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Abstract

Federated learning (FL) enables collaborative ma-
chine learning across distributed data owners.
However, this approach poses a significant chal-
lenge for model calibration due to data hetero-
geneity. While prior work focused on improv-
ing accuracy for non-iid data, calibration remains
under-explored. This study reveals existing FL
aggregation approaches lead to sub-optimal cal-
ibration, and theoretical analysis shows despite
constraining variance in clients’ label distribu-
tions, global calibration error is still asymptoti-
cally lower bounded. To address this, we pro-
pose a novel Federated Calibration (FedCal) ap-
proach, emphasizing both local and global cal-
ibration. It leverages client-specific scalers for
local calibration to effectively correct output mis-
alignment without sacrificing prediction accuracy.
These scalers are then aggregated via weight av-
eraging to generate a global scaler, minimizing
the global calibration error. Extensive experi-
ments demonstrate that FedCal significantly out-
performs the best-performing baseline, reducing
global calibration error by 47.66% on average.

1. Introduction
Federated learning (FL) (McMahan et al., 2017; Liu et al.,
2024) has emerged as a novel distributed machine learning
paradigm, enabling clients to train models collaboratively. A
fundamental challenge in this domain is the data distribution
heterogeneity among FL clients (i.e., the data non-IIDness
issue). Numerous studies (Kairouz et al., 2021; Li et al.,
2020b; Zhao et al., 2018) have demonstrated that this issue
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can adversely affect the accuracy and convergence of FL
models. In response, extensive research efforts on person-
alized federated learning (PFL) (Tan et al., 2023; Li et al.,
2020b; Karimireddy et al., 2020; Wang et al., 2020; Reddi
et al., 2020) have been directed towards mitigating this issue.

However, an aspect that has been largely overlooked in the
current PFL literature is reliability (Lu & Kalpathy-Cramer,
2021; Plassier et al., 2023). As FL systems become increas-
ingly embedded in high-stake decision-making processes,
the importance of reliability, especially in mission-critical
applications such as healthcare (Rieke et al., 2020; Dayan
et al., 2021; Sheller et al., 2020), finance (Long et al., 2020;
Dash et al., 2022) and autonomous driving systems (Li et al.,
2021; Du et al., 2020), cannot be overstated.

Besides prediction accuracy, the reliability of an FL model
also hinges on accurate uncertainty estimation, commonly
referred to as confidence (Ovadia et al., 2019; Yu et al., 2022;
Guo et al., 2017a). Consider a model for cancer diagnosis. It
predicts that a patient has cancer with a confidence level of
0.1. This confidence score carries significant implications.
For instance, a patient predicted with a 0.1 confidence might
receive a more cautious treatment recommendation. In a
well-calibrated model, if 10 patients are assigned a confi-
dence of 0.1 for having cancer, approximately one of them
should genuinely be diagnosed correctly with the disease.
This process of aligning the model prediction confidence
with the actual observed frequency of an event is referred to
as model calibration (Guo et al., 2017b).

Model calibration is of critical importance to producing re-
liable machine learning models. While the topic has been
extensively examined under centralized learning settings,
it has been largely overlooked under FL settings. As high-
lighted in Figure 1, the prevailing FedAvg-based (McMahan
et al., 2017) FL model aggregation approaches produce
poorly calibrated models in the presence of data hetero-
geneity. Recognizing this gap, we delve into the unique
challenges posed by FL, and contend that existing central-
ized calibration techniques are not directly applicable in the
face of the distributed and data heterogeneous nature of FL.

Model calibration in FL settings faces two major challenges:
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Figure 1. [Left] Impacts of Data Distribution Discrepancies on
Model Calibration in Federated Learning. The presence of non-
IID data across local nodes contributes to miscalibration issues in
the aggregated model, influencing both local and global datasets.
[Right] Impact of data heterogeneity on the accuracy and reliability
of FL models. As the degree of non-IIDness (quantified by the
Dirichlet distribution parameter β) increases, both accuracy and
reliability of FL models trained on MNIST (MLP, 10 clients) and
CIFAR-10 (ResNet-14, 10 clients) using FedAvg (McMahan et al.,
2017) deteriorate.

1. Need for Local and Global Calibration. Our empiri-
cal observations reveal a dual challenge for calibration
in data heterogeneous FL. Firstly, data heterogeneity
negatively impacts the overall calibration of the global
model. Secondly, the variance of calibration errors
across clients increases with the degree of data hetero-
geneity. This necessitates a two-pronged approach: a
personalized calibration step adjusting the model to
individual client’s data distribution, and a robust global
calibration step for improved generalizability.

2. Lack of Global Validation Datasets. Given the dis-
tributed nature of FL, it is often impractical to have a
comprehensive global validation set for global calibra-
tion due to privacy concerns and the challenges of data
collection and maintenance.

To bridge this gap, our goal is to achieve both local and
global model calibration via FL aggregation without re-
lying on the existence of a global validation dataset. To
achieve this goal, we propose a novel Federated Calibration
(FedCal) approach. It involves training post-hoc scalers
on local datasets for local calibration and subsequently ag-
gregating them to achieve global calibration. Notably, the
scalers in FedCal can be aggregated simply by averag-
ing their parameters. As a post-hoc calibration method,
FedCal can be easily integrated with existing FL methods.

Theoretical analysis shows that despite constraining the
variance in clients’ label distributions, the global model
calibration error still asymptotically decreases. Extensive

experimental evaluation based on four benchmark datasets
reveals that FedCal significantly surpasses five state-of-
the-art methods in both local and global calibration, regard-
less of the presence of global validation sets. Specifically,
it reduces the global model calibration error by 47.66% on
average compared to the best-performing baseline. Further-
more, we observe that ensembling global and local models
can further enhance prediction accuracy.

2. Related Work
Calibration is an important research topic in centralized
ML. A vast body of literature exists on the calibration of
finely-tuned ML models. Notable methods include his-
togram binning (Zadrozny & Elkan, 2001), isotonic re-
gression (Zadrozny & Elkan, 2002), conformal prediction
(Vovk et al., 2005), Platt scaling (Platt et al., 1999), and
temperature scaling (Guo et al., 2017b). These techniques
generally rely on the existence of a validation set for the
post-processing of model predictions.

