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Abstract
Environment annotations are essential for the suc-
cess of many out-of-distribution (OOD) general-
ization methods. Unfortunately, these are costly
to obtain and often limited by human annota-
tors’ biases. To achieve robust generalization,
it is essential to develop algorithms for automatic
environment discovery within datasets. Current
proposals, which divide examples based on their
training error, suffer from one fundamental prob-
lem. These methods introduce hyper-parameters
and early-stopping criteria, which require a val-
idation set with human-annotated environments,
the very information subject to discovery. In this
paper, we propose CROSS-RISK MINIMIZATION
(XRM) to address this issue. XRM trains twin
networks, each learning from one random half
of the training data, while imitating confident
held-out mistakes made by its sibling. XRM pro-
vides a recipe for hyper-parameter tuning, does
not require early-stopping, and can discover en-
vironments for all training and validation data.
Algorithms built on top of XRM environments
achieve oracle worst-group-accuracy, addressing
a long-standing challenge in OOD generaliza-
tion. Code available at https://github.
com/facebookresearch/XRM.

1 Introduction
AI systems pervade our lives, spanning applications such
as finance (Hand & Henley, 1997), healthcare (Jiang et al.,
2017), self-driving vehicles (Bojarski et al., 2016), and jus-
tice (Angwin et al., 2016). Despite outperforming humans
in many tasks, these systems fall apart under testing con-
ditions different from their training environments (Geirhos
et al., 2020). For instance, during the COVID-19 pandemic,
thoracic x-ray classifiers incorrectly latched onto spurious
correlations such as patient’s age or position (Heaven, 2021),
leading to “an alarming situation in which the systems ap-
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pear accurate, but fail when tested in new hospitals” (De-
Grave et al., 2021).

Generally speaking, AI systems underperform on under-
represented groups in training data (Barocas et al., 2019).
The Waterbirds problem (Sagawa et al., 2019), depicted in
Figure 1, illustrates this with two classes (landbirds and
waterbirds) in two landscape environments (land and wa-
ter), forming four groups: a majority group of waterbirds
in water (73% of examples), landbirds in land (22%), wa-
terbirds in land (4%), and a minority group of landbirds
in water (1%). On this problem, learning machines often
favor the landscape spurious feature to classify the major-
ity of examples and memorizes the remaining minorities to
achieve zero training error. An empirical risk minimization
(ERM) baseline, ignoring environment data (Vapnik, 1998),
achieves a mere 61% worst-group-accuracy, specifically on
the minority group, as illustrated in Figure 1’s right panel.

To improve upon ERM, researchers have developed a myr-
iad of OOD generalization algorithms (Zhou et al., 2022a;
Wang et al., 2021). These methods use environment an-
notations to uncover invariant (environment-generic) pat-
terns and discard spurious (environment-specific) ones (Ar-
jovsky et al., 2019). As Figure 1 shows, group distribution-
ally robust optimization (Sagawa et al., 2019, GroupDRO)
achieves a worst-group-accuracy of 87%. This outperforms
ERM by over twenty five points, a sizeable gap!

While promising, OOD algorithms targeting sub-population
shift require environment annotations, which are costly to
obtain and limited by human annotators’ biases and preci-
sion. Moreover, no single set of environment annotations
fits all OOD algorithms. The patterns misleading a learning
system might be alien or invisible to humans (Goodfellow
et al., 2014). Because of these reasons, OOD generalization
is currently confined to small data collections, and their
promise in the large-scale setting remains unfulfilled.

In light of the above, researchers developed algorithms for
automatic environment discovery (Bao & Barzilay, 2022;
Zheran Liu et al., 2021; Zhang et al., 2022b; Lahoti et al.,
2020; Dagaev et al., 2021; Creager et al., 2020; Nam et al.,
2020). These methods typically build a robust system in
two phases. In phase-1, these methods train a classifier to
categorize training examples in two environments, based
on their training error. In phase-2, an OOD algorithm is
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Figure 1: (a) Waterbirds problem with four groups: a majority group of waterbirds in water, landbirds in land, waterbirds
in land, and a minority group of landbirds in water. Models often rely on spurious features to classify the majority of
examples and then memorize the minority examples. (b) Worst-group-accuracy (minority) for different methods. (Dotted
line) ERM achieves 61%. (Dashed line) GroupDRO with human group annotations (oracle) achieves 87%. (Dashdot blue
line) Prior work to discover groups requires early-stopping with surgical precision. (Solid red line) XRM enables an oracle
performance of 87% without requiring early stopping.

trained on top of the discovered environments. However,
this pipeline suffers from one fundamental issue: the need
for precisely controlling the classifier’s capacity, ensuring
that the discovered environments differ only in spurious
correlations. As Figure 1 shows, peak performance (79%)
is reached with exact early-stopping in phase-1; without
it, accuracy drops to 68%. Lacking a precise indicator of
early-stopping, environment discovery methods depend on
validation sets with human annotations. Alas, at least in our
view, this defeats the raison d’être of environment discovery.

Contribution We propose CROSS-RISK MINIMIZA-
TION (XRM), a simple method for environment discovery
that requires no human environment annotations whatsoever.
XRM trains two twin networks, each holding-in one random
half of the training data. During training, XRM instructs
each twin to imitate confident held-out mistakes made by
their sibling. This results in an “echo-chamber” where twins
increasingly rely on bias, converging on a pair of environ-
ments that differ in spurious correlation, and share the in-
variances that fuel downstream out-of-distribution general-
ization. After twin training, a simple cross-mistake formula
allows XRM to annotate all of the training and validation ex-
amples with environments. As our experiments show, XRM
endows OOD generalization algorithms with oracle-like
performance across benchmarks. Returning one final time
to Figure 1, we observe that XRM+GroupDRO converges
to 87% worst-group-accuracy on Waterbirds, matching the
oracle!

The sequel is as follows. Section 2 details the problem
formulation. Section 3 surveys prior research on envi-
ronment discovery. Section 4 describes XRM. Section 5
demonstrates the effectiveness of XRM, while Section 6
discusses its potential shortcomings. Section 7 concludes
with thoughts for future work.

2 Learning Invariances Across
Environments

The goal of OOD generalization is to build learning sys-
tems that perform well beyond the training data distribution.
To this end, we collect examples from multiple environ-
ments and OOD algorithms search for invariant patterns
across these environments, while disregarding environment-
specific spurious correlations (Arjovsky et al., 2019). For-
mally, we seek a predictor f that classifies inputs x into
labels y, across all relevant environments e ∈ E :

f ∈ argmin
f̃

sup
e∈E

Re(f̃), (1)

where the risk Re(f) = E(x,y)∼P e [ℓ(f(x), y)] measures the
average loss ℓ incurred by the predictor f across examples
from environment e, all of them drawn iid from P e.

In its full generality, OOD generalization in (1) is an ad-
mittedly daunting task. To alleviate the burden, prior lit-
erature often considers the simplified and more practical
version of sub-population shift (Sagawa et al., 2019). Given
a dataset D = {(xi, yi, ei)}ni=1, the supremum in (1) is re-
placed by a maximum over the training environments and
the risk for each environment is approximated by the em-
pirical risk (Vapnik, 1998). The effectiveness of an OOD
algorithm is then assessed by its worst-group-accuracy on a
validation set.

In practice, several OOD algorithms have been successful
in learning invariances across environments (Gulrajani &
Lopez-Paz, 2020; Zhou et al., 2022a; Wang et al., 2021;
Yang et al., 2023). Despite their promise, their large-scale
application is hindered by the need for human-annotated
environments, which are resource-intensive and might be
even sub-optimal. Different machine learning models fall
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prey to different kinds of spurious correlations. In addi-
tion, there exists complex interactions between environment
definition, function class, distributional shift, and cultural
viewpoints (Lopez-Paz et al., 2022). Therefore, environ-
ment annotations are helpful only when revealing spurious
and invariant patterns under the lens of the learning system
under consideration. Could it be possible to design algo-
rithms for the automatic discovery of environments tailored
to the learning machine and data at hand?

2.1 Discovering Environments

Nature does not shuffle data—Bottou (2019)

Let us reconsider the problem of OOD generalization with-
out access to environment annotations. This time, it suffices
to talk about one training distribution P tr and one testing dis-
tribution P te. Our training data is a collection of input-label
pairs (xi, yi), each drawn iid from the training distribution.
While P tr may be the mixture of multiple environments
describing interesting invariant and spurious correlations,
this rich heterogeneity is shuffled together and unbeknown
to us. But, if we could “unshuffle” the training distribu-
tion and recover the environments therein, we could invoke
the OOD generalization machinery from the previous sec-
tion and hope for a robust predictor. This is the purpose of
automatic environment discovery.

3 Related Work on Environment Discovery
To discover environments, prior work often train a classifier
and then assign each training example to two environments
based on their loss or classification accuracy. Crucially, one
must control the capacity of the classifier with surgical pre-
cision, such that it relies only on the spurious correlations.
It is only in such cases that the subsequent OOD general-
ization algorithms can successfully disregard these spurious
features.

As a result, proposals for environment discovery differ
mainly in how to control the capacity of the classifier. For
example, the too-good-to-be-true prior (Dagaev et al., 2021)
employs a classifier with a small parameter count while
correct-n-contrast (Zhang et al., 2022b, CnC) applies strong
weight decay regularization. Just train twice (Zheran Liu
et al., 2021, JTT) and environment inference for invariant
learning (Creager et al., 2020, EIIL) train a classifier for a
limited number of epochs. Learning from failure (Nam et al.,
2020, LfF) biases the classifier towards the use of “simple”
features by applying a generalized version of the cross en-
tropy loss. Other proposals, such as learning to split (Bao
& Barzilay, 2022, LS) and adversarial re-weighted learn-
ing (Lahoti et al., 2020, ARL) complement capacity control
with adversarial games.

