
Multi-Track Message Passing: Tackling Oversmoothing and
Oversquashing in Graph Learning via Preventing Heterophily Mixing

Hongbin Pei 1 Yu Li 1 Huiqi Deng 2 Jingxin Hai 1

Pinghui Wang 1 Jie Ma 1 Jing Tao 1 Yuheng Xiong 1 Xiaohong Guan 1

Abstract
The advancement toward deeper graph neural net-
works is currently obscured by two inherent is-
sues in message passing, oversmoothing and over-
squashing. We identify the root cause of these
issues as information loss due to heterophily mix-
ing in aggregation, where messages of diverse
category semantics are mixed. We propose a
novel multi-track graph convolutional network to
address oversmoothing and oversquashing effec-
tively. Our basic idea is intuitive: if messages are
separated and independently propagated accord-
ing to their category semantics, heterophilic mix-
ing can be prevented. Consequently, we present a
novel multi-track message passing scheme capa-
ble of preventing heterophilic mixing, enhancing
long-distance information flow, and improving
separation condition. Empirical validations show
that our model achieved state-of-the-art perfor-
mance on several graph datasets and effectively
tackled oversmoothing and oversquashing, setting
a new benchmark of 86.4% accuracy on Cora.1

1. Introduction
Graph neural networks (GNNs) have proven to be powerful
for learning from graph-structured data (Goller & Kuchler,
1996; Scarselli et al., 2008; Kipf & Welling, 2017; Battaglia
et al., 2018), showing success in various applications such
as recommender systems (Wang et al., 2021), computational
chemistry (Pei et al., 2024a), and physical simulation (Zhao
et al., 2022). These successes can be largely attributed to
Message Passing mechanism (Gilmer et al., 2017).

1MOE KLINNS Lab, Xi’an Jiaotong University, China
2Shanghai Jiao Tong University, China. Correspondence to:
Jing Tao <peihongbin@xjtu.edu.cn, liyu1998@stu.xjtu.edu.cn,
jtao@xjtu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1Code of experiments in this paper: https://github.
com/XJTU-Graph-Intelligence-Lab/mtgcn

However, the advancement toward deeper GNNs is currently
obscured by two inherent issues in the message passing
framework: oversmoothing (Li et al., 2018) and oversquash-
ing (Alon & Yahav, 2021). Although considerable progress
has been made in tackling oversmoothing (Zhou et al., 2020;
2021b; Giovanni et al., 2023; Wang et al., 2023) and in
tackling oversquashing (Topping et al., 2022; Abboud et al.,
2022; Black et al., 2023; Gutteridge et al., 2023), these two
issues remain insufficiently resolved to date.

The oversmoothing refers to the issue that as GNNs become
deeper and undergo multiple rounds of message passing,
all node representations tend to converge towards the same
constant value, resulting in these nodes becoming indistin-
guishable, as illustrated in Fig. 1 A1. The oversquashing
is the issue that abundant messages from distant nodes are
“squashed” into fixed-sized representation vectors. This is-
sue is particularly severe on heterophilic graphs (Pei et al.,
2020), and on graphs with long-distant dependences (Di Gio-
vanni et al., 2023), as illustrated in Fig. 1 B1.

In this paper, we argue that the issues of oversmoothing and
oversquashing are both rooted in information loss resulting
from heterophily mixing in aggregation of message pass-
ing, i.e., the mixture of messages with different semantics
(e.g., categories information). Specifically, oversmoothing
happens when nodes belonging to different categories mutu-
ally mix their features, leading to a loss of their unique and
discriminative information. Oversquashing occurs when fea-
tures from distant nodes within an exponentially large recep-
tive field, containing a great diversity of category semantics,
are heterophily mixed into fixed-sized representation vec-
tors with a limited capacity for information. Consequently,
information is inevitably lost in this mixing.

Leveraging this understanding, we propose a novel Multi-
Track Graph Convolutional Network (MTGCN) to effec-
tively address the oversmoothing and oversquashing issues.
The basic idea behind MTGCN is intuitive: If messages
are separated and independently propagated according to
their category semantics, heterophilic mixing can be pre-
vented. To realize the idea, we propose a novel concept,
message tracks, which are a set of isomorphic graphs shar-
ing the same topology with graph. Each track is dedicated

1

https://github.com/XJTU-Graph-Intelligence-Lab/mtgcn
https://github.com/XJTU-Graph-Intelligence-Lab/mtgcn

Multi-Track Graph Convolutional Network

Figure 1. Illustration of our proposed MTGCN on graphs, where vanilla GCN fails due to oversmoothing and oversquashing. (A1).
Oversmoothing: after two rounds of message propagation, node representations become indistinguishable. (B1). Oversquashing: node ´

cannot receive complete messages from distant nodes ¬ and , leading to a loss of usful information. In (A2) and (B2), MTGCN tackles
oversmoothing and oversquashing by independently propagating messages according to their categories.

to passing messages of a specific category semantic.

In the MTGCN, as illustrated in Fig. 1 A2 and B2, node
features are firstly loaded onto corresponding tracks as mes-
sages, where nodes belonging to the same category are as-
sociated with the same track; then, messages are updated by
propagating and aggregating in respective tracks over sev-
eral iterations; finally, nodes acquire the updated messages
in their affiliated tracks to construct their representations as
output. By independently propagating messages with dif-
ferent category semantics, MTGCN maintains the semantic
purity of messages and outputs distinctive node representa-
tion vectors. On the same graphs, vanilla GCN fails due to
oversmoothing and oversquashing.

The core of MTGCN is the proposed Multi-Track Message
Passing (MTMP) scheme, which propagates and aggregates
messages in respective tracks. The MTMP gains improve-
ments by three aspects: preventing the heterophily mixing,
facilitating long-distant information flow, and enhancing
separation condition in semi-supervised learning. In addi-
tion, we propose an attention method to calculate node-track
affiliations, which are a crucial precondition for MTMP.
We design a multi-stage training pipeline for MTGCN in a
self-evolutionary manner. Experimental results on several
benchmark graphs show that the MTGCN achieved state-of-
the-art results on node classification and effectively tackled
both oversmoothing and oversquashing issues.

In summary, the contribution of this paper is three-fold: (1)
We propose a novel graph model, MTGCN, to effectively
tackle oversmoothing and oversquashing by preventing het-

erophily mixing; (2) We present the rationales of improve-
ments achieved by the MTMP scheme from the perspectives
of graph learning and semi-supervised learning; (3) We vali-
date and analyze MTGCN via extensive comparisons with
state-of-the-art methods on several benchmark graphs.

2. Preliminaries
Let G = (V, E) be a graph with node set V and edge set E .
The nodes are associated with a feature matrix X ∈ R|V|×m,
where |V| denotes the number of nodes and m denotes the
number of input features per node. Let A ∈ {0, 1}|V|×|V|
denote the adjacency matrix corresponding to the edges
and D the diagonal degree matrix. The symmetric normal-
ized adjacency matrix is defined as D̃−1/2ÃD̃−1/2, where
D̃ = D + I and Ã = A + I represent the degree and adja-
cency matrices enhanced with self-loops. The normalized
adjacency matrix is frequently utilized for node aggregation
in Message Passing Neural Networks (MPNNs) (Gilmer
et al., 2017). A notable example is the Graph Convolutional
Network (GCN) (Kipf & Welling, 2017), which achieves
node aggregation by defining the graph convolution oper-
ation as H(`+1) = σ((D̃−1/2ÃD̃−1/2)H(l)W(l)). Here,
H(`) represents the hidden features of nodes at the `-th layer,
W(`) is a layer-specific learnable weight matrix, and σ(·)
denotes a nonlinear activation function, e.g., ReLU.

