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Abstract

Algorithmic predictions are increasingly used to
inform the allocations of goods and interventions
in the public sphere. In these domains, predic-
tions serve as a means to an end. They provide
stakeholders with insights into likelihood of fu-
ture events as a means to improve decision making
quality, and enhance social welfare. However, if
maximizing welfare is the ultimate goal, predic-
tion is only a small piece of the puzzle. There are
various other policy levers a social planner might
pursue in order to improve bottom-line outcomes,
such as expanding access to available goods, or
increasing the effect sizes of interventions. Given
this broad range of design decisions, a basic ques-
tion to ask is: What is the relative value of predic-
tion in algorithmic decision making? How do the
improvements in welfare arising from better pre-
dictions compare to those of other policy levers?
The goal of our work is to initiate the formal study
of these questions. Our main results are theoreti-
cal in nature. We identify simple, sharp conditions
determining the relative value of prediction vis-
a-vis expanding access, within several statistical
models that are popular amongst quantitative so-
cial scientists. Furthermore, we illustrate how
these theoretical insights can guide the design of
algorithmic decision making systems in practice.

1. Introduction

Algorithmic predictions are increasingly used in the public
sphere to improve the allocation of scarce resources. At their
core, these prediction algorithms aim to provide decision
makers with valuable information regarding the impacts of
particular interventions, or the likelihood of future events,
in order to determine who will receive a social good.

For instance, in education, over half of US public schools
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use early warning systems that predict which students are
likely to drop out, as a means to target their limited counsel-
ing resources to those that need them the most (Balfanz &
Byrnes, 2019; U.S Department of Education, 2016). Simi-
larly, in Israel, officials build risk predictors to determine the
likelihood that individuals will develop serious pulmonary
disease in order to prioritize people for vaccines (Barda
et al., 2020). Beyond these specific examples, this idea
that better predictions implies better decisions, and hence
higher welfare, is pervasive, and underlies the design of risk
prediction tools used in numerous domains (see Section 2).

From a design perspective, however, we see that prediction
is really a means to an end, rather than an end in of itself.
Predictions help inform decisions with the ultimate goal of
increasing some context-dependent notion of social welfare
(e.g. the number of on-time high school graduates). And, if
improving social welfare truly is the goal, there are of course
many different policy levers one could experiment with. To
name a few, apart from optimizing the quality of decision
making via better predictions, one could keep the current
predictor fixed and focus efforts on expanding access to the
available resources (e.g., invest in more counselors so as
to intervene on more students). Alternatively, one could
also focus on improving the quality of the interventions
themselves (e.g., boost the quality of tutoring).

Those tasked with solving these resource allocation prob-
lems do not always have the luxury to simultaneously pursue
all these various avenues of improvement. Given the broad
space of design decisions, we inevitably need to identify the
most cost efficient ways of improving overall welfare, and
understand: 7o what extent is prediction truly the highest
order bit in algorithmic decision making?

In this work, we initiate the formal study of the relative
value of prediction. We aim to develop a principled under-
standing of how improvements in welfare arising from better
prediction compare to those induced through other policy
levers such expanding access or enhancing quality. As a
byproduct of our inquiry into the relative value of prediction,
we also aim to shed light on a related question: What does
it mean for a predictor to be “good enough” for decision
making? At what point do we decide that we no longer need
to collect more features or train a more accurate predictor?

Summarizing briefly, we argue that predictions are sufficient
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to enable reliable decisions if the relative value of prediction
is small. That is, if it is relatively more cost efficient to
improve welfare by keeping the current predictor fixed and
instead focusing efforts on expanding access or pursuing
other policy levers. Our theoretical results establish simple
and precise criteria for when these conditions hold true.

1.1. Overview of Framework & Contributions

In this paper, we study problems where a social planner is
tasked with making a single binary decision for every mem-
ber of a population, subject to a resource constraint. The
reader may think about the decision as whether or not an
intervention, or social good, is allocated to a particular indi-
vidual unit. Constraints reflect limits on the total amount of
goods or interventions that can be allocated. While there is a
single decision being made per unit, crucially, the effects of
these decisions differ across units (alternatively, individuals).
The goal of the planner is to efficiently select which units
are allocated goods in order to maximize overall welfare.

More formally, we assume that there is a distribution D
over units represented as pairs (z;,w;). Here, z; € X
is the feature representation of unit ¢ and w; € R is the
welfare improvement achieved by making a positive decision
(intervening) on unit ¢. The planner uses these features to
decide on an assignment policy = : X — {0,1}, where
m(x;) = 1if unit ¢ is intervened on and is 0 otherwise. We
formalize the idea that resources are scarce by requiring that
E[r(x)] < « for some o € (0,1). Writing this out as an
optimization problem, the planner solves:

E(z, wi)~pwim(z;)] st Ep[n(z)] < a.
ey

Learning plays a central role in these problems since the
optimal solution is to first predict the expected welfare im-
provement E[w | z] and then allocate positive decisions to
the top « fraction of units, 7, (z) = 1{E[w | z] > t(a)},
where t(«) is some threshold. In practice, E[w | z] is
of course not known and we approximate the solution by
finding a predictor f such that f(z) ~ E[w | z].

max
re{X—{0,1}}

The Prediction-Access Ratio. We formalize the relative
value of prediction through a technical notion we call the
prediction-access ratio, or PAR. Put simply, this is the ratio
between the marginal improvement in social welfare that
comes from improving the predictor f, and the improvement
achieved by keeping prediction fixed and expanding access:

PAR — Marginal Improvement from Expanding Access

Marginal Improvement from Improving Prediction

The reader can think of the marginal improvement from pre-
diction as the increase in the objective function, E[w;7(z;)],
that comes from finding a predictor with smaller error,
E(w; — f(z;))?. On the other hand, the improvement from

expanding access corresponds to the change in the optimal
value of E[w;7(x;)] that comes from increasing « in the
constraint E[7(z;)] < « and being able to assign goods or
interventions to more people.

Calculating this ratio is a fundamental step in deciding
which system changes are (locally) the most cost-effective.
In particular, to decide whether small improvements in ac-
cess or prediction are more effective, we simply calculate
the following cost benefit ratio:

Marginal Cost of Improving Prediction

x PAR (2
Marginal Cost of Expanding Access @

The cost-efficiency of expanding access or improve predic-
tion hinges on whether this expression is smaller or larger
than 1. While costs are relatively simple to calculate across
different settings (e.g., it costs y dollars to hire an extra
teacher and expand access to tutoring), the prediction access
ratio is more subtle and requires counterfactual analysis
(e.g., what would the world look like if my decisions were
slightly better versus if I could just treat more people?).

The main technical contribution of our work is to calculate
this ratio in the context of workhorse statistical models that
are commonly used amongst quantitative social scientists.
We start by stating our main result for the case where the
effects of interventions are real-valued (e.g., increases in
life expectancy from receiving a hip replacement).

Theorem 1.1 (Informal). Assume that welfare improve-
ments follow a linear regression model where w is real-
valued and normally distributed. If the predictor f explains
a2 fraction of the variance in outcomes w, and at most an
a fraction of the population can be intervened on, then the
prediction access ratio is equal to 7/ .

Essentially, the theorem states that if resources are very
scarce in the sense that « is very small, and the predictor
explains a non-trivial fraction of the variance (say 1%), then
the relative value of prediction is small: The gains in social
welfare that arise from expanding access far outweigh the
gains that arise from improving prediction.! In particular,
as long as the costs of expanding access are not 1/« times
larger than those of collecting more data or more features,
then the cost-efficient way of making progress is to focus
efforts on treating more people.

Another way to interpret this result is to plug in the value
of the prediction access ratio into the cost-benefit analysis
from Equation (2). A direct corollary of this first theorem is

"Note that explaining 1% of the variance means v, > .1.
Simple predictors of life outcomes that use basic features typically
explain at least a single digit fraction of the variance (Salganik
et al., 2020). Resources are typically, but not always, much more
heavily constrained. See Section 2 for further discussion.
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that as long as /Current Variance Explained is at least,

Marginal Cost of Expanding Access

; ; —— X Current Access,
Marginal Cost of Expanding Prediction

then Equation (2) is greater than 1, implying that the relative
value of prediction is small and that expanding access is
locally optimal. As per the previous discussion, this also
constitutes a sufficient condition for a predictor to be “good
enough” for algorithmic decision making: From a welfare
perspective, it is efficient to leave the predictor “as is” and
focus on other aspects of the broader system.