However, all these methods assume having access to a

human-annotated validation set to conduct such precise ca-
pacity controls. This defeats the purpose of environment
discovery. In fact, if we have access to a small dataset with
human-annotated environments, these examples suffice to
fine-tune the last layer of a deep network towards state-of-
the-art worst-group-accuracy (Izmailov et al., 2022).

For a more detailed discussion and related work, please refer
to Appendix A.

4 Cross-Risk Minimization (XRM)
We propose CROSS-RISK MINIMIZATION (XRM), an algo-
rithm to discover environments without the need of human
supervision. XRM comes with batteries included, namely
a recipe for hyper-parameter tuning and a formula to an-
notate all training and validation data. As we will show
in Section 5, environments discovered by XRM endow
OOD generalization algorithms with oracle performance.

The blueprint for XRM is as follows. XRM trains two twin
classifiers, each holding-in one random half of the training
data (Section 4.1). During training, XRM biases each twin
to absorb spurious correlation by imitating confident held-
out mistakes from their sibling (Section 4.2). XRM chooses
hyper-parameters for the twins based on the number of imi-
tated mistakes (Section 4.3). Finally, and given the selected
twins, XRM employs a simple “cross-mistake” formula to
discover environment annotations for all of the training and
validation examples (Section 4.4). Algorithm 1 serves as a
companion to the descriptions below; Appendix C contains
a PyTorch implementation. The runtime of XRM is akin to
one ERM baseline on the training data.

4.1 Twin Setup, Holding-out of Data

We start by initializing two twin classifiers fa and f b. With-
out loss of generality, let these classifiers return softmax
probability vectors over the nclasses classes in the training
data. We split our training dataset {(xi, yi)}ni=1 in two
random halves. Formally, we construct a pair of training
assignment vectors with entries ma

i ∼ Bernoulli( 12 ) and
mb

i = 1−ma
i , for all i = 1, . . . , n. For classifier fa, exam-

ples with ma
i = 1 are “held-in” and examples with ma

i = 0
are “held-out”; similarly for f b. Therefore, we will train
classifier fa on training examples where ma

i = 1, and simi-
larly for classifier f b. See Appendix C for implementation
details.

By virtue of this arrangement, we may now estimate the
generalization difficulty of any example by looking at the
prediction of the twin that held-out such point. This con-
trasts prior methods, which consume the entire training
data, and may therefore conflate generalization and mem-
orization. Here, however, if a point is misclassified when
held-out, we see this as evidence of such example belonging
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Algorithm 1 CROSS-RISK MINIMIZATION (XRM)
Input: training examples {(xi, yi)}ni=1 and validation ex-
amples {(x̃i, ỹi)}mi=1

Output: discovered environments {ei}ni=1 and {ẽi}mi=1

• Fix held-in training example assignments ma
i ∼

Bernoulli( 12 ) and mb
i = 1−ma

i

• Initialize two classifiers fa and f b

• Until convergence:

– Compute held-in softmax predictions:
pin
i = ma

i f
a(xi) +mb

if
b(xi)

– Compute held-out softmax predictions:
pout
i = mb

if
a(xi) +ma

i f
b(xi)

– Update fa and f b to minimize the held-in class-
balanced cross-entropy loss ℓ(pin, y)

– Flip yi into yout
i = argmaxjp

out
i,j , with probability:

(pout
i,yout

i
− 1/nclasses) · nclasses/(nclasses − 1)

• Define cross-mistake function e(x, y) = J(y /∈
argmaxjf

a(x)j) ∨ (y /∈ argmaxjf
b(x)j)K

• Discover training ei = e(xi, yi) and validation ẽi =
e(x̃i, ỹi) environments

to the minority group. Feldman & Zhang (2020) proposes a
similar “error when holding-out” construction as a measure
of memorization. In the context of label-noise robustness,
CrossSplit (Kim et al., 2023) also employs a similar ap-
proach, in which, confident held-out mistakes are indicators
of a model’s memorization of a noisy label.

4.2 Twin Training, Flipping Labels

As Figure 1 shows, the test worst-group-accuracy of an
ERM baseline on Waterbirds is 62%. This suggests that, if
using ERM to train our twins, each would be able to cor-
rectly classify roughly one half of the minority examples.
If using these machines to discover environments based on
prediction errors, we would dilute the spurious correlation
evenly across the two discovered environments. Conse-
quently, it would be difficult for an OOD generalization
algorithm to tell apart between invariant and spurious pat-
terns. Albeit counter-intuitive, we would like to hinder the
learning process of our twins, such that they increasingly
rely on spurious correlation. In the best possible case, the
twins would correctly classify all majority examples and
misclassify all minority examples, resulting in zero worst-
group accuracy.

To this end, we propose to steer away our twins from be-
coming empirical risk minimizers as follows. Let pout

i =
mb

if
a(xi) +ma

i f
b(xi) be the held-out softmax prediction

for example (xi, yi). Also, let yout
i = argmaxj p

out
i,j be the

held-out predicted class label. Then, at each iteration during
the training of the twins, flip yi into yout

i , with probability,

(pout
yout
i
− 1/nclasses) · nclasses/(nclasses − 1), (2)

and let each network to minimize their held-in cross-entropy
loss—according to the moving targets.

The overarching intuition is that the label flipping Equa-
tion (2) implements an “echo chamber” reinforcing the twins
to rely on spurious correlation. Label flipping happens more
often for confident held-out mistakes and early in train-
ing. These are two footprints of spurious correlations, since
these are often easier and faster to capture. (In the context
of neural networks, this is often referred to as a “simplicity
bias” (Shah et al., 2020b; Pezeshki et al., 2021).) Overall,
the purpose of Equation (2) is to transform the labels of the
training data such that they no longer represent the original
classes, but spurious bias. Finally, the adjustment of Equa-
tion (2) in terms of nclasses ensures low flip probabilities at
initialization, where mistakes are random, and not due to
spurious correlation. We note that the “echo chamber” effect
aligns the twin networks and that is crucially different from
methods that use multiple networks to either disagree with
or diversify spurious features (Nam et al., 2020; Cha et al.,
2021; Rame et al., 2022; Wortsman et al., 2022; Lee et al.,
2023; Pagliardini et al., 2023; Lin et al., 2023; Eastwood
et al., 2023).

4.3 Twin Model Selection, Counting Label Flips

Before discovering environments, we must commit to a
pair of twin classifiers. Each of the twin networks own
hyper-parameters, XRM would be incomplete without a
model selection criterion (Gulrajani & Lopez-Paz, 2020).
We propose to select the twin hyper-parameters showing
a maximum number of label flips at the last iteration, and
across the training data. To reiterate, by “counting flips” we
simply compare the vector of current labels with the vector
of original labels—therefore, we do not accumulate counts
of double or multiple flips per label. To understand why,
recall that each label flip signifies one example that is confi-
dently misclassified when held-out. Therefore, each label
flip is evidence about reliance on spurious correlation, which
consequently brings us closer to a clear-cut identification of
the minority group.

4.4 The Cross-Mistake Formula

Having committed to a pair of twins, we are ready to dis-
cover environments for all of our training and validation
examples. In particular, we use a simple “cross-mistake”
formula to annotate any example (x, y) with the binary an-
notation, e(x, y) =

J(y /∈ argmaxjf
a(x)j) ∨ (y /∈ argmaxjf

b(x)j)K, (3)
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Table 1: Worst-group-accuracies, averaged from ten runs across datasets and algorithms, show XRM achieving oracle-level
performance. When group labels are not available, class labels substitute them. Additionally, while ERM does not use group
labels, it can still benefit from validation group labels for hyperparameter tuning, resulting in improved performance.

ERM GroupDRO RWG SUBG

None Human XRM None Human XRM None Human XRM None Human XRM

Waterbirds 70.4 76.1 75.3 71.7 88.0 86.1 74.8 87.0 84.5 73.0 86.7 76.3
CelebA 63.3 56.8 57.0 67.8 88.7 88.5 62.8 84.8 81.9 70.6 83.2 82.2
MultiNLI 70.7 72.2 66.7 68.9 75.3 72.8 68.4 71.1 67.2 70.0 67.8 71.8
CivilComments 66.7 73.6 71.9 65.5 73.7 70.1 66.7 74.0 72.4 66.4 71.3 65.6
ColorMNIST 10.1 10.0 13.0 10.0 10.2 69.5 10.1 10.6 70.5 10.1 10.3 64.3
MetaShift 73.8 75.1 74.0 75.4 81.8 78.8 64.6 75.7 78.6 64.6 74.5 77.9
ImagenetBG 78.0 78.7 79.2 78.4 77.6 75.5 76.9 79.3 77.8 79.8 78.8 77.6

Average 61.9 63.2 62.4 62.5 70.8 77.3 60.6 68.9 76.1 62.1 67.5 73.7

where “∨” denotes logical-OR, and “J K” is the Iverson
bracket. If operating within the group-shift paradigm, we
define one group per combination of label and discovered
environment. Notably, the ability to annotate both training
and validation examples is a feature inherited from holding-
out data during twin training. More particularly, every
example—within training and validation sets—is held-out
for at least one of the two twins, as subsumed in Equation (3)
by the logical-OR operation.