Recent research has started to focus on enhancing cali-
bration in deep learning models. These include strategies
such as augmentation-based training (Thulasidasan et al.,
2019), calibration in neural machine translation (Kumar &
Sarawagi, 2019), neural stochastic differential equations
(Kong et al., 2020), self-supervised learning (Hendrycks
et al., 2019) ensemble methods (Lakshminarayanan et al.,
2017), and even providing statistical assurance for calibra-
tion in black-box models (Angelopoulos et al., 2021). Never-
theless, research addressing model calibration in FL settings
remains limited.

Calibration in FL Settings While the importance of cali-
bration in FL is being recognized, existing approaches pri-
marily focus on performance improvement without consider-
ing reliability. Luo et al. (2021) demonstrated that classifier
calibration significantly boosts FL model performance, al-
beit focusing on adjusting weights on IID data, a process
different from aligning confidence with observed frequency.
Zhang et al. (2022a) introduced FedLC to enhance model
accuracy through a calibration-inspired cross-entropy loss.
However, calibration in FedLC is defined as the error rate per
class, which is different from our definition. Achituve et al.
(2021) proposed pFedGP, a personalized approach that, al-
though not designed for FL calibration, achieves some level
of empirical calibration efficacy. But, its specialized nature
hinders wider applicability. Closely related to our work is
MD-TS (Yu et al., 2022). It employs domain-specific tem-
perature scaling and a predictive linear regression model.
Nevertheless, it relies on the existence of global validation
sets, which might be difficult to prepare in practice and risk
privacy leakage.

Orthogonal to our work, the field of PFL tailors models to
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client-specific needs (Tan et al., 2023; Arivazhagan et al.,
2019; Deng et al., 2020). While PFL addresses the issue of
non-IID client data distributions, our focus lies in federated
model calibration. Notably, FedCal can be integrated with
existing PFL frameworks.

3. Preliminaries
3.1. Basics of Model Calibration

In a K-classification task with Y ≡ {1, ...,K}, we aim to
train a model θ : X 7→ RK that predicts the labels y ∈ Y
corresponding to the input x ∈ X . Here, θ(xi) outputs
the score, a quantity that represents a proper probabilistic
estimation often obtained by applying an additional sigmoid
layer σ as f(xi) = σ(θ(xi)), where f : X 7→ ∆K−1.
∆K−1 denotes a (K − 1) simplex such that for any class k,
fk(xi) ∈ [0, 1] and

∑
k∈Y fk(xi) = 1.

Calibration (Guo et al., 2017b), in this framework, refers
to the extent to which these predicted probabilities fk(xi)
reflect the true conditional probability p(y = k|x). While
calibrating predictions for every class is an ideal goal, it can
be challenging and impractical in real applications (Kumar
et al., 2019). Often, the more achievable task of top-label
calibration is prioritized, which focuses on ensuring the
predicted probability of the most likely class aligns with its
true probability. For a comprehensive overview of different
calibration types and their nuances, please refer to (Kumar
et al., 2019; Zhao et al., 2021).

We denote the predicted label f̂(xi) by a model as f̂(xi) ≡
max fk(xi) and ŷ(x) = argmaxk∈Y fk(xi). Then, the
top-level calibration error can be defined as:

Definition 3.1. (Calibration Error). The calibration error
CE(f) of f is given by:

CE(f) = (E[(IP(y = ŷ(xi)|f̂(xi))− f̂(xi))
2])

1
2 . (1)

The lower the CE value, the better the calibration. A per-
fectly calibrated model achieves a CE value of 0. A widely
adopted empirical measure of CE is the Expected Calibra-
tion Error (ECE) (Naeini et al., 2015). ECE measures cali-
bration by averaging the difference between the predicted
probabilities and the actual accuracy within each confidence
bin. In our work, ECE is adopted as the metric for reporting
calibration errors.

Definition 3.2. (Expected Calibration Error). Giving a
partition cm of the unit interval [0, 1] and the buckets Bm =

{i : cm−1 < f̂(xi) ≤ cm}, ECE is defined as:

ECE =

M∑
m=1

|Bm|
N
|confm − accm|, (2)

where accm = 1
|Bm|

∑
i∈Bm

1(ŷ(xi) = y) and confm =
1

|Bm|
∑

i∈Bm
fk(xi).

3.2. Calibration by Scaling

Modern deep models tend to achieve poor calibration (Guo
et al., 2017b). To address this issue, researchers have ex-
plored two main approaches: 1) post-hoc calibration, and 2)
architecture/training modification for inherently calibrated
models (Wu & Gales, 2021). We focus on the post-hoc cali-
bration approach due to its flexibility and ease of integration
with existing training paradigms. Post-hoc mapping meth-
ods involve employing a scaling function ϕ trained on an
auxiliary dataset to adjust fk(xi). Here, we review a simple
yet effective calibration method, Temperature scaling (Guo
et al., 2017b), which resales model outputs using a singular
temperature parameter T as:

ϕ(T ) ◦ f(xi) ≡ σ

(
θ(xi)

T

)
. (3)

The optimal temperature value, T , is determined by mini-
mizing the negative log-likelihood (NLL) on a validation
set Dval as:

min
T

NLL
(
y, σ

(
θ(xi)

T

))

= −
|Dval|∑
i=1

K∑
j=1

1(yi = j) · log σj

(
θ(xi)

T

)
.

(4)

4. Theoretical Basis of FedCal
4.1. The Need for Local and Global Calibration

Calibrating FL models introduces distinct challenges due to
the inherent non-IID nature of data across clients. Such het-
erogeneous data distributions significantly degrade the cali-
bration performance of models evaluated on both local and
global datasets (Figure 2). Moreover, the privacy require-
ments inherent to FL often preclude access to a centralized
auxiliary validation dataset, rendering traditional calibration
methods inapplicable. Figure 2 also highlights the discrep-
ancies between calibration performance on clients’ local
datasets and the aggregated global dataset. This observation
compels us to re-evaluate traditional notions of calibration
within the context of FL. We posit that both local and global
calibration are essential for building reliable FL models.