To get a better sense of how these insights extend to other
settings, we also calculate the prediction access ratio for
a problem where welfare improvements are discrete (e.g.,
changes in unemployment status), rather than real-valued.

Theorem 1.2 (Informal). Assume welfare improvements
Sollow a probit regression model where w = 1{z > 0}, and
z is a real-valued and normally distributed score. If the
predictor f explains a 2 fraction of the variance in z, and
at most an « fraction of the population can be intervened
on, then the prediction access ratio is equal to, v; /o 4 ,
where v2 = 1 — ~2 is the fraction of unexplained variance
in the underlying score z.

Since 1/47 > 1 for all v, € (0, 1), the prediction-access
ratio is almost always larger in this discrete case than in
the previous, real-valued setting. Hence, the relative value
of prediction is smaller and one should be more willing to
expand access vis-a-vis improving prediction. As before,
one can similarly factor costs into the equation, and again
invert the bound to identify simple conditions under which
it is cost-efficient to expand access vs improve prediction,
or vice versa (see Section 4).

1.2. Implications & Limitations

At a high level, our main finding is that if a predictor ex-
plains even a small fraction of the variance in target out-
comes and resources are significantly constrained, the bene-
fits of expanding access far outweigh the welfare benefits
induced by improving prediction. We believe that these
results regarding the relative value of prediction are counter-
narrative, if not quite counter-intuitive. It makes sense that
if interventions have mostly positive effects, we are better
off intervening on two people, rather than painstakingly im-
proving prediction to identify the single person who will
benefit the most from an intervention. While prediction is a
means to an end, expanding access is an end in and of itself.

Furthermore, our results show that you do not necessarily
need to predict something very accurately, in order to act
upon it effectively. Within the probit model, for instance,
the prediction-access ratio can be larger than 1 for small
values of «, regardless of the predictive value (r2 value) of
the model (see Section 4 and Figure 2). Structural improve-
ments like expanding access can have significantly larger

“bang for buck” relative to the gains achieved from building
a better prediction system, even if predictions only explain
a vanishingly small fraction of outcomes.

Crucially, however, our results and implications are limited
to domains where: (a) the interventions allocated can be
truly though of as social goods (and not harms), (b) the
social planner has an accurate sense of costs, and (c¢) predic-
tion problems are well-specified.

Allocating Goods vs Harms. The models we study satisfy
the property that there is a large fraction of the population
for which welfare improvements are positive, Pr[w; > 0] =
b > 0. Furthermore, all our bounds for the prediction-
access ratio only hold in the regime where a@ < b (o =
level of access). And, if o < b, one is (mostly) expanding
access to interventions for people who would benefit from
them. We believe that several important resource allocation
problems like vaccination campaigns in public health, cash
transfers in development economics, and targeted tutoring
campaigns in K-12 education fall into this paradigm where
treatment effects are mostly positive. However, our results
are by no means universal and they do not apply to problems
where the effects of interventions are less clear. For instance,
if predictions are used to prioritize patients for invasive
medical exams, these may prevent future disease, but also
cause harm through a misdiagnosis. The relevant theoretical
analysis in these settings likely differs significantly from
ours, and we hope it will be the subject of future work.>

Understanding Costs. Our analysis only applies to do-
mains where the planner has an accurate sense of the costs
of the relevant policy levers. Note that while expanding ac-
cess is expensive, so is improving prediction. In particular,
the salient way to improve a predictor in social settings is to
collect more features for the people in your population (i.e,
perform additional in-person surveys, medical tests) rather
than changing the algorithm, or spending money on addi-
tional compute. These measurement endeavors come with
significant privacy and financial costs. Here, we treat the
costs as known, domain-specific functions (see discussion in
Section 3.2) and focus our efforts on analyzing the relative
welfare impacts of prediction and access. This decision is
largely motivated by the fact that policy analysts in charge
of designing targeting programs often have extensive expe-
rience understanding costs, but may lack the tools necessary
to evaluate the counterfactual impacts of access versus pre-
diction. Nevertheless, we believe it’s an important direction
for future work to develop new machinery to better estimate
costs in domains where these may be less clear.

Well-Specified Models. Lastly, our insights regarding the

One major difference here is that predictions are valuable
not just because they identify people from whom interventions
are welfare-enhancing, but also rule out people for whom the
intervention is harmful.
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limits to prediction are shown in a simple, well-specified
setting —favorable to prediction— where a planner is able
to directly estimate the effects of interventions. In the lan-
guage of potential outcomes (Neyman, 1923; Rubin, 1974),
the welfare improvements w; = y;(1) — y;(0) are treatment
effects: the difference between outcomes under treatment,
yi(1), and no treatment, y; (0). Directly predicting heteroge-
nous treatment effects is in general a difficult problem that
requires strong assumptions both on the data generating
process D as well as the prediction model class F (Pearl,
2009; Hardt & Recht, 2022). In practice, one should be
cautious when applying these insights to domains that may
not strictly follow the causal models we study.

Given the lack of previous work in this area, we view these
simple and foundational statistical models as a natural start-
ing point to establish a new, formal language around pre-
diction in social systems. We hope it may enable future
research that develops a more general theory that analyzes
quantities like the prediction-access ratio under broader as-
sumptions on the underlying population, as well as under
different choices of social objective functions.’

2. Motivating Applications and Related Work

Our work lies at the intersection of various threads of re-
search from computer science, economics, and related fields.
We briefly discuss some of these connections and list ex-
amples of resource allocation problems from the applied
literature that motivate our framework.

Economics. This idea of using predictions to guide the
allocation of public resources has been studied extensively
within the prediction policy problems literature. Introduced
by Kleinberg et al. (2015), the term refers to policy ques-
tions, which do not directly require causal inference, and
can be solved via pure prediction techniques. This fram-
ing has led to several impactful analyses of problems in
health policy (Obermeyer et al., 2019), legal decision mak-
ing (Kleinberg et al., 2018), and hiring (Chalfin et al., 2016).
A parallel line of work by Susan Athey and collaborators
(Athey, 2017; 2018; Athey & Imbens, 2019; Athey & Wa-
ger, 2021) aims to establish further connections between
machine learning, causality, and applied policy problems.
On the methods side, Bhattacharya & Dupas (2012), as well
as Manski (2004; 2013), and Kitagawa & Tetenov (2018),
study related statististical questions regarding the design
of optimal targeting and testing mechanisms under budget
constraints. And, Viviano (2023) analyzes the design of tar-
geting policies under network effects. Our work contributes
to this agenda by introducing a formal framework studying
how improvements in prediction compare to other structural

3In particular, we focus on optimizing for average welfare,
however, it is also natural to also study other objectives such as
maximizing the minimum outcome.

avenues for improving welfare.

Computer Science. The statistical targeting problem we
consider is related to contextual bandits with knapsack (re-
source) constraints: a decision maker sees features describ-
ing a unit, makes a binary decision, and observes a reward
(welfare improvement) for the limited units that were inter-
vened on. Agrawal & Devanur (2016), Slivkins et al. (2023),
and Verma et al. (2021) design sublinear regret algorithms
for versions of this problem. These papers treat the design
parameters (constraints) as fixed, whereas we view them as
a design decision. Our work is also related to the literature
on online calibration in that it explicitly aims to design pre-
dictions that have strong guarantees with respect to the goals
of downstream decision makers (Foster & Vohra, 1998; Fos-
ter & Hart, 2021; Noarov et al., 2023). Recently, Liu et al.
(2023) analyzed the extent to which accurate predictions
of future outcomes can help a decision maker looking to
choose from multiple different interventions. Relative to
their work, we consider a different setting where there is
just one treatment, the prediction task is well-specified, and
there are a limits on who may be intervened on.

2.1. Applications & Examples of Targeting Systems

Education. Apart from the early warning systems example
mentioned previously, there are a number of other resource
allocation problems in education that follow our framework
including: predicting teacher value added in order to use
limited school funds most efficiently (Chalfin et al., 2016),
and predicting youth gun violence to allocate limited spots
in mentoring programs (Rockoff et al., 2011).