We are now ready to train the OOD generalization algorithm
of our choice on top of the training data with environments
discovered with XRM.

5 Experiments
This section presents a series of experiments to showcase
the effectiveness of XRM on two well-known benchmarks.
Additional experiments are also conducted to identify sce-
narios where XRM excels, as well as scenarios where it fails
to discover relevant environments.

5.1 Sub-population Shift Benchmarks

For sub-population shift tasks, we experiment with seven
datasets and four algorithms detailed in Appendix B. We
compare results with 3 sources of environment annotations:

• None: no env. annotations—class labels are used instead,
• Human: original human-annotated environments,
• XRM: inferred environments discovered by our method.

Metrics Regardless of how training and validation envi-
ronments are discovered, we always report test worst-group-
accuracy over the human environment annotations provided
by each dataset. The tables hereby presented show aver-
ages over ten random seeds. For results with error bars,
see Table 5.

XRM vs. human annotations Table 1 shows that XRM
enables oracle-like worst-group-accuracy across datasets.
The performance gains are remarkable in the challenging
ColorMNIST dataset, where XRM perfectly identifies digits
appearing in minority colors, discovering a pair of environ-
ments conducive of stronger generalization than the ones
originally proposed by humans. For the commonly-reported
quartet of Waterbirds, CelebA, MultiNLI, and CivilCom-
ments, the average worst-group-accuracy is 67.3% when no
group annotations are used. When using XRM, the aver-
age worst-group-accuracy significantly improves to 80.4%,
closely matching 80.6% achieved with human annotations.

XRM vs. other methods Table 2 compares the worst-
group-accuracy achieved by GroupDRO using XRM-
inferred environments against other environment discov-
ery methods. These include learning from failure (Nam
et al., 2020, LfF), environment inference for invariant learn-
ing (Creager et al., 2020, EIIL), just train twice (Zheran
Liu et al., 2021, JTT), correct-n-contrast (Zhang et al.,
2022b, CnC), automatic feature re-weighting (Qiu et al.,
2023, AFR), and LS (Bao & Barzilay, 2022). As seen in the
previous subsection, XRM achieves 80.4%, nearly match-
ing oracle performance. The second best method with no
access to environment information, JTT, drops to 58.9%.
The best method accessing a validation set with human envi-
ronment annotations, AFR, lags far from XRM, with 78.6%.
The computational burden to complete the results from LS
was prohibitive, with more details provided in Appendix
B.9. For example, one run of LS for Waterbirds, the smallest
dataset, took 20 hours. An XRM run for this same dataset,
on the same 32GB Volta GPU, takes 10 minutes.

5.2 The DomaninBed Benchmark

Table 3 presents additional domain generalization results
on the DOMAINBED benchmark (Gulrajani & Lopez-Paz,
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Table 2: Average/worst accuracies comparing methods for environment discovery. We specify access to annotations in
training data (etr) and validation data (eva). Symbol † denotes original numbers.

Waterbirds CelebA MNLI CivilComms Average

etr eva Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst

✓ ✓
ERM 86.1 76.1 93.5 56.8 82.1 72.2 84.6 73.6 86.6 69.7
GroupDRO 92.6 88.0 93.0 88.7 80.0 75.3 84.2 73.7 87.5 81.4

✗ ✓

ERM† 97.3 72.6 95.6 47.2 82.4 67.9 83.1 69.5 89.6 64.3
LfF† 91.2 78.0 85.1 77.2 80.8 70.2 68.2 50.3 81.3 68.9
EIIL† 96.9 78.7 89.5 77.8 79.4 70.0 90.5 67.0 89.1 73.4
JTT† 93.3 86.7 88.0 81.1 78.6 72.6 83.3 64.3 85.8 76.2
CnC† 90.9 88.5 89.9 88.8 — — — — — —
AFR† 94.4 90.4 91.3 82.0 81.4 73.4 89.8 68.7 89.2 78.6

✗ ✗

ERM 85.3 70.4 95.0 63.3 82.3 70.7 81.6 66.7 86.0 67.8
LfF† 86.6 75.0 81.1 53.0 71.4 57.3 69.1 42.2 77.1 56.9
EIIL† 90.8 64.5 95.7 41.7 80.3 64.7 — — — —
JTT† 88.9 71.2 95.9 48.3 81.4 65.1 79.0 51.0 86.3 58.9
LS† 91.2 86.1 87.2 83.3 78.7 72.1 — — — —
BAM† 91.4 89.1 88.4 80.1 80.3 70.8 88.3 79.3 87.1 79.8
XRM 90.6 86.1 91.0 88.5 76.6 72.8 83.5 70.1 85.4 79.4

2020). Experiments compare three settings: ERM with-
out any environment annotations, the CORAL domain gen-
eralization algorithm (Sun & Saenko, 2016) with human-
annotated environments, and CORAL with environments
discovered by XRM. As a note, CORAL is the best per-
forming single-model (non-ensembling) method in the Do-
mainBed suite. Once again, results suggest that the per-
formance when using XRM-inferred annotations is com-
parable to that of human-annotated environments. Further
details on these experiments are provided in Appendix B.2
with full table of results in Table 6.

5.3 Further Analytical Experiments

Label flipping dynamics on Waterbirds Figure 2 ex-
plores some of the behaviors of XRM on the Waterbirds
dataset. In particular, the top-left panel justifies the use
of “percentage of label-flips at convergence” as a model
selection criterion for XRM, as it correlates strongly with
downstream worst-group-accuracy. The two bottom panels
showcase the clear separation of the minority group “land-
birds/water” by XRM, as no landbirds in land are in the
cross-mistake area. The top-right panel shows that label flip-
ping happens almost exclusively for minority groups, and
converges alongside XRM training. This provides XRM
with a degree of stability, removing the need for intricate
early-stopping criteria.

Revealing spurious correlations in CIFAR-10 with XRM
Figure 3 applies XRM to the CIFAR-10 dataset (Krizhevsky
et al., 2009). While CIFAR-10 does not contain environment
annotations, the discovered environments by XRM for the

“plane” and “deer” classes reveal one interesting spurious
correlation, namely the background color.

As a final remark, we ablated the need for (i) holding-out
data, and (ii) performing label flipping, finding that both
components are essential to the performance of XRM.

6 When Does XRM Fail?
In the previous section, we showcased the effectiveness of
XRM in successfully discovering relevant environments.
However, it is important to note that XRM, like other envi-
ronment discovery methods, relies on certain assumptions.
In the absence of these assumptions, these methods, includ-
ing XRM, may fail to discover relevant environments. In
its full generality, the problem of learning invariant predic-
tors in the absence of appropriate environment annotations
is indeed impossible (Lin et al., 2022a). To see that, we
note that dividing data into invariance-affording environ-
ments parallels the problem of discovering the right causal
structure in the field of causal inference (Pearl, 2009). To
reveal the true causal structure between an invariant feature
Xinv and a target Y , one must “control-for” a set of vari-
ables/environments E that satisfy the following conditional
independence statement,

Y ⊥ E | Xinv. (4)

Unfortunately, different causal structures can produce iden-
tical observational data (Peters et al., 2017). Because of that,
identifying an appropriate E is impossible without admit-
ting extra knowledge about the causal structure behind our
data, and XRM is not an exception of such free lunch.
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Table 3: The average and worst test environment accuracies for five datasets in the DOMAINBED benchmark (Gulrajani
& Lopez-Paz, 2020). Three methods are compared: 1) ERM with no environment annotations, 2) CORAL with human-
annotated environments, and 3) CORAL with XRM-inferred environments. The model selection is done according to the
average accuracy over validation environments.

VLCS PACS OfficeHome TerraInc DomainNet

Method (annotations) Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst

ERM (None) 77.97 64.85 83.35 72.55 65.47 52.25 47.02 34.60 31.69 9.30
CORAL (Human) 77.87 65.00 84.99 77.70 67.74 53.55 48.51 37.15 41.97 13.25
CORAL (XRM) 77.66 66.15 83.81 77.30 67.01 53.90 49.60 38.00 35.87 11.60
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Figure 2: XRM on the Waterbirds problem, concerning
waterbirds in water, waterbirds in land, landbirds in
water, landbirds in land. The first panel shows that “per-
centage of XRM label flipped at convergence” is a strong in-
dicator of “worst-group-accuracy in phase-2”, making flips
a good criterion to select twin hyper-parameters. The two
middle panels show the signed margin of the twins on each
ground-truth group. From each of these class-dependent
plots, XRM discovers two environments: one for points
in the “mistake-free” white area, and one for points in the
“cross-mistake” gray areas. Notably, XRM is able to allo-
cate the two smallest groups to dedicated environments.
Another notable observation is that the two middle plots
appear as straight lines, indicating that the twin networks
agree on their predictions. The fourth panel shows that label
flipping happens almost exclusively for the two smallest
groups, and stabilizes as training progresses.

note that, the problem of learning invariant predictors in the
absence of appropriate environment annotations is impos-
sible in its full generality (Lin et al., 2022a). In particular,
the issue of dividing data into invariance-affording environ-
ments parallels the problem of discovering the right causal
structure in the field of causal inferences (Pearl, 2009). To
reveal the true causal structure between an invariant feature
Xinv and a target Y , one must “control-for” a set of vari-
ables/environments E that satisfy the following conditional
independence statement,

Y ? E | Xinv.. (4)

Unfortunately, different causal structures can produce the
identical observational data (Peters et al., 2017). Because
of that, identifying an appropriate E is impossible without
admitting extra knowledge about the causal structure behind
our data, and XRM is not an exception of such free lunch.