3. Multi-track Graph Convolutional Network
We first present the concept of message track, which is a
fundamental element of the proposed Multi-Track Graph
Convolutional Network (MTGCN).

2

Multi-Track Graph Convolutional Network

Definition 3.1. For a graph G, message tracks T are defined
as a set of isomorphic graphs mirroring the topology of G.
Each track T ∈ T is uniquely used for passing messages
corresponding to a specific category of nodes, i.e., |T | = n
where n denotes the number of node categories in G.

We outline the proposed MTGCN by its three key steps,
which are also illustrated in Fig. 1A2, B2 and Fig. 3A.

Step 1: Loading. All nodes’ raw features are loaded onto
corresponding tracks T as initial messagesM(0). Nodes
belonging to the same category are expected to associate
with the same track, governed by a node-track affiliation
matrix F ∈ {0, 1}|T |×|V|. Here, each entry FT,v guides
whether the features of node v are loaded onto track T .
Step 2: Multi-Track Message Passing (MTMP). The ini-
tial messages are updated by propagating and aggregating
in respective tracks over L iterations.
Step 3: Acquiring. Based on the affiliations F, nodes
acquire the updated messagesM(L) in their affiliated tracks
to construct their node representation Z.

Next, we elaborate on the MTMP and the affiliations F,
respectively, which are the most important in MTGCN.

3.1. Multi-track Message Passing
In MTMP, we model messages at all nodes in all tracks as
a 3rd-order tensorM∈ R|T |×|V|×d, where d is the dimen-
sion of each message. Specifically, the matrix MT,:,: ∈
R|V|×d, a slice ofM, represents all messages in track T ,
and the vectorMT,v,: ∈ Rd, a fiber ofM , represents the
message at node v in track T .

The initial messagesM(0) are constructed by loading node
features X onto corresponding tracks in the loading step,
which is given by, for each node v ∈ V and track T ∈ T ,

M(0)
T,v,: = g(Xv,:) if FT,v = 1

M(0)
T,v,: =

−→
0 if FT,v = 0,

(1)

where the (0,1)-matrix F ∈ {0, 1}|T |×|V| characterizes the
node-track affiliations. Specifically, each FT,v = 1 indi-
cates node v is affiliated with track T , by which nodes
belonging to the same category are expected to be affiliated
with the same track. An affine transformation g : Rm → Rd

maps them-dimensional node feature to d-dimensional mes-
sage space. The d-dimensional zero vector

−→
0 indicates a

blank message in tracks with which the node is not affiliated.

Following the loading, the multi-track message passing up-
dates messages by L layers, i.e.,M(0) →M(L). Specifi-
cally, in each `-th layer, messages in different tracks T ∈ T
are independently propagated and aggregated. And for each
track T , the message passing is defined as:

M(`)
T,:,: = (D̃−1/2ÃD̃−1/2)M(`−1)

T,:,: + α`M(0)
T,:,:, (2)

where messagesM(`−1)
T,:,: in neighborhood are aggregated ac-

cording to the normalized adjacency matrix D̃−1/2ÃD̃−1/2.
Additionally, we adopt two strategies in the message passing
layer to facilitate a deeper graph model: (i) incorporating
initial residual connections to the initial messages (Chen
et al., 2020b), where αl denotes a trade-off hyperparameter
to control the integration of the initial messages; and (ii)
omitting learnable weights W(`) and activation function
σ(·) in each layer of vanilla GCNs, to reduce the negative
impact of excessive parameters on semi-supervised graph
learning, inspired by the SGC (Wu et al., 2019).

Once completing the L-layer multi-track message passing,
nodes acquire the updated messagesM(L) in their affiliated
tracks to construct node representation Z. For each node
v ∈ V , its representation vector Zv,: is constructed by

Zv,: = (
∑

T∈T
FT,v · M(L)

T,v,:)WZ , (3)

where WZ denotes a learnable linear transformation matrix.
Notably, each node v only acquires messages in its affiliated
tracks, i.e., messages in track T that FT,v = 1. These node
representations Z are subsequently used in downstream
tasks, such as node classification in this paper.

3.2. Why MTMP Gains Improvements
3.2.1. GRAPH LEARNING PERSPECTIVE

Preventing heterophily mixing. Firstly, MTMP gains im-
provements by preventing heterophilic mixing, which is
crucial for addressing both the oversmoothing and over-
squashing issues. Specifically, the MTMP layers in Eq. 2
only allow interactions between nodes of the same cate-
gory when a perfectly correct node-track affiliation matrix
F is available. In this way, the semantic purity and distinc-
tiveness of node representations are guaranteed. Thus, the
following proposition naturally holds.

Proposition 3.2. If only nodes belonging to the same cate-
gory are affiliated with a common track by F, the multi-track
message passing can prevent heterophily mixing.

We empirically demonstrate the ability of MTMP to prevent
heterophilic mixing by creating a perfect F in an idealized
scenario where ground-truth labels are available. In this ide-
alized scenario, node representations Z obtained by MTMP
are visualized in a 2D space by t-SNE (Maaten & Hinton,
2008), as shown in Fig. 2A. In the figure, the majority of
nodes with the same label exhibit spatial clustering. Only a
few nodes appear outside their clusters, which is attributed
to their exclusion from the maximal connected subgraph in
Cora, thereby limiting their interaction with other nodes.

We further extend the above analysis to non-idealized sce-
narios, where F is imperfect, i.e., part of nodes belonging
to different categories are affiliated with the same track. We
evaluate the performance of MTMP in conventional semi-
supervised node classification on Cora, given F matrices

3

Multi-Track Graph Convolutional Network

Figure 2. (A). Node representations obtained by MTMP using per-
fectly correct node-track affiliations F. (B). The relation between
classification accuracy of MTMP and affiliation accuracy of F.

with varying affiliation accuracy. The affiliation accuracy is
defined as the proportion of nodes correctly affiliated. The
relationship between classification accuracy and affiliation
accuracy is shown in Fig. 2B. We have two observations:
(i) There exists a positive correlation between the two ac-
curacies; (ii) MTMP can achieve higher accuracy than the
affiliation accuracy by using initial residual connections.
These observations lead to the conclusion that a power-
ful MTGCN should combine MTMP with initial residual
connections and equip with accurate affiliations F.

Facilitating long-distant information flow. Secondly,
MTMP gains improvements by facilitating long-distant in-
formation flow to learn long-range dependences, which ben-
efits in tackling oversquashing (Di Giovanni et al., 2023).
We show this point by the following comparative analysis.

In existing MPNNs, message passing is inherently tied to
the fusion of messages into a node’s feature. Specifically,
message cannot pass through a node unless they are ag-
gregated and fused into the node’s feature. If a message
rejects to fuse into the node’s feature, such as in gated GCNs
(Li et al., 2015), the message is blocked by the node. This
renders long-distant information flow very difficult.

In contrast, our proposed MTMP decouples messages from
node representations in the message passing process. Mes-
sages exist in multiple tracks, enabling them to pass through
any node regardless of whether they contribute to that node’s
feature. This decoupling eliminates information loss due to
heterophilic mixing in long-distant information flow.

3.2.2. SEMI-SUPERVISED LEARNING PERSPECTIVE

Enhancing separation condition. Thirdly, MTMP gains
improvements by enhancing separation condition, which is
significant for effective semi-supervised learning according
to theoretical study (Wei et al., 2020). We transfer the
separation conditions in (Wei et al., 2020) to the context of

graph topology to analyze the improvement of MTMP.

Definition 3.3. Given a graph G, a message passing schema
is Nk-separated with probability 1− µ, if RNk

≤ µ. Here,
RNk

denotes the proportion of nodes, each of which ex-
changes message with at least one k-hop neighbor belonging
to a different category from its own category.

Here Nk denotes the k-hop neighborhood of a node in G.
According to Theorem 3.6 and 4.2 in (Wei et al., 2020),
separation condition µ, roughly speaking, has a significant
impact on the model’s error bound. The lower µ, the lower
error bound. Taking 1-hop neighborhood N1 as a case, in
vanilla MPNNs, since each node exchanges messages with
its all 1-hop neighbors, µ is the proportion of boundary
nodes, i.e., nodes whose labels differ from those of their
neighbors. While in our proposed MTMP, nodes only ex-
change messages within each track, not across tracks. In
this case, µ refers to the proportion of nodes incorrectly affil-
iated with tracks, i.e., the error rate of node-track affiliations.
To enable a quantitative comparison, we leverage classifi-
cation results of a simple 2-layer GCN (Kipf & Welling,
2017) as node-track affiliations in MTMP. We compare the
µ in vanilla MPPNS and MTMP on three citation graphs,
as shown in Table 1. One can see separation conditions µ
in MTMP are both significantly lower compared to those
in vanilla MPNNs, suggesting that MTMP has lower error
bounds in theory on the three graphs.

Table 1. Statistics of separation conditions µ

Datasets Cora Citeseer Pubmed
µ in vanilla MPNNs 0.34 0.40 0.35
µ in our proposed MTMP 0.19 0.29 0.20

3.3. Node-Track Affiliations
The node-track affiliation matrix F plays a crucial role in
our model, as previously analyzed. We leverage dot product
attention (Vaswani et al., 2017) to obtain the F. Specifically,
the affiliation of node v is given by

F:,v = softmax(Hv,:WK(PWQ)T). (4)

Here, the vector F:,v ∈ R|T | represents the affiliation degree
of node v to all tracks, and the vector Hv,: denotes the aux-
iliary representation of node v, |T |-row matrix P represents
the prototypes of all tracks, and WK and WQ are learnable
parameters. The softmax operation is employed to generate
a soft F, which significantly eases parameter optimization
by gradient. Experimental results on real-world graphs show
the soft F closely approximates a rigid (0,1)-matrix. The
process for calculating F is shown in Fig 3B.

The auxiliary representation of nodes H is generated by an
auxiliary model Ψ. The primary purpose for H, in calculat-
ing F, is to contain distinct information of nodes from their
ego-graphs. Notably, we need not pursue a model Ψ with

4

Multi-Track Graph Convolutional Network

Figure 3. The framework of our proposed MTGCN.

extremely high performance. Even a simple GCN model
can theoretically achieve improvements, as illustrated in
Table 1. To show the efficacy of MTMP, we employ the
simple 2-layer GCN (Kipf & Welling, 2017) as our auxiliary
model Ψ. The model Ψ is trained using both training set
and pseudo labels generated by MTGCN at the preceding
stage, as shown in Fig. 3C and D.

The track prototypes P are constructed using representative
nodes. Specifically, the prototype of track T is defined as

PT,: =
1

∆

∑
v∈B

δ(yv, T) ·Hv,:. (5)

Here, the set B comprises representative nodes v, including
labeled nodes in training set and unlabeled nodes that are
likely to be correctly predicted by the auxiliary model Ψ
and MTGCN model in the preceding stage (see subsection
3.4). The likelihood is measured by softmax confidence
score, and powerful measures can be easily integrated (Pei
et al., 2024b). Besides, the delta function δ(yv, T) ∈ {0, 1}
indicates whether the label (for labeled nodes) or pseudo-
label (for unlabeled nodes) of node v aligns with the cat-
egory corresponding to track T . ∆ =

∑
v∈B δ(yv, T) is

a normalization factor. Aggregating representative nodes
of each category as a track prototype ensures that category
semantics are riched in the track prototypes. The process of
MTGCN is presented as an algorithm in the Appendix.

3.4. Multi-stage Training Pipeline
We design a multi-stage training pipeline for MTGCN. In
each stage, MTGCN is retrained using training set along

with useful information obtained from the MTGCN at the
preceding stage. The information includes pseudo labels
and representative nodes, as shown in Fig. 3D. This multi-
stage pipeline is a self-evolutionary strategy, enriching the
MTGCN with progressively acquired information and pro-
viding opportunities to escape local optima. The multi-stage
training algorithm is presented in the Appendix.

We outline the training process for each stage. We first
train the auxiliary model Ψ using training set and pseudo
labels. We then calculate auxiliary representations H and
track prototypes P by using auxiliary model Ψ and the
MTGCN at the preceding stage. With H and P, we op-
timize parameters in attention module and MTMP by us-
ing a cross-entropy loss based on only labeled nodes in
data. Additionally, we design a constraint to facilitate
the optimization of parameters in the attention module,
LR = Σv∈B||F:,v − one-hot(yv)||F . The constraint en-
forces that the representative nodes in B can be affiliated
with correct tracks based on their lables or pseudo labels yv .

4. Experiments
In this section, we first validate the proposed MTGNN on
several real-world graphs, and then demonstrate the abil-
ity of MTGCN to tackle oversmoothing and oversquashing
issues. Finally, we empirically analyze the node-track af-
filiations. The hyper-parameter settings in MTGCN and
dataset descriptions are presented in the Appendix.

4.1. Node Classification on Real-world Graphs
4.1.1. SEMI-SUPERVISED NODE CLASSIFICATION

The MTGCN is first validated in semi-supervised node clas-
sification task on homophilic graphs, including Cora (Mc-
Callum et al., 2000), Citeseer (Sen et al., 2008), Pubmed
(Namata et al., 2012), and Coauthor (CS and Physics) (Yang
et al., 2016). For all graphs, we use 20 nodes per class
for training, 500 validation nodes, and 1,000 testing nodes.
For the three citation graphs, we use the standard train-
ing/validation/testing split provided in (Yang et al., 2016;
Kipf & Welling, 2017). We compare MTGCN with recent
baseline models including GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018),Self-train (Li et al., 2018),
DisenGCN (Ma et al., 2019), GCNII (Chen et al., 2020b),
EGNN (Zhou et al., 2021b), PDE-GCN (Eliasof et al., 2021),
GRAND++(Thorpe et al., 2022), GraphCON (Rusch et al.),
ACMP (Wang et al., 2023), GREAD (Choi et al., 2023). In
all experiments, we run MTGCN 10 times with different ini-
tializations and report the average classification accuracies
in Table 2. The “-sn” suffix denotes the MTGCN model at
stage n, and the dash symbol “-” denotes that the result is
not available in the original paper.

The experimental results in Table 2 demonstrate the ef-
fectiveness of our proposed MTGCN in semi-supervised

5

Multi-Track Graph Convolutional Network

Table 2. Comparisons of node classification accuracy in semi-
supervised setting (%). The best two models are emphasized
in red (best) and blue (second best).

Datasets Cora Cite. Pubm. Co.CS Co.Phys

GCN 80.01 70.41 79.01 90.01 93.81
GAT 81.21 70.81 78.52 91.13 93.31
Self-Train 82.27 73.24 80.32 - -
DisenGCN 83.30 72.44 80.30 90.96 94.28
GCNII 85.30 73.10 80.10 88.50 93.90
EGNN 85.70 - 80.10 - 93.30
GRAND++ 83.60 73.40 78.80 - -
PDE-GCN 84.30 75.60 80.60 - -
GraphCON 84.20 74.20 79.40 - -
ACMP 84.91 73.75 79.01 84.02 93.47
GREAD 84.72 73.31 78.17 88.52 92.24

MTGCN-s1 85.00 73.33 80.31 87.61 94.30
MTGCN-s2 85.97 73.35 81.10 92.15 94.57
MTGCN-s3 86.40 74.60 80.92 91.57 94.55
MTGCN-s4 85.44 73.88 80.33 92.54 94.72

setting. Specifically, we have the following two observa-
tions: (i) In most cases, the classification accuracies of
MTGCN are higher than baseline models on the five graph
datasets, which indicates that MTGCN is capable of learn-
ing effective node representations for node classification.
(ii) The MTGCN-s3 and MTGCN-s4 usually exhibit the
best performance, which demonstrates the effectiveness of
the multi-stage training pipeline for MTGCN, especially on
the CoauthorCS dataset. In other words, the MTGCN is
self-evolutionary during multiple stages.

4.1.2. FULLY-SUPERVISED NODE CLASSIFICATION

We further validate the MTGCN in fully-supervised node
classification task. The experiments are conducted on three
homophilic graphs, including Cora, Citeseer, Pubmed, and
three heterophilic graphs, including Cornell, Texas, and
Wisconsin (Pei et al., 2020). For all graphs, we set the
train/validation/test splits as 48%, 32%, and 20%, respec-
tively. In addition to comparing with GCN, GAT, and GC-
NII, we compare MTGCN with models specially designed
for heterophilic graphs, including H2GCN (Zhu et al., 2020),
GemoGCN (Pei et al., 2020), LINKX (Lim et al., 2021),
GGCN (Yan et al., 2022), GRAFF (Di Giovanni et al., 2022),
Sheaf (Bodnar et al., 2022), ACM-GCN (Luan et al., 2022),
Half-hop (Azabou et al., 2023).

Experimental results are summarized in Table 3. The results
demonstrate the effectiveness of our proposed MTGCN in
fully-supervised setting. Specifically, we have the following
two observations: (i) The MTGCN achieves outstanding
performance on the three heterophilic graphs, and it out-
performs all the baselines. The performance can be largely
attributed to MTGCN’s ability to prevent heterophily mix-
ing during message passing, thereby capturing long-distant

Table 3. Comparisons of node classification accuracy in full-
supervised setting (%). The best two models are emphasized
in red (best) and blue (second best).
Datasets Cora Cite. Pubm. Corn. Texas Wisc.
Homophily 0.81 0.80 0.74 0.30 0.11 0.21

GCN 85.77 73.68 88.13 52.70 52.16 48.92
GAT 86.37 74.32 87.62 54.32 58.38 49.41
GCNII 88.49 77.13 90.30 74.86 69.46 74.12
GeomGCN 85.27 77.99 90.05 60.81 67.57 64.12
LINKX 84.64 73.19 87.86 77.84 74.60 75.49
GGCN 87.95 77.14 89.15 85.68 84.86 86.86
H2GCN 87.87 77.11 89.49 82.70 84.86 87.65
ACM-GCN 88.25 77.12 89.71 85.95 86.76 87.45
Sheaf 86.90 76.70 89.49 84.86 85.05 89.41
GRAFF 87.61 76.92 88.95 83.24 88.38 87.45
Half-hop 83.48 71.40 88.15 72.36 69.21 70.78
GraphCON 88.03 74.96 86.43 84.30 85.40 87.80

MTGCN-s1 90.61 76.46 88.43 84.21 84.21 90.20
MTGCN-s2 89.68 77.06 88.11 86.84 92.10 88.23
MTGCN-s3 90.42 77.36 88.26 86.84 89.47 90.20
MTGCN-s4 90.60 76.91 88.01 89.47 92.10 90.20

Figure 4. (A). MTGCN achieves nearly perfect accuracy on the
Tree-NeighborsMatch problem. (B). Visualization of node-track
affiliation matrix from MTGCN trained on the Cora dataset.

dependencies and addressing oversmoothing in heterophilic
graphs. (ii) Compared to semi-supervised setting, the perfor-
mance gap between MTGCNs at different stages becomes
less, especially in homophilic graphs. This can be largely at-
tributed to the sufficient supervision information available in
the fully-supervised setting. That is, the multi-stage training
is more critical in semi-supervised graph learning.

4.2. Analysis on Oversmoothing and Oversquashing

4.2.1. TACKLING OVERSMOOTHING

We validate the capacity of MTGCN to address oversmooth-
ing. The experiments are conducted on the three citation
graphs and follow the same experimental setup as that in
semi-supervised node classification in Section. 4.1.1. We
compare MTGCN with models specially designed to mit-

6

Multi-Track Graph Convolutional Network

Table 4. Semi-supervised node classification accuracy (%) and group distance ratio Rg across various model depth.
Dataset Cora Citeseer Pubmed
of layers 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
GCN 80.0 80.4 69.5 64.9 60.3 28.7 70.8 67.6 30.2 18.3 25.0 20.0 79.0 76.5 61.2 40.9 22.4 35.3
GAT 81.2 79.8 62.3 31.9 31.9 14.9 70.8 67.0 48.5 23.1 23.1 18.1 78.6 76.9 76.5 41.3 41.3 40.7
DropEdge 82.8 82.0 75.8 75.7 62.5 49.5 72.3 70.6 61.4 57.2 41.6 34.4 79.6 79.4 78.1 78.5 77.0 61.5
JKNet - 80.2 80.7 80.2 81.1 71.5 - 68.7 67.7 69.8 68.2 63.4 - 78.0 78.1 72.6 72.4 74.5
Incep - 77.6 76.5 81.7 81.7 80.0 - 69.3 68.4 70.2 68.0 67.5 - 77.7 77.9 74.9 - -
GCNII 80.2 82.3 82.8 83.5 84.9 85.3 66.1 66.7 70.6 72.0 73.2 73.1 77.7 78.2 78.8 80.3 79.8 80.1
PDE-GCN 82.0 83.6 84.0 84.2 84.3 84.3 74.6 75.0 75.2 75.5 75.6 75.5 79.3 80.6 80.1 80.4 80.2 80.3
DisenGCN 77.6 83.3 82.7 82.9 82.2 69.1 70.1 69.3 71.3 72.2 70.6 65.4 76.4 76.5 80.3 78.8 76.6 75.0
MTGCN 80.5 83.4 84.9 86.2 85.9 86.4 70.1 72.8 72.9 74.6 73.8 74.0 78.7 80.7 80.5 80.8 81.0 81.1
Rg of MTGCN 0.249 0.313 0.368 0.383 0.382 0.381 0.293 0.328 0.368 0.383 0.383 0.382 0.837 0.918 1.031 1.076 1.035 1.027

Figure 5. The distribution of nodes in terms of their affiliation
strength. More than half of the nodes show a strong affiliation to a
single track, with an affiliation strength exceeding 0.7.

igate oversmoothing, including DropEdge (Rong et al.,
2019), JKNet (Xu et al., 2018), Incep (Kazi et al., 2019),
GCNII, and PDE-GCN. We adopt two oversmoothing mea-
sures, classification accuracy and group distance ratio Rg

(Zhou et al., 2020). The ratio Rg characterizes the ratio be-
tween inter-group distance and intra-group distance of node
representations. The lower Rg, the higher oversmoothing.
A detailed definition of Rg is provided in the Appendix. We
calculate classification accuracies and Rg of models with
varying layers, ranging from 2 to 64.

Experimental results, summarized in Table 4, illustrate the
effectiveness of our proposed MTGCN in addressing over-
smoothing. Specifically, we have the following two observa-
tions: (i) MTGCN maintains stable classification accuracies
and Rgs as the number of layers increases, signifying its
capacity to oversmoothing. In contrast, GCN, GAT, DropE-
dge, JKNet, and DisenGCN exhibit noticeable declines in
performance beyond 32 layers, indicating susceptibility to
oversmoothing. (ii) We observe a general trend of gradual
improvement in classification accuracies as the number of
layers in MTGCN increases. This trend suggests that deeper
MTGCN can learn more information from the graphs, which
is enlightening for developing deep graph models in future.

4.2.2. TACKLING OVERSQUASHING

We also validate MTGCN’s effectiveness in addressing
oversquashing through experiments on a synthetic bench-
mark specifically crafted for this purpose: the Tree-

Table 5. Accuracy of node-track affiliations F (%)
Dataset Cora Pubmed Co.CS Co.Phys Texas

Accuracy 73.85 76.37 77.05 85.06 65.03

NeighborsMatch problem (Alon & Yahav, 2021). The
benchmark is an inductive node classification task on
208,192 trees with different depths. The higher the training
accuracy on this task, the more effectively models overcom-
ing the oversquashing issue.

The experimental results in Fig. 4A show MTGCN can
effectively address over-squashing, achieving nearly perfect
training accuracy. We have two additional observations: (i)
Beyond tree depth of 5, the training accuracy of all models,
except for MTGCN, markedly declines, indicative of their
struggle with oversquashing. (ii) MTGCN experiences a
slight decrease in accuracy when tree depth exceeds 6 layers.
This decrease is attributed to the high space complexity of
MTGCN, which is further discussed in Section 6.

4.3. Analysis on Node-Track Affiliations
We empirically analyze the node-track affiliation matrix F
estimated from graph datasets. We first visualize F from
MTGCN trained on Cora, sorting nodes according to their
most likely affiliated track. As illustrated in Fig. 4 B, the
F matrix exhibits a block diagonal pattern, which indicates
that each node is highly likely to affiliate with a single track
and is unlikely to be associated with other tracks. This
suggests that MTGCN is not an ensemble of different tracks
but facilitates independent message propagation on separate
tracks, effectively preventing heterophilic mixing. To further
quantify this, we calculate distribution of nodes in terms of
affiliation strength, FT,v value on five graphs, as shown in
Fig. 5. In the figure, more than half of nodes have a strong
affiliation to a track, with an affiliation strength exceeding
0.7, which further supports the above conclusion.

Additionally, we report affiliation accuracies on the five
graphs in Table 5. A considerable proportion of nodes
are incorrectly affiliated, probably because we just adopt a
simple 2-layer GCN as the auxiliary model Ψ, limiting the
quality of auxiliary node representations. It is worth noting

7

Multi-Track Graph Convolutional Network

that despite the imperfect node-track affiliations, MTGCN
has shown significant improvements on benchmark graphs.
This suggests the performance of MTGCN might be further
improved if it is equipped with a more powerful Ψ.

5. Related Work
5.1. Tackling Oversmoothing and Oversquashing

Graph rewiring. Graph rewiring optimizes graph topology
to migrate oversmoothing and oversquashing. However, it
potentially damages the patterns of original graph topology.

Removing inter-class edges or even randomly removing
edges during training is an intuitive approach to alleviate
oversmoothing (Chen et al., 2020a; Rong et al., 2019; Hasan-
zadeh et al., 2020). Ollivier-Ricci curvature can guide edge
removal for alleviating oversmoothing and oversquashing
(Nguyen et al., 2023). Supervised information is also used
to learn the removal of task-irrelevant edges that cause over-
smoothing in heterophilic graphs (Zheng et al., 2020; Yan
et al., 2022). Besides edge removal, PairNorm (Zhao &
Akoglu, 2019) sets pairwise distances to be constant, and
Half-Hop (Azabou et al., 2023) introduces “slow nodes” to
enhance message passing, both targeting oversmoothing.

Adding edges between distant nodes for reducing commute
time is typically used to alleviate oversquashing (Brüel-
Gabrielsson et al., 2022; Abboud et al., 2022; Bodnar et al.,
2021). Due to the connection between commute times
and curvature (Devriendt & Lambiotte, 2022), the edges
to mitigate bottlenecks of MPNNs can be identified by neg-
ative curvature (Topping et al., 2022). Effective resistance
between nodes has been used to guide the edge addition
(Black et al., 2023). Furthermore, the spectral gap has been
identified as a critical factor in oversquashing (Banerjee
et al., 2022), which leads to approaches that identify the
adding edges by optimizing the spectral gap (Karhadkar
et al., 2022; Arnaiz-Rodrı́guez et al., 2022). Recent research
in (Arnaiz-Rodrı́guez et al., 2022) reveals the relationship
between commute time and spectral gap. Graph transform-
ers, which integrate a complete graph with weights via atten-
tion, are a special case of adding edges (Kreuzer et al., 2021;
Rampášek et al., 2022; Brüel-Gabrielsson et al., 2022).

Regularization. Constraining node representations to be
distinctive during training can effectively prevent over-
smoothing, by employing Dirichlet energy (Zhou et al.,
2021b), group normalization (Zhou et al., 2020), Node-
Norm (Zhou et al., 2021a), and etc. Regulating information
flow in message passing is another strategy. This can be
achieved by incorporating gating (Bresson & Laurent, 2017)
or gradient gating (Rusch et al., 2022) into GCNs. The infor-
mation flows in multi-channels are regulated as orthogonal
to each other to prevent oversmoothing (Yang et al., 2022;
2023). Additionally, several physics-inspired models, such

as oscillator networks (Rusch et al.), Allen-Cahn message
passing (Wang et al., 2023), and gradient flow (Di Giovanni
et al., 2022), are inherent constraints. However, these regu-
larizations may degrade model performance.

Residual connection. Residual connections are used to
mitigate oversmoothing (Xu et al., 2018; Liu et al., 2020a),
particularly initial residual connections (Chen et al., 2020b;
Gasteiger et al., 2019). Recently, geometric skip connection
is proposed to tackle oversquashing (Gutteridge et al., 2023).

5.2. Multi-channel Graph Convolutional Network

To learn disentangled representations of graphs, the dis-
entangled multi-channel convolutional layer and neighbor-
hood routing mechanism are proposed in DisenGCN (Ma
et al., 2019). Tacking DisenGCN as a base model, kernel
Hilbert-Schmidt independence criterion (Liu et al., 2020b),
contrastive learning (Li et al., 2021), and diversity regular-
izer (Guo et al., 2022) are proposed and integrated to further
enhance disentanglement. In these multi-channel models,
the neighborhood routing functions as a specialized version
of MTMP that operates within local neighborhoods. This
allows for locally preventing of heterophilic mixing. Un-
like MTMP, these models do not decouple messages from
node representations, which limits their ability to prevent
heterophilic mixing on a non-local scale. As shown in our
experiments, DisenGCN fails to address the oversquashing.

In summary, the MTGCN is fundamentally distinct from
these existing approaches, as it incorporates MTMP, a novel
message passing schema with ability to prevent heterophilic
mixing. This unique feature enables MTGCN to tackle both
oversmoothing and oversquashing issues in graph learning.

6. Model Limitation — No Free Lunch
Compared with vanilla GCNs, our proposed MTGCN re-
quires extra storage space to process messagesM in multi-
ple tracks, resulting in a space complexity of O(d|T ||V|η).
Here, d denotes the dimension of each message, |T | the
number of tracks, |V| the number of nodes in graph, and
η the number of graphs. For large graphs with numerous
nodes, we can circumvent the issue of high space complexity
by adopting training on smaller subgraphs. However, ad-
dressing high space complexity becomes challenging when
the number of tracks, |T |, increases significantly. In such
cases, storing messagesM could lead to memory overflow
errors, thereby constraining the applicability of MTGCN.
This limitation is observed in the experiments shown in Fig.
4 A, in which the performance of MTGCN exhibits a slight
decline beyond a depth of seven layers. Considering a depth
of seven layers, the space complexityO(d|T ||V|η) becomes
1.67× 1010, as there are 32,000 graphs and 128 categories,
posing challenges for model training.

8

Multi-Track Graph Convolutional Network

7. Conclusion
In this paper, we investigate into deeper graph neural net-
works and argue that the prevalent challenges of oversmooth-
ing and oversquashing in graph learning stem from het-
erophilic mixing in aggregation. To overcome these chal-
lenges, we introduced a novel multi-track graph convolu-
tional network (MTGCN) specifically designed to counter-
act heterophilic mixing. The core of MTGCN is a multi-
track message passing (MTMP) scheme, which propagates
and aggregates messages in respective tracks so that main-
tains the semantic purity of messages and outputs distinctive
node representation vectors. Through empirical validation,
MTGCN demonstrated outstanding performance, success-
fully addressing oversmoothing and oversquashing. As fu-
ture work, we will explore improve affiliation accuracy by
choosing a right auxiliary model — depending not only on
input graphs but also on target applications, such as infection
control on social contact network (Pei et al., 2022).

Impact Statement
This paper introduces a new GNN model - the Multi-Track
Message Graph Convolutional Network (MTGCN), aiming
to address the issues of oversmoothing and oversquashing
in graph learning. By establishing message tracks, MT-
GCN independently propagates and aggregates messages
according to the category semantics. This approach effec-
tively avoids heterogeneous mixing, maintains the semantic
purity of messages, and learns better node representations.
The main impact of this paper is MTGCN offers a novel
direction — multi-track message passing — for developing
deeper GNNs.

Additionally, MTGCN is expected to have a positive impact
on applications that utilize graph-structured data, such as
recommendation systems, computational chemistry, and
social networks. Its enhanced capability in handling graphs
will enable these applications to achieve more accurate and
efficient graph analysis. As MTGCN finds applications in
various fields, it is crucial to consider its ethical and social
impacts. Ensuring that the development and use of this
technology comply with ethical standards and are socially
responsible is of paramount importance.

Acknowledgements
The authors would like to thank all the anonymous reviewers
for their constructive comments. This work was supported
by the National Natural Science Foundation of China under
grant 62202369, U22B2019, 62372362, and 62306229.

References
Abboud, R., Dimitrov, R., and Ceylan, I. I. Shortest path

networks for graph property prediction. In The First

Learning on Graphs Conference, 2022.

Alon, U. and Yahav, E. On the bottleneck of graph neural
networks and its practical implications. In International
Conference on Learning Representations, 2021.

Arnaiz-Rodrı́guez, A., Begga, A., Escolano, F., and Oliver,
N. M. Diffwire: Inductive graph rewiring via the lovász
bound. In The First Learning on Graphs Conference,
2022.

Azabou, M., Ganesh, V., Thakoor, S., Lin, C.-H., Sathidevi,
L., Liu, R., Valko, M., Veličković, P., and Dyer, E. L.
Half-hop: A graph upsampling approach for slowing
down message passing. In International Conference on
Machine Learning, 2023.

Banerjee, P. K., Karhadkar, K., Wang, Y. G., Alon, U., and
Montúfar, G. Oversquashing in gnns through the lens of
information contraction and graph expansion. In Annual
Allerton Conference on Communication, Control, and
Computing, 2022.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv:1806.01261, 2018.

Black, M., Wan, Z., Nayyeri, A., and Wang, Y. Under-
standing oversquashing in gnns through the lens of effec-
tive resistance. In International Conference on Machine
Learning, 2023.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F.,
Lio, P., and Bronstein, M. Weisfeiler and lehman go
topological: Message passing simplicial networks. In
International Conference on Machine Learning, 2021.

Bodnar, C., Di Giovanni, F., Chamberlain, B., Liò, P., and
Bronstein, M. Neural sheaf diffusion: A topological per-
spective on heterophily and oversmoothing in gnns. Ad-
vances in Neural Information Processing Systems, 2022.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Brüel-Gabrielsson, R., Yurochkin, M., and Solomon, J.
Rewiring with positional encodings for graph neural net-
works. arXiv preprint arXiv:2201.12674, 2022.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. In Pro-
ceedings of the AAAI conference on artificial intelligence,
2020a.

9

Multi-Track Graph Convolutional Network

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In International
Conference on Machine Learning, 2020b.

Choi, J., Hong, S., Park, N., and Cho, S.-B. Gread: Graph
neural reaction-diffusion networks. In International Con-
ference on Machine Learning, 2023.

Devriendt, K. and Lambiotte, R. Discrete curvature on
graphs from the effective resistance. Journal of Physics:
Complexity, 3(2):025008, 2022.

Di Giovanni, F., Rowbottom, J., Chamberlain, B. P.,
Markovich, T., and Bronstein, M. M. Graph neu-
ral networks as gradient flows. arXiv preprint
arXiv:2206.10991, 2022.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio, P.,
and Bronstein, M. M. On over-squashing in message
passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine
Learning, 2023.

Eliasof, M., Haber, E., and Treister, E. Pde-gcn: Novel ar-
chitectures for graph neural networks motivated by partial
differential equations. Advances in neural information
processing systems, 2021.

Gasteiger, J., Bojchevski, A., and Günnemann, S. Com-
bining neural networks with personalized pagerank for
classification on graphs. In International Conference on
Learning Representations, 2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
2017.

Giovanni, F. D., Rowbottom, J., Chamberlain, B. P.,
Markovich, T., and Bronstein, M. M. Graph neural net-
works as gradient flows: understanding graph convolu-
tions via energy. In International Conference on Learning
Representations, 2023.

Goller, C. and Kuchler, A. Learning task-dependent
distributed representations by backpropagation through
structure. In Proceedings of International Conference on
Neural Networks, 1996.

Guo, J., Huang, K., Yi, X., and Zhang, R. Learning disentan-
gled graph convolutional networks locally and globally.
IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Gutteridge, B., Dong, X., Bronstein, M. M., and Di Gio-
vanni, F. Drew: Dynamically rewired message pass-
ing with delay. In International Conference on Machine
Learning, 2023.

Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M.,
Duffield, N., Narayanan, K., and Qian, X. Bayesian graph
neural networks with adaptive connection sampling. In
International conference on machine learning, 2020.

Karhadkar, K., Banerjee, P. K., and Montúfar, G. Fosr: First-
order spectral rewiring for addressing oversquashing in
gnns. arXiv preprint arXiv:2210.11790, 2022.

Kazi, A., Shekarforoush, S., Arvind Krishna, S., Burwinkel,
H., Vivar, G., Kortüm, K., Ahmadi, S.-A., Albarqouni,
S., and Navab, N. Inceptiongcn: receptive field aware
graph convolutional network for disease prediction. In
Information Processing in Medical Imaging, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. Advances in Neural Information Processing
Systems, 2021.

Li, H., Wang, X., Zhang, Z., Yuan, Z., Li, H., and Zhu, W.
Disentangled contrastive learning on graphs. Advances
in Neural Information Processing Systems, 2021.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Proceedings of the AAAI conference on artificial intelli-
gence, 2018.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

Lim, D., Hohne, F., Li, X., Huang, S. L., Gupta, V.,
Bhalerao, O., and Lim, S. N. Large scale learning on
non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Pro-
cessing Systems, 2021.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data
mining, 2020a.

Liu, Y., Wang, X., Wu, S., and Xiao, Z. Independence
promoted graph disentangled networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2020b.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Revisiting heterophily for
graph neural networks. Advances in neural information
processing systems, 2022.

10

Multi-Track Graph Convolutional Network

Ma, J., Cui, P., Kuang, K., Wang, X., and Zhu, W. Disen-
tangled graph convolutional networks. In International
conference on machine learning, pp. 4212–4221, 2019.

Maaten, L. v. d. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(Nov):
2579–2605, 2008.

McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K.
Automating the construction of internet portals with ma-
chine learning. Information Retrieval, 3:127–163, 2000.

Namata, G., London, B., Getoor, L., and Huang, B. Query-
driven active surveying for collective classification. In
International Workshop on Mining and Learning with
Graphs, 2012.

Nguyen, K., Hieu, N. M., Nguyen, V. D., Ho, N., Osher, S.,
and Nguyen, T. M. Revisiting over-smoothing and over-
squashing using ollivier-ricci curvature. In International
Conference on Machine Learning, 2023.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks. In
International Conference on Learning Representations,
2020.

Pei, H., Yang, B., Liu, J., and Chang, K. C.-C. Active
surveillance via group sparse bayesian learning. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 44(3):1133–1148, 2022.

Pei, H., Chen, T., Chen, A., Deng, H., Tao, J., Wang, P.,
and Guan, X. Hago-net: Hierarchical geometric mas-
sage passing for molecular representation learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 14572–14580, 2024a.

Pei, H., Xiong, Y., Wang, P., Tao, J., Liu, J., Deng, H., Ma, J.,
and Guan, X. Memory disagreement: A pseudo-labeling
measure from training dynamics for semi-supervised
graph learning. In Proceedings of the ACM on Web Con-
ference 2024, pp. 434–445, 2024b.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 2022.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node clas-
sification. arXiv preprint arXiv:1907.10903, 2019.

Rusch, T. K., Chamberlain, B., Rowbottom, J., Mishra, S.,
and Bronstein, M. Graph-coupled oscillator networks. In
International Conference on Machine Learning.

Rusch, T. K., Chamberlain, B. P., Mahoney, M. W., Bron-
stein, M. M., and Mishra, S. Gradient gating for
deep multi-rate learning on graphs. arXiv preprint
arXiv:2210.00513, 2022.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Thorpe, M., Nguyen, T. M., Xia, H., Strohmer, T., Bertozzi,
A., Osher, S., and Wang, B. Grand++: Graph neural
diffusion with a source term. In International Conference
on Learning Representation, 2022.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong, X.,
and Bronstein, M. M. Understanding over-squashing and
bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Wang, H., Lian, D., Tong, H., Liu, Q., Huang, Z., and Chen,
E. Hypersorec: Exploiting hyperbolic user and item rep-
resentations with multiple aspects for social-aware recom-
mendation. ACM Transactions on Information Systems
(TOIS), 40(2):1–28, 2021.

Wang, Y., Yi, K., Liu, X., Wang, Y. G., and Jin, S. ACMP:
Allen-cahn message passing with attractive and repul-
sive forces for graph neural networks. In International
Conference on Learning Representations, 2023.

Wei, C., Shen, K., Chen, Y., and Ma, T. Theoretical analysis
of self-training with deep networks on unlabeled data. In
International Conference on Learning Representations,
2020.

Wu, F., Jr., A. H. S., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Q. Simplifying graph convolutional networks.
In International Conference on Machine Learning, 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In International confer-
ence on machine learning, 2018.

11

Multi-Track Graph Convolutional Network

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra, D.
Two sides of the same coin: Heterophily and oversmooth-
ing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), 2022.

Yang, L., Kang, L., Zhang, Q., Li, M., He, D., Wang, Z.,
Wang, C., Cao, X., Guo, Y., et al. Open: Orthogonal
propagation with ego-network modeling. Advances in
Neural Information Processing Systems, 35:9249–9261,
2022.

Yang, L., Zhang, Q., Shi, R., Zhou, W., Niu, B., Wang, C.,
Cao, X., He, D., Wang, Z., and Guo, Y. Graph neural
networks without propagation. In Proceedings of the
ACM Web Conference 2023, pp. 469–477, 2023.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, 2016.

Zhao, L. and Akoglu, L. Pairnorm: Tackling oversmoothing
in gnns. arXiv preprint arXiv:1909.12223, 2019.

Zhao, Q., Lindell, D. B., and Wetzstein, G. Learning to solve
pde-constrained inverse problems with graph networks.
arXiv preprint arXiv:2206.00711, 2022.

Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W.,
Chen, H., and Wang, W. Robust graph representation
learning via neural sparsification. In International Con-
ference on Machine Learning, 2020.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X.
Towards deeper graph neural networks with differentiable
group normalization. Advances in neural information
processing systems, 2020.

Zhou, K., Dong, Y., Wang, K., Lee, W. S., Hooi, B., Xu, H.,
and Feng, J. Understanding and resolving performance
degradation in deep graph convolutional networks. In
Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, 2021a.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H.,
and Hu, X. Dirichlet energy constrained learning for deep
graph neural networks. Advances in Neural Information
Processing Systems, 2021b.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
neural information processing systems, 2020.

12

Multi-Track Graph Convolutional Network

APPENDIX
This appendix consists of two sections. In section A, we
provide a detailed explanation of the computation process
and multi-stage training strategy of MTGCN. In section B,
we describe experimental details.

A. Algorithms
We present the calculating process of MTGCN in Algorithm
1, in which the equation numbers correspond to the equa-
tions in the main paper. The multi-stage training algorithm
is presented in the Appendix 2. This multi- stage pipeline is
a self-evolutionary strategy, enriching the MTGCN with pro-
gressively acquired information and providing opportunities
to escape local optima.

Algorithm 1 Calculating process in MTGCN
Input: Graph G = (V, E)
Output: Node representations Z

1: Initialize learnable parameters in MTGCN
2: Generate auxiliary node representations H by Ψ
3: Construct set B by identifying representative nodes
4: for each track T ∈ T do
5: Calculate track prototype PT,: using Eq. (5)
6: end for
7: Calculate node-track affiliations F using Eq. (4)
8: Obtain initial messagesM(0) using Eq. (1)
9: for l = 1 to L do

10: Update messagesMl using Eq. (2)
11: end for
12: Calculate node representations Z by Eq. (3)

Algorithm 2 Multi-stage training for MTGCN
Input: Graph G = (V, E)
Output: Node representations Z
Parameter: Number of stage K

1: Initialize pseudo label set YPL ← ∅ and representive
node set B ← ∅

2: for each stage k = 1 to K do
3: Train auxiliary mode Ψ on G and YPL

4: Calculate auxiliary node representations H and Up-
date set B by Ψ

5: Update track prototype P by H and B
6: if k < K then
7: Calculate node representations Z by Algorithm 1

with the updated H and P
8: Update YPL and B according to updated Z
9: end if

10: end for
11: Calculate node representations Z by Algorithm 1 by

Algorithm 1 with the updated H and P

B. Experimental details
B.1. Dataset information

We consider two types of datasets: Homophilic and Het-
erophilic. They are differentiated by the homophily level of
a graph (Pei et al., 2020)

H =
1

|V|
∑
v∈V

|{(w, v) : w ∈ N (v) ∧ yv = yw}|
|N (v)|

(6)

In the experiments, we use five homophilic datasets, includ-
ing Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008)
and Pubmed (Namata et al., 2012), Coauthor (Yang et al.,
2016), and three heterophilic datasets: Cornell, Texas, and
Wisconsin from the WebKB dataset (Pei et al., 2020). We
list the numbers of classes, features, nodes and edges of
each dataset, and their homophily level in Table 6. A low
homophily level suggests a more heterophilic dataset, where
neighbors are often not from the same class. Conversely,
a high homophily level indicates a dataset that is closer to
homophilic, with similar nodes tending to be connected.

Table 6. Dataset statistics
Dataset Classes Features # Nodes # Edges Homophily

Cora 7 1433 2708 5278 0.81
Citeseer 6 3703 3327 4552 0.74
Pubmed 3 500 19717 44324 0.80
Co.CS 15 6805 18333 81894 0.80
Co.Phys 5 8415 34493 247962 0.92
Texas 5 1703 183 309 0.11
Wisconsin 5 1703 251 499 0.21
Cornell 5 1703 183 499 0.30

B.2. Hyper-parameter settings

We use the Adam SGD optimizer (Kingma & Ba, 2014)
with a learning rate of 0.01 and the early stopping strat-
egy with a patience of 100 epochs to train MTGCN. All
hyper-parameters for training MTGCN are listed in Table 7,
including the total number of tracks (“# track”), the weight
decay (“WD”), the dropout rate, the weight of the con-
straint LR (“WR”), and the total number of pseudo-labeled
nodes used in each category at each stage (“num ks”). In
all experiments, we set four training stages in Multi-stage
training strategy. ALL hyper-parameters are obtained by
grid search. The code of grid search can be found in our
Github repository 2.

In addition, the configuration of the initial residual con-
nections follows previous study (Chen et al., 2020b). All
experiments are implemented in Python 3.8.13 with PyTorch
Geometric on one NVIDIA Tesla V100 GPU.

2Code of grid search: https://github.com/
XJTU-Graph-Intelligence-Lab/mtgcn

13

https://github.com/XJTU-Graph-Intelligence-Lab/mtgcn
https://github.com/XJTU-Graph-Intelligence-Lab/mtgcn

Multi-Track Graph Convolutional Network

B.3. Definition of Rg

The group distance ratio Rg in Table 4 in the main paper is
used to measure the degree of oversmoothing. Specifically,
Rg is defined as the ratio between inter-group distance and
intra-group distance of node representations.

Rg =
C

(C − 1)2
dinter
dintra

(7)

dinter =
∑
i 6=j

1

|Li| |Lj |
∑

hiv∈Li

∑
hjv′∈Lj

‖hiv − hjv′‖2) (8)

dintra =
∑
i

1

|Li|2
∑

hiv,hiv′∈Li

‖hiv − hiv′‖2 , (9)

where hi,v denotes v’s node representation vector, where
node v is associated with the label i. Correspondingly, Li

denotes the group of representation vectors of all nodes

in the i-th group (category), and C denotes the number of
node groups (categories). In addition, || · ||2 denotes the
L2 norm of a vector and | · | denotes the set cardinality. In
this way, a low Rg ratio means that node representations
between different groups (categories) are indistinguishable,
indicating a high oversmoothing.

Table 7. Hyper-parameter settings of MTGCN
Dataset WR WD # track dropout num ks

Cora 0.5 5e-4 7 0.5 100,50,20,1
CiteSeer 0.5 5e-4 6 0.5 100,50,20,1
PubMed 0.5 5e-4 3 0.5 400,50,20,1
Co.CS 0.5 1e-4 15 0.5 50,10,5,1
Co.Phys 0.5 1e-4 5 0.5 1500,1500,700,10
Texas 0.9 5e-4 5 0.3 5,2,2,1
Wisconsin 0.9 5e-4 5 0.3 5,2,2,1
Cornell 0.9 5e-4 5 0.3 5,2,2,1

14