Consider the illustrative hospital example from the introduc-
tion, where treatment decisions hinge on the model’s pre-
diction and the associated confidence, interpreted as cancer
probability. The decision minimizes the combined surgical
and conservative treatment risks: risksurgery × IP(cancer) +
riskconservative treatment × IP(benign tumor). As posited by
Zhao et al. (2021), calibration directly impacts decision-
making efficacy. Hospital A’s specialized model, potentially
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Figure 2. Impact of Non-IID Data Distribution on Client and
Server Calibration in FL. The top plot shows the calibration error
of five clients trained on the MNIST dataset with a Multilayer
Perceptron (MLP) model under IID and non-IID distributions. We
observe that the non-IID client exhibits significantly higher cali-
bration error compared to the IID clients, and that calibration error
can vary significantly across clients and even at the server due
to the skewed data distribution. The two bottom plots depict the
model reliability for a single client trained under IID and non-IID
conditions. The purple dashed line represents the normalized class
density of a client, and the gray dashed line represents perfect cali-
bration (i.e., confidence aligns exactly with accuracy). In the IID
case (left plot), the model is well-calibrated, with the confidence
closely matching the accuracy throughout the range. In contrast,
the non-IID case (right plot) reveals severe under-confidence.

well-calibrated for its specific patient population, might pre-
dict a higher cancer probability, leading to a more aggressive
treatment approach. Conversely, Hospital B’s general model,
trained on a wider range of patients with different diseases,
might predict a lower probability, favoring a more conserva-
tive approach. While local expertise and specialization hold
value, neglecting global calibration across the FL network
poses significant risks.

Maintaining consistent global calibration ensures that deci-
sions are guided by comparable risk assessments across all
participating clients. This, in turn, minimizes the potential
for inequitable recommendations, especially as new clients
with potentially divergent data distributions join FL. Here,
we formalize the notions of local and global calibration.

Definition 4.1. (Local calibration error and global calibra-
tion error). Consider an FL system comprising C clients,
each possessing a local dataset Dc = {xi, yi}Nc

i=1 drawn
from a client-specific distribution IPc(x, y). The local cali-

bration error CEc(f) is:

CEc(f) =

(
E

IPc(x,y))
[(IP(y = ŷ(xi)|f̂(xi))− f̂(xi))

2]

) 1
2

.

(5)
Similarly, the global calibration error CE(f), conceptual-
ized as the expected calibration error over unseen data sam-
pled from a client-agnostic distribution IP(x, y), is:

CE(f) =

(
E

IP(x,y)
[(IP(y = ŷ(xi)|f̂(xi))− f̂(xi))

2]

) 1
2

.

(6)

Empirically, local calibration error can be approximated
by evaluating ECE on the local dataset. Since the global
data distribution is not directly observable, it is presumed
that samples (xi, yi) in global dataset follows the same
distribution of the pooled dataset ∪Cc=1Dc and the global
calibration error can be assessed using a reserved test set,
sampled from the pooled dataset.

4.2. Label Skew Leads to Poor Calibration

In this paper, we focus on one of the most representative
settings of non-IIDness, which is label skew (Luo et al.,
2019; Lyu et al., 2022; Zhang et al., 2022b). Note that,
while we focus on label skew, various forms of non-IID data
exist (refer to (Hsieh et al., 2020) for more details).
Definition 4.2. (Label Skew). The label distribution across
the clients is skewed. If the local distribution is rewritten as
IPc(x, y) = IPc(x|y)IPc(y), label skew means, for any two
clients c1 and c2, we have: (1) IPc1(y) ̸= IPc2(y) if c1 ̸= c2;
and (2) IPc1(x|y) = IPc2(x|y).

We denote the empirical risk minimizer over the global
distribution as f∗(x) := argf min ξ(y, f(x)), where ξ is
the cross entropy loss. The global model obtained after
r rounds by averaging local updates is denoted as fr(x).
Affected by the heterogeneous data, the local objectives
of different clients are generally not identical and might
not share the same risk minimizer. Consequently, even as
all clients start from the same global model, local updates
will steer the model towards the minima of local objectives
(known as client drift (Charles & Konečnỳ, 2021)). This
divergence implies that averaging local updates via FedAvg
results in a model that is different from the global minimizer,
i.e., f∗(x) ̸= fr(x) (Wang et al., 2020; Karimireddy et al.,
2020). Expanding upon this fundamental understanding, we
posit that, given a bounded distribution divergence between
local and global distributions, client drift inherently imposes
an asymptotic lower bound on the global calibration error.
Assumption 4.3. (Bounded discrepancy between local and
global label distribution). We assume that the discrepancy
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between the data distributions at each client and the global
distribution, measured by the Kullback–Leibler divergence
DKL, is bounded. Specifically, the maximum divergence
between the local data distribution IPc(y) and the global dis-
tribution IP(y) does not exceed a value G. Mathematically,
this is expressed as:

sup
c∈{1,···,C}

DKL(IPc(y) ∥ IP(y)) ≤ G, (7)

where C is the total number of clients.

For clarity and ease of understanding, we concentrate the
discussion on the binary classification scenario. This does
not reduce the generality of our findings as the problem of
calibrating multi-class models can be effectively reduced
to the binary case by letting the model output a probability
corresponding to its top prediction, and the label represents
whether the prediction is correct or not (Kumar et al., 2019).

Theorem 4.4. (Lower bound of global calibration error).
Consider the scenario where the discrepancy between the
local and global label distributions is bounded by G, as
stated in Assumption 4.2. Let R represent the number of
FL communication rounds involving more than two clients.
Jointly considering the established assumptions detailed
in Appendix A, under these conditions, there exists a µ-
convex objective function for which the resulting global
model fR(x) after R rounds has a calibration error asymp-
totically bounded by:

CE(fR) ≥ Ω

(√ 1
2G

µR2

)
. (8)

The formal proof of this theorem is presented in Appendix
A. Here, we provide an illustrative sketch. Firstly, we es-
tablish that the global risk minimizer f∗(x) also minimizes
the calibration error (i.e., CE(f∗(x)) = 0). Consistent with
the premises set forth in (Zhang et al., 2022b; Wang et al.,
2021), we posit that the features extracted from the same
class (inputs to the final layer) exhibit a high degree of simi-
larity, a notion empirically observed and verified in (Wang
et al., 2021). Based on this, we analyse how the bounded dis-
crepancy between label distributions propagates to bounded
gradient dissimilarity using Pinsker’s Inequality. Lastly,
based on Karimireddy et al. (2020) which relates the dissim-
ilarity of gradient to the difference between risk minimizer
[fR(x)− f∗(x)], we draw the proof to its conclusion.

Theorem 4.4 elucidates that despite constraining the vari-
ance in clients’ label distributions, the global model cali-
bration error can still asymptotically lower bounded, which
corroborates our empirical findings depicted in Figure 2
and Figure 1. While prevailing calibration techniques (e.g.,
temperature scaling) offer simplicity and effectiveness, they

require access to a global validation dataset. This is not only
impractical in many real-world scenarios, but also raises
significant privacy concerns.

FedCal is a novel paradigm distinctly orthogonal to the
conventional accuracy-centric FL approach. Formally, it is a
task that aims to minimize both CEi and CE without access
to Dval sampled from D.

5. The Proposed FedCal Approach
While local calibration is relatively easy as the FL client
has direct access to its local data making established cali-
bration methods like temperature scaling applicable, achiev-
ing global calibration presents a significant technical chal-
lenge. To this end, we frame the problem of FedCal as
aggregating local scalers into a global scaler, formulated
as ϕ = Agg(ϕc

C
i=1). The success of ϕ hinges on two key

aspects: 1) the scaler architecture, and 2) the aggregation
strategy. The following properties are desirable for these
two components:

1. The scaler must possess robust generalization capabil-
ities to handle potential discrepancies between local
and global data distributions.

2. The processes of scaling and calibration should main-
tain model accuracy.

3. The scaler should also be “aggregatable”, meaning that
the aggregated version should perform well not only
on a global scale, but also on the local scale.

4. The scaler aggregation strategy should not require di-
rect access to local data distributions.

5.1. Scaler Architecture Design

To achieve Property 1, FedCal is equipped with a multi-
layer perceptron (MLP) with substantially more parameters
than traditional minimal-parameter methods to enhance its
generalization capability. The MLP processes the original
output logits θ(x), transforming them into accurate prob-
abilities, particularly under conditions of significant local
and global data distribution discrepancies.

However, a trade-off exists between Property 1 and Prop-
erty 2. A more complex model, while capable of learning
intricate mappings, risks overfitting the validation datasets.
This can alter the original order of the model logits, leading
to a decrease in top-k accuracy (Figure 3). Here order-
preserving means that for any two classes j and k, if
fR
j (xi) > fR

k (xi), the scaled outputs must follow the same
order (i.e., ϕ(fR

j (xi)) > ϕ(fR
j (xi))). To achieve order

preservation, we incorporate the order-preserving technique
from (Rahimi et al., 2020) into the scaler design. Formally,
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the local scaler ϕc parameterized by an MLP πc remaps the
model output as:

ϕc(ϕ) ◦ f(xi) ≡ ϕc(θ(xi);πc). (9)

πc is optimized by minimizing the NLL loss on a local
dataset Dc similar to Eq. (4). Although training is required,
the scaler can be effectively implemented in a post-hoc
manner. Specifically, the local scaler undergoes training
only after the FL model completes its local training phase.

5.2. Aggregation Strategy Design

One advantage of our MLP-based scaler design is its in-
herent permutation symmetries. These symmetries facili-
tate the aggregation of two distinct MLPs through linear
mode connectivity (Ainsworth et al., 2022; Entezari et al.,
2021; Nguyen et al., 2021). Linear mode connectivity im-
plies that for two MLPs, πi and πj , after aligning one
of them (e.g., πi) through a weights permutation M(πi),
they can be linearly combined in their parameter space as
π∗ = λπi+(1−λ)M(πj). The loss function of the new pa-
rameters L(π∗) closely approximate a weighted sum of the
individual losses as L(π∗) ≈ λL(πi) + (1− λ)L(πj) for
any λ ∈ [0, 1]. This ensures that our scaler achieves Prop-
erty 3 and Property 4. The resulting global scaler, ϕ(π),
achieves a low local calibration error and is robust to the
choice of aggregation weight λ. For practical implementa-
tion, we adopt the Weight Matching algorithm (Ainsworth
et al., 2022) which does not require access to local data
(Algorithm 2 in Appendix D).

5.3. The Combined Framework

FedCal (Algorithm 1) enhances the FedAvg procedure to
improve model calibration. Initially, FL clients are provided
with the global scaler parameters as a baseline for local
scaler training. To establish a coherent relationship between
their local and the global scaler, clients perform Weight
Matching (Algorithm 2) to achieve optimal alignment. After
local model updates, clients refine their scalers to minimize
local calibration errors on their validation datasets. Upon

Figure 3. Impact of the Order-Preserving Network. Without order
preservation, α can represent arbitrary mappings, potentially alter-
ing the predicted class ordering (highlighted in red). The working
principles of order-preserving networks are in Appendix B.

Algorithm 1 FedCal
1: Input: C clients, local epochs E, learning rate η, global

model weights θ0, global scaler weights π0

2: for each round t = 1, 2, . . . , R do
3: Server selects a subset of m clients St

4: for each client c ∈ St in parallel do
5: θt+1

c ,πt+1
c ← ClientUpdate(c,θ0,π0)

6: end for
7: θt+1 ←

∑m
c=1

nc

N θt+1
c {Aggregate updated mod-

els}
8: πt+1 ← 1

m

∑m
c=1 π

t+1
c {Aggregate updated scalers}

9: end for
10:
11: procedure ClientUpdate((c,θ0,π0)):
12: M←WeightMatching(π0,πc)
13: πc ←M(πc){Permute to Align}
14: B ← (split Dc into batches of size B)
15: for each local epoch i from 1 to E do
16: for batch b ∈ B do
17: w ← w − η∇l(w; b) {Update model weights}
18: end for
19: end for
20: πc ← TrainScaler(πc,Dc)
21: return w, πc to server

receiving the updated models and scalers from the clients,
the FL server performs model aggregation via FedAvg and
averages the local scalers to form an updated global scaler.

Notably, rather than adopting a purely post-hoc approach,
where scaler training and aggregation occur only after the
completion of FedAvg, FedCal opts for periodic syn-
chronization of scaler updates. This strategy enhances the
scalers’ ability to learn more general mappings and boost
overall aggregation efficacy. FedCal incurs additional
communication overhead, equivalent to the scaler parameter
count, and extra computational load due to weight match-
ing. Nonetheless, given that the scaler parameter count is
relatively modest compared to that of the primary classifier,
the trade-off is considered acceptable.

Regarding privacy, FedCal necessitates the sharing of
scaler parameters, which helps prevent the disclosure of
specific data distribution details (such as logits, quantiles,
etc.). Moreover, sharing parameters aligns with the standard
paradigm in federated learning, making privacy-preserving
techniques, such as Homomorphic Encryption (Zhang et al.,
2020; Hardy et al., 2017) and Differential Privacy (Wei et al.,
2020), could be integrated to augment privacy protection
further. However, the incorporation and exploration of these
techniques fall outside the scope of our current research.
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6. Experimental Evaluation
To evaluate the performance of FedCal, we experimentally
compare it with five baseline methods over four benchmark
datasets with different degrees of non-IIDness.

6.1. Experiment Setup

We conduct our experiments on the following widely
adopted benchmark datasets: 1) MNIST (Deng, 2012), 2)
SVHN (Netzer et al., 2011), 3) CIFAR-10 and 4) CIFAR-
100 (Krizhevsky et al., 2009). For MNIST and SVHN,
we utilize the standard CNN as the base model, while for
CIFAR-10 and CIFAR-100, we adopt ResNet-14 (He et al.,
2016) and ResNet-32 (He et al., 2016) as the base model,
respectively. Prior to distribution among FL clients, each
dataset is pre-processed.

To replicate non-IID conditions typical in real-world
settings, we follow the Distribution-based Label Skew
method (Yurochkin et al., 2019; Li et al., 2020a; Zhang et al.,
2022b), which uses a Dirichlet distribution (pc ∼ Dir(β))
to allocate class samples across clients. The parameter β
modulates label skew, with higher values indicating more
pronounced non-IIDness.

We carried out our experiments using PyTorch on a single
NVIDIA A100 GPU, which has 40 GB of memory. In our
FL setup, we include 20 FL clients. In each FL training
round, we randomly select 5 of them to participate. Each
local training round consists of 3 epochs. For the local
updates, we adopt the SGD optimizer with a learning rate of
0.01, and a local batch size of 256. For the implementation
of FedCal, the default configuration of the proposed scaler
is an MLP with an activation structure of K-64-64-K, where
K represents the number of classes. We set the maximum
number of global epochs to 100.

6.2. Comparison Baselines

We compare FedCal with standard scaler designs and FL
aggregation methods, including:

1. UNCAL.: FL without model calibration.

2. VAL. TS: uses a temperature scaler on a global valida-
tion set, considered as the performance upper bound.

3. ENS.: Implements Deep Ensemble’s direct averag-
ing of scaled probabilities. Despite its simplicity, it’s
known for robust uncertainty quantification (Lakshmi-
narayanan et al., 2017; Lee et al., 2015).

4. AVGT: Extends ENS by averaging temperature param-
eters of individual scalers. Both ENS and AVGT are
efficient, but have limitations when facing non-IID
distributions (Rahaman et al., 2021; Abe et al., 2022).

5. LR-TS: Adapts MD-TS (Yu et al., 2022) for FL set-
tings. It estimates the scaling temperature from model
outputs, thereby achieving calibration without a shared
validation dataset.

We adopt test accuracy and the global ECE as the evaluation
metrics. For more details, please refer to Appendix C.

6.3. Results and Discussion

Table 6.1 reports the global ECE results. FedCal con-
sistently achieves the lowest calibration error across all
datasets. When compared to UNCAL and the second-
best approach without requiring a global validation set
ENS., FedCal significantly reduces the calibration error
by 63.06% and 47.66%, respectively. It is also important
to note that an increase in non-IIDness tends to worsen the
calibration error, which corroborates our theoretical analy-
sis. However, FedCal demonstrates stronger robustness
compared to other baselines, even as non-IIDness increases.
In most cases, ENS emerges as the second-best, reinforcing
the notion that deep ensembles are effective in calibration,
particularly when non-IIDness is moderate.

Under MNIST, we examine how calibration error changes
with increasing non-IIDness (as indicated by − log β). The
results are illustrated in Figure 4, which also contains the
results of parts of our ablation studies. The top left subplot
indicates the average local calibration error, while the bot-
tom left one shows the maximum local calibration error. It
can be observed that despite the increase in non-IIDness, all
scaling methods manage to maintain low calibration errors.

Figure 4. Local and global calibration errors as non-IIDness in-
creases. [Top left]: the average local calibration errors. [Bottom
left]: the maximum local calibration errors. [Right]: the global
calibration error.

In contrast, the global calibration error Figure 4 (right sub-
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DATASETS
SETTINGS GLOBAL ECE %

β ACC % UNCAL. VAL. TS ENS. AVGT. LR-TS. FedCal

MNIST-CNN

β =1 95.72 ± 2.3 0.5 ± 0.12 0.34 ± 0.08 0.43 ± 0.10 0.41 ± 0.10 0.71 ± 0.17 0.45 ± 0.11

β =0.5 93.03 ± 2.2 1.00 ± 0.24 0.79 ± 0.19 1.32 ± 0.32 0.72 ± 0.17 0.71 ± 0.17 0.47 ± 0.11

β =0.3 91.34 ± 2.2 1.6 ± 0.38 0.74 ± 0.18 1.34 ± 0.32 0.92 ± 0.22 1.57 ± 0.38 0.61 ± 0.15

β =0.1 81.01 ± 1.9 4.6 ± 1.10 0.74 ± 0.18 2.13 ± 0.51 3.17 ± 0.76 5.51 ± 1.32 1.35 ± 0.32

SVNH-CNN

β=1 93.24 ± 2.2 1.12 ± 0.27 0.32 ± 0.08 0.43 ± 0.10 0.52 ± 0.12 0.69 ± 0.17 0.44 ± 0.11

β=0.5 85.13 ± 2.0 1.30 ± 0.31 0.51 ± 0.12 0.99 ± 0.24 1.03 ± 0.25 1.31 ± 0.31 0.89 ± 0.21

β=0.3 85.14 ± 2.0 4.56 ± 1.09 1.21 ± 0.29 1.58 ± 0.38 3.59 ± 0.86 3.51 ± 0.84 0.77 ± 0.18

β=0.1 79.23 ± 1.9 7.81 ± 1.87 1.25 ± 0.30 1.56 ± 0.37 6.12 ± 1.47 32.03 ± 7.69 1.25 ± 0.30

CIFAR10-RESNET14

β=1 65.54 ± 1.6 7.61 ± 1.82 3.61 ± 0.87 5.42 ± 1.30 7.82 ± 1.88 3.42 ± 0.82 3.71 ± 0.89

β=0.5 60.21 ± 1.4 5.63 ± 1.35 4.12 ± 0.99 6.28 ± 1.51 8.34 ± 2.00 4.23 ± 1.01 4.61 ± 1.10

β=0.3 57.31 ± 1.4 9.81 ± 2.35 3.15 ± 0.76 8.16 ± 1.96 11.25 ± 2.70 11.12 ± 2.67 4.91 ± 1.18

β=0.1 48.05 ± 1.2 12.48 ± 2.99 3.51 ± 0.84 8.87 ± 2.13 13.34 ± 3.20 14.32 ± 3.44 4.51 ± 1.08

CIFAR100-RESNET32

β=1 41.24 ± 1.0 22.45 ± 5.39 4.13 ± 0.99 16.34 ± 3.92 20.25 ± 4.86 19.21 ± 4.61 7.41 ± 1.78

β=0.5 30.01 ± 0.7 20.45 ± 4.91 4.19 ± 1.01 17.53 ± 4.21 29.21 ± 7.01 18.35 ± 4.40 7.50 ± 1.80

β=0.3 22.21 ± 0.5 25.71 ± 6.17 4.09 ± 0.98 18.93 ± 4.55 30.45 ± 7.31 22.92 ± 5.50 8.91 ± 2.14

β=0.1 20.8 ± 0.5 31.78 ± 7.63 4.82 ± 1.16 20.48 ± 4.92 30.25 ± 7.26 37.32 ± 8.96 10.72 ± 2.57

Table 1. Comparison of global ECE across datasets with varying levels of non-IIDness.

Figure 5. Local and global ECE vs. aggregation weights.

plot) behaves differently. It can be observed that FedCal
consistently outperforms other methods without a substan-
tial increase in global ECE as non-IIDness grows. How-
ever, without performing weight matching (OURS-WM),
FedCal does not exhibit the same robustness. Similarly,
reducing the MLP scaler size from 64 neurons to 8 (OURS-
SMALL) results in a reduction in the generalization capabil-
ities of FedCal. This underscores the importance of the
synergy of the integrated scaler and the aggregation strategy
in the FedCal design.

6.4. Ablation Studies

In our ablation studies, we demonstrate the effectiveness
of MLP scalers and weight matching in FedCal (Fig-
ure 5). Using a synthetic dataset with high non-IIDness
and two clients, we find that while individual local scalers
are inadequate globally, their weighted aggregation signif-
icantly improves overall calibration. Increasing the MLP
scaler size also enhances generalization. Directly applying
global scalers locally leads to good individual calibration,
but causes substantial local errors without a proper weight
matching mechanism. The results highlight the importance

of weight matching in federated calibration.

In FedCal, the order-preserving technique is a crucial com-
ponent. We evaluate its significance through ablation studies
conducted on the MNIST dataset, where β is fixed at 0.5.
The results are shown in Table 6.4.

It can be observed that calibration methods like ENS, AVGT
and LR-TS, which modify model logits, have no detrimen-
tal effect on top-3 accuracy. In contrast, removing the order-
preserving element from FedCal (denoted as OURS W/O
OP) results in a slight reduction in global ECE. Yet, this
comes at the expense of significantly lower top-3 accuracy.
This outcome suggests that, while FedCal can enhance test
accuracy to a certain extent, excluding the order-preserving
part of the design negatively affects the model’s ability to
accurately rank its top predictions. Conversely, while im-
posing order-preserving constraints does introduce some
limitations, it only leads to a minor increase in global ECE.

GLOBAL ECE TOP-3 ACCURACY

WITHOUT SCALER 4.6% 92.3%
ENS. 2.13% -
AVGT 3.17% -
LR-TS 5.51% -

OURS W/O OP 1.32% 87.91%
OURS 1.71% 92.3%

Table 2. Top-3 Accuracy and Calibration Error on the MNIST
dataset with a CNN with β = 0.5.

We also evaluated FedCal in combination with methods
designed to improve federated learning performance under
non-IID data distributions. Specifically, we testedFedCal
together with FedProx (Li et al., 2020b), which adds regu-
larization to encourage local updates to stay closer to the
global model under non-IID conditions. As shown in Ta-
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ble 6.4, while FedProx improves accuracy, it still suffers
from significant calibration errors. However, combining
it with FedCal substantially reduced global calibration
errors. This demonstrates that FedCal effectively com-
plements existing non-IID approaches (e.g., FedProx) by
enhancing calibration.

β ACC % GLOBAL ECE %
FEDPROX FEDPROX + FedCal

β =1 94.32 0.38 0.40
β = 0.5 94.07 0.57 0.42
β = 0.3 90.25 1.32 0.58
β = 0.1 89.93 3.19 1.07

Table 3. Global calibration errors on the MNIST-CNN for FedAvg,
FedProx, and FedProx + FedCal under varying non-IID levels

7. Conclusions and Future Work
In this paper, we provide both theoretical and empirical in-
sights into the necessity of simultaneously achieving global
calibration and local calibration in FL settings. The pro-
posed FedCal approach is designed with a sophisticated
multi-layer perceptron (MLP) scaler alongside the order-
preserving technique to effectively handle the challenges
posed by non-IID data distributions commonly encoun-
tered in real-world FL applications. Extensive experiments
demonstrate that FedCal surpasses existing calibration
methods by significantly reducing global model calibration
error without compromising model accuracy.

In subsequent research, we plan to investigate the complex
dynamics between order-preserving techniques and weight
matching strategies. We will also develop theories about the
relations between calibration effectiveness and model size.
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A. Proof of Theorem 4.4
Proof. First of all, we show that if f∗ is the risk minimizer of NLL loss over IP(x, y), it also minimizes the calibration error.
if f∗ is a risk minimizer of NLL, f∗(x) = p(y = 1|x). Then E[y|f∗(x)] = f∗(x), thus f∗ also minimize the the calibration
error as CE(f∗) = 0.In binary classification, we can rewrite the calibration error as

CE(f) =
(
EIP(x,y)

[
|E[y|f(x)]− f(x)|2

]) 1
2

= EP (x)

[
P (y = 1|x) · (1− f(x))2 + P (y = 0|x) · (f(x))2

]
.

(A.1)

This equation relates the calibration error CE(fn)− CE(f∗) = CE(fn) with fR(x)− f∗(x).

Theorem A.1. (Adopted from (Karimireddy et al., 2020).) When the gradients of the local loss function and global function
have bounded gradient dissimilarity, stated as

1

N

N∑
i=1

∥∇NLLc(f(xi), yi)∥2 ≤ C2
1 + C2

2∥∇NLL(f(xi), yi)∥2 , ∀xi, yi . (A.2)

where C1 and C2 are constants s.t. C1 ≥ 0 and C2 ≥ 1, there exists µ-convex function for which FedAvg with more than
two clients has an error

fR(x)− f∗(x) ≥ Ω

(
C2

1

µR2

)
. (A.3)

To leverage Theorem A.1 to bound the deviation of fn(x)− f∗(x) , denote the∇NLL(f(x, y)) as h(x, y), we are required
to show that

C∑
i=1

wi E
IPi(x,y)

[h(x, y)] ≤ C2
2 E

IP(x,y)
[h(x, y)] + C2

1 . (A.4)

According to the Definition 4.2 of label skew, we can rewrite equation A.4 as

C∑
i=1

wi E
IPi(y)

E
IP(x|y)

[h(x, y)] ≤ C2
2 E

IP(y)
E

IP(x|y)
[h(x, y)] + C2

1 . (A.5)

Since we assume IP(x|y) is the same across clients, denote EIP(x|y)[h(x, y)] as g(x), our objective is to show that

C∑
i=1

wi E
IPi(y)

[g(x, y)] ≤ C2
2 E

IP(y)
[h(x, y)] + C2

1 . (A.6)

According to Assumption 4.2, we have
G := sup

i
DKL(IPi(y), IP(y)). (A.7)

Suppose g(x, y) is bounded by M , which we will verify later, by total variation distance and Pinsker’s Inequality, we have

| E
IPi(y)

[g(x, y)]− E
IP(y)

[g(x, y)]|≤M ·DTV (IPi(y), IP(y)) ≤M

√
1

2
G, (A.8)

where DTV is the total variation distance. Since, wi ≥ 0 and
∑K

i=1 wi = 1, due to the linearity of expectation and triangular
inequality, we have

|
C∑
i=1

wi E
IPi(y)

[g(x, y)]− E
IP(y)

[g(x, y)]|≤
C∑
i=1

wi| E
IPi(y)

[g(x, y)]− E
IP(y)

[g(x, y)]|. (A.9)

and due to
∑C

i=1 wi, the RHS of equation A.9

RHS ≤
C∑
i=1

wi ·M
√

1

2
G = M

√
1

2
G. (A.10)
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By adding EIP(y)[g(x, y)]| on LHS of equation A.9, we have

LHS + | E
IP(y)

[g(x, y)]|≤M

√
1

2
G+ | E

IP(y)
[g(x, y)]|, (A.11)

and again, by triangular inequality, we have

LHS + | E
IP(y)

[g(x, y)]|≥ |LHS + E
IP(y)

[g(x, y)]|= |
C∑
i=1

wi E
IPi(y)

[g(x, y)]|. (A.12)

And since g(x, y) is the norm of gradient which is positive, we have

C∑
i=1

wi E
IPi(y)

[g(x, y)] ≤ E
IP(y)

[g(x, y)] +M

√
1

2
G. (A.13)

which meets our object with C2
1 = M

√
1
2G and C2

2 = 1. Now, let’s verify that g(x, y) is indeed bounded by a constant M .
Here, we make one additional assumption that

Assumption A.2. the extracted feature z := θ(x) of samples in the same class are similar. To be more specific,
VarIP(x|y)(z) ≤ S where S. This assumption is empirically verified in (Wang et al., 2021) and also used in (Zhang
et al., 2022a).

This assumption implies that gradient difference among clients only happens at the last layer. So that we can explicitly write
g(x, y) as

g(x, y) = E
IP(x|y)

[|∇NLL(x, y)|2] = E
IP(x|y)

[|(σ(w⊤z + b)− y) ∗ z|2]. (A.14)

Note that the existence of variance in Assumption A.2 implies the existence of the mean z. Now, we have

E
IP(x|y)

[|(σ(w⊤z + b)− y) ∗ z|2] ≤ E
IP(x|y)

[|z|2] = var2(z) + z2 ≤ S2 + z2. (A.15)

Now replacing M inA.13 with (z2 + S2), we have

C∑
i=1

wi E
IPi(y)

[g(x, y)] ≤ E
IP(y)

[g(x, y)] + (z2 + S2)

√
1

2
G. (A.16)

By Theorem A.1, we have

fR(x)− f∗(x) ≥ Ω

( (z2 + S2)
√

1
2G

µR2

)
. (A.17)

Lastly, we investigate how this deviation propagates through the calibration error

CE(fn) =
(

E
IP(x,y)

[|IP(y = 1|x)− fR(x)|2]
) 1

2

=
(

E
IP(x,y)

[|f∗(x)− fR(x)|2]
) 1

2

≥ E
IP(x,y)

[|f∗(x)− fR(x)|] Jensen’s Inequality

≥ Ω

( (z2 + S2)
√

1
2G

µR2

)
.

(A.18)
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B. Examples of Order Preserving Network
Theorem 1 in (Rahimi et al., 2020) states that a continuous function f : Rn 7→ Rn is order-preserving, if and only if f(x) =

S−1(x)Uw(x) where U is an upper-triangular matrix of ones and w : Rn 7→ Rn s.t.


wi(x) = 0,yi = yi+1 and i < n

wi(x) > 0,yi > yi+1 and i < n

wn(x) is arbitrary
where y = S(x)x is the sorted version of x.

The order-preserving network is a direct application of this theorem, where S(x) is achieved using the sorting component
and the element-wise production between activation after softplus and the yi−yi+1 ensures wi(x) ≥ 0 when yi−yi+1 ≥ 0.
To verify this theorem, consider an unsorted input vector x = [3, 4, 2, 2]⊤, where the correct order should be x2 > x1 >
x3 = x4. In other words, y = S(x)x = [x2,x1,x3,x4]

⊤ if we prefer x3 or [x2,x1,x4,x3]
⊤ otherwise. Then, w =

[w1 > 0,w2 > 0,w3 = 0,w4]
⊤. Uw =


w1 +w2 +w3 +w4

w2 +w3 +w4

w3 +w4

w4

 is monotonically non-decreasing. Once we permute

Uw back by exchanging the index 1 and 2, f(x) = S−1(x)Uw also has the ordering f(x)2 > f(x)1 > f(x)3 = f(x)4.

C. Discussion on Baselines
As part of our experimental design, we benchmark our framework against intuitive scaler designs and aggregation strategies,
and highlight their correspondence in existing works.

The simplest aggregation strategy involves disregarding the parameterization of scalers and adopting a direct averaging
of the model’s scaled probability, which is equivalent to Deep Ensemble (Lakshminarayanan et al., 2017; Rahaman et al.,
2021) and We denote the methods as ENS..Within our framework, the ensemble method is expressed as

ϕ ◦ fR(xi) =
1

C

C∑
c=1

ϕc ◦ fR(xi). (C.1)

Despite the simplicity of ENS, it has been demonstrated to yield robust uncertainty quantification, often outperforming more
elaborate methods (Lakshminarayanan et al., 2017; Lee et al., 2015).

An intuitive extension to ENS is to average the temperature parameter of individual temperature scalers to

ϕ ◦ fR(xi) = σ

(
θR(xi)∑C

c=1 Tc

)
(C.2)

referred to asAVGT. AVGT and ENS share similar advantages and limitations. Both methods can be applied post-training,
negating the need for communication overhead However, Rahaman et al. (2021) reveal that ENS only works when ϕc◦fR(xi)
is overconfident and it does not meaningfully contribute to an ensemble’s uncertainty quantification when IPc(x, y) is different
from IP(x, y) (Abe et al., 2022). The simplicity of these methods limits their generalization capabilities.

MD-TS (Yu et al., 2022) proposes to use a linear regression model to regression estimate the temperature T from the last
layer’s output θi(x). This approach improves the model’s calibration under distribution shifts. MD-TS aligns with our
analysis as linear regressor offers better generalization capability and scaling through temperature does not affect accuracy.
We adapt this concept for federated settings. Unlike the original approach, which requires data sharing and a validation
dataset Dval, we suggest leveraging FedAvg for deriving the linear model, bypassing the need for direct access to Dval, we
denote this method as LR-TS.

LR-TS can be formulated as: A client maintains a linear regression mode lrc with the aim of predicting the Tc.

lrc(θxi;W, b) is trained using

lr∗c = arglr min

|Dval|∑
i=1

(WθRxi + b)− Tc (C.3)
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Then the global calibration with scaler ϕ can be formulated as

ϕ ◦ fR(xi) = σ

(
θR(xi)

lr(θR(xi))

)
(C.4)

, where lr := FedAvg({lrc}).

D. The Weight Matching Algorithm
For ease of reference, we list the Weight Matching algorithm from (Ainsworth et al., 2022) here.

Algorithm 2 WeightMatching (Ainsworth et al., 2022)
1: procedure WeightMatching(π0,πc)
2: Given:
3: Global scaler weights π0 = {W (A)

1 , . . . ,W
(A)
L } and local scaler weight πc = {W (B)

1 , . . . ,W
(B)
L }

4: Result: A permutation M = {P1, . . . , PL−1} of πc such that vec(π0) · vec(π(πc)) is approximately maximized.
5: Initialize: P1 ← I, . . . , PL−1 ← I
6: repeat
7: for ℓ in RANDOMPERMUTATION(1, . . . , L− 1) do
8: Pℓ ← SOLVELAP(W (A)

ℓ Pℓ−1(W
(B)
ℓ )T + (W

(A)
ℓ+1)

TPℓ+1W
(B)
ℓ+1)

9: end for
10: until convergence
11: return M
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