(d) Misclassified deers(c) Well-classified deers(b) Misclassified planes(a) Well-classified planes

Figure 3: Randomly selected images of CIFAR-10 from
groups identified by XRM. The twin networks show inter-
esting patterns in their mistakes. Notably, well-classified
examples are prototypical.

Therefore, we would expect XRM to work well in instances
where the inferred environments E satisfy (5), and we
should anticipate trouble in those cases where the discovered
environments violate (5). On the other hand, as discussed
in (Lin et al., 2022a), evaluating (5) requires knowing the
invariant feature Xinv, which is the variable subject to dis-
covery. This makes (5) difficult to verify in practice when
inferring our environments E, and the best we can do is to
offer some canonical examples of successes and failures,
that can guide our choices of when to apply XRM.

Here, we exemplify with four different versions of the Col-
orMNIST dataset (Arjovsky et al., 2019). All four versions
instantiate a colored digit classification task, differing on
whether the invariant feature is “digit shape” or “digit color”,
and which one of these two variables bear the strongest cor-
relation to the target label. Overall, we expect “digit color”
to be faster (easier) to learn, leading to generalization issues
when “digit shape”—more difficult and slower to learn—is
the desired invariant feature.

We show in Table 5 the average-test-accuracy of ERM and
XRM followed by GroupDRO for the four versions of the
ColoredMNIST dataset. We also show what a hypothetical
oracle, relying solely on the invariant feature, would achieve.
ERM performs well when the invariant feature is the sim-
plest of the two. XRM performs well when the invariant
feature is the most complex of the two. We highlight that the
datasets CMNIST and MCOLOR are observationally equiv-
alent from pooled data alone—and a similar remark follows
for InverseCMNIST and InverseMCOLOR. This echoes the
impossibility results of (Lin et al., 2022a), namely learn-
ing invariant predictors in the absence of environment an-
notations is impossible in its full generality: for instance,
based on training data alone, we would never know if we
are dealing with InverseCMNIST or InverseMCOLOR, and
therefore we are at a loss of whether to apply ERM or XRM.
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Figure 2: XRM on the Waterbirds problem, concerning
waterbirds in water, waterbirds in land, landbirds in
water, landbirds in land. The first panel shows that “per-
centage of XRM label flipped at convergence” is a strong in-
dicator of “worst-group-accuracy in phase-2”, making flips
a good criterion to select twin hyper-parameters. The two
middle panels show the signed margin of the twins on each
ground-truth group. From each of these class-dependent
plots, XRM discovers two environments: one for points
in the “mistake-free” white area, and one for points in the
“cross-mistake” gray areas. Notably, XRM is able to allo-
cate the two smallest groups to dedicated environments.
Another notable observation is that the two middle plots
appear as straight lines, indicating that the twin networks
agree on their predictions. The fourth panel shows that label
flipping happens almost exclusively for the two smallest
groups, and stabilizes as training progresses.

note that, the problem of learning invariant predictors in the
absence of appropriate environment annotations is impos-
sible in its full generality (Lin et al., 2022a). In particular,
the issue of dividing data into invariance-affording environ-
ments parallels the problem of discovering the right causal
structure in the field of causal inferences (Pearl, 2009). To
reveal the true causal structure between an invariant feature
Xinv and a target Y , one must “control-for” a set of vari-
ables/environments E that satisfy the following conditional
independence statement,

Y ? E | Xinv.. (4)

Unfortunately, different causal structures can produce the
identical observational data (Peters et al., 2017). Because
of that, identifying an appropriate E is impossible without
admitting extra knowledge about the causal structure behind
our data, and XRM is not an exception of such free lunch.

(d) Misclassified deers(c) Well-classified deers(b) Misclassified planes(a) Well-classified planes

Figure 3: Randomly selected images of CIFAR-10 from
groups identified by XRM. The twin networks show inter-
esting patterns in their mistakes. Notably, well-classified
examples are prototypical.

Therefore, we would expect XRM to work well in instances
where the inferred environments E satisfy (5), and we
should anticipate trouble in those cases where the discovered
environments violate (5). On the other hand, as discussed
in (Lin et al., 2022a), evaluating (5) requires knowing the
invariant feature Xinv, which is the variable subject to dis-
covery. This makes (5) difficult to verify in practice when
inferring our environments E, and the best we can do is to
offer some canonical examples of successes and failures,
that can guide our choices of when to apply XRM.

Here, we exemplify with four different versions of the Col-
orMNIST dataset (Arjovsky et al., 2019). All four versions
instantiate a colored digit classification task, differing on
whether the invariant feature is “digit shape” or “digit color”,
and which one of these two variables bear the strongest cor-
relation to the target label. Overall, we expect “digit color”
to be faster (easier) to learn, leading to generalization issues
when “digit shape”—more difficult and slower to learn—is
the desired invariant feature.

We show in Table 5 the average-test-accuracy of ERM and
XRM followed by GroupDRO for the four versions of the
ColoredMNIST dataset. We also show what a hypothetical
oracle, relying solely on the invariant feature, would achieve.
ERM performs well when the invariant feature is the sim-
plest of the two. XRM performs well when the invariant
feature is the most complex of the two. We highlight that the
datasets CMNIST and MCOLOR are observationally equiv-
alent from pooled data alone—and a similar remark follows
for InverseCMNIST and InverseMCOLOR. This echoes the
impossibility results of (Lin et al., 2022a), namely learn-
ing invariant predictors in the absence of environment an-
notations is impossible in its full generality: for instance,
based on training data alone, we would never know if we
are dealing with InverseCMNIST or InverseMCOLOR, and
therefore we are at a loss of whether to apply ERM or XRM.
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Figure 2: XRM on the Waterbirds problem, concerning
waterbirds in water, waterbirds in land, landbirds in
water, landbirds in land. The first panel shows that “per-
centage of XRM label flipped at convergence” is a strong in-
dicator of “worst-group-accuracy in phase-2”, making flips
a good criterion to select twin hyper-parameters. The two
middle panels show the signed margin of the twins on each
ground-truth group. From each of these class-dependent
plots, XRM discovers two environments: one for points
in the “mistake-free” white area, and one for points in the
“cross-mistake” gray areas. Notably, XRM is able to allo-
cate the two smallest groups to dedicated environments.
Another notable observation is that the two middle plots
appear as straight lines, indicating that the twin networks
agree on their predictions. The fourth panel shows that label
flipping happens almost exclusively for the two smallest
groups, and stabilizes as training progresses.

note that, the problem of learning invariant predictors in the
absence of appropriate environment annotations is impos-
sible in its full generality (Lin et al., 2022a). In particular,
the issue of dividing data into invariance-affording environ-
ments parallels the problem of discovering the right causal
structure in the field of causal inferences (Pearl, 2009). To
reveal the true causal structure between an invariant feature
Xinv and a target Y , one must “control-for” a set of vari-
ables/environments E that satisfy the following conditional
independence statement,

Y ? E | Xinv.. (4)

Unfortunately, different causal structures can produce the
identical observational data (Peters et al., 2017). Because
of that, identifying an appropriate E is impossible without
admitting extra knowledge about the causal structure behind
our data, and XRM is not an exception of such free lunch.

(d) Misclassified deers(c) Well-classified deers(b) Misclassified planes(a) Well-classified planes

Figure 3: Randomly selected images of CIFAR-10 from
groups identified by XRM. The twin networks show inter-
esting patterns in their mistakes. Notably, well-classified
examples are prototypical.

Therefore, we would expect XRM to work well in instances
where the inferred environments E satisfy (5), and we
should anticipate trouble in those cases where the discovered
environments violate (5). On the other hand, as discussed
in (Lin et al., 2022a), evaluating (5) requires knowing the
invariant feature Xinv, which is the variable subject to dis-
covery. This makes (5) difficult to verify in practice when
inferring our environments E, and the best we can do is to
offer some canonical examples of successes and failures,
that can guide our choices of when to apply XRM.

Here, we exemplify with four different versions of the Col-
orMNIST dataset (Arjovsky et al., 2019). All four versions
instantiate a colored digit classification task, differing on
whether the invariant feature is “digit shape” or “digit color”,
and which one of these two variables bear the strongest cor-
relation to the target label. Overall, we expect “digit color”
to be faster (easier) to learn, leading to generalization issues
when “digit shape”—more difficult and slower to learn—is
the desired invariant feature.