Healthcare. The use of risk predictors to infer treatment
effects and prioritize patients for interventions is ubiquitous
throughout healthcare. In Israel, one of the major public
health agencies regularly predicts outcomes such as COVID-
19 mortality risk (Barda et al., 2020), or the likelihood of
hepatitis C (Leventer-Roberts et al., 2022), to prioritize pa-
tients for medical attention. Bhattacharya & Dupas (2012)
study predicting the prevalence of malaria in order to dis-
tribute bug nets amongst households in Kenya. In some
of these settings, like bug nets or vaccination campaigns,
resources are significantly constrained relative to the total
size of the population, especially during the initial rollout
of the program (UNICEF, 2022).

Government. The 1993 Unemployment Compensation Act
(Sen. Moynihan, 1993) requires that U.S. states use profiling
tools to predict the likelihood someone will remain unem-
ployed after exhausting regular benefits to decide who will
receive additional job training resources. Similar ideas are
applied within development initiatives. For instance, Aiken
et al. (2022) study the possibility of targeting cash transfers
to the poorest members of society by using satellite imagery
to infer poverty. Black et al. (2022) analyze issues of fair-
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ness and efficiency when using algorithmic predictions to
target tax audits. Researchers have also studied the use of
ML to efficiently target building safety inspections (Johnson
et al., 2023; Hino et al., 2018; Glaeser et al., 2016).

Throughout these domains, there is often a single good or
intervention being allocated, predictions are used to figure
out which units would experience the largest welfare im-
provements if acted upon, and the decision maker allocates
interventions to those with the highest predicted effects as
per the targeting problem formalized in Equation (1).

3. Linear Regression Model

In this section, we present our first set of main results ana-
lyzing the prediction-access ratio for the case where welfare
improvements follow a linear regression model. Linear
regression is the workhorse method of analysis amongst
economists, sociologists and other quantitative social scien-
tists. It has been applied, with varying degrees of success
(Freedman, 1999), to model causal effects (welfare improve-
ments) in consequential domains such as education (Angrist
& Lavy, 1999; Yule, 1899) and public health (Chandler
et al., 2011). Furthermore, amongst theoreticians, linear
models are the drosophilia of formal inquiry into more com-
plex questions. According to Pearl, “many concepts and
phenomena in causal analysis were first detected, quanti-
fied, and exemplified in linear structural equation models
before they were understood in full generality and applied
to nonparametric problems” (Pearl, 2013). As such, they are
a natural starting point to study the prediction-access ratio.

3.1. Model Definition and Technical Preliminaries

Definition 3.1 (Linear Regression Model). We say that
welfare improvements follow a linear regression model if *

w; = (x5, BY +p  where x; ~ N(0, 1), 3)

and 8 € R< is a vector of unknown coefficients. Here,
u = E[w;] is the average welfare improvement and ||3]|3 =
E[(w; — u)?] captures the heterogeneity in outcomes.’

While outcomes w; are deterministic functions of x;, the
social planner does not observe the full vector of features,
but rather only a subset. In particular, we assume that fea-
tures x are partitioned into x = (x5, x) € X5 X Xy a set
of observed features x, and unobserved features x;. For

“Note that Def. 3.1 is property of the data generating process,
not just the model class used for prediction. As per the earlier
discussion, welfare improvements w; are treatment effects (causal
quantities) and prediction of causal quantities requires assumptions
on the underlying data generating process (Pearl, 2009).

>The condition that z; ~ A(0, I) comes with no further loss
of generality. In particular, our results also apply to the case where
z ~ N(0,%), (the features are now correlated) by replacing 3

with $/2. Since if z ~ A(0, %) then (z, 8) < (2/, B') where
' ~N(0,1)and g’ = ©V/?23.

example, the impacts of educational interventions on the
likelihood of on-time graduation are the function of many
variables. Some of these variables (e.g., student demograph-
ics, test scores, attendance rate) are observed, and some are
typically unobserved (e.g., level of parental support).

Using the available data, the social planner aims to maxi-
mize average welfare, subject to a resource constraint that
at most an « fraction of the population can be treated. We
formally define the planner’s targeting problem below:

Definition 3.2 (Planner’s Targeting Problem). Given ac-
cess to the observable features x4, the planner solves the
following optimization problem:

E‘L wy)~ i ,8 tE is)] < .
B eplw(@,)] st Eplr(es )] < o

In this regression setting, we assume that given the partition
of features into observables and unobservables,

w; = <xia ﬁ> +/J’ = <xi,sa BS> +/j/+ <xi,ta 6t>7
—_——— ——

Observable Unobservable

the planner has enough data that they can learn the coeffi-
cients [, corresponding to the observable components x4
exactly. In practice, one would estimate 3 in finite samples
through procedures like ordinary least squares and find an

estimate 3, such that || 35 — f]l2 < O(y/dim(B,)/n).

However, for the class of problems we are interested in, data
typically comes from administrative databases collected by
some centralized government authority, where the number
of samples n is typically much larger than the number of
features, dim(x4). For example, in the Wisconsin early
warning system studied in Perdomo et al. (2023), there are
about 40 features and n is over 300k (all public school
students in Wisconsin). Given these relevant scales, the
salient axis for improving prediction in these settings is
to collect more features (e.g conduct more tests, increase
dim(z,)) rather than collecting more samples, since finite
sample errors are essentially negligible. We reflect this
reality in our model to streamline our presentation.

Technical Preliminaries. Let,

\/%exp (—Z;) and O(t) = /_too 6(2)dz,

be the PDF and CDF for a standard normal random variable,
N(0,1), and define @~ !(a) = inf{t e R: a < ®(¢)} to
be the associated quantile function.

¢(2) =

The value E[w;7}(x; )] achieved by the policy 7} is in-
timately tied to the variance explained by the observable
features ;. We say that the observable features = have an
72 value of 72 if the associated predictor, f(x) = (s, Bs)s
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explains a 2 fraction of the variance in the outcomes w.°

Definition 3.3 (r? - Linear Regression). For w; satisfying
the linear model (Def. 3.1), we say that observable features
x5 have an 72 value of 72, r?(xs) = 72 € [0, 1], if

]E(w,‘ e <1"i,sa Bs>)2

7“2(3:5) =1- E(w; — 1)’

=7 @4

A predictor that uses all the available features x5 = x, has
an 72 value of 1, while a model that uses no features has an
r2 value of 0. With this notation, we can define the value
of a policy: the overall welfare improvement achieved as a
function of the distribution of the w;, the level of access «,
and the variance explained by the observed features x;.

Proposition 3.4 (Value Function, Linear Regression). For

w; satisfying the linear regression model (Definition 3.1),
define VI (o, v5) to be,’

Vit a,ys) = max

re{X;—{0,1}}
st Epln(zis)] < aandr?(zs) =~2, (5)

E(Ii,s,wi)ND [wi : 71'(.231‘)5)]

the value achieved by the optimal policy T} (see Lemma A.2)
that observes features ., and has an associated 2 value
equal to 2. Then, for « < 1/2 and || B2, > 0,

Vit (a,7s) = ap+ s Bll26(@7H (1~ a)). (6)

In this linear setting, the value function for the optimal
policy admits a simple closed-form solution (Equation (6))
and has an intuitive interpretation. In particular, V.1 (a, )
consists of two terms. The first term, oy, is exactly the
value achieved by a random assignment policy. For w; ~
N (i, ||8]13), if you select who gets treated on the basis of a
random coin toss, Trand (%;,s) ~ Ber(a), the expected wel-
fare is equal to E[w;Trand (4,s)] = E[w;|E[mrana (z:,5)] =
ap. 3 On the other hand, the second term in Equa-
tion (6) captures the value of predictions that are better
than random (and hence have v, > 0). Recall that for
w; = (B, z;) and z; ~ N(0, I), the total variance in the
outcomes is || 3|3 and the variance captured by the features
is || 353 (since (z;5, Bs) ~ N(0,||Bs]|3). Therefore, the
marginal value of using prediction, versus random assign-
ment, scales with the square root of the variance explained,
|Bsll2 = 7sl|8]|2, and a quantity that depends on the level
of access: ¢(®~1(1 — a)).

SDue to the tight correspondence between features , and pre-
dictors f(zs) = (s, Bs) in this linear model, we use the phrases,
the features (or predictor) have an 2 value of 42 interchangeably
to refer to the condition in Eq. 4. For clarity, we abuse notation
and write 7? () instead of the usual 7 ( f) for a function f.

"We parametrize the value function in terms of -, instead of
the set of observed features x, since the value of the features in
this model is exactly captured by 7.

¥Here, Ber(«) is a Bernoulli random variable with parameter
«. Under myand, each unit ¢ receives the good, or intervention,
independently with probability a.

When is Prediction Even Necessary. As a final note be-
fore discussing our main result for this section, we pause to
point out that if there is very little variance in the outcome
variable (i.e., || 3]|3 is small) then, random assignment (i..,
deciding allocations according to myana (i s) ~ Ber(«)) is
near optimal. Statistical targeting, above and beyond simple
random allocations, only makes sense if there is significant
variance in the outcomes w;.

To see this, let Viandom(®) = E[w;Tana(x;s)] for
Trand (Ti,s) = Ber(a). Then, for o, t, || 3|2 > 0,

‘/random (Oé) 1

VI 1) T 14 Bl tg(e-1(1 - a))

)

where V" (a, 1) from Equation (6) is the value of the pol-
icy 7*(z) with 72(x) = 1 that observes all features. As
1Bll2/1 — 0, then Viandom(a)/ Vi (a, 1) — 1 and Tyang
is optimal. While somewhat trite, it is nevertheless an im-
portant, common-sense sanity check. Prediction-enabled
targeting only makes sense if the variance in the target out-
comes w is large relative to the mean. Since the goal of
our work is to study the relative value of prediction — in
settings where prediction makes sense to begin with — we
will assume for the remainder that || 3]|2/p is not too small.

3.2. The Prediction-Access Ratio for Linear Regression

Defining Policy Levers. In the context of this linear model,
various policy levers such as improving prediction and ex-
panding access have simple, formal counterparts.

Improving Prediction: Optimizing prediction in this setting
equates to enlarging the set of measured features. This
yields a new partition of observed and unobserved covari-
ates (zs,7¢) — (w4, 1) such that if r2(z,) = +2 then
r?(xs) = (vs + A,2)? for some A,z > 0. As per our
notation from Equation (5), the relevant improvement in
welfare is equal to: V% (v, vs + A,2) — VIR (a, 5).

Expanding Access. This corresponds to keeping the current
policy 7} fixed and slackening the resource constraint «
to o + A,. The increase in average welfare is equal to
V*hn(a +Aa,s) — V*hn(o‘v Vs)-

Given current system parameters («, 7 ), and proposed im-
provements A,z, A, € (0,1), the prediction-access ra-
tio, PAR"™ (av, 75, Ag, A,2), defined formally below, de-
termines the relative impact of these changes on welfare:

: Vet (a4 Aa,s) = Vi (0, 7s)
PARhn , sonmAr - ay |s * y s )
(o0 ) Vi (o, vs + Ap2) — VI (a, v)

@)
Values of the ratio larger than 1 indicate that a A, increase

in access yields a larger increase in welfare than a A, .2
improvement in prediction. The reverse is true if the ratio is
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Figure 1. Visualization of the cost benefit ratio, Equation (8), for the linear regression model. We compute the ratio for each value of «
(z-axis) and s (y-axis), exactly via numerical simulation with A, = A,.2. We display its value, clipped to [1/2, 2], via the color bar. We
set Cr2(A,2)/Ca(As) = 1/4 on the left and 1/2 on the right. The black line indicates the set of points for which the ratio is equal to 1.
As per Equation (9), the cutoff is approximate of the form s o o, where the slope is determined by the cost ratio. For values (o, 7s)

above the line, expanding access is relatively cost efficient, whereas improving prediction is efficient for points below the line.

smaller than 1. The following theorem is the main result of
this section, effectively identifying this ratio (up to a small
constant) for the linear regression model.

Theorem 3.5 (Prediction-Access Ratio, Linear Regression).
Assume that w; satisfy the linear regression model (Defini-
tion 3.1) with || 8|2, u > 0. For any s, A2 € (0,1) and
A, satisfying a + A, < .05, A, < 4a, define My, to be

1 <M N )
a \[Ble 1 —a) " )
Then, .25My, < PAR'™(, 74, Ag, Ay2) < My,

Mlin =

Discussion. The main message of this theorem is that, if
resources are scarce in the sense that « is small, then the
local improvements induced by expanding access are far
larger than the improvements in welfare that come from
better targeting. More specifically, if we fix A, = A,2 and
take 7y, to at least a constant (say 1%), the prediction-access
ratio is order 1/c.® Hence, the amount we should be willing
to pay to expand access increases the smaller « is. Said
otherwise, the relative value of prediction in these targeting
problems decreases with the level of scarcity.

Recall from the introduction that to decide which policy
lever makes sense, we only need to factor costs into the
equation. Here, we encourage the reader to think of costs
in a broad sense. The costs of improving prediction are
monetary (e.g., compute bills, labor) as well as social (e.g.,
the privacy costs of people releasing personal information
to a central authority, or subjecting individuals to a means
test). A similar comment applies to the costs of other policy
levers. However, for the sake of modeling, we can imagine
functions C,, and C,2 from [0,1] — Rx( that give costs

@71 (1— ) is ©(y/log(1/a)) for for small c, see Prop. A.8.

numeric values.'? The decision to expand access vs improve
prediction hinges on whether the cost-benefit ratio, formally
defined for this linear regression model as,

Cr2 (AT2)

PAR!™ Ay A o) x L)
R (aa,)/& sy T ) X CQ(AQ) Y

(®)
is larger than 1. Theorem 3.5 essentially states that as long
as Oy (Ay) < 7vs/aC2(A,2), expanding access is the cost
efficient decision. To see this in more detail, we can reinter-
pret the result as establishing a threshold for when a set of
features is sufficiently “good” for targeting. As long as,

> A 2C,(AL) o’
Vs < T 1 )
AaCr2(A2) 182271 (1 — )

the cost-benefit ratio from Equation (8) is greater than 1 and
expanding access makes economic sense. !

&)

Visualization. We examine this threshold visually in Fig-
ure 1. In particular, in each plot we illustrate the cost ben-
efit ratio (Equation (8)), for various choices of the ratio
Cr2(Ay2)/Co(A,) where in each case A, = A2 = .01.
As predicted by our theory (Theorem 3.5 and Equation (9)),
we see that, for small values of «, the threshold at which
one is indifferent between expanding access vs improving
prediction is of the form 5 o «. That is, given any pairs
of level of access a and prediction ~, the cost benefit ratio

!0These functions return the marginal costs of increasing access
from « to o + A, and prediction (r2) from 72 to (s + A,2)%
We could thus write them as Co (Aq; ) and C2(A,2;,) but
omit the second argument as it is clear from context.

"In Theorem 3.5, we assume bounds on « to simplify the
presentation of the main bound. From our analysis, we can prove a
more general result that holds for general values «, yet the resulting
expressions are unfortunately not as clean. As per our discussion,
we largely neglect the second term in Eq. 9 since || 8]|2 > u.
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is above 1 if & < 7, and below 1 if o 2 7,. The exact
constant depends on the relative costs of prediction and ex-
panding access. As per Equation (9), changing the relative
costs only changes the slope of the line.

A different way to interpret this finding is that in the linear
model, the optimal values of («, v5) go “hand in hand”. That
is, if a predictor explains a 2 fraction of the the variance,
then the efficient level of access is to set & o« 75: One
should increase access until it matches the (square root of)
the explained variance. This in effect establishes priorities
for how a decision making system should be built out.

The Relative Value of Improving Quality. So far, we have
focused on the relative impacts of prediction and access on
welfare. However, there are other policy levers one might
experiment with, for instance, improving the quality of the
allocated goods. One way to formalize this, in this regres-
sion model it to consider increasing p = E[w], the average
welfare improvement. Recall from Prop. 3.4 that the value
function is equal to: o +;||8]|2¢(®~1(1—«a)). Since the
value function is linear in the average quality j, increasing p
to 1 + A, increases the value function by an additive factor
of A . Hence, in this regression model, increasing the
effect size of the average outcome yields an improvement in
welfare that is on the same order as improving in prediction.
Both are O(«) (see Equation (13)), and significantly smaller
than improvements in access, which are ©(1).

Local vs Global Decision Making. The value of the pre-
diction access ratio is that it helps guide which kind of local
improvement is most effective. That is, it answers ques-
tions of the form: Given that my current system treats an «
fraction of the population and explains a 2 fraction of the
variance in treatment effects, is it better to expand access
by 1% or improve prediction by 1%? This is motivated by
the fact that that there is often significant inertia in the over-
all design of algorithmic decision making systems. Large
government-run programs, like vaccine rollouts, cannot al-
ways be “restarted from scratch”. Pragmatically speaking,
only local changes are viable.

4. Probit Regression Model

Depending on how we measure outcomes, welfare improve-
ments are often binary (e.g., on-time graduation) rather than
real-valued as in the linear regression setting analyzed pre-
viously. Therefore, in this section we study the prediction-
access ratio in the context of a discrete model for outcomes:
probit regression. Like linear regression, probit regression
is one of the most popular statistical models used in the
quantitative social sciences. On a technical note, it belongs
to the class of generalized linear models.'?

">The other popular model in this class is logistic regression.
Both probit and logistic regression transform the real-valued out-
puts of a regression model, (3, ), into a number in [0, 1] (a prob-

4.1. Model Definition and Technical Preliminaries

Definition 4.1 (Probit Regression Model). We say that
welfare improvements follow a probit regression model if
w; = 1{(x;, B) + p > 0} for z; ~ N(0,I), where again
B € R? is a vector of coefficients. Furthermore, we de-
note by b = Pr[w; > 0] the base rate of positive welfare
improvements in the population.

As before, we assume that features x are partitioned into
observed and unobserved components, (s, ;) and that the
planner collects enough data to learn the coefficients [,
exactly. In the model outlined above, these parameters can
be recovered in finite samples via convex programming at
similar y/dim(z)/n rates (Fahrmeir & Kaufmann, 1985).

Due to the nonlinearity (thresholding) being applied, pa-
rameters like p and ||3]|2 in this setting no longer directly
correspond to natural quantities like mean and variance of
w; as in the linear case. Yet, the optimal policy for the probit
case is conveniently the same as before (see Lemma B.1).
Furthermore, given the binary nature of the outcome vari-
able, there is no standard, agreed-upon measure for the
coefficient of determination as in the continuous case. We
find it convenient to deal with the following measure:

Definition 4.2 (r? - Probit Regression). Assume that
(w;, ;) satisfy the probit regression model (Definition 4.1).
Features z ¢ have an r2 value of 72 € [0, 1], 7?(x;) = 2, if

E(z; —p — <33i,s, 55»2
E(z — p)?

r(zs) =1— SRR

for z; = (x4, 8) + p and w; = 1{z; > 0}.

The value function for the probit case can again be
parametrized in terms of v, and a.

Proposition 4.3. For w; satisfying the probit regression
model (Definition 3.1), let V" (a, 7s) be

VP e, vs) = E(mq,,,§,11;,~,)~73[wi (i)

max
re{X,—{0,1}}
st Ep[r(z;s)] < aand r?(x) = ’yf 11

the value achieved by the optimal policy 7} (see Lemma B.1)
that uses features xs with 7 (xs) = 2, then,

0 —1
Ve = 7 e (2 o,
(1-a)

-1 Ve

where 2 = 1 — ~2 is the fraction of unexplained variance
in the scores z; = (z;, ) + p.

ability). The exact transformation is technically different, but
morally they tend to provide similar “bottom-line” insights when
applied in practice (Stock et al., 2003; Scott Long, 1997).
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Figure 2. Visualization of the cost benefit ratio, Equation (12), for the probit model. As in Figure 1, we compute the ratio numerically
with A, = A, 2 and display its value, clipped to [1/2, 2], via the color bar. The black line indicates points for which the ratio is equal to 1.
As per our analysis, the threshold between access and prediction is nonlinear, and the ratio is larger than 1 for small a, regardless of .

The nonlinear nature of the probit model complicates cal-
culations so that the value functions no longer have sim-
ple expressions in terms of analytical functions. Interest-
ingly enough, while V;*" has no closed-form solution, the
prediction-access ratio does.

4.2. The Prediction Access Ratio for Probit Regression

We define policy levers for the probit model in a similar
fashion as before. Improving prediction corresponds to
expanding the set of measured features and increasing 5 by
some A2 > 0. Expanding access corresponds to increasing
the amount of resources from a to e+ A, for some A, > 0.
Formally, we define the prediction access ratio for the probit
model to be:

r VP (a4 An,vs) = Vi (a,7s)
PARE(0 30 B &%) = 903 5 B0) — VP (0 )

Theorem 4.4 (Prediction-Access Ratio, Probit Regression).
Forany~s € (0,1), b =Prlw; = 1] < .1, and ¢ € (0,.1),
lete’ = e/(1 —¢). There exists a threshold t > 0, such that
for A2, a0 < tand A, < «, the following inequalities hold

3 Aay 1 1 1
10 Az bO~1(1 —b) \ 1.01v2r a®~ (1 — )
< PARM (a, vs, Aw, Ayz) <

Aue 1 1 1
Arz b(b_l(l — b) \ 2 a<I>—1(1 — Oé)

>1/’Yf'(1+6')2

Discussion. Ignoring constants and lower order terms,
we see that the prediction-access ratio is essentially'3
é(%oﬁl/ v ). Hence, this ratio is significantly larger than
in the linear case. Since 1/4? > 1, the ratio behaves like

In particular, the ¢ and &’ are constants that can be chosen to be
arbitrarily close to 0. Their exact value only affects the threshold ¢
that upper bounds o and A,.2.

>1/%2-(16)2

a~¢ for some ¢ > 1 rather than a~! as before. This im-
plies that the relative value of prediction is smaller in this
discrete case and one should be relatively more willing to
expand access (even if the predictor explains only a very
small fraction of the outcome variable). As motivated previ-
ously, the benefits of access outweigh those of prediction if
the cost-benefit ratio, defined below for the probit model, is
greater than 1.

C2(A,z2)
Ca(Aa)

Plugging in our bounds from Theorem 4.4, and again
ignoring lower order terms, the cost-benefit ratio (Equa-
tion (12)) is at least 1 if 5, 2 =32 al/7. Therefore,
if the level of access « is small (a{nd in particular less than
Pr[w; > 0] = b), as long as the costs of expanding access
are not several orders of magnitude higher than those of
improving prediction, expanding access is almost always
the cost-efficient avenue of improvement.

PAR (v, vs, Aw, Ajz) X (12)

Visualizations. As before, we complement these theoret-
ical insights with numerical simulations (Figure 2). The
plot displays values of the cost benefit ratio, Equation (12),
for various choices of parameters (c,ys) and cost ratios
Cr2(A2)/Co(Ay). The visualizations further illustrate
the technical point made previously: In this probit model
the relative value of prediction is smaller than in the linear
case. In particular, if « is well below the base rate of posi-
tive improvements, « < b = Pr[w; = 1], the cost benefit
ratio is always significantly larger than 1, regardless of the
level of prediction 5. Due to the nonlinear nature of the
problem, the threshold at which one is indifferent between
expanding prediction versus expanding access is no longer
linear. In this model, prediction and access do not go “hand
in hand” as before. Rather, as long as s > 0, the focus
should always be to expand access until a ~ b, at which
point the focus should switch to improving the predictor.
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Impact Statement

This work analyzes the impact of machine learning systems
within their broader social contexts and asks how predictions
can improve welfare relative to other policy levers. That
being said, it takes as given that the goals of prediction are
broadly aligned with social welfare, which may or may not
always be the case. Our contributions are largely theoretical,
there are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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A. Supporting Arguments for Linear Regression Model

The following result is a general statement regarding the optimal policy for targeting problems that aim to maximize the
expected welfare in the population. The result are well-known and have appeared in numerous places (in particular, see
Bhattacharya & Dupas (2012) for a stronger statement). We include a derivation here purely for the sake of having a
self-contained presentation.

Proposition A.1. For all distributions D over (x,w) supported on a discrete set of elements, the optimal policy maximizing
the social planner’s targeting problem,

E Ti,s,W;i)~ i is
WE{XT—E‘];?{(OJ}} (%4,5,w5) 'D[w 71'(1" )]

subjectto  Ep[m(z;s)] < a,

is equal to,

(i) = H{Ew; | 246] > F7'(1—a)} 1{E[w; | x;s) > 0},

where F 1 is the quantile function for the random variable E[w; | X ).

Proof. This proof follows from viewing the optimization problem through the lens of linear programming. We start by
expanding out the expectations as sums:

Elw - m(xy)] Z w-7(xs) - Prixg, w ZPr zg|m(xs) Zw - Prw | z] = ZPr[ajs]ﬂ(xS)E[w | 2]
Elr(z,)] = ZW(:CS)Pr[:cS].

x

Therefore the optimization problem can be equivalently written as maximizing a linear cost function, while satisfying a
linear constraint:

Z 77(335)7](*%)

Ts

subject to Zw(xs)c(xs) <a.

Here, v(xs) = Pr[z]E[w | ;] and ¢(z5) = Pr[zs]. Without loss of generality, we can assume that Pr{z] > 0 for all z,
otherwise the terms can be removed from both sums.

max
me{Xs—{0,1}}

The optimal solution to this program is to set m(x) = 1, for the x5 that maximize the ratio v(xs)/c(x) until the constraint
is reached. Intuitively, setting 7(zs) = 1 “costs” ¢(x ) units and “returns” v(z) units. In this setting, this ratio is equal to
the conditional expectation:

= E[w|xs].
By definition of the quantile function, assigning 7(zs) = 1 to the x, with the top « values of E[w | x| is equivalent to
choosing

m(zs) = H{Ew|X,] > F;H 1 — )}

Since we can always choose to treat fewer than an « fraction of the units, the second indicator function ensure that each
term adds a nonnegative amount to the objective. O

We can specialize this result to the linear regression model:

Lemma A.2. Assume w; satisfy the linear regression model (Definition 3.1) and that x = (x, x;). The optimal assignment
policy 7% solving the planner’s targeting problem (Definition 3.2) is equal to:

mi(wis) = Wwis, Bs) 2 @71 (1= )lIBsll2} - H{wis, Bs) + 10> 0}

12
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Proof. As per Proposition A.1, the optimal solution to the planner’s targeting problem is to intervene on the top « fraction
of the population, conditional on those expected welfare effects being positive (see Proposition A.1):

75 (x;) = V{Ew; | z5] > F; ' (1 — @)} - 1{E[w; | zs] > 0}.

Here, F is the CDF of the random variable E[w; | X], and ;! is its quantile function. In the linear model (Definition 3.1),
both of these functions have tractable expressions. Since,

w; = <xi,sa Bs> + <xi,t7 Bt> + M,
where (z; 5, Bs) ~ N(0,||3s13) and (z; +, B:) ~ N(0,||3:]|3) are independent, then:
Elw; | xis] = (zis, Bs) + 1, and F7H(1—a) = 711 — a)|Bs 12 + -

The result follows from plugging these expressions into the first equation. O

A.1. Value Function for Linear Regression Model: Proof of Proposition 3.4

Since w is Gaussian and we assume that o < .5, u > 0, the condition that E[w; | z; 5] > F;!(1 — «) implies that
E[wi | l‘i7s] > 0.

Plugging in our expression for 7% (Lemma A.2) into the objective function, E[w;7}(x; )], and using the functional form
for w; from the linear regression model, we have that,

Elwimy (2i,s)] = E[(zi,s, Bs) + (zie, Be) + 1) - Hlzis, Bs) 2 @711~ a)|Bsl2}]
= ap +El(zis, Bs) - H{wis, Bs) > @711 — )1 Bsll2}]-

Here, we’ve used the fact that the unobserved (x; ¢, ;) and observed components (x; 5, S5) are independent to conclude
that,

El(ziz, Be) - W{wis, Bs) 2 @71 (1 = a)[|Bsll2}] = Ellwie, Bo)|E{{wis, Bs) = 711 = )| Bsll2}] = 0,
since E[(z; ¢, B¢)] = 0. Now, using the general identity, that holds for any random variable Z and event A,
E[Z-14) = E[Z | AJPr[4],
we have that, for w; s = (z; 5, Bs), the expectation E[w; s - 1{w; s > @71 (1 — )||Bs||2}] is equal to
Elwis | wis > @71 (1 = a)||Bsl|2] - Prlwi,s > 7 (1 — )| Bs 2]

By the Mills Ratio identity (Lemma A.4), since w; s ~ N(0, || 35/|3), the first term is equal to,

) 8 es@ (1~ a)

. . -1 _ — sll2 _ sl|2 -

Elw; s [ wis > @7 (1 — a)||Bsll2] HIBSHQl _ @(Q—l(ﬁgo‘])ﬂﬁdh) a )
s(l2

since 1 — ®(®~!(1 — a)) = . And, by definition of the quantile function,

Prlwis > @711 — )| Bsll2] = o

Therefore,

Efwi,s | wis > @71 (1= a)[|Bs]l2] = [1Bsll20(27H (1 — @),

and
Elwin} (wi,s)] = o+ [|Bs]|26(2 7 (1 — a)).
The exact expression follows by substituting ||Bs||2 = 7s||3]|2 (Definition 3.3).

13
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A.2. Prediction Access Ratio for Linear Regression: Proof of Theorem 3.5

Recall that the goal is to prove upper and lower bounds on the ratio,

V*lin(a + A(M 7?) B Vﬂ}in(OL?’YS)
V*lin(a’,ys + ATQ) - VJiH(OZaVS).

To do so, we deal with the numerator and the denominator separately.

Quantifying Prediction Improvement. We start with the denominator. This part is relatively simple because the value
function is linear in v,. Recall from Proposition 3.4 that:

Vit (a,7s) = ap+ s Bll2¢(@7H(1 — a)).
Therefore,
ViR (e, ys + A2 ) = Vit (a,95) = Az [ Bll20(@7H(L — @)).
Now, if we apply Lemma A.7 and our assumption on «, we get that,
Az Bllz2a®™ (1 = @) < VI (a, s + Ag2) = Vi (a,75) < Asa|Bll2a® ™ (1 — @)(1 + f(a)), (13)
where f(a) = ®71(1 — a)?/(®~1(1 —a)? — 1) — 1is o(1) and less than 1 for o < .05.
Quantifying Access Improvement. Using the closed form expression for the value function, we get that:
V*lin(a + Aa,%) - V*lin(a?"/s) = Aa St ’YSHBHQ (d)((I)_l(]_ - Aa)) - (b((b_l(]‘ - a))) :
Applying Lemma A.3, we get that:
1
5Aaqn—lu —a) <A@ M1 —a—Ay) —d(@ 1 -a) <AL 1 —a).
Therefore,
1 — in in —
Aa(i+ 5%l1B12271 (1 = @) < V™o + Aa, %) = V(%) < Aalu+ %1827 (1 —a)).  (14)

The statement follows from combining the bounds in Equation (14) and Equation (13).
Lemma A.3. Define g(a) = ¢(®1(1 — ), then for o + A < .05 and A < 4a,

1
AP (1—a)>gla+A)—g(a) > 5<I>*1(1 —a)A.
Proof. From Lemma A.5, we have that
-1
"a)=d '1-a)and ¢"(a) = ———————.
gl0) =7 (1 - o) and g"(0) = S

By Taylor’s theorem, there exists a value ¢ € [0, 1] such that:

gla+ A) — g(a) = ¢ (@)A + 3 A% (0 + eA)
1
@ T(1—a—ch))

=Ad " 1—a)— %AQ
<ADPTHI - a).

To prove the lower bound on g(a + A) — g(«) it suffices to establish that

1

S0 —a—cA)) =

1, 1.

14
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Or equivalently, that A < ®~1(1 — a)¢(® (1 — a — cA)). To show this, we know that by Lemma A.7, for o + A < .15,
AP 1 —a—cA)) > (a+cA)P 1 —a—cA) > V2.
The second inequality follows from the fact that -1 (1—a)> V2 for all @ < .05 and that ¢A > 0. Therefore, in order for,
A< 1 —a)p(@ (1 —a—-cA)),

it suffices for A < 4a. This ensures that the inequality in Equation (15) is true and concludes the proof of the lower
bound. O

A.3. Supporting Technical Lemmas
Lemma A.4 (Inverse Mills Ratio). Let z ~ N (1, 02), then

¢(a)
E = —_—
[z ]z > d] u+01_¢(a)
Proof. This is a well known property of Gaussians, see e.g (Johnson & Kotz, 1970). O
Lemma A.S.
0 1
—¢!'l-a)= -t
T ()
0

3 (@ '(1-a)=0"'(1-a)

Proof. These identities are also standard, we include a proof for the sake of completeness. By definition of inverse functions,

0

1 _ 0
T (@) = g =1,

T Oz

and by the chain rule,

LFE) = S0 @)
Combining these two we get that:
O by b g9y L
ot D= Frw) e YT Ty

Since &’ = ¢ (P is the CDF and ¢ is a PDF), then we can use the second identity above to conclude that:

0 1
~— 9 '1-ay)= - ——
g’ Y= e )
For the second calculation, we use the fact that ¢’ () = —x¢(x) as well as the result from the first part. By the chain rule,

0 —1 _ 1 —1 9 4
Sed(® 71— ) = ~27 (1 - )o@ (1 - a)) (81 - o)
=o (1 -aq).

Lemma A.6. Let z ~ N(0, 1), then, for all t > 0:

@(1 _ t*Q) <Pr(z>t) <
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Proof. These bounds appear in numerous sources, this particular result is drawn from a writeup from Bo Waggoner
(Waggoner, 2018). O

Lemma A.7. Forall o < .15,
a@_l(l —a) < ¢(<I>_1(1 —a)) < <I>_1(1 —a)a(l+ fla)),

where f(a) = @711 — a)?/(®71(1 — a)? — 1) — 1is o(1) and less than 1 for all o < .05.

Proof. The main idea is to use Lemma A.6 and set t = ®~1(1 — «). By definition of the quantile function, if z is a standard
normal:

Pr(z>® (1 -a)) =a.
From our assumption on o, t = ®~!(1 — a) > 0 and hence applying Lemma A.6 we get that,

(@ (1 —a)) 1 (@ (1 —a))
®1(1—a) <1 To(o a)2> SOS T o1 —a)

The final statement follows from rearranging these inequalities. O

Proposition A.8.
11 —a)=0(log(l/a))asa — 0
Proof. From the definition of the quantile function, we have that

®~ 11— a) = argmaxPr(z > t) < .
¢

From the Lemma A.6, for t > /2,
¢ o(t)

%SPr[zzt]gT.

Therefore, ®~1(1 — a) > t; where t; solves,

o(t) _ o,
tq
and ®~1(1 — ) < to where 5 solves,
o(ta) _ o
2to

Using the definition of ¢, it suffices to solve for the values of ¢ that solve the equation,

1 1
——exp(—t?/2)— = q,

V2T cot

for ¢y € {1, 2}. Moving everything into logs, this becomes

% _ 10@\/%) - log(é) = log(1/a).

For small values of o, the 2 term dominates and we get that

t & +/log(1/a).

16
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B. Supporting Arguments for Probit Regression Model
B.1. Optimal Policy for the Probit Model

Lemma B.1. Assume w; satisfy the probit regression model (Definition 4.1) and that x = (xs, x¢). The optimal assignment
policy 7} for the planner’s targeting problem (Definition 3.2) is equal to:

T (@is) = H(wis, Bs) > @711 = a)[1Bsll2}- (16)
Proof. Since E[w; | z; 4] is always greater than 0, the optimal policy is simply to treat the units with the highest values of
Elw; | ;). In this case,
Elw; | is] = Priwi = 1] 2s] = ®(p + (235, Bs))-
Because ®(z) is strictly monotonic in its argument, z = p + (z; 5, 8s), the top 1 — « quantile for ®(z) is the same as the
top 1 — « quantile for z itself. O
B.2. Value Function for Probit Regression: Proof of Lemma B.1

Using the lemma regarding the functional form for the optimal targeting policy (Lemma B.1), and the definition of w; from
the probit model, we can expand out the value of the optimal policy as follows:

Elwimy(z)] = = E[1{z] B + 2 B + > 0} - o] By + > p+ (|22 (1 = )]
=E[1{z] B + 2] B+ p >0} - 1{z] B > ||Bs]2®7 (1 — a)]. (17)

Using the fact that the random variables x| 35 ~ N(0, ||35|3) and ;" B; ~ N(0, || 3:]|3) are independent and Gaussian, we
can rewrite these as,

2 Bs = ||Bsll22s and x| By = || By 221,

where zg, z; ~ N (0, 1) are i.i.d. Adopting this notation, we can rewrite the previous expression for the value function in
Equation (17) as:

= E[1{Bull2zs + IBilloz + 1 > 0 - 1{[1Bull2zs > 1Ball2® (1 — )]
— E[1{|Bull2ze + |Billoz + 1 > 0} - 1z, > @7 '(1 - a)]
= Pr{1{|Bllazs + [Bellaze + 11> 0, 2 > ®71(1 — )

A

— 1Bl
/ / (ZS(Zt)QS(za)dztdZs
-1(1—a) —lBsll2zs —p

1812

*° _ _”ﬁsHQZs Y
Alu_a)(l ‘b( AL ))Ws)'

Here, we’ve again used ¢ denote the pdf for a standard Gaussian. Using the identity, 1 — ®(—a) = ®(a), this last expression

is equal to the following integral:
/ d (”65”228 - M) P(25)dzs.
B-1(1-a) 1Bt |2

The exact statement follows from substituting ||Ss||2 = 5|82 and || Bt||2 = V2| 5]|2-

, 2s > 01— a))

B.3. Prediction Access Ratio for Probit Regression: Proof of Theorem 4.4
Recall from the definition of the probit model that,
Pr[(z, ) + >0l =b€ (0,1),

and hence, p||3|l;" = ®@71(b) = —®~ (1 —b).

17
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Quantifying Improvements by Expanding Access. By Taylor’s theorem, there exists some ¢ € (0, 1) such that:

V;pr(a + AaaVs) - V*pr(a775) = Aa : gv*pr(a + CAou’Ys)-
(6%

The last term is the derivative of the value function evaluated at the point (o + ¢A, s ). From, Lemma B.3, we know that

%¢*u—a—wA@+uwzl)_
Vi

0
5 VP (a4 cAq,7s) (

Using the identity, z||3]|; " = —®~!(1 — b), we can rewrite this as

o (wb‘l(l —a—cAy) + pl|Bll5 !
Yt

1
) = ((%@—1(1—04—@%)—<I>—1(1—b))>. (18)
Tt
Assuming that A, < « and that « is small enough so that vs® (1 — 2a) > ®~1(1 — b), then,
YsPTHL —a — cAy) > @711 — 20) > &1 (1 —b),

and we have that the expression in Equation (18) is of the form ®(z) for some « > 0. Therefore, by properties of the
Gaussian CDF,

0
pf
—aaV* (a+ cAq,vs) € [1/2,1).

Hence,

1
iAa < VP a+ Ag,vs) = VP (a,7s) < Aa. (19)

Quantifying Improvements via Prediction. We use the same strategy as in the previous part. By Taylor’s theorem, there
exists some ¢ € (0, 1) such that:

0
V'*pr(a’ Vs + CA’I"2)'

V*pr(a7 Ys + Arz) - V*pr(a, 73) = A”‘2 ’ 075

Now, let v, . = 75 + c¢A,2 and v;, . = /1 — 72 .. Then, by Lemma B.4,

—1(1 _ -1
9 VP (s 4 ¢Ay2) = %fb ( H ) P ((D (1 —a) + ullBll; 'Ys,c)
t,c

s 1812 Vi,
1 11 —a)—d 11— b)ys.
R R )
P)/t,c ”ﬁHQ 'Yt,c
T T>

We start by analyzing bounds on T%. For any £; > 0, there exists a value 1 (¢1,7:), depending on &1 and ~;, such that for all
A2 < ti(e1,7:), we have that .5y; < (1 — 1)y < Y. < V¢ Assuming this condition holds, since v, .~ (1 — b) > 0,
we get that:

—101 _ _d1(1 —
o (1 a) o (1 b)'YS,c S cI)fl(l _ a) 1 .
Vt,c (1 - 51)%

Furthermore, since ;. < 7 and 7, . < 1, for any fixed €2, there exists a value t2(b, ), depending on 7, and b, such that
for all < to(b, v, €2):

—1/1 _ o &-1(1 _ —1(1 _ _Hd&-1(1 _ -101 _
L e Bk S ) PP S0 ) ek € k). S ) Y
'Vt,c 'Yt,c TVt

18



The Relative Value of Prediction in Algorithmic Decision Making

Using these last two lines, and the fact that ¢(z’) < ¢(x) for 0 < x < z’, we get that

(i ) (0 ) ()

1—e3) Ve Vi,e Ve

where 3 = max{e1, 2 }. Now, by Lemma B.6, for o smaller than some value t3(«, £3) > 0,

o1 -a)
Tt

11 2
’Y? (1 83)

T, < ¢ ( (1- eg)) < % (1.01\/%@*1(1 - a))

V2
And,

(1—eg)~2

1 ¢'(1-a) (maq)_l(l B a))

1
>
(1—e3) Ve ) T V2r
712(1-'1-64)2

= \/% (\/ﬁafbfl(l - a)) ¢ ,

where we have rewritten the last expression in a more convenient form by letting ¢4 = e3/(1 — &3).

Analyzing T} is simple. Recall that p| 3|/ = ® (1 — b) where b = Pr[w; > 0]. Hence,

BN a1 b)) — —101 _
¢(|ﬂ||2>‘¢< &1 b)) = (' (1 - b)).

Then for all b < .15, Lemma A.7 ensures that:

bd (1 —b) < ¢ (|5M||2) < 2b071(1 — b).

Furthermore, by our initial calculation, we can set €1 < .5 so that .5; < 7; . < ;. and hence:

1 1 2
—< <=

Yo Ve | Ve

This implies that 7} satisfies the bounds:

1
bO (1 —b) <T) <4—bd (1 —b).
Tt

Combining our bounds for T3 and T5, we get that for appropriately small b, a, A, .2,

1 2
(1—
) (1—es3)

2 /2
VP (a,ys + Ayz) — VP (a,75) < Aje—1/ = - b1 (1 - b) - (1.01\/27ratl>_1(1 - a))
™

Mt
11 3 (1+ea)?
VP (o, vs + A2) — VP (@, 75) > Ape——— - b® 11— b) (V2ra®d (1 —a))
(07 + By2) = VI (07) 2 Ay e 007 (1= 0) (VEra@ ™! (1~ )

The final statement comes from combining these inequalities with those in Equation (19) and simplifying the constants.

B.4. Supporting Technical Lemmas
Lemma B.2 (Leibniz’s Rule).
d @ d d b=) 9
. . fz, t)dt = f(z,b(z)) - %b(l‘) — f(z,a(x)) - %a(x) + /G(z) E (x,t)dt
Lemma B.3.

0
—_ pr =
Do V* (0‘7'75) P <

@M1~ a) +u|ﬂllzl)
Vt

19



The Relative Value of Prediction in Algorithmic Decision Making

Proof. By Leibniz’s Rule (Lemma B.2), the derivative has only one nonzero term:

5l “1(1 K (Hulﬁll> o)z = — <%<1>‘1(1—a)+u|ﬁ||51> 01— ) (o711

Yt Yt

To finish, we can apply Lemma A.5, to evaluate,

0
Oa

and then simplify. O

F-07 (1 —a)=—(g(@7 (1 - )7,

Lemma B.4.

o . 1 (o ) (¢>-1<1—a>+u5n21%>
VP = —
By, V* (@) vt¢<||ﬁ||2 ¢ -

Proof. Starting with the chain rule, we have that,

00 -1
0 / o (7325 +,u||6||2 ) ¢(Zs)d2’37
s Jo-1(1-a) Ve

> Vszs+u|ﬁ_1|2) ( 0 (7) 0 <u5||21>> 2
/I)—l(l—a)(b( Ve o) s +8%,~ Vi ' (20)

Now, we can calculate the remaining derivatives explicitly,

is equal to:

0 (’yg> 0 Vs B 1 1
8’75 Mt 8'78 11— ’)/3 (1 - 732)3/2 7t3

o (unm;l): o ulBlst _ Bl _ slBlzs
s Tt 0vs VAR ’)/52 (1 - 73)3/2 '7? ’

and we can rewrite the product of pdfs as:

'Yszs"f':uHﬁ”Z_l _ ( M ) (ZS+M||6|2_178>
¢(—% )6(z5) = ¢ TP ¢ " :

Going back to the initial expression in Equation (20) and substituting in these last three identities, we have that the derivative

can be written as:
e’} Zs"’ —1 ; B
Lo (i) [ o (B sl a1
1812 (1-a) G

These integrals we can indeed evaluate:

I ¢(zs+uﬂll51%> - ,(I)(Zﬁullﬁllrzlvs)
d-1(1—a) Tt ) ) Ve

P-1(1—a)

., (1 e (cb—l(l ~a) +MIIB|51%)> |
Ve
And,

3 -1 -1 -1 -1 >
/ s (Zs + pllBll2 %) radzs = —? [(b (Zs + pllBll2 %) n BNz s g (zs + pllBll2 %)}
d-1(1-a)

Ve Vi e Ve B-1(1—a)

?

20
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is equal to:

Vi Vi Vi

Plugging in the solutions to the integrals back into (21), we get that the final expression is:
1 [ (1 —a) + plBlly s
e \IBll2 ol

Lemma B.5. Assume that v2 + ~v? = 1 and that ~s,~; and both in (0, 1). Then,

vs2s + Bz _ ( p ) <Zs+ullﬁlzl%>

2 [_ ) (@*(1 —a) +MIIB||51%> , 8l (1 e (@—1@ —a) +u||ﬁ||;wsm |

Proof. The main idea is to expand out the exponents and complete the square:

75z5+“||6||§1 _ 1 (Vszs+ﬂ‘|ﬁ||;1)2 Z?
o o) = - exp e :
. (92 +)z2 + 12181122 + 2085 s 25)
= —exp|— 5
2 275
1 249 —1 e £ 2 —1_9
L (<P (G 2B e 0280 2)
27 2v; 207
_ 1 p21812 exp —(zs + Bl ") + 12118113 *72)
2m 29¢ 27
_ 2 _
= Lo (B o (L (el e o (28l 72
27 29¢ 2 " 2% )

In the third line, we used the fact that 1 = ~? + ~2. Using this same identity, we can further simplify two of the remaining

terms as:
2 -2 -2 2 2
12|81z ) (u 18112 %, ) (—ullﬁllz (1—%)) ( 0 )
exp | ————=— | exp = exp =exp| ——5 |-
< 27 27 V: 1813

vszs + ullBlI5" _ ( p > <zs+ullﬂ|21%>

Hence,

O

Lemma B.6. For any k,e > 0 there exists a value t(¢) > 0, that depends only ¢, such that for all o < t(e), the followings
inequalities hold:

1 2 5 1 1 1 k2
(V)@ (- 0 <olk-® (l—a))gﬁ((l—ks)w/ﬂo@ (1-a))

Proof. The proof is just a direct calculation that follows from expanding out the definition of the Gaussian PDF ¢(-), and
then applying Lemma A.7:

ok 871 - ) = —enp (L)
— o7 [ ew (0 —a))zﬂ’“z

k‘2

= (20)" 5 [6(7' (1 — a))]

21



The Relative Value of Prediction in Algorithmic Decision Making

Moving onto the second part, for o small enough, we have that by Lemma A.7,
ad M1 —a)< (@ (1 -0a)) <ad (1l —a)l+e).

Therefore,

k21 K21

@n) 5 o 0711 - a)]" <ok 11— a) < @0 T [(1+e)a- o711 - a)]" .

The precise inequality then follows from simplifying this expression above. [

C. Simulation Details

For the visuaizations in Figure 1 and Figure 2, we compute the prediction access ratios numerically. Using our closed
form expressions regarding the value functions Vi and V" from Proposition 3.4 and Proposition 4.3 we compute the
cost benefit ratios with A, = A, = .01 and x = 1, 8 = 10 for the linear case. For the probit case, we set b = .1 and
A, = A,2 = le — 3. The simulation code is included in the submission.
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