba, 2015). However,
the solution mapping does not need to be differentiable,
and even when it is, the derivatives are often degenerate
(e.g. they can be zero almost everywhere).3 Therefore, we
aim to derive informative replacements for the gradient
∇wℓ(x

∗(w)), which can then be further backpropagated
to the weights θ by standard automatic differentiation li-
braries (Abadi et al., 2015; Bradbury et al., 2018; Paszke
et al., 2019). Note that the loss could also be composed of
further learnable components that might be trained simulta-
neously. A list of symbols is provided in Appendix H.

1These assumptions e.g. follow from compactness of X and Y
and the existence of a unique solution, given the continuity of L.

2We use CVXPY (Diamond & Boyd, 2016; Agrawal et al.,
2019a) for automatic reduction of parameterized convex optimiza-
tion problems to conic programs in a differentiable way.

3Our method only assumes continuity of the solution mapping
which is weaker than differentiability. Therefore, whenever the
true gradients exist, the continuity assumption is also fulfilled.
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4. Backgound: Proximal Point Method &
Proximal Gradient Descent

The Moreau envelope (Moreau, 1962) envτf : Rn → R
of a proper, lower semi-continuous, possibly non-smooth
function f : Rn → R is defined for τ > 0 as

envτf (x̂) := infx f(x) +
1
2∥x− x̂∥22. (4)

The envelope envτf is a smoothed lower bound approxima-
tion of f (Rockafellar & Wets, 1998, Theorem 1.25). The
corresponding proximal map proxτf : Rn → Rn is given by

proxτf (x̂) := argminx f(x) +
1
2τ ∥x− x̂∥22

= x̂− τ∇ envτf (x̂)
(5)

and can be interpreted as a gradient descent step on the
Moreau envelope with step-size τ . For a more detailed
discussion of the connection between proximal map and
Moreau envelope see e.g. Rockafellar & Wets (1998);
Bauschke & Combettes (2011); Parikh & Boyd (2014).

The proximal point method (Rockafellar, 1976; Güler, 1992;
Bauschke & Combettes, 2011; Parikh & Boyd, 2014) aims
to minimize f by iteratively updating x̂ 7→ proxτf (x̂). Now,
assume that f decomposes as f = g + h, with g differ-
entiable and h potentially non-smooth, and consider a lin-
earization of g around x̂ given by

g̃(x) := g(x̂) + ⟨x− x̂,∇g(x̂)⟩. (6)

The corresponding proximal map reads as

proxτ(g̃+h)(x̂) = argminx g̃(x) + h(x) + 1
2τ ∥x− x̂∥22

= proxτh
(
x̂− τ∇g(x̂)

)
(7)

and iterating x̂ 7→ proxτh
(
x̂− τ∇g(x̂)

)
is called proximal

gradient descent (Nesterov, 1983; Combettes & Pesquet,
2011; Parikh & Boyd, 2014).

5. Method
Our goal is to translate the idea of proximal methods to pa-
rameterized optimization models as in Section 3, by defining
a Lagrange-Moreau envelope of the loss w 7→ ℓ(x∗(w)) on
which we can perform gradient descent. In analogy to (4),
given w and corresponding optimal solution x∗, the enve-
lope should select an x in the proximity of x∗ with a lower
loss ℓ. The key concept is to replace as a measure of prox-
imity the Euclidean distance with a Lagrangian divergence
indicating how close x is to optimality given w.

5.1. Lagrangian Divergence

First we define the Lagrangian difference for x ∈ X and
w ∈ Rk as

DL(x, y|w) := L(x, y, w)− L∗(w), (8)

where L∗(w) is the optimal Lagrangian (1). We then define
the Lagrangian divergence4 D∗

L(·|w) : X → R+ as

D∗
L(x|w) := sup

y∈Y
DL(x, y|w)

= sup
y∈Y

[
L(x, y, w)− L∗(w)

]
≥ 0

(9)

for w ∈ Rk, where the last inequality follows from

sup
y∈Y
L(x, y, w) ≥ min

x̃∈X
max
y∈Y
L(x̃, y, w) = L∗(w). (10)

The divergence has the key property

D∗
L(x|w) = 0 ⇔ x ∈ X minimizes (2) (11)

which makes it a reasonable measure of optimality of x
given w, for the proof, see Appendix F.

5.2. Lagrange-Moreau Envelope

Given τ > 0, we say that ℓτ : Rk → R is the lower
Lagrange-Moreau envelope (L-envelope) if

ℓτ (w) := min
x∈X

ℓ(x) + 1
τD

∗
L(x|w)

= min
x∈X

max
y∈Y

ℓ(x) + 1
τDL(x, y|w).

(12)

The corresponding lower Lagrangian proximal map
zτ : Rk → Rn+m is defined as

zτ (w) := argmin
x∈X

max
y∈Y

ℓ(x) + 1
τDL(x, y|w)

= argmin
x∈X

max
y∈Y
L(x, y, w) + τℓ(x).

(13)

The upper L-envelope ℓτ : Rk → R is defined analogously
with maximization instead of minimization as

ℓτ (w) := max
x∈X

ℓ(x)− 1
τD

∗
L(x|w)

= max
x∈X

min
y∈Y

ℓ(x)− 1
τDL(x, y|w),

(14)

and the corresponding upper L-proximal map zτ : Rk →
Rn+m (L-proximal map) as

zτ (w) := argmax
x∈X

min
y∈Y

ℓ(x)− 1
τDL(x, y|w)

= argmin
x∈X

max
y∈Y
L(x, y, w)− τℓ(x).

(15)

The lower and upper L-envelope are lower and upper bound
approximations of the loss w 7→ ℓ(x∗(w)), respectively. We
emphasize that the solutions to (12) and (14) are in general
set-valued and we assume that they are non-empty and admit
a single-valued selection that is continuous at w, which we

4In some cases, the Lagrangian divergence coincides with the
Bregman divergence, which generalizes the squared Euclidean
distance, opening connections to Mirror descent, see Appendix D.
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denote by (13) and (15). We also assume that strong duality
holds for the upper and lower L-envelopes.5 We will also
work with the average L-envelope

ℓτ(w) := 1
2

[
ℓτ (w) + ℓτ (w)

]
. (16)

The different envelopes are closely related to right-, left-
and double-sided directional derivatives.

5.3. Lagrangian Proximal Point Method

Our goal will be to perform gradient descent on the L-
envelope (12, 14). The gradients of the L-envelopes read

∇ℓτ (w) = 1
τ∇w

[
L(zτ , w)− L(z∗, w)

]
,

∇ℓτ (w) = 1
τ∇w

[
L(z∗, w)− L(zτ , w)

]
,

(17)

where we abbreviate zτ = zτ (w) and zτ = zτ (w). The
proof is in Appendix F. In analogy to the proximal point
method (5) we refer to GD using (17) as the Lagrangian
Proximal Point Method (LPPM), or specifically, LPPMτ ,
LPPMτ and LPPMτ for GD on ℓτ , ℓτ and ℓτ , respectively.

Example 1 (Direct Loss Minimization). For an input µ ∈
Rp, label xtrue ∈ X , loss ℓ : X × X → R, feature map
Ψ: X ×Rp → Rk and an optimization problem of the form

x∗(w, µ) = argmin
x∈X

−⟨w,Ψ(x, µ)⟩ (18)

the LPPMτ update (17) reads

∇ℓτ (w) = 1
τ

[
Ψ(x∗, µ)−Ψ(xτ , µ)

]
, (19)

with x∗ = x∗(w, µ) and

xτ = argmin
x∈X

−⟨w,Ψ(x, µ)⟩+ τℓ(x, xtrue). (20)

This recovers the “towards-better” Direct Loss Minimization
(DLM) update (McAllester et al., 2010), while the “away-
from-worse” update corresponds to the LPPMτ update, both
of which were proposed in the context of taking the limit
τ → 0, which aims to compute the true gradients.

5.4. Lagrangian Proximal Gradient Descent

LPPM requires computing the L-proximal map (13) or (15).
Due to the loss term, efficiently solving the involved opti-
mization problem might not be possible or it requires choos-
ing and implementing a custom optimization algorithm that
is potentially much slower than the oracle used to solve the
forward problem (2). Instead, we aim to introduce an ap-
proximation of the loss that allows solving the L-proximal

5In general, these assumptions cast strong restrictions on the
allowed loss functions. This is one of the reasons why our main
focus will be on loss approximations introduced in section 5.4.

map with the forward solver oracle. We first observe that in
many cases the parameterized Lagrangian takes the form

L(x, y, w) = ⟨x, c⟩+Ω(x, y, v), (21)

with w = (c, v), linear parameters c ∈ Rn, non-linear pa-
rameters v ∈ Rk−n and continuously differentiable Ω. Our
approximation, inspired by proximal gradient descent (7), is
to consider a linearization ℓ̃ of the loss ℓ at x∗.6 Importantly,
the loss linearization is only applied after the solver and
does not approximate or linearize the solution mapping.
Abbreviating∇ℓ = ∇ℓ(x∗), we get the L-proximal maps

z̃τ (w) := argmin
x∈X

max
y∈Y
⟨x, c⟩+Ω(x, y, v) + τ⟨x,∇ℓ⟩

= z∗(c+ τ∇ℓ, v), (22)
z̃ τ(w) := argmin

x∈X
max
y∈Y
⟨x, c⟩+Ω(x, y, v)− τ⟨x,∇ℓ⟩

= z∗(c− τ∇ℓ, v). (23)

As these are instances of the forward problem (2) on
different parameters, they can be computed with the same
solver oracle. The assumed strong duality and continuity of
the solution of (2) also typically implies the same properties
for the perturbed problems (22, 23). Note that warm-starting
the solver with z∗ can strongly accelerate the computation,
often making the evaluation of the L-proximal map much
faster than the forward problem. This enables efficient
computation of the L-envelope gradient (17) as

∇ℓ̃τ (w) = 1
τ∇w

[
L
(
w, z̃τ

)
− L

(
w, z∗

)]
,

∇ℓ̃τ (w) = 1
τ∇w

[
L
(
w, z∗

)
− L

(
w, z̃ τ

)]
.

(24)

In analogy to proximal gradient descent (7) we refer
to gradient descent using (24) as Lagrangian Proximal
Gradient Descent (LPGD), or more specifically, to LPGDτ ,
LPGDτ and LPGDτ for GD on ℓ̃τ , ℓ̃τ and ℓ̃τ , respectively.

LPGD can also be viewed as computing gradients of the
loss ∇wℓ(x

∗(w)) standardly by rolling out the chain rule,
but replacing every appearance of the optimization layer
co-derivative with a certain finite-difference.7 This shows
that LPGD only affects the optimization layer, providing a
derivative replacement that carries higher-order information
than linear sensitivities. Further, this viewpoint directly im-
plies that LPGD smoothly integrates into existing automatic
differentiation frameworks (Abadi et al., 2015; Bradbury
et al., 2018; Paszke et al., 2019), by simply replacing the
backward pass operation of the optimization layer with the
finite-difference, as summarized for LPGDτ in Algorithm 1.

6Note that other approximations of the loss can also be used
depending on the parameterization supported by the forward solver.
For example, if quadratic terms are supported we could consider a
quadratic loss approximation.

7Note that this only requires a single additional solver evalua-
tion, in contrast to traditional finite-difference gradient estimation
requiring k solver evaluations, which is often intractable.
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Algorithm 1 Forward and Backward Pass of LPGDτ

function ForwardPass(w)
z∗ ← SolverOracle(w) // Solve optimization (2)
save w, z∗ for backward pass
return z∗

end function

function BackwardPass(∇ℓ = ∇zℓ(z
∗), τ )

load (c, v) = w and z∗ from forward pass
wτ ← c+ τ∇ℓ, v // Perturb parameters
z̃τ ← SolverOracle(wτ ) // (22), warmstart with z∗

∇w ℓ̃τ (w) =
1
τ∇w

[
L
(
z̃τ , w

)
− L

(
z∗, w

)]
// (24)

return∇w ℓ̃τ (w) // Gradient of L-envelope
end function

Example 2 (Blackbox Backpropagation). For a linear pro-
gram (LP)8

x∗(c) = argmin
x∈X

⟨x, c⟩, (25)

the LPGDτ update (24) reads

∇ℓ̃τ (c) = 1
τ

[
x̃τ (c)− x∗(c)

]
= 1

τ

[
x∗(c+ τ∇ℓ)− x∗(c)

]
,

which recovers the update rule in Blackbox Backpropaga-
tion (BB) (Vlastelica et al., 2020). The piecewise affine
interpolation of the loss c 7→ ℓ̃(x∗(c)) derived in BB agrees
with the lower L-envelope ℓ̃τ .

Example 3 (Implicit Differentiation by Perturbation). For
a regularized linear program

x∗(c) = argmin
x∈X

⟨x, c⟩+Ω(x) (26)

with a strongly convex regularizer Ω: X → R, the LPGDτ

update (24) reads

∇ℓ̃τ(c) = 1
2τ

[
x̃τ (c)− x̃τ(c)

]
= 1

2τ

[
x∗(c+ τ∇ℓ)− x∗(c− τ∇ℓ)

]
,

(27)

recovering the update in Domke (2010), where only the
limit case τ → 0 is considered.

5.5. Regularization & Augmented Lagrangian

To increase the smoothness of the L-envelope, we augment
the Lagrangian with a strongly convex regularizer

Lρ(x, y, w) := L(x, y, w) + 1
2ρ∥x− x∗∥22 (28)

8For an LP over a polytope X the space of possible solutions
is discrete. Whenever the solution is unique, which is true for
almost every w, the solution mapping is locally constant (and hence
continuous) around w. Therefore our continuity assumptions hold
for almost all w.

with ρ > 0. Equivalently, we may re-introduce the
quadratic regularizer from the Moreau envelope (4) into
the L-envelope (12) and L-proximal map (13)

ℓτρ(w) := min
x∈X

max
y∈Y

ℓ(x) + 1
τDL(x, y|w)

+ 1
2ρ∥x− x∗∥22,

(29)

zτρ(w) := argmin
x∈X

max
y∈Y

ℓ(x) + 1
τDL(x, y|w)

+ 1
2ρ∥x− x∗∥22.

(30)

These definitions have an analogy for the upper envelope
and for a linearized loss, which we omit for brevity. The
LPPMτ and LPGDτ updates then take the form

∇ℓτρ(w) = 1
τ∇w

[
L
(
w, zτρ

)
− L

(
w, z∗

)]
,

∇ℓ̃τρ(w) = 1
τ∇w

[
L
(
w, z̃τρ

)
− L

(
w, z∗

)]
.

(31)

The augmentation does not alter the current optimal solution,
but smoothens the Lagrange-Moreau envelope. This also
has connections to Jacobian-regularization in the implicit
function theorem, which we discuss in Appendix C. Note
that using this quadratic regularization with LPGD requires
the solver oracle to support quadratic objectives, which is the
case for the conic program solver used in our experiments.
We visualize the smoothing of the different L-envelopes of
the loss c 7→ ℓ(x∗(c)) in Figure 1, for a quadratic loss on
the solution to the linear program (25) with X = [0, 1]n and
a one-dimensional random cut through the cost space.9

6. Method Analysis
We now theoretically analyze our method. Proofs of the
statements are given in Appendix F. The following propo-
sition characterizes the continuity properties that the L-
envelope inherits from the Lagrangian.

Proposition 6.1. Assume that L is L-Lipschitz continuous
in w. Then ℓτ , ℓτ, ℓ

τ are 2L
τ -Lipschitz continuous in w.

This shows that by increasing τ we get smaller Lipschitz
bounds of the L-envelope, giving a form of “smoothening”.

Next, we characterize the asymptotic behavior of the L-
envelope, L-proximal map, LPPM and LPGD updates. First,
we consider the limit as τ → 0. Let X∗(w) and X̂ (w)
denote the optimal solution set and the effective feasible set,
respectively, defined as

X∗(w) := {x ∈ X | D∗
L(x|w) = 0}, (32)

X̂ (w) := {x ∈ X | D∗
L(x|w) <∞}. (33)

9Here, the envelopes appear non-continuous due to the loss
linearization. Namely, the point x∗(c) at which we take the loss
linearization varies with c, and therefore the function of which we
take the envelope varies as well.
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Figure 1: Visualization of the upper ℓ̃τρ, average ℓ̃τρ, and
lower ℓ̃τρ Lagrange-Moreau envelope for different temper-
atures τ and augmentation strengths ρ. The envelopes are
smoothed approximations of the loss c 7→ ℓ(x∗(c)) (black).

Proposition 6.2. Let w be such that X∗(w) ̸= ∅. Assume
L, ℓ are lower semi-continuous and ℓ is finite-valued on X .
Then it holds that

lim
τ→0

ℓτ (w) := min
x∗∈X∗(w)

ℓ(x∗) (34)

and also

lim
τ→0

x∗
τ (w) ∈ argmin

x∗∈X∗(w)

ℓ(x∗). (35)

whenever the limit exists.

Propositions 6.1 and 6.2 highlight that choosing τ deter-
mines a trade-off between smoothness and tightness of
the approximation. Next, we show that the LPGD update
converges to the true gradient.

Theorem 6.3. Let L ∈ C2 and assume the optimizer of (2)
admits a differentiable selection x∗(w) at w. Then

lim
τ→0
∇ℓ̃τ (w) = ∇wℓ(x

∗(w)) = lim
τ→0
∇ℓ̃τ (w). (36)

The proof, also highlighting the connections between
LPGD updates and finite-difference approximations of
forward-mode derivatives, is given in Appendix F. Theorem
6.3 asserts that LPGD computes the same gradients in the
limit as methods based on the implicit function theorem,
such as OptNet (Amos & Kolter, 2017a), regularized

LPs (Wilder et al., 2019a; Mandi & Guns, 2020), or
differentiable conic programs (Agrawal et al., 2019b).

Next, we consider the limit τ → ∞. First, we have the
result for the lower L-proximal map (13).

Proposition 6.4. Let w be such that X̂ (w) ̸= ∅. Then

lim
τ→∞

xτ (w) ∈ argmin
x∈X̂ (w)

ℓ(x) (37)

whenever the limit exists. For a linearized loss, we have

lim
τ→∞

x̃τ (w) ∈ argmin
x∈X̂ (w)

⟨x,∇ℓ⟩ = xFW (w), (38)

where xFW is the solution to a Frank-Wolfe iteration
LP (Frank & Wolfe, 1956)

Next proposition covers the case of the lower L-proximal
map (30) with a quadratic regularizer.

Proposition 6.5. The primal lower L-proximal map (30)
turns into the standard proximal map (5)

lim
τ→∞

xτρ(w) = argmin
x∈X̂ (w)

[
ℓ(x) + 1

2ρ∥x− x∗∥22
]

= proxρℓ+IX̂(w)
(x∗),

(39)

whenever the limit exists. For a linearized loss, it reduces to
the Euclidean projection onto X̂ (w)

lim
τ→∞

x̃τρ(w) = argmin
x∈X̂ (w)

[
⟨x,∇ℓ⟩+ 1

2ρ∥x− x∗∥22
]

= PX̂ (w)(x
∗ − ρ∇ℓ).

(40)

The LPPMτ (17, 31) and LPGDτ (24, 31) updates corre-
sponding to the L-proximal maps (37, 39) and (38, 40) have
the interpretation of decoupling the update step, by first
computing a “target” (e.g. x̃τρ via projected gradient de-
scent with step-size ρ), and then minimizing the Lagrangian
divergence to make the target the new optimal solution.

We discuss multiple examples that showcase the asymptotic
variations of LPPM and LPGD. Here, we will work with the
finite-difference version of the updates (17, 31), denoted by

∆ℓτ (w) := τ∇ℓτ (w), ∆ℓτ (w) := τ∇ℓτ (w), (41)

∆ℓτρ(w) := τ∇ℓτρ(w), ∆ℓ̃τρ(w) := τ∇ℓ̃τρ(w). (42)

Example 4 (Identity with Projection). For an LP (25) it is
X̂ (w) = X and we get the asymptotic regularized LPGDτ

update (31) in finite-difference form (42) as

lim
τ→∞

∆ℓ̃τρ(c) = lim
τ→∞

[
x̃τρ(c)− x∗]

= PX (x∗ − ρ∇ℓ)− x∗,
(43)

6
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where we used (40). In the limit of large regularization
ρ → 0 with division by ρ in analogy to Theorem 6.3, the
above update converges to

lim
ρ→0

lim
τ→∞

1
ρ∆ℓ̃τρ(c) = lim

ρ→0

1
ρ

[
PX (x∗ − ρ∇ℓ)− x∗]

= DPX (x∗| − ∇ℓ) = D∗PX (x∗| − ∇ℓ),
where DP and D∗P denote the directional derivative and
coderivative of the projection P at x∗. This is closely re-
lated to the Identity with Projection method by Sahoo et al.
(2023), in which the true gradient is replaced by backpropa-
gating −∇ℓ through the projection onto a relaxation of X .10

Example 5 (Smart Predict then Optimize). The Smart Pre-
dict then Optimize (SPO) setting (Mandi et al., 2020; El-
machtoub & Grigas, 2022) embeds an LP (25) as the final
component of the prediction pipeline and assumes access to
the ground truth cost ctrue. The goal is to optimize the SPO
loss ℓSPO(x

∗(c), ctrue) = ⟨x∗(c) − x∗(ctrue), ctrue⟩. Due to
the discreteness of the LP, the SPO loss has degenerate gra-
dients with respect to c, i.e. they are zero almost everywhere
and undefined otherwise. Choosing τ = 1

2 for the upper
L-proximal map (15), we get

x
1
2 (c) = argmax

x∈X
⟨x− x∗(ctrue), ctrue⟩ − 2⟨x− x∗, c⟩

= argmax
x∈X

⟨x, ctrue − 2c⟩ (44)

which gives the lower and upper LPPM updates (17) in
finite-difference form (41)

∆ℓτ (c) = xτ (c)− x∗ and ∆ℓ
1
2 (c) = x∗ − x

1
2 (c). (45)

Summing both the updates and taking the limit τ → ∞
yields the combined LPPM update

lim
τ→∞

[
∆ℓτ (c) + ∆ℓ

1
2 (c)

]
= lim

τ→∞

[
xτ (c)− x

1
2 (c)

]
= x∗(ctrue)− x

1
2 (c) = 1

2∇ℓSPO+(c, ctrue),
(46)

where we used (37). Note that as the SPO loss is already
linear in x, LPPM and LPGD are equivalent. Update (46)
recovers the gradient of the SPO+ loss

ℓSPO+(c, ctrue) := sup
x∈X
⟨x, ctrue − 2c⟩+ 2⟨x∗(ctrue), c⟩

−⟨x∗(ctrue), ctrue⟩
(47)

introduced by Elmachtoub & Grigas (2022), which has
found widespread applications.
Example 6 (Fenchel-Young Losses11). In the structured
prediction setting we consider the regularized LP (26) as

10Note that this also has close ties to the one-step gradient aris-
ing in implicit differentiation of fixed-point iterations by treating
the inverse Jacobian as an identity function (Geng et al., 2021;
Chang et al., 2022; Bai et al., 2022).

11Note that an analogous derivation holds for generalized
Fenchel-Young losses (Blondel et al., 2022), in which the reg-
ularized LP is replaced with a regularized energy function.

the final component of the prediction pipeline and assume
access to the ground truth solutions xtrue. The goal is to
bring x∗(c) close to xtrue by minimizing any loss ℓ(x) that
is minimized over X at xtrue. We compute the asymptotic
LPPMτ update (17) in finite-difference form (41) as

lim
τ→∞

∆ℓτ (c) = lim
τ→∞

[
xτ (c)− x∗]

= xtrue − x∗ = ∇ℓFY(c, xtrue),
(48)

where we used (37) to compute the limit. This recovers the
gradient of the Fenchel-Young loss12

ℓFY(c, xtrue) := max
x∈X

[
−⟨c, x⟩−Ω(x)

]
+Ω(xtrue)+⟨c, xtrue⟩

= ⟨c, xtrue⟩+Ω(xtrue)−min
x∈X

[
⟨c, x⟩+Ω(x)

]
defined by Blondel et al. (2020). Depending on the regu-
larizer Ω and the feasible region X , Fenchel-Young losses
cover multiple structured prediction setups, including the
structured hinge (Tsochantaridis et al., 2005), CRF (Lafferty
et al., 2001), and SparseMAP (Niculae et al., 2018) losses.

Finally, note that solvers in general return approximate solu-
tions, yielding an approximate L-envelop denoted by ℓ̂τ (w),
which we quantify in the following proposition.
Proposition 6.6. Assume that the solvers for (2, 13) return
ε-accurate solutions with δ-accurate objective values. Then

|ℓ̂τ (w)− ℓτ (w)| ≤ 2δ
τ . (49)

Moreover, if ∇wL(x, y, w) is L-Lipschitz continuous in
(x, y) ∈ X × Y , it holds that

∥∇ℓ̂τ (w)−∇ℓτ (w)∥ ≤ 2Lε
τ . (50)

This shows that increasing the temperature τ helps reducing
the error introduced by approximate solutions.

7. Experiments
Previous works have successfully applied variations of
LPGD and LPPM to two types of experimental settings:
1) Producing informative gradient replacements when the
derivative of the solution-mapping is degenerate (Rolínek
et al., 2020a;b; Mandi et al., 2020; Sahoo et al., 2023; Ferber
et al., 2023) and 2) efficiently computing the true gradient
in the limit as τ → 0 when the derivative of the solution-
mapping is non-degenerate (Domke, 2010; McAllester et al.,
2010). However, our interpretation of LPGD, as updates
capturing higher-order sensitivities than standard gradients,
suggests the application to a third potential setting: 3) Using
LPGD with finite values of τ even when the derivative of
the solution-mapping is non-degenerate. We will compare
LPGD to GD in two such cases: a) Learning the rules of
Sudoku from synthetic data and b) tuning the parameters of
a Markowitz control policy on historical trading data.

12Note that Blondel et al. (2020) consider maximization.
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Implementation. We build on the CVXPY ecosystem (Di-
amond & Boyd, 2016; Agrawal et al., 2018; 2019a) to
implement LPGD for a large class of parameterized op-
timization problems. CVXPY automatically reduces pa-
rameterized optimization problems to conic programs in a
differentiable way, which are then solved with the SCS
solver (O’Donoghue et al., 2016). These solutions can
then be differentiated based on the results of Agrawal et al.
(2019b), which is natively implemented in CVXPY.13 14 As
an alternative to the true conic program derivative com-
putation based on Agrawal et al. (2019b), we implement
Algorithm 1 (in all variations). This allows using LPGD
for the large class of parameterized convex optimziation
problems supported by CVXPY without modification. The
code is available at github.com/martius-lab/diffcp-lpgd.

7.1. Learning the Rules of Sudoku

We consider a version of the Sudoku experiment proposed
by Amos & Kolter (2017a). The task is to learn the rules
of Sudoku in the form of linear programming constraints
from pairs of incomplete and solved Sudoku puzzles. See
Appendix G for details.

The results are reported in Figure 2. LPGD reaches a lower
final loss than GD, which suggests that LPGDτ produces
better update steps than standard gradients. We observe
faster convergence of LPGD compared to GD in terms of
wallclock time, which is due to the faster backward pass
computation resulting from warmstarting. Note that the
forward solution time over training increases as the initial
random optimization problem becomes more structured as
the loss decreases. Additional results can be found in Ap-
pendix G.1.

7.2. Tuning a Markowitz Control Policy

We now consider the Markowitz Portfolio Optimization set-
ting described by Agrawal et al. (2020, § 5). The task is
to tune a convex optimization control policy that iteratively
trades assets over a trading horizon. The policy parameters
are initialized as a Markowitz model based on historical data.
Differentiating through the optimization problem in the con-
trol policy allows tuning them to maximize the utility on
simulated evolutions of the asset values. See Appendix G.2
for a more detailed description.

In Figure 3a, we report a sweep over the learning rate α. The
best-performing GD run achieves an improvement of 23%
over the Markowitz initialization, while the best-performing

13We modify this implementation to support the regularization
term as described in Appendix C.

14Note that for many optimization problems the automatic reduc-
tion results in conic programs that have degenerate derivatives, in
which case the method of Agrawal et al. (2019b) returns a heuristic
quantity for the gradient without strong theoretical support.
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Figure 2: Comparison of LPGD and gradient descent (GD)
on the Sudoku experiment. Reported train MSE over epochs,
wall-clock time, and time spent in the backward and forward
passes. Statistics are over 5 restarts.
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LPGD run achieves an improvement of 35%. Moreover,
LPGD converges faster in terms of iterations, with both
methods requiring similar runtime. Note that with a higher
learning rate, GD becomes noisier than LPGD. For both
methods, runs with α = 0.1 diverged and terminated due
to infeasible conic programs. In Figure 3b, we report a
sweep on the temperature τ of LPGD. For low τ = 0.1,
LPGD performs badly, as numerical issues paired with the
backpropagation through time make the training dynamics
unstable. For τ = 1, LPGD matches the performance of
GD, as LPGD updates approximate the true gradients. The
best performance is achieved for τ = 100, for which LPGD
provides higher-order information than the gradients. For
τ = 1000, the strong perturbations sometimes result in the
infeasibility of the corresponding conic program, which
causes the run to terminate. This shows the practical trade-
off in selecting the temperature parameter τ , as discussed in
the theoretical analysis of LPGD. In Figure 3c, we also con-
duct a sweep over the solver accuracy ϵ, showing that GD
and LPGD have similar sensitivities to inaccurate solutions.
Additional results can be found in Appendix G.2.

8. Conclusion
We propose Lagrangian Proximal Gradient Descent
(LPGD), a flexible framework for learning parameterized op-
timization models. LPGD unifies and generalizes various
state-of-the-art contemporary optimization methods, in-
cluding Direct Loss Minimization (McAllester et al., 2010),
Blackbox Backpropagation (Vlastelica et al., 2020), Implicit
Differentiation by Perturbation (Domke, 2010), Identity
with Projection (Sahoo et al., 2023), Smart Predict then
Optimize (Elmachtoub & Grigas, 2022), and Fenchel-Young
losses (Blondel et al., 2020; 2022), and provides deep links
to traditional optimization methods.

LPGD computes updates as finite differences and only re-
quires accessing the forward solver as a black-box oracle,
which makes it extremely simple to implement. We also pro-
vide an implementation of LPGD that smoothly integrates it
into the CVXPY ecosystem. Formulated as gradient descent
on a loss function envelope, LPGD allows learning general
objective and constraint parameters of saddlepoint problems
even for solution mappings with degenerate derivatives.

Various special cases of LPGD have shown impressive
results in optimizing parameters of solution mappings with
degenerate derivatives and speeding up the computation of
non-degenerate derivatives. We explore a new experimental
direction by using LPGD to efficiently compute more
informative updates even when non-degenerate derivatives
exist. We find on two experiments that LPGD can achieve
faster convergence and better final results when compared
to gradient descent.
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Figure 3: Comparison of LPGDτ and GD in the Markowitz
portfolio optimization experiment. When not specified oth-
erwise, we use α = 0.001, ϵ = 0.0001, τ = 100 and ρ = 0.
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A. Limitations
We are aware of a few limitations of our method and are
committed to transparent communication of them.

Reformulating the L-proximal map as an instance of the
forward solver makes the implementation simple and effi-
cient. However, such reformulation is not possible in all
cases since it requires access to the linear coefficients of
the Lagrangian via the solver interface. This same issue
arises for the augmentation introduced in Section 5.5, which
requires accessing the quadratic coefficients of the solver
and potentially turns an LP from the forward pass into a QP
on the backward pass. This does not apply to our imple-
mentation of LPGD for the SCS solver (O’Donoghue et al.,
2016) in CVXPY, as the solver natively supports quadratic
conic programs.

When considering extremely small values of τ > 0, the
LPGD update requires solving the optimization problem
very accurately, which can be expensive. Otherwise, warm-
starting the solver on the backward pass with the forward
pass solution will already satisfy the stopping criterion.
However, we advocate for larger values of τ as the increased
smoothing is usually beneficial. In our experiment, due to
the convexity of the Lagrangian we are able to use the for-
ward solver oracle to solve the optimization problems (2)
and (30) to a very high accuracy in reasonable time using
the SCS solver (O’Donoghue et al., 2016), and therefore did
not observe issues arising from inexact solutions.

Finally, choosing the right combination of hyperparameters
τ and ρ can potentially require expensive tuning, as the
different terms in the objective of the L-envelope (31) can
be of different magnitudes, depending on the problem at
hand. A potential remedy is to normalize the terms onto a
shared scale, which makes well-performing values of τ and
ρ more transferable and interpretable. Future work might
also take inspiration from adaptive methods such as AIMLE
(Minervini et al., 2023) for automatically tuning τ and ρ on
the fly.

B. Extended Related Work
In this section we discuss the methods that are closest related
to our framework.

Direct Loss Minimization. In Direct Loss Minimiza-
tion (McAllester et al., 2010) the goal is to directly opti-
mize a structured prediction pipeline for a given task loss
such as the BLEAU score, extending previous work using
structured SVMs or CRFs. Given an input µ ∈ Rp the pre-
diction pipeline consists of a feature map Ψ: X × Rp →
Rk : (x, µ) 7→ Ψ(x, µ) and a corresponding parameterized
Lagrangian (called score function) L(x,w) = ⟨w,Ψ(x, µ)⟩.
The structured prediction is then computed by solving the

embedded optimization problem

x∗(w, µ) := argmax
x∈X

⟨w,Ψ(x, µ)⟩ (51)

over a finite set of solutions X . Finally a task-specific loss
ℓ : X × X → R is used to compare the prediction to a label
xtrue ∈ X . The goal is to optimize the loss over a dataset
{(µi, xtrue,i)}Ni=1, and the authors propose to optimize it us-
ing gradient descent. They show for the case X = {−1, 1}
that the gradient can be computed using the limit of the
finite difference

∇wℓ(x
∗(w, µ)) = ± lim

τ→0

1
τ

[
Ψ(x±τ , µ)−Ψ(x∗, µ)

]
with

x±τ := argmax
x∈X

⟨w,Ψ(x, µ)⟩ ± τℓ(x, xtrue). (52)

Where the two sign cases are called the “away-from-worse”
and the “towards-better” update. The authors also discuss
using relaxations ofX as well has hidden variables that have
similarities to our dual variables. The method is applied
to phoneme-to-speech alignment. The DLM framework
has also been generalized to non-linear objective functions
(Song et al., 2016; Lorberbom et al., 2019), always consid-
ering the limit τ → 0, with applications to action classifi-
cation, object detection, and semi-supervised learning of
structured variational autoencoders.

Blackbox Backpropagation. In Blackbox Backpropaga-
tion (Vlastelica et al., 2020) the authors consider embedded
combinatorial optimization problems with linear cost func-
tions. Given a (potentially high-dimensional) input µ ∈ Rp

the prediction pipeline first computes the cost vector c ∈ Rn

using a backbone model W : Rp × Θ → Rn : (µ, θ) 7→ c
and then solves the embedded linear optimization problem
over a combinatorial space X ⊂ Rn

x∗(c) := argmin
x∈X

⟨x, c⟩. (53)

Finally the optimal solution is used as the prediction and
compared to a label xtrue ∈ X on a given loss ℓ : X × X →
R. Because of the discrete solution space the gradient of
the loss with respect to the cost vector (and therefore also
the parameters θ) is uninformative, as it is either zero or
undefined. The authors propose to replace the uninformative
gradient w.r.t. c with the gradient of a piecewise-affine loss
interpolation

ℓ̃τ (c) := ℓ(x∗(c))− 1
τ min

x∈X
⟨c, x∗(c)− x̃τ (c)⟩ (54)

where we defined

x̃τ (c) := argmin
x∈X

⟨x, c+ τ∇xℓ(x
∗)⟩. (55)
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It has the gradient

∇ℓ̃τ (c) = − 1
τ [x

∗ − x∗(c+ τ∇xℓ(x
∗))]. (56)

This approach has also been extended to learning discrete
distributions in (Niepert et al., 2021).

Implicit Differentiation by Perturbation. Implicit Dif-
ferentiation by Perturbation (Domke, 2010) was proposed
in the context of graphical models and marginal inference.
The parameters c now correspond to the parameters of an
exponential family distribution and X is the marginal poly-
tope. Computing the marginals requires solving the entropy-
regularized linear program

argmax
x∈X

⟨x, c⟩+Ω(x), (57)

where Ω denotes the entropy. The final loss function ℓ
depends on the computed marginals and some data xtrue.
Approximate marginal inference can be seen as approxi-
mating the marginal polytope with a set of linear equality
constraints

x∗(c) := argmax
x∈Rn,Ax=b

⟨x, c⟩+Ω(x), (58)

which can be solved by loopy/tree-reweighted belief propa-
gation. The authors show that in this case, as an alternative
to implicit differentiation, the gradients of the loss with
respect to the parameters can be computed by

∇wℓ(x
∗(w)) = lim

τ→0

1
τ [x

∗(c+τ∇xℓ(x
∗))−x∗(c)]. (59)

The method is applied to binary denoising, where the au-
thors also test the double-sided perturbation case.

Identity with Projection. In Identity with Projection (Sa-
hoo et al., 2023) the setup is the same as in Blackbox Back-
propagation. The goal of this method is to speed up the back-
ward pass computation by removing the second invocation
of the solver oracle on the backward pass. In the basic ver-
sion, the authors propose to replace the uninformative gra-
dient through the solver ∇cℓ(x

∗(c)) by simply treating the
solver as a negative identity, and returning ∆Id := −∇ℓ(x∗)
instead. Connections are drawn to the straight-through es-
timator. Further, the authors identify transformations of
the cost vector P : Rk → Rk that leave the optimal solu-
tion unchanged (e.g. normalization), i.e. x∗(P (c)) = x∗(c).
They propose to refine the vanilla identity method by dif-
ferentiating through the transformation, yielding the update
∆Id := P ′

x∗(−∇ℓ(x∗)). This is also shown to have an in-
terpretation as differentiating through a projection onto a
relaxation X̃ of the feasible space, i.e.

∆Id = D∗PX̃ (x∗)(−∇ℓ(x∗)). (60)

Experimentally, the method is shown to be competitive with
Blackbox Backpropagation and I-MLE.

Smart Predict then Optimize. In Smart Predict then
Optimize (Elmachtoub & Grigas, 2022) setting the authors
consider a linear program

x∗(c) := argmin
x∈X

⟨x, c⟩ (61)

as the final component of a prediction pipeline. The cost
parameters c ∈ Rn are not known with certainty at test
time, and are instead predicted from an input µ ∈ Rp via
a prediction model Wθ : Rp → Rn : µ 7→ c with param-
eters θ ∈ Θ. What distinguishes this setup from the one
considered in e.g. Blackbox Backpropagation is that during
training the true cost vectors ctrue are available, i.e. there is
a dataset {µi, ctrue,i}Ni=1. A naive approach would be to di-
rectly regress the prediction model onto the true cost vectors
by minimizing the mean squared error

ℓMSE(µ, ctrue) =
1
2∥Wθ(µ)− ctrue∥. (62)

However, the authors note that this ignores the actual down-
stream performance metric, which is the regret or SPO loss

ℓSPO(x
∗(c), ctrue) = ⟨x∗(c)− x∗(ctrue), ctrue⟩. (63)

Unfortunately this loss does not have informative gradients,
so the authors propose to instead optimize a convex upper
bound, the SPO+ loss

ℓSPO+(c, ctrue) := sup
x∈X
⟨x, ctrue − 2c⟩

+ 2⟨x∗(ctrue), c⟩ − ⟨x∗(ctrue), ctrue⟩
(64)

a generalization of the hinge loss. Experimentally, results
on shortest path problems and portfolio optimization demon-
strate that optimizing the SPO+ loss offers significant bene-
fits over optimizing the naive MSE loss.

Fenchel-Young Losses. Fenchel Young Losses (Blondel
et al., 2020) were proposed in the context of structured
prediction, in which the final prediction is the solution of a
regularized linear program

x∗(c) := argmax
x∈X

⟨x, c⟩ − Ω(x). (65)

Supervision is assumed in the form of ground truth labels
xtrue. The authors propose to learn the parameters c by
minimizing the convex Fenchel Young Loss

ℓFY(c, xtrue) := max
x∈X

[
⟨c, x⟩−Ω(x)

]
+Ω(xtrue)−⟨c, xtrue⟩

= ⟨c, xtrue⟩+Ω(xtrue)−min
x∈X

[
⟨c, x⟩+Ω(x)

]
,

for which a variety of appealing theoretical results are pre-
sented. Many known loss functions from structured predic-
tion and probabilistic prediction are shown to be recovered
by Fenchel-Young losses for specific choices of feasible
region X and regularizer Ω, including the structured hinge
(Tsochantaridis et al., 2005), CRF (Lafferty et al., 2001),
and SparseMAP (Niculae et al., 2018) losses.
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C. Implicit Differentiation with Augmentation
We inspect how the augmentation in (28) affects existing
methods for computing the adjoint derivative of the aug-
mented optimization problem

z∗ρ(w) = (x∗
ρ(w), y

∗
ρ(w)) := argmin

x∈X
max
y∈Y
Lρ(x, y, w).

Quadratic Program. For a symmetric positive semi-
definite matrix H we can write a quadratic program with
inequality constraints as

(x∗, s∗) = argmin
x,s≥0

1
2x

THx+ cT y

subject to Ax+ b+ s = 0.
(66)

In Lagrangian form, we can write it as

z∗ = (x∗, s∗, y∗) = arg min
x,s≥0

max
y
L(H, c,A, b, x, y)

with the Lagrangian

L(x, s, y,H,A, b, c) = 1
2x

THx+ cTx+ (Ax+ b+ s)T y.

The augmentation in (28) augments the Lagrangian to

Lρ(x, s, y,H,A, b, c)

= 1
2x

THx+ cTx+ (Ax+ b+ s)T y + 1
2ρ∥x− x∗∥22

and we write

z∗ρ(H,A, b, c) = arg min
x,s≥0

max
y
Lρ(x, s, y,H,A, b, c).

As described in (Amos & Kolter, 2017a), the optimization
problem can be differentiated by treating it as an implicit
layer via the KKT optimality conditions, which are given as

Hx+AT y + c+ 1
ρ (x− x∗) = 0 (67)

diag(y)s = 0 (68)
Ax+ b+ s = 0 (69)

s ≥ 0. (70)

Assuming strict complementary slackness renders the in-
equality redundant and the conditions reduce to the set of
equations

0 = Fρ(x, s, y,H,A, b, c)

=

Hx+AT y + c+ 1
ρ (x− x∗)

diag(y)s
Ax+ b+ s

 (71)

which admits the use of the implicit function theorem. It
states that under the regularity condition that ∂Fρ/∂z is in-
vertible, z∗ρ(w) can be expressed as an implicit function, and

we can compute its Jacobian by linearizing the optimality
conditions around the current solution

0 =
∂Fρ

∂z

∂z∗ρ
∂w

+
∂Fρ

∂w
(72)

with

∂Fρ

∂z
=

H + 1
ρI 0 AT

0 diag(ys ) I
A I 0

 . (73)

It is now possible to compute the desired Vector-Jacobian-
product as

∇wℓ(x
∗(w)) =

∂z∗

∂w

T

∇ℓ(x∗)

= −∂Fρ

∂w

T ∂Fρ

∂z

−T

∇ℓ(x∗),

(74)

which involves solving a linear system. The augmentation
term, therefore, serves as a regularizer for this linear system.

Conic Program. A conic program (Boyd & Vanden-
berghe, 2014) is defined as

(x∗, s∗) = argmin
x,s∈K

cT y subject to Ax+ b+ s = 0

where K is a cone. The Lagrangian of this optimization
problem is

L(x, s, y, A, b, c) = cTx+ (Ax+ b+ s)T y (75)

which allows an equivalent saddle point formulation given
by

z∗ = (x∗, s∗, y∗) = arg min
x,s∈K

max
y
L(x, s, y, A, b, c).

The KKT optimality conditions are

AT y + c = 0, (76)
Ax+ s+ b = 0, (77)

(s, y) ∈ K ×K∗, (78)

sT y = 0, (79)

where K∗ is the dual cone of K. The skew-symmetric map-
ping

Q(A, b, c) =

 0 AT c
−A 0 b
−cT −bT 0

 (80)

is used in the homogenous self-dual embedding
(O’Donoghue et al., 2016; Busseti et al., 2019), a
feasibility problem that embeds the conic optimization
problem. Agrawal et al. (2019b) solve and differentiate the
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self-dual embedding. We use the CVXPY implementation
of this method as our baseline for computing the true adjoint
derivatives of the optimization problem. The augmentation
in (28) changes the stationarity condition and, thereby, the
skew-symmetric mapping as

Qρ(A, b, c) =

 1
ρI AT c

−A 0 b
−cT −bT 0

 . (81)

We adjust the CVXPY implementation accordingly for our
experiments.

D. Relation to Mirror Descent
Standard Mirror Descent. Classical mirror descent is an
algorithm for minimizing a function ℓ(x) over a closed con-
vex set X ⊆ Rn. The algorithm is defined by the distance-
generating function (or mirror map) ϕ : Rn → R, a strictly
convex continuously differentiable function. The mirror
descent algorithm also requires the assumption that the dual
space of ϕ is all of Rn, i.e. {∇ϕ(x) | x ∈ Rn} = Rn, and
that the gradient of ϕ diverges as ∥x∥2 →∞.

The Bregman divergence of the mirror map is defined as

Dϕ(x, x̂) := ϕ(x)− ϕ(x̂)− ⟨x− x̂,∇ϕ(x̂)⟩. (82)

The lower15 Bregman-Moreau envelope (Bauschke et al.,
2018) envϕτf : Rn → R of a possibly non-smooth function
f : Rn → R is defined for τ > 0 as

envϕτf (x̂) := min
x

f(x) + 1
τDϕ(x, x̂). (83)

The corresponding lower Bregman-Moreau proximal map
proxϕτf : Rn → Rn is given by

proxϕτf (x̂) := arg infx f(x) +
1
τDϕ(x, x̂) (84)

The superscript ϕ distinguishes the notation from the stan-
dard Moreau envelope (4) and proximal map (5).

Then, the mirror descent algorithm in proximal form is given
by iteratively applying the Bregman-Moreau proximal map
of ℓ̃+ IX as

xk+1 = argmin
x

ℓ̃(x) + IX (x) + 1
τDϕ(x, xk) (85)

= argmin
x∈X

⟨x,∇ℓ(xk)⟩+ 1
τDϕ(x, xk). (86)

Lagrangian Mirror Descent. In this section, we derive
Lagrangian Mirror Descent (LMD), an alternative algorithm
to LPGD inspired by mirror descent. We define

Lw(x) := sup
y∈Y
L(x, y, w) (87)

15The terms lower and upper are replaced with left and right in
Bauschke et al. (2018).

and assume that Lw is strongly convex and continuously
differentiable in x. As the key step, we identify the distance-
generating function (mirror map) as the Lagrangian, i.e.
ϕ = Lw. This has the interpretation that distances are
measured in terms of the Lagrangian, similar to the intuition
behind the previously defined Lagrangian divergence.

This mirror map leads to the Bregman divergence

DLw(x, x̂) = Lw(x)− Lw(x̂)− ⟨x− x̂,∇Lw(x̂)⟩ (88)

satisfying

DLw(x, x
∗) ≥ 0, (89)

DLw(x, x
∗) = 0⇔ x = x∗(w) for x ∈ X . (90)

We define the lower Lagrange-Bregman-Moreau envelope
at w as the Bregman-Moreau envelope at x∗ = x∗(w), i.e.

ℓϕτ (w) := envLw

τℓ+IX
(x∗) (91)

= min
x

ℓ(x) + IX (x) + 1
τDLw(x, x

∗) (92)

= min
x∈X

ℓ(x) + 1
τ (L(x,w)− L∗(w)

− ⟨x− x∗,∇xL(x∗, w)⟩),
(93)

and the corresponding lower Lagrange-Bregman-Moreau
proximal map

xϕ
τ (w) := proxLw

τℓ+IX
(x∗) (94)

= argmin
x

ℓ(x) + IX (x) + 1
τDLw

(x, x∗) (95)

= argmin
x∈X

ℓ(x) + 1
τ (L(x,w)− L∗(w)

− ⟨x− x∗,∇xL(x∗, w)⟩).
(96)

Again, the superscript ϕ distinguishes the notation from
the lower Lagrange-Moreau envelope (12) and lower L-
proximal map (13).

Similar to how we defined LPGD as gradient descent on the
Lagrange-Moreau envelope of the linearized loss, we define
Lagrangian Mirror Descent (LMD) as gradient descent on
the Lagrange-Bregman-Moreau envelope of the linearized
loss, i.e.

∇w ℓ̃
ϕ
τ (w) =

1
τ∇w[L(x̃ϕ

τ , w)− L(x∗, w)

− ⟨x̃ϕ
τ − x∗,∇xL(x∗, w)⟩].

(97)

Again, the approximation allows efficiently computing the
gradients using the forward solver as

x̃ϕ
τ (u, v) = argmin

x∈X
τ⟨x,∇ℓ⟩+ ⟨x, u⟩

+Ω(x, y, v)− ⟨x,∇xL(x∗, w)⟩
(98)

= x∗(u+ τ∇ℓ−∇xL(x∗, w), v). (99)
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If X = Rn, then the original optimization problem (2)
is unconstrained and we have the optimality condition
∇xL(x∗, w) = 0. Therefore, the Bregman divergence

DLw
(x, x∗) = Lw(x)− Lw(x

∗)− ⟨x− x∗,∇Lw(x
∗)⟩

= L(x,w)− L(x∗, w)

= L(x,w)− L∗(w) = DL(x|w)

coincides with the Lagrangian divergence (9). It follows
that, in this case, the Lagrange-Moreau envelope and LPGD
coincide with the Lagrange-Bregman-Moreau envelope and
LMD, respectively.

E. Extension to General Loss Functions
Loss on Dual Variables. In the main text we considered
losses depending only on the primal variables, i.e. ℓ(x). For
a loss on the dual variables ℓ(y), if we assume strong duality
of (1), we can reduce the situation to the primal case, as

y∗(w) = argmax
y∈Y

min
x∈X
L(x, y, w) (100)

= argmin
y∈Y

max
x∈X
−L(x, y, w). (101)

This amounts to simply negating the Lagrangian in all equa-
tions while swapping x and y.

Loss on Primal and Dual Variables. The situation be-
comes more involved for a loss function L(x, y) depending
on both primal and dual variables. If it decomposes into a
primal and dual component, i.e. L(x, y) = ℓp(x) + ℓd(y),
we can compute the envelopes of the individual losses inde-
pendently. Note that a linearization of the loss L̃ trivially
decomposes this way. Adding the envelopes together yields
a combined lower and upper envelope for the total loss as

(ℓp)τ (w) + (ℓd)τ (w) =min
x∈X

max
y∈Y

[ 1τL(x, y, w) + ℓp(x)]

−max
y∈Y

min
x∈X

[ 1τL(x, y, w)− ℓd(y)],

(102)

(ℓd)
τ (w) + (ℓp)

τ (w) =max
y∈Y

min
x∈X

[ 1τL(x, y, w) + ℓd(y)]

−min
x∈X

max
y∈Y

[ 1τL(x, y, w)− ℓp(x)].

(103)

Assuming strong duality of these optimization problems,
this leads to

(ℓp)τ (w) + (ℓd)τ (w) =min
x∈X

max
y∈Y

[ 1τL(x, y, w) + ℓp(x)]

−min
x∈X

max
y∈Y

[ 1τL(x, y, w)− ℓd(y)],

(ℓd)
τ (w) + (ℓp)

τ (w) =min
x∈X

max
y∈Y

[ 1τL(x, y, w) + ℓd(y)]

−min
x∈X

max
y∈Y

[ 1τL(x, y, w)− ℓp(x)].

Strong duality holds in particular for a linearized loss L̃, as
this only amounts to a linear perturbation of the original op-
timization problem. Unfortunately, computing the average
envelope

(ℓp)τ(w) + (ℓd)τ(w) =
1
2

{
min
x∈X

max
y∈Y

[ 1τL(x, y, w) + ℓp(x)]

−min
x∈X

max
y∈Y

[ 1τL(x, y, w)− ℓd(y)]

+min
x∈X

max
y∈Y

[ 1τL(x, y, w) + ℓd(y)]

−min
x∈X

max
y∈Y

[ 1τL(x, y, w)− ℓp(x)]

}
or its gradient would now require four evaluations of the
solver, which can be expensive. To reduce the number of
evaluations, we instead “combine” the perturbations of the
primal and dual loss, i.e. we define

Lτ (w) := min
x∈X

max
y∈Y

L(x, y) + 1
τ [L(x, y, w)− L∗(w)]

(104)

Lτ (w) := min
x∈X

max
y∈Y

L(x, y) + 1
τ [L(x, y, w)− L∗(w)]

(105)

Lτ(w) := 1
2{Lτ (w) + Lτ (w)}

= min
x∈X

max
y∈Y

[ 1τL(x, y, w) + L(x, y)]

−min
x∈X

max
y∈Y

[ 1τL(x, y, w)− L(x, y)].

(106)

The above definitions are valid even when we do not have
strong duality of (1) and (104). Note that Lτ and Lτ are
not necessarily lower and upper bounds of the loss anymore.
However, these combined envelopes also apply to loss func-
tions that do not separate into primal and dual variables, and
computing their gradients requires fewer additional solver
evaluations. For L(x, y) = ℓ(x) we have

Lτ (w) = ℓτ (w), Lτ(w) = ℓτ(w), Lτ (w) = ℓτ (w).
(107)

In some of the proofs we will work with L instead of ℓ for
full generality and reduce the situation to a primal loss ℓ
with the relations above.

F. Proofs
Lemma F.1 (Equation (11)). It holds that

D∗
L(x|w) = 0 if and only if x minimizes (2) for x ∈ X .

Proof of Lemma F.1. If x ∈ X minimizes (2), this means

sup
y∈Y
L(x, y, w) = inf

x̃∈X
sup
y∈Y
L(x̃, y, w) (108)
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and therefore

D∗
L(x|w) = sup

y∈Y

[
L(x, y, w)− L∗(w)

]
(109)

= min
x̃∈X

max
y∈Y

[
L(x̃, y, w)

]
− L∗(w) = 0. (110)

If D∗
L(x|w) = 0, we have from the definition of the La-

grangian divergence (9) that

sup
y∈Y
L(x, y, w) = L∗(w) (111)

= min
x̃∈X

max
y∈Y
L(x̃, y, w) (112)

and hence x is a minimizer of (2).

Lemma F.2 (Equation (17)). Assume that L, ℓ ∈ C1 and as-
sume that the solution mappings of optimization (2, 12, 14)
admit continuous selections x∗(w), xτ (w), x

τ (w) at w.
Then

∇ℓτ (w) = 1
τ∇w

[
L(w, zτ )− L(z∗, w)

]
, (113)

∇ℓτ (w) = 1
τ∇w

[
L(z∗, w)− L(zτ , w)

]
. (114)

Proof of Lemma F.2. We assumed that z∗(w) is a selection
of the solution set continuous at w. We also assumed that L
and ℓ are continuously differentiable. It then follows that

∇wℓτ (w) = ∇w min
x∈X

max
y∈Y

ℓ(x) + 1
τDL(x, y|w) (115)

= ∇w

[
min
x∈X

max
y∈Y

[ℓ(x) + 1
τL(x, y, w)]

−min
x∈X

max
y∈Y

1
τL(x, y, w)

] (116)

= ∇w

[
min
x∈X

max
y∈Y

ℓ(x) + 1
τL(x, y, w)

]
−∇w

[
min
x∈X

max
y∈Y

1
τL(x, y, w)

] (117)

= ∇w

[
ℓ(xτ ) +

1
τL(xτ , yτ , w)

]
−∇w

[
1
τL(x∗, y∗, w)

] (118)

= 1
τ∇w

[
L(w, zτ )− L(z∗, w)

]
(119)

In the fourth equation we used the result by Oyama & Tak-
enawa (2018, Proposition 4.1). The proof for the upper
envelope is analogous.

Proposition 6.1. Assume that L is L-Lipschitz continuous
in w. Then ℓτ , ℓτ, ℓ

τ are 2L
τ -Lipschitz continuous in w.

Proof of Proposition 6.1. We have the optimal Lagrangian

L∗(w) = min
x∈X

max
y∈Y
L(x, y, w) (120)

and define

L∗
τ (w) := min

x∈X
max
y∈Y
L(x, y, w) + τℓ(x). (121)

Then the lower L-envelope may be written as

ℓτ (w) =
1
τ

[
L∗
τ (w)− L∗(w)

]
. (122)

If L is L-Lipschitz in w for every x ∈ X , y ∈ Y , where
L is independent of x and y, then both L∗ and L∗

τ are L-
Lipschitz, see Weaver (2018, Proposition 1.32). Hence, ℓτ
is 2L

τ -Lipschitz. The cases of ℓτ and ℓτ are analogous.

Proposition 6.2. Assume L, ℓ are lower semi-continuous
and ℓ is finite-valued on X . Let w be a parameter for which

X∗(w) := {x ∈ X | D∗
L(x|w) = 0} (123)

is nonempty. Then it holds that

lim
τ→0

ℓτ (w) = min
x∗∈X∗(w)

ℓ(x∗) (124)

and

lim
τ→0

x∗
τ (w) ∈ argmin

x∈X∗(w)

ℓ(x∗) (125)

whenever the limit exists.

Proof of Proposition 6.2. Throughout the proof, let w fixed,
and hence we omit the dependence in the notation. For
τ > 0 we define fτ : X → R by

fτ (x) = ℓ(x) + 1
τD

∗
L(x) for x ∈ X . (126)

We have the monotonicity

fτ ≤ fτ ′ whenever τ ′ ≤ τ, (127)

since D∗
L(x) ≥ 0, and taking the infimum over x ∈ X on

both sides leads to

ℓτ ≤ ℓτ ′ whenever τ ′ ≤ τ. (128)

Moreover, for any τ > 0 and all x∗ ∈ X∗, it is

ℓτ = min
x∈X

fτ (x) ≤ fτ (x
∗) = ℓ(x∗). (129)

Therefore ℓτ is bounded and monotone, hence the limit as
τ → 0+ exists and

ℓ0 := lim
τ→0+

ℓτ ≤ inf
x∗∈X∗

ℓ(x∗). (130)

Denote by (xτ )τ>0 minimizers of ℓτ , i.e. ℓτ = fτ (xτ ).
Assume that xτ → x0 ∈ X as τ → 0+. We show that x0

minimizes ℓ(x) over X∗.

Since ℓ is lower semi-continuous, we have that

lim inf
τ→0+

ℓ(xτ ) ≥ ℓ(x0) (131)
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and, by definition, we also have that

ℓτ = ℓ(xτ ) +
1
τD

∗
L(xτ ). (132)

Taking the lim inf as τ → 0+ in (132) yields

ℓ0 = lim inf
τ→0+

ℓτ

= lim inf
τ→0+

[
ℓ(xτ ) +

1
τD

∗
L(xτ )

]
≥ lim inf

τ→0+
ℓ(xτ ) + lim inf

τ→0+

1
τD

∗
L(xτ )

≥ ℓ(x0) + lim inf
τ→0+

1
τD

∗
L(xτ ).

(133)

Next, since D∗
L(x) ≥ 0, inequality (133) reduces to ℓ0 ≥

ℓ(x0), which together with estimate (130) gives

ℓ(x0) ≤ inf
x∗∈X∗

ℓ(x∗). (134)

It remains to show that x0 ∈ X∗. From (133) we know

lim inf
τ→0+

1
τD

∗
L(xτ ) <∞. (135)

We assume lower semi-continuity of L(x, y) in x for every
y ∈ Y , therefore the Lagrangian divergence

D∗
L(x) = sup

y∈Y
L(x, y)− L∗ (136)

is also lower semi-continuous, hence

lim inf
τ→0+

D∗
L(xτ ) ≥ D∗

L(x0). (137)

Together with (135), this gives that D∗
L(x0) = 0, or equiva-

lently, x0 ∈ X∗.

Theorem 6.3. Assume that L ∈ C2 and assume that the
solution mapping of optimization (2) admits a differentiable
selection x∗(w) at w. Then

lim
τ→0
∇ℓ̃τ (w) = ∇wℓ(x

∗(w)) = lim
τ→0
∇ℓ̃τ (w). (138)

Proof of Theorem 6.3. In this proof we work in the more
general setup described in Appendix E, in which the loss
L can depend on both primal and dual optimal solutions.
We aim to show that for a linear loss approximation L̃, the
LPGD update recovers the true gradient as τ approaches
zero. We again assume the same form of the Lagrangian as
in (21)

L(z, w) = ⟨z, u⟩+Ω(z, v) (139)

with w = (u, v) and get from Oyama & Takenawa (2018,
Proposition 4.1)

∇uL∗(u, v) = ∇uL(z∗, u, v) = z∗(u, v). (140)

We define

dw :=

(
∇zL
0

)
. (141)

Then it holds that

lim
τ→0
∇wL̃τ (w)

= lim
τ→0

1
τ [∇wL∗(w + τdw)−∇wL∗(w)] (142)

=
∂2L∗

∂2w
dw =

∂2L∗

∂2w

T

dw (143)

=
∂2L∗

∂2w

T (
∇zL
0

)
(144)

=
∂2L∗

∂w∂u

T

∇zL =
∂(∇uL∗)

∂w

T

∇zL (145)

=
∂z∗

∂w

T

∇zL = ∇wL(z
∗(w)). (146)

The main step in this derivation appears in the second-to-last
equality by identifying the Jacobian of the solution mapping
as a sub-matrix of the Hessian of the optimal Lagrangian
function, which is a symmetric matrix under the conditions
of Schwarz’s theorem. A sufficient condition for this is the
assumption that L ∈ C2.16 Exploiting the symmetry of
the Hessian then allows computing the gradient, which is a
co-derivative (backward-mode, vector-jacobian-product), as
the limit of a finite-difference between two solver outputs,
which usually only computes a derivative (forward-mode,
jacobian-vector-product) from input perturbations ∆w as

∆z =
∂z∗

∂w
∆w (147)

= lim
τ→0

1
τ [z

∗(w + τ∆w)− z∗(w)] (148)

= lim
τ→0

1
τ [∇uL∗(w + τ∆w)−∇uL∗(w)]. (149)

We observe that the finite-difference appearing in the LPGD
update is the co-derivative counterpart of a finite-difference
approximation of the derivative. This observation also fos-
ters an interpretation of finite τ in the LPGD update: In
forward-mode, checking how the solver reacts to finite
perturbation of the parameters intuitively provides higher-
order information than linear sensitivities to infinitesimal
perturbations via derivatives. In backward-mode, the finite-
difference in LPGD update has the equivalent advantage
over standard co-derivatives, by capturing higher-order in-
formation instead of linear sensitivities.

Note that for L(x, y) = ℓ(x) this reduces to

lim
τ→0
∇w ℓ̃τ (w) = ∇wℓ(x

∗(w)). (150)

16Note that a similar derivation already appeared in (Domke,
2010), but only for primal variables with linear parameters and
without considering the benefits of finite values of τ .
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An analogous proof and discussion also hold for the upper
envelope ℓ̃τ and average envelope ℓ̃τ , corresponding to the
co-derivative counterparts of the left-sided and central finite-
difference approximations of the derivative, respectively.

Proposition 6.4. Assume L, ℓ are lower semi-continuous
and ℓ is finite-valued on X . Let w be a parameter for which

X̂ (w) := {x ∈ X | D∗
L(x|w) <∞} (151)

is nonempty. Then

lim
τ→∞

xτ (w) ∈ argmin
x∈X̂ (w)

ℓ(x) (152)

whenever the limit exists. For a linearized loss, we have

lim
τ→∞

x̃τ (w) ∈ argmin
x∈X̂ (w)

⟨x,∇ℓ⟩ = xFW (w), (153)

where xFW is the solution to a Frank-Wolfe iteration
LP (Frank & Wolfe, 1956)

Proof of Proposition 6.4. Throughout the proof, let w be a
fixed parameter, we therefore omit the dependence in the
notation. For τ > 0 we use fτ : X → R defined in (126).
Since D∗

L ≥ 0 on X , we have that

fτ ≥ fτ ′ ≥ ℓ on X (154)

whenever τ ′ ≥ τ . Now let (xτ )τ>0 be minimizers of (126)
such that xτ → x∞ ∈ X as τ → ∞. We show that x∞
minimizes ℓ(x) over X̂ .

To this end, let (τn)∞n=1 be a non-decreasing sequence such
that τn →∞ and denote xn = xτn and fn = fτn , for short.
Since X̂ is nonempty and ℓ is finite-valued on X , we have
that fn(xn) <∞ and xn ∈ X̂ for all n ∈ N.

We assume lower semi-continuity of L(x, y) in x for every
y ∈ Y , therefore the Lagrangian divergence

D∗
L(x) = sup

y∈Y
L(x, y)− L∗ (155)

is also lower semi-continuous, i.e.

lim inf
n→∞

D∗
L(xn) ≥ D∗

L(x∞). (156)

As xn ∈ X̂ for all n ∈ N it follows that

∞ > lim inf
n→∞

D∗
L(xn) ≥ D∗

L(x∞), (157)

and therefore x∞ ∈ X̂ as well.

Next, by (154), the sequence fn(xn) for n ∈ N is nonin-
creasing and bounded from below (by a minimum of ℓ on
{xn | n ∈ N}). Therefore, fn(xn) is convergent. By lower

semi-continuity of ℓ, we have that lim infn→∞ ℓ(xn) ≥
ℓ(x∞) and thus 1

τn
D∗

L(xn|w) converges to some c ≥ 0.

Altogether, for any x̂ ∈ X̂ (w), we have

ℓ(x∞) + c ≤ lim inf
n→∞

ℓ(xn) + lim inf
n→∞

1
τn
D∗

L(xn|w)

≤ lim inf
n→∞

[
ℓ(xn) +

1
τn
D∗

L(xn|w)
]

≤ lim
n→∞

ℓ(x̂) + 1
τn
D∗

L(x̂|w)

= ℓ(x̂). (158)

The particular choice x̂ = x∞ shows that c = 0. Therefore
ℓ(x∞) ≤ ℓ(x̂) for any x̂ ∈ X̂ as desired. The second
part of the proposition follows directly by taking a loss
linearization.

Proposition 6.5. Assume ℓ is continuous and finite-valued
on X . Let w be a parameter for which X̂ (w) is nonempty.
The primal lower L-proximal map (30) turns into the stan-
dard proximal map (5)

lim
τ→∞

xτρ(w) = argmin
x∈X̂ (w)

[
ℓ(x) + 1

2ρ∥x− x∗∥22
]

(159)

= proxρℓ+IX̂(w)
(x∗), (160)

whenever the limit exists. For a linearized loss, it reduces to
the Euclidean projection onto X̂ (w)
lim
τ→∞

x̃τρ(w) = argmin
x∈X̂ (w)

[
⟨x,∇ℓ⟩+ 1

2ρ∥x− x∗∥22
]

(161)

= PX̂ (w)(x
∗ − ρ∇ℓ). (162)

Proof of Proposition 6.5. The proof is analogous to that of
Proposition 6.4 with fτ : X → R, where

fτ (x) = ℓ(x) + 1
τD∗

L(x|w) + 1
2ρ∥x− x∗∥22.

Proposition 6.6. Assume that the solvers for (2, 13) return
ε-accurate solutions ẑ∗, ẑτ with δ-accurate objective values,
i.e.

∥ẑ∗ − z∗∥ ≤ ε, (163)
|L(ẑ∗, w)− L(z∗, w)| ≤ δ, (164)

∥ẑτ − zτ∥ ≤ ε, (165)∣∣[L(ẑτ , w) + τℓ(x̂τ )]− [L(zτ , w) + τℓ(xτ )]
∣∣ ≤ δ. (166)

Then for the approximate lower L-envelope

ℓ̂τ (w) := ℓ(x̂τ ) +
1
τ

[
L(ẑτ , w)− L(ẑ∗, w)

]
(167)

it holds that

|ℓ̂τ (w)− ℓτ (w)| ≤
2δ

τ
. (168)

Moreover, if ∇wL(x, y, w) is L-Lipschitz continuous in
(x, y) ∈ X × Y , it holds that

∥∇ℓ̂τ (w)−∇ℓτ (w)∥ ≤
2Lε

τ
. (169)
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Proof of Proposition 6.6. We have

|ℓ̂τ (w)− ℓτ (w)|
≤

∣∣[ℓ(x̂τ ) +
1
τL(ẑτ , w)

]
−
[
ℓ(xτ ) +

1
τL(zτ , w)

]∣∣
+
∣∣ 1
τL(ẑ∗, w)− 1

τL(z∗, w)
∣∣ ≤ 2δ

τ ,

which shows the first part of the proposition. The second
part follows from∥∥∇ℓ̂τ (w)−∇ℓτ (w)∥∥

≤
∥∥ 1
τ

[
∇wL(ẑτ , w)−∇wL(ẑ∗, w)

]
+ 1

τ

[
∇wL(zτ , w)−∇wL(z∗, w)

]∥∥
≤ 1

τ

∥∥∇wL(ẑτ , w)−∇wL(zτ , w)
∥∥

+ 1
τ

∥∥∇wL(ẑ∗, w)−∇wL(z∗, w)
∥∥

≤ L
τ ∥ẑτ − zτ∥+ L

τ ∥ẑ∗ − z∗∥ ≤ 2Lε
τ .

(170)

The approximation of the upper L-envelope has an analo-
gous proof.

G. Experiments
G.1. Learning the Rules of Sudoku

Instead of the mini-Sudoku case (4 × 4 grid) in Amos &
Kolter (2017a), we consider the full 9 × 9 Sudoku grid.
The Sudoku board is modelled as a one-hot-encoding, with
incomplete input and solved label xinc, xtrue ∈ {0, 1}9×9×9.
The optimization problem is modelled as a generic box-
constrained linear program

x∗(A, b;xinc) = argmin
x∈X

⟨x, xinc⟩

subject to Ax+ b = 0
(171)

with X = [0, 1]9×9×9 and a sufficient number of constraints
m to represent the rules of the LP Sudoku.17 The saddle-
point formulation of (171) is

z∗(A, b;xinc) = argmin
x∈X

max
y∈Rm

L(x, y,A, b, xinc), (172)

with L(x, y,A, b, c) = ⟨x, c⟩ + ⟨y,Ax + b⟩. Note that we
have the effective feasible set

X̂ (A, b) = {x ∈ [0, 1]9×9×9 | Ax+ b = 0}. (173)

The constraint parameters A and b are themselves param-
eterized such that at least one feasible point exists, which
means that the optimization problem has a finite optimal
solution, implying strong duality of (172).

We follow the training protocol described by Amos & Kolter
(2017a) that minimizes the mean square error between pre-
dictions x∗(A, b;xinc) and one-hot encodings of the cor-
rectly solved Sudokus xtrue. For evaluation, we follow Amos

17The formulation as an LP differs from the original formulation
by Amos & Kolter (2017a), in which a quadratic regularizer has to
be added to meet the method requirements.

& Kolter (2017a) in refining the predictions by taking an
argmax over the one-hot dimension and report the percent-
age of violated ground-truth Sudoku constraints as the error.

We modify the public codebase from (Amos & Kolter,
2017b). The dataset consists of 9000 training and 1000
test instances. We choose the hyperparameters learning rate
α, τ and ρ with a grid search. The best hyperparameters for
LPGD are τ = 104, ρ = 0.1, α = 0.1, for gradient descent
they are ρ = 10−3, α = 0.1. We use these hyperparameters
in our evaluation.

Additional metrics are reported in Figure 4 and Figure 5.
We observe that there is not significant difference between
train and test metrics, which shows that our formulation of
Sudoku (171) allows generalizing across instances. The re-
sults also contain the upper and lower variations LPGDτ and
LPGDτ in addition to the average LPGDτ . We observe that
LPGDτ outperforms LPGDτ and LPGDτ , highlighting that
both the lower and upper envelopes carry relevant informa-
tion for the optimization. This is intuitively understandable
by considering that in Figure 1 LPGDτ and LPGDτ provide
non-zero gradients in different subsets of the domain, while
LPGDτ gives informative gradients in both subsets.

G.2. Tuning a Markowitz Control Policy

In the Markowitz Portfolio Optimization setting described
in Agrawal et al. (2020, §5), the task is to iteratively trade
assets in a portfolio such that a utility function based on
returns and risk is maximized over a trading horizon. The
trading policy is a convex optimization control policy, which
determines trades by solving a parameterized convex op-
timization problem. It maximizes a parameterized objec-
tive that trades off the expected return and the risk of the
post-trade portfolio, subject to a constraint that ensures self-
financing trades. The parameters are initialized based on
historical data, and differentiating through the optimization
problem allows tuning them to maximize the utility on sim-
ulated evolutions of the asset values. We refer the reader to
Agrawal et al. (2020, §5) for a detailed description.

We conduct a sweep over the solver accuracy ϵ, the results
are reported in Figure 6. The results show that LPGD is
more sensitive to inaccurate solutions than GD, as the update
relies on accurate solutions for the finite difference. Finally,
we report statistics for τ = 100, α = 0.001, ϵ = 0.0001
over 3 training seeds. We do not observe high variability in
the performance.
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H. List of Symbols

x primal variables
s optional slack variables
y dual variables

z = (x, y) primal & dual variables
z∗ = (x∗, y∗) optimal variables (2)
X ,Y primal and dual feasible sets
X̃ primal effective feasible set (32)
w all parameters
u linear parameters
v non-linear parameters
c linear primal parameters
b linear dual parameters
L Lagrangian
L∗ optimal Lagrangian (1)
Ω non-linear part of Lagrangian

τ perturbation strength parameter
envτf Moreau envelope (4)
proxτf Proximal map (5)

ℓ loss on primal variables
DL Lagrangian difference (8)
D∗

L Lagrangian divergence (9)
ℓτ , ℓ

τ , ℓτ L-envelopes (12, 14, 16)
zτ = (xτ , yτ ) lower L-proximal map (13)
zτ = (xτ , yτ ) upper L-proximal map (15)
∇ℓτ ,∇ℓτ ,∇ℓτ LPPM updates (17)
∆ℓτ ,∆ℓτ ,∆ℓτ LPPM finite-differences (41)

ℓ̃ linearization of ℓ at x∗ (6)
ℓ̃τ , ℓ̃

τ , ℓ̃τ L-envelopes of lin. loss ℓ̃
z̃τ = (x̃τ , ỹτ ) lin. lower L-proximal map (22)
z̃τ = (x̃τ , ỹτ ) lin. upper L-proximal map (23)
∇ℓ̃τ ,∇ℓ̃τ ,∇ℓ̃τ LPGD updates (24)
∆ℓ̃τ ,∆ℓ̃τ ,∆ℓ̃τ LPGD finite-differences

ρ augmentation strength parameter
Lρ augmented Lagrangian (28)

ℓτρ, ℓ
τρ, ℓτρ aug. L-envelopes (29)

zτρ = (xτρ, yτρ) aug. lower L-proximal map (30)
zτρ = (xτρ, yτρ) aug. upper L-proximal map
∇ℓτρ,∇ℓτρ,∇ℓτρ aug. LPPM updates (31)
∆ℓτρ,∆ℓτρ,∆ℓτρ aug. LPPM finite-differences (42)

ℓ̃τρ, ℓ̃
τρ, ℓ̃τρ aug. L-envelopes of lin. loss ℓ̃

z̃τρ = (x̃τρ, ỹτρ) aug. lin. lower L-proximal map
z̃τρ = (x̃τρ, ỹτρ) aug. lin. upper L-proximal map
∇ℓ̃τρ,∇ℓ̃τρ,∇ℓ̃τρ aug. lin. LPGD updates (31)
∆ℓ̃τρ,∆ℓ̃τρ,∆ℓ̃τρ aug. lin. LPGD

finite-differences (42)

L loss on primal & dual variables
L̃ linearization of L at z∗
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Figure 4: Comparison of LPGD variations and gradient
descent (GD) on the Sudoku experiment. Reported are
train and test MSE over epochs, wall-clock time, and time
spent in the backward and forward passes. Dashed lines
correspond to test data. Statistics are over 5 restarts.
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Figure 5: Comparison of LPGD and gradient descent (GD)
on the Sudoku experiment. Reported are train and test errors
over epochs. Dashed lines correspond to test data. The
exact error refers to the proportion of incorrect solutions (at
least one violated Sudoku constraint), while the constraint
error refers to the proportion of violated Sudoku constraints.
Statistics are over 5 restarts.
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Figure 6: Comparison of LPGDτ and GD in the Markowitz
portfolio optimization experiment. Reported is a sweep over
training seeds, using α = 0.001, ϵ = 0.0001, τ = 100 and
ρ = 0.
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