We show in Table 5 the average-test-accuracy of ERM and
XRM followed by GroupDRO for the four versions of the
ColoredMNIST dataset. We also show what a hypothetical
oracle, relying solely on the invariant feature, would achieve.
ERM performs well when the invariant feature is the sim-
plest of the two. XRM performs well when the invariant
feature is the most complex of the two. We highlight that the
datasets CMNIST and MCOLOR are observationally equiv-
alent from pooled data alone—and a similar remark follows
for InverseCMNIST and InverseMCOLOR. This echoes the
impossibility results of (Lin et al., 2022a), namely learn-
ing invariant predictors in the absence of environment an-
notations is impossible in its full generality: for instance,
based on training data alone, we would never know if we
are dealing with InverseCMNIST or InverseMCOLOR, and
therefore we are at a loss of whether to apply ERM or XRM.
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Figure 2: XRM on the Waterbirds problem, concerning
waterbirds in water, waterbirds in land, landbirds in
water, landbirds in land. The first panel shows that “per-
centage of XRM label flipped at convergence” is a strong in-
dicator of “worst-group-accuracy in phase-2”, making flips
a good criterion to select twin hyper-parameters. The two
middle panels show the signed margin of the twins on each
ground-truth group. From each of these class-dependent
plots, XRM discovers two environments: one for points
in the “mistake-free” white area, and one for points in the
“cross-mistake” gray areas. Notably, XRM is able to allo-
cate the two smallest groups to dedicated environments.
Another notable observation is that the two middle plots
appear as straight lines, indicating that the twin networks
agree on their predictions. The fourth panel shows that label
flipping happens almost exclusively for the two smallest
groups, and stabilizes as training progresses.

note that, the problem of learning invariant predictors in the
absence of appropriate environment annotations is impos-
sible in its full generality (Lin et al., 2022a). In particular,
the issue of dividing data into invariance-affording environ-
ments parallels the problem of discovering the right causal
structure in the field of causal inferences (Pearl, 2009). To
reveal the true causal structure between an invariant feature
Xinv and a target Y , one must “control-for” a set of vari-
ables/environments E that satisfy the following conditional
independence statement,

Y ? E | Xinv.. (4)

Unfortunately, different causal structures can produce the
identical observational data (Peters et al., 2017). Because
of that, identifying an appropriate E is impossible without
admitting extra knowledge about the causal structure behind
our data, and XRM is not an exception of such free lunch.

(d) Misclassified deers(c) Well-classified deers(b) Misclassified planes(a) Well-classified planes

Figure 3: Randomly selected images of CIFAR-10 from
groups identified by XRM. The twin networks show inter-
esting patterns in their mistakes. Notably, well-classified
examples are prototypical.

Therefore, we would expect XRM to work well in instances
where the inferred environments E satisfy (5), and we
should anticipate trouble in those cases where the discovered
environments violate (5). On the other hand, as discussed
in (Lin et al., 2022a), evaluating (5) requires knowing the
invariant feature Xinv, which is the variable subject to dis-
covery. This makes (5) difficult to verify in practice when
inferring our environments E, and the best we can do is to
offer some canonical examples of successes and failures,
that can guide our choices of when to apply XRM.

Here, we exemplify with four different versions of the Col-
orMNIST dataset (Arjovsky et al., 2019). All four versions
instantiate a colored digit classification task, differing on
whether the invariant feature is “digit shape” or “digit color”,
and which one of these two variables bear the strongest cor-
relation to the target label. Overall, we expect “digit color”
to be faster (easier) to learn, leading to generalization issues
when “digit shape”—more difficult and slower to learn—is
the desired invariant feature.

We show in Table 5 the average-test-accuracy of ERM and
XRM followed by GroupDRO for the four versions of the
ColoredMNIST dataset. We also show what a hypothetical
oracle, relying solely on the invariant feature, would achieve.
ERM performs well when the invariant feature is the sim-
plest of the two. XRM performs well when the invariant
feature is the most complex of the two. We highlight that the
datasets CMNIST and MCOLOR are observationally equiv-
alent from pooled data alone—and a similar remark follows
for InverseCMNIST and InverseMCOLOR. This echoes the
impossibility results of (Lin et al., 2022a), namely learn-
ing invariant predictors in the absence of environment an-
notations is impossible in its full generality: for instance,
based on training data alone, we would never know if we
are dealing with InverseCMNIST or InverseMCOLOR, and
therefore we are at a loss of whether to apply ERM or XRM.
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Figure 2: XRM on the Waterbirds problem, concerning
waterbirds in water, waterbirds in land, landbirds in
water, landbirds in land. The first panel shows that “per-
centage of XRM label flipped at convergence” is a strong in-
dicator of “worst-group-accuracy in phase-2”, making flips
a good criterion to select twin hyper-parameters. The two
middle panels show the signed margin of the twins on each
ground-truth group. From each of these class-dependent
plots, XRM discovers two environments: one for points
in the “mistake-free” white area, and one for points in the
“cross-mistake” gray areas. Notably, XRM is able to allo-
cate the two smallest groups to dedicated environments.
Another notable observation is that the two middle plots
appear as straight lines, indicating that the twin networks
agree on their predictions. The fourth panel shows that label
flipping happens almost exclusively for the two smallest
groups, and stabilizes as training progresses.

note that, the problem of learning invariant predictors in the
absence of appropriate environment annotations is impos-
sible in its full generality (Lin et al., 2022a). In particular,
the issue of dividing data into invariance-affording environ-
ments parallels the problem of discovering the right causal
structure in the field of causal inferences (Pearl, 2009). To
reveal the true causal structure between an invariant feature
Xinv and a target Y , one must “control-for” a set of vari-
ables/environments E that satisfy the following conditional
independence statement,

Y ? E | Xinv.. (4)

Unfortunately, different causal structures can produce the
identical observational data (Peters et al., 2017). Because
of that, identifying an appropriate E is impossible without
admitting extra knowledge about the causal structure behind
our data, and XRM is not an exception of such free lunch.

(d) Misclassified deers(c) Well-classified deers(b) Misclassified planes(a) Well-classified planes

Figure 3: Randomly selected images of CIFAR-10 from
groups identified by XRM. The twin networks show inter-
esting patterns in their mistakes. Notably, well-classified
examples are prototypical.

Therefore, we would expect XRM to work well in instances
where the inferred environments E satisfy (5), and we
should anticipate trouble in those cases where the discovered
environments violate (5). On the other hand, as discussed
in (Lin et al., 2022a), evaluating (5) requires knowing the
invariant feature Xinv, which is the variable subject to dis-
covery. This makes (5) difficult to verify in practice when
inferring our environments E, and the best we can do is to
offer some canonical examples of successes and failures,
that can guide our choices of when to apply XRM.

Here, we exemplify with four different versions of the Col-
orMNIST dataset (Arjovsky et al., 2019). All four versions
instantiate a colored digit classification task, differing on
whether the invariant feature is “digit shape” or “digit color”,
and which one of these two variables bear the strongest cor-
relation to the target label. Overall, we expect “digit color”
to be faster (easier) to learn, leading to generalization issues
when “digit shape”—more difficult and slower to learn—is
the desired invariant feature.

We show in Table 5 the average-test-accuracy of ERM and
XRM followed by GroupDRO for the four versions of the
ColoredMNIST dataset. We also show what a hypothetical
oracle, relying solely on the invariant feature, would achieve.
ERM performs well when the invariant feature is the sim-
plest of the two. XRM performs well when the invariant
feature is the most complex of the two. We highlight that the
datasets CMNIST and MCOLOR are observationally equiv-
alent from pooled data alone—and a similar remark follows
for InverseCMNIST and InverseMCOLOR. This echoes the
impossibility results of (Lin et al., 2022a), namely learn-
ing invariant predictors in the absence of environment an-
notations is impossible in its full generality: for instance,
based on training data alone, we would never know if we
are dealing with InverseCMNIST or InverseMCOLOR, and
therefore we are at a loss of whether to apply ERM or XRM.
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Figure 2: XRM on the Waterbirds problem, concerning
waterbirds in water, waterbirds in land, landbirds in
water, landbirds in land. The top-left panel shows that
“percentage of XRM label-flips at convergence” is a strong
indicator of “worst-group-accuracy of OOD generalization
algorithm”, making flips a good criterion to select twin
hyper-parameters. The two bottom panels show the signed
margin of the twins on each ground-truth group. Each of
the bottom plots correspond to one of the classes. Note
that a positive margin means correct classification. From
each of these class-dependent plots, XRM discovers two
environments: one for points in the “mistake-free” white
area, and one for points in the “cross-mistake” gray areas.
Notably, XRM is able to allocate the two smallest groups

to dedicated environments. Another notable observa-
tion is that the two bottom plots appear as straight lines,
indicating that the twin networks agree on their predictions.
The top-right panel shows that label flipping happens almost
exclusively for the two smallest groups, and stabilizes as
training progresses.

(d) Misclassified deers(c) Well-classified deers

(b) Misclassified planes(a) Well-classified planes

Figure 3: Randomly selected images from CIFAR-10, iden-
tified by XRM. Although CIFAR-10 lacks predefined en-
vironment annotations, our method has successfully un-
covered intriguing environments. Notably, well-classified
examples (when held-out) are prototypical, featuring planes
in blue skies and deer on green landscapes. In contrast, mis-
classified examples (when held-out) are less typical, which
means they are correctly classified only when included in
the training set.

Therefore, we would expect XRM to work well in instances
where the inferred environments E satisfy (4), and we
should anticipate trouble in those cases where the discovered
environments violate (4). On the other hand, as discussed
in (Lin et al., 2022a), evaluating (4) requires knowing the
invariant feature Xinv, which is the variable subject to dis-
covery. This makes (4) difficult to verify in practice when
inferring environments E, and the best we can do is to offer
some canonical examples of successes and failures, that can
guide our choices of when to apply XRM.

Here, we exemplify with four different versions of the Col-
orMNIST dataset (Arjovsky et al., 2019). All four versions
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CMNIST
(Arjovsky et al., 2019)

InvCMNIST
(Zhang et al., 2022a)

InveCOLOR
(No citation)

MCOLOR
(Lin et al., 2022b)

training
(e = 1)

training
(e = 2)

training
(pooled)

testing

S Y C
0.75 0.80

S Y C
0.75 0.90

S Y C
0.75 0.85

S Y C
0.75 0.10

S Y C
0.85 0.70

S Y C
0.85 0.80

S Y C
0.85 0.75

S Y C
0.85 0.10

S Y C
0.750.80

S Y C
0.750.90

S Y C
0.750.85

S Y C
0.750.10

S Y C
0.850.80

S Y C
0.850.70

S Y C
0.850.75

S Y C
0.850.10

inv.feat. complex, weak complex, strong simple, weak simple, strong

ERM 0.37± 0.10 0.67± 0.02 0.75 ± 0.01 0.85 ± 0.01

XRM 0.71 ± 0.02 0.82 ± 0.02 0.40± 0.01 0.57± 0.01

Oracle 0.75 0.85 0.75 0.85

Table 4: Four ColoredMNIST versions, where the envi-
ronment E influences digit shape S and color C, form-
ing our input X = (S,C). We depict the causal structure
for each dataset version, and the correlation between vari-
ables. The invariant feature may be the complex digit shape
(CMNIST versions) or the simple digit color (MCOLOR
versions), which in turn could bear the strongest or weak-
est correlation to the target variable—producing four ver-
sions of the ColoredMNIST problem. Note that CMNIST -
MCOLOR and InverseCMNIST - InverseMCOLOR are

indistinguishable from pooled training data alone. At the
bottom, test accuracies of ERM, XRM+GroupDRO, and an
Oracle which relies solely on the invariant feature.

instantiate a colored digit classification task, differing on
whether the invariant feature is “digit shape” or “digit color”,
and which one of these two variables bear the strongest cor-
relation to the target label. Overall, we expect “digit color”
to be faster (easier) to learn, leading to generalization issues
when “digit shape”—more difficult and slower to learn—is
the desired invariant feature.

We show in Table 4 the average-test-accuracy of ERM and
XRM followed by GroupDRO for the four versions of the
ColoredMNIST dataset. We also show what a hypothetical
oracle, relying solely on the invariant feature, would achieve.
ERM performs well when the invariant feature is the sim-
plest of the two. XRM performs well when the invariant
feature is the most complex of the two. We highlight that the
datasets CMNIST and MCOLOR are observationally equiv-
alent from pooled data alone—and a similar remark follows
for InverseCMNIST and InverseMCOLOR. This echoes the
impossibility results of (Lin et al., 2022a), namely learn-
ing invariant predictors in the absence of environment an-
notations is impossible in its full generality: for instance,
based on training data alone, we would never know if we
are dealing with InverseCMNIST or InverseMCOLOR, and
therefore we are at a loss of whether to apply ERM or XRM.
Nevertheless, XRM remains an state-of-the-art solution for
those problems were we would like our learning machine

to ignore the fastest-to-learn feature, often being a spurious
shortcut (Geirhos et al., 2020; Shah et al., 2020a; Pezeshki
et al., 2021), in order to focus on more complex patterns
with a higher potential for invariance.

7 Discussion
We have introduced CROSS-RISK MINIMIZATION (XRM),
a simple algorithm for environment discovery. XRM pro-
vides a recipe to tune its hyper-parameters, does not require
early-stopping, and can discover environments for all train-
ing and validation data—dropping the requirement for hu-
man annotations at all. More specifically, XRM trains two
twin classifiers on random halves of the training data, while
encouraging each twin to imitate confident held-out mis-
takes by their sibling. This implements an “echo-chamber”
that identifies environments that differ only in spurious cor-
relation, and endow subsequent OOD generalization algo-
rithms with oracle-like performance.

We highlight two directions for future work. Firstly, how
does XRM relate to the invariance principle Y ⊥ E |
Φ(X)? What is the interplay between revealing relevant
labels Y and relevant environments E as to afford invari-
ance? To our knowledge, XRM is the first environment
discovery algorithm tampering with labels Y , thus exploring
invariance—and the violation thereof—from a new angle.
Because relabeling happens with a probability proportional
to confidence, we expect model calibration to play a role
in understanding the theoretical underpinnings of XRM,
as it happened with other invariance methods (Wald et al.,
2021). Overall, the theoretical analysis of XRM will call
for new tools, because label-flipping steers XRM away from
the Bayes-optimal predictor.

Secondly, we would like to further understand the rela-
tionship between XRM and the multifarious phenomenon
of memorization. Good memorization affords invariance
(Where did I park my car?), and therefore depends on the
collection of environments deemed relevant. Bad memo-
rization happens due to “structured over-fitting”, commonly
incarnated as a bad learning strategy; “use a simple feature
for the majority, then memorize the minority”. XRM seems
to attack a similar problem but, how does it specifically
relate to these two flavours of memorization? Does XRM
discover environments that promote features that benefit all
examples?
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A Further Related Work
The literature on OOD and domain generalization spans a decade and comprises a vast amount of works. In the review
below, we survey (i) some of the major milestones of OOD generalization research, (ii) advances in the sub-problem of
sub-population shift, (iii) the multifarious connections between OOD generalization and causal inference, (iv) efforts to learn
domains, sub-populations, or environments from pooled collections of training examples previous to our XRM proposal,
and (v) their limitations in terms of annotation requirements and impossibility results.

(i) The first works in OOD and domain generalization proposed algorithms that summarize each domain as a kernel mean
embedding of the respective distribution of inputs (Blanchard et al., 2011; Muandet et al., 2013); these were later
extended to the realm of deep neural networks (Zhang et al., 2021). One common avenue towards domain generalization
is to learn a predictor where the feature representation has the same distribution across domains (Sun & Saenko, 2016;
Ganin et al., 2016). Another major strategy is to enforce learning a richer feature space (Zhang et al., 2022a), which
can be done by combining the weights of multiple models with different hyper-parameter configurations (Cha et al.,
2021; Rame et al., 2022; Wortsman et al., 2022; Lin et al., 2023), or biasing training to make them disagree with each
other (Nam et al., 2020; Pagliardini et al., 2023; Lee et al., 2023). Learning from combinations of examples, by means
of mixup (Zhang et al., 2018), is also a promising route to diminish the impact of spurious correlations (Yao et al., 2022;
Giannone et al., 2022). All in all, there are multiple frameworks that evaluate dozens of OOD generalization algorithms
across a variety of benchmark datasets, such as DomainBed (Gulrajani & Lopez-Paz, 2020) and WILDS (Pang Wei
Ko et al., 2021). We recommend the reader to consult recent surveys (Zhou et al., 2022a; Wang et al., 2021) for a
taxonomy of the vast array algorithms on offer.

(ii) Sub-population shift is a particular type of OOD generalization problem, where environments are direct annotations of
a spurious attribute, and one can assume that the test domain will be equal a subdistribution—group—of the training
data. The gold-standard for addressing sub-population shifts is group distributionally robust optimization (Sagawa
et al., 2019, GroupDRO). Group subsampling and reweighting schemes, albeit simple, also provide state-of-the-art
accuracy (Idrissi et al., 2022). To achieve good performance, it is known that it suffices to finetune the last layer
of a deep neural network with a small training set with balanced groups (Izmailov et al., 2022). The framework of
SubpopBench compares twenty algorithms for sub-population shift across a dozen benchmark datasets (Yang et al.,
2023).

(iii) The goal of OOD/domain generalization can be understood as finding predictors invariant across a family of relevant
environments (Arjovsky et al., 2019). This establishes an intimate link between OOD generalization and causality
under the interventionist account, where causation is defined as invariance across interventions (Woodward, 2005). A
pioneering method attacks the problem OOD generalization as finding invariant causal predictors (Peters et al., 2016,
ICP). The framework of invariant risk minimization (IRM) (Arjovsky et al., 2019) extends ICP to deep neural networks,
advocating the invariance principle of “finding a feature representation such that the optimal classifier matches across
environments”. Researchers have proposed multiple variants of the original IRM formulation, with notable examples
being risk extrapolation (Krueger et al., 2021, vREX) and sparse risk minimization (Zhou et al., 2022b). The IRM
framework has found multiple applications, with fair face recognition (Ma et al., 2023) being a recent example.

(iv) The main factor limiting the application of OOD generalization and sub-population shift machinery is their requirement
of domain, environment, or group annotations. Unfortunately, these are resource-intensive to obtain and are limited by
human annotators’ biases, as the biases they identify may not align with those learned by models, and vice versa (Bell
& Sagun, 2023).

Consequently, a wide array of methods has been recently proposed to estimate these annotations from pooled collections
of training data (LaBonte et al., 2023; Zhang et al., 2023; Tsirigotis et al., 2023). Among them, learning from
failure (Nam et al., 2020, LfF) learns a biased network, and a final network that focuses on the examples misclassified
by the biased network. Environment inference for invariant learning (Creager et al., 2020, EIIL) searches for an
environmental partition that violates the IRM principle. Just-train-twice (Zheran Liu et al., 2021, JTT) trains one first
network for a few iterations, and a final network to focus more on the examples from the first network. Correct and
Contrast (Zhang et al., 2022b, CNC) leverages ERM failures and contrastive learning to learn a robust representation.
Automatic feature reweighting (Qiu et al., 2023, AFR) learns a first network for a few iterations, and then fine-
tunes the last layer to focus on mistakes. Learning to split (Bao & Barzilay, 2022, LS) and adversarial re-weighted
learning (Lahoti et al., 2020, ARL) implement adversarial games to find a split of the training data inducing maximum
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out-of-sample error. Bias amplification (Li et al., 2023, BAM) incorporates per-example “slack variables” to absorb
the fast learning of spurious correlations. No subclass left behind (Sohoni et al., 2020, GEORGE) clusters the hidden
representation of a neural network to construct different environments. (Teney et al., 2021) manually identify variables
to stratify pooled collections of training examples into environments. In the context of label noise robustness, the prior
CrossSplit (Kim et al., 2023) uses a similar approach to that of XRM. CrossSplit uses a pair of networks trained on two
disjoint parts of the training data and uses label correction to prevent memorization of noisy (mis-labelled) examples.
While confidently mistaken cross-predictions are indicators of a model’s memorization of a noisy label in the context
of the CrossSplit paper, they indicate a model’s reliance on spurious correlations in our work. In the context of graph
OOD generalization, GALA (Chen et al., 2024) was proposed as a framework for graph OOD generalization that uses
an assistant ERM model to identify invariant subgraphs through agreement and disagreement with proxy predictions.

(v) One important note to the environment discovery methods described above is that they still require group annotations
in a validation set, used for selecting a model with good worst-group-accuracy. In the complete absence of environment
annotations, learning invariant predictors is an impossible task in its full generality (Chen et al., 2022; Lin et al., 2022a;
Tan et al., 2023; Chen et al., 2023). Because we have proposed XRM as an alternative to surmount such daunting task,
the next section provides intuitions to identify success and failure cases of our method.

B Experimental Details

B.1 Sub-population Shift Experiments

For the results in Table 1, we follow standard experimental protocol as in (Yang et al., 2023). For model selection, we
adhere to the standard practice of using the worst-group-accuracy. We try 10 different hyper-parameter combinations
detailed in Appendix B.7 with one random seed. We select the hyper-parameter combination and early-stopping iteration
yielding maximal validation worst-group-accuracy (or, in the absence of groups, worst-class-accuracy). Next, we repeat the
experiment 10 times with different seeds. Regardless of how training and validation groups are discovered, we always report
test worst-group-accuracy over the human group annotations provided by each dataset.

We consider six standard datasets. These are the four image datasets Waterbirds (Wah et al., 2011), CelebA (Liu et al.,
2015), MetaShift (Liang & Zou, 2022), and ImageNetBG (Xiao et al., 2020); and the two natural language datasets
MultiNLI (Williams et al., 2017) and CivilComments (Borkan et al., 2019). For CelebA, predictors map pixel intensities
into a binary “blonde/not-blonde” label. No individual face characteristics, landmarks, keypoints, facial mapping, metadata,
or any other information was used to train our CelebA predictors. Image datasets use a pretrained ResNet-50 (He et al.,
2016), frozen for XRM experiments. Text datasets use a pretrained BERT (Devlin et al., 2018). The linear layers on the top
of the pretrained models are initialized at zero. All images are resized and center-cropped to 224× 224 pixels, and undergo
no data augmentation. We use SGD with momentum 0.9 to learn from image datasets unless otherwise mentioned, and we
employ AdamW (Loshchilov & Hutter, 2017) with default β1 = 0.9 and β2 = 0.999 for text benchmarks. As for the OOD
generalization algorithms, we consider ERM, group distributionally robust optimization (Sagawa et al., 2019, GroupDRO),
group re-weighting (Japkowicz, 2000, RWG), and group sub-sampling (Idrissi et al., 2022, SUBG).

We also conduct experiments on ColorMNIST (Arjovsky et al., 2019), but keep a strict protocol. More specifically, we
set both training and validation data to contain two environments, with 0.8 and 0.9 label-color correlation, while the test
environment shows 0.1 label-color correlation. This contrasts Arjovsky et al. (2019), who used the test environment for
model selection. We train a three-layer fully-connected network with layer sizes [2 ∗ 14 ∗ 14, 300, 300, 2] and use ReLU
as the activation function. The network is optimized using the Adam optimizer with a learning rate of 1e− 3, and default
parameters β1 = 0.9 and β2 = 0.999. We train all algorithms for a number of iterations that allows convergence within a
reasonable compute budget. Full results with error bars are reported in Table 5.

For the experiment on CIFAR-10 (Krizhevsky et al., 2009), we train a VGG-16 model (Simonyan & Zisserman, 2014) using
SGD with a learning rate of 1e− 2 and a momentum of 0.9.

B.2 DOMAINBED Experiments

For the results in Table 3 and Table 6, we adhere to the original codebase from DOMAINBED (Gulrajani & Lopez-Paz,
2020). Each dataset is used to train a model on all but one environment, which is held out as the test domain. This process is
repeated for each possible environment as the test domain, resulting in multiple training and testing splits for each dataset.
We experiment with ERM and the CORAL algorithm as it is the best performing single-model (non-ensembling) method

14



Discovering Environments with XRM

Table 5: Worst-group-accuracies and standard deviations for all datasets, algorithms, and annotations over 10 trials.
ERM GroupDRO RWG SUBG

None Human XRM None Human XRM None Human XRM None Human XRM

Waterbirds 70.4 ±2.99 76.1 ±2.37 75.3 ±1.96 71.7 ±4.09 88.0 ±2.61 86.1 ±1.28 74.8 ±2.50 87.0 ±1.63 84.5 ±1.53 73.0 ±2.75 86.7 ±1.00 76.3 ±8.41

CelebA 63.3 ±2.73 56.8 ±3.48 57.0 ±3.48 67.8 ±1.29 88.7 ±1.67 88.5 ±1.23 62.8 ±1.32 84.8 ±1.45 81.9 ±2.56 70.6 ±2.13 83.2 ±2.70 82.2 ±2.54

MultiNLI 70.7 ±4.04 72.2 ±3.02 66.7 ±3.41 68.9 ±2.65 75.3 ±1.42 72.8 ±1.77 68.4 ±1.77 71.1 ±1.60 67.2 ±1.56 70.0 ±2.97 67.8 ±0.66 71.8 ±1.58

CivilComments 66.7 ±3.46 73.6 ±5.77 71.9 ±4.48 65.5 ±2.05 73.7 ±0.60 70.1 ±4.41 66.7 ±4.58 74.0 ±6.30 72.4 ±0.93 66.4 ±2.56 71.3 ±7.63 65.6 ±1.12

ColorMNIST 10.1 ±0.51 10.0 ±2.40 13.0 ±2.27 10.0 ±0.51 10.2 ±2.37 69.5 ±0.98 10.1 ±0.51 10.6 ±1.85 70.5 ±1.00 10.1 ±0.51 10.3 ±2.21 64.3 ±1.09

MetaShift 73.8 ±2.99 75.1 ±4.62 74.0 ±3.95 75.4 ±3.91 81.8 ±4.42 78.8 ±4.81 64.6 ±4.55 75.7 ±4.45 78.6 ±4.86 64.6 ±3.38 74.5 ±3.49 77.9 ±5.58

ImagenetBG 78.0 ±3.04 78.7 ±1.89 79.2 ±1.93 78.4 ±3.43 77.6 ±1.40 75.5 ±1.69 76.9 ±2.42 79.3 ±2.65 77.8 ±2.66 79.8 ±3.55 78.8 ±3.55 77.6 ±1.79

according to the DOMAINBED suite. For each triplet of (dataset, method, test environment), we sweep over 10 different
hyper-parameter combinations detailed in Appendix B.7. We perform model selection based on the average accuracy
over the validation environments, which is referred to as the ‘training domain validation set’ in the DOMAINBED paper.
In Table 6, we report the results for each environment when selected as the test environment. Additionally, we report the
average and worst environment test accuracies. In settings without environment annotations (i.e., ERM), we combine all
training environments and then split into one training and one validation set. In those cases with annotations, whether
human-annotated or discovered by XRM, each training environment is divided into as many training and validation sets as
the number of environments.

Table 6: Full results for the DOMAINBED suite.

VLCS C L S V Avg Worst

ERM (None) 96.70 64.85 74.20 76.15 77.97 64.85
CORAL (Human) 97.35 65.00 72.80 76.35 77.87 65.00
CORAL (XRM) 95.55 66.15 72.45 76.50 77.66 66.15

PACS A C P S Avg Worst

ERM (None) 84.65 80.65 95.55 72.55 83.35 72.55
CORAL (Human) 84.90 80.75 96.60 77.70 84.98 77.70
CORAL (XRM) 81.90 77.30 96.90 79.15 83.81 77.30

OfficeHome A C P R Avg Worst

ERM (None) 59.50 52.25 74.15 76.00 65.47 52.25
CORAL (Human) 64.00 53.55 76.15 77.25 67.73 53.55
CORAL (XRM) 61.80 53.90 74.85 77.50 67.01 53.90

TerraIncognita L100 L38 L43 L46 Avg Worst

ERM (None) 54.80 42.30 56.40 34.60 47.02 34.60
CORAL (Human) 58.20 39.25 59.45 37.15 48.51 37.15
CORAL (XRM) 59.20 45.10 56.10 38.00 49.60 38.00

DomainNet clip info paint quick real sketch Avg Worst

ERM (None) 47.40 14.75 37.45 9.30 42.10 39.15 31.69 9.30
CORAL (Human) 60.05 20.25 47.90 13.25 59.95 50.45 41.97 13.25
CORAL (XRM) 50.40 16.80 42.30 11.60 50.40 43.70 35.87 11.60

B.3 Dominoes Experiments

We conduct an additional experiment on the dataset of Dominoes (Geirhos et al., 2020). Dominoes is an image dataset
in which images from two other datasets are concatenated. Particularly, the top half of an image shows MNIST digits
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Figure 4: Logit scatter plots for models trained on Dominoes-MF. The x-axis shows the logits with the original training
examples, while the y-axis displays the logits for the same training examples with the MNIST part removed. These plots
help reveal the extent of reliance on the spurious feature (MNIST digit) versus the core feature (FashionMNIST or Cifar). a)
Vanilla ERM Model: Strong reliance on the spurious MNIST digit feature and partial dependence on the core feature. b)
XRM Model: Strong reliance on the spurious MNIST digit. c) GroupDRO Model with XRM-Inferred annotations: point
mostly on the diagonal suggesting invariance to the spurious feature, focusing only on the core feature. d) GroupDRO with
ground-truth annotations for reference. We highlight that for XRM, it is desirable to only rely on the spurious feature since
this will then enable the subsequent GroupDRO to learn the invariant core feature.

from classes {0, 1}. The bottom half shows images from classes {coat, dress} of FashionMNIST in the MF (MNIST-
MNISTFashion) version. And in the MC (MNIST-CIFAR) version, the bottom half shows images from classes {car, truck}
of CIFAR-10. We followed a setup as described in (Kirichenko et al., 2022) (except that we used a smaller ConvNet)
where the spurious MNIST part is strongly correlated (99% of the time) with the labels in the training data but drops to
50% (random) in the validation and test sets. Meanwhile, the core feature (either FashionMNIST or CIFAR) is always
fully correlated with the labels. We compare three methods on these datasets: the Vanilla ERM, GroupDRO) using the
ground-truth annotations1, and GroupDRO with XRM-inferred annotations. The results, shown in Table 7, suggest that the
group annotations inferred by XRM are as effective as the ground-truth annotations.

Table 7: Worst-group accuracy of three methods on two Dominoes datasets. Dominoes MF and MC are concatenation
of MNIST digits with FashionMNIST and Cifar-10, respectively. The MNIST digit is spurious with 99% correlation in
the training set and random correlation in the validation and test sets. The core feature (either FashionMNIST or Cifar) is
however always fully correlated with the labels. GT denotes ground-truth group annotations.

ERM XRM+GroupDRO GT+GroupDRO

Dominoes MF 50.74 86.68 85.28
Dominoes MC 48.30 68.78 69.43

To further compare these methods, in Figure 4, we provide a scatter plot of the model logits for each method. Specifically,
we feed two versions of all training examples to a fully trained model and store two sets of logits. One set is the result of the
original training examples, and the other set is obtained with the MNIST part removed (replaced by average).

• For an ERM model, the logits vary mostly along the x-axis and less along the y-axis, suggesting that the model is
mostly relying on the spurious feature but also partially on the core feature.

• An XRM model varies mostly along the x-axis and is almost invariant along the y-axis, indicating that the model
strongly relies on the spurious feature alone and hence can effectively split the data into two environments according to
the spurious correlation.

• For a model trained with GroupDRO on XRM-annotations, points are almost all on the diagonal, suggesting that
removing the spurious feature does not change the logits much, implying that the model is invariant to the spurious
feature and only relies on the core feature.

• A model trained with GroupDRO using the ground-truth annotations shows similar results, proving it mainly relies on
the core feature.

1annotations indicate whether the MNIST half matches the label or not
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Figure 5: Hyperparameter sensitivity analysis of XRM on the Waterbirds. Here we evaluate the sensitivity of XRM’s
performance to variations in learning rate and weight decay hyperparameters, while keeping the batch size fixed at 512. Left:
worst-group-acc of a GroupDRO model trained with XRM annotations. Each cell within the grid represents a hyperparameter
combination for XRM, with the color intensity indicating the test worst-group-accuracy. Right: the percentage of labels
flipped by XRM for the corresponding hyperparameter combination, serving as the model selection criterion. Analysis: The
best XRM model is chosen according to the highest flip percentage (red square), which resulted in an accuracy of 87.3%
(dashed red square). However, the plot on the left shows that even neighboring cells with very different hyperparameters can
still lead to near-optimal performance.

B.4 Hyperparameter Sensitivity Analysis of XRM on Waterbirds

Here, we conduct a hyperparameter sensitivity experiment on the Waterbirds dataset and report the results in Figure 5. We
fix the batch-size at 512 and vary the learning rate and weight decay coefficient to see how XRM performs with different
hyperparameters. This grid of outcomes across different learning rate and weight decay settings shows that XRM works
well across a wide range of hyperparameter combinations.

For each combination of learning rate and weight decay (each cell in the grid), we fully train an XRM model, get the group
annotations, and then use GroupDRO with these inferred annotations. The hyperparameters for GroupDRO kept the same
throughout all experiments. Hence, any variability in performance is only attributed to the XRM phase.

B.5 Can XRM Handle Settings with More Than Two True Underlying Environments?

XRM is always presented with pooled data with no explicit annotations. Regardless of how many human-annotation
environments are in the pooled data, XRM always splits the data into 2 environments (2 groups per label). For example, all
the datasets in table 6, have more than two human-annotated environments. That is while XRM split the examples into two
environments.

Whether two environments suffice—when constructed appropriately—is in fact a fascinating question that we have pondered
about for a while. Our experiments, especially those on the DomainBed, show that although XRM splits the data into a
smaller number of groups than the human annotations, it is successful in forming sufficiently varied groups to match the
performance with human annotations.

To illustrate, take one of the experiments with the PACS dataset where the “Photo” environment is left for testing and
the other three environments of “Art”, “Cartoon”, and “Sketch” are pooled together and presented to XRM. Now XRM’s
objective is to split the dataset into environments that lead to learning an invariant predictor, not to recover the original
environment. XRM’s splitting is done according to the ‘hardness’ of examples and might or might not align with the human
annotations. To see that, we visualize a per-class confusion matrix for the environment discovery of XRM. We also quantify
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Figure 6: Confusion matrices of XRM-inferred environments vs. human-annotated environments for the PACS
dataset. Each row corresponds to one of the human-annotated environments, e ∈ {Art, Cartoon, Sketch}. Columns
represent the two environments, ê0/1 inferred by XRM for each class. Entries in the matrices indicate the percentage
of examples from each human-annotated environment that XRM grouped into each of its two inferred environments.
Normalized Mutual Information (NMI), a metric between zero and one, quantifies the alignment between the inferred and
annotated environments. Analysis: For certain classes (e.g., “house”), the XRM-inferred environments align well with
human annotations, while for other classes (e.g., “dog”), no alignment is observed. This is acceptable as long as the inferred
environments can be used for invariant learning, which appears to be the case. XRM’s goal is to find environments suitable
for subsequent invariant learning, rather than necessarily recovering the original environments. As a reference point, a
random splitter would result in an NMI of zero on all classes, and a subsequent invariant learning method based on random
split cannot perform better than ERM. Worst-group-accuracy of ERM is 72.55 while CORAL with Human: 77.70, XRM:
77.30, random envs: 71.60.

the alignment between XRM environments and human-annotated ones using Normalized-Mutual-Information (NMI), a
higher NMI means more alignment.

We observe that for some of the classes (e.g., the “House” class) there is a rather strong alignment. However, for some other
classes (e.g., the “Dog” class), there is no alignment between human-annotated environments and those of XRM. That is
absolutely fine as long as the inferred environments can be used for invariant learning and that appears to be the case.

As a reference point, a random splitter would lead to an NMI of zero on all classes and a subsequent invariant learning
method cannot do better than an ERM with no environment annotations.

B.6 XRM Model Selection

To determine the best hyper-parameter combination for each experiment, we run XRM with 10 different hyper-parameter
combinations detailed in Appendix B.7 and one random seed. We then compute the percentage of flipped labels that
appear at the last iteration for each combination. The combination with the highest percentage is selected as the best. We
disregard rare cases in which a hyper-parameter combination yields degenerate grouping where every example in one class
in misclassified. Next, we repeat the experiment 10 times with different seeds to obtain 10 sets of inferred labels. Finally,
we apply an OOD generalization algorithm on these inferred labels again using 10 different seeds.

B.7 Hyper-parameter Sampling Grids

algorithm hyper-parameter ResNet BERT

learning rate 10Uniform(−5,−3) 10Uniform(−6,−4)

XRM, ERM, weight decay 10Uniform(−6,−3) 10Uniform(−6,−3)

SUBG, RWG batch size 2Uniform(5,7) 2Uniform(4,6)

dropout — Random([0, 0.1, 0.5])

GroupDRO η 10Uniform(−3,−1) 10Uniform(−3,−1)
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B.8 Statistics of the Datasets

Dataset Data type Number of envs. Number of classes Dataset size

Waterbirds Image 2 2 11788
CelebA Image 2 2 202599
CivilComments Text 8 2 242436
MultiNLI Text 2 3 412349
MetaShift Image 2 2 3499
ImageNetBG Image 2 9 192255
VLCS Image 4 5 10729
PACS Image 4 7 9991
OfficeHome Image 4 65 15588
Terra Incognita Image 4 10 24788
DomainNet Image 6 345 586575

B.9 Learning to Split on Waterbirds

We benchmarked the official learning to split code-base https://github.com/YujiaBao/ls on the WaterBirds
dataset. We found on a Volta-32GB GPU running the learning to split group inference module took approximately 20 hours.
We assessed the method’s sensitivity to two hyperparameters: the number of epochs used for early stopping (patience
argument in the codebase) and the pre-supposed ratio of groups (based on the ratio argument in the code). For patience
we swept over (2, 5, 10) with 5 being the default value. For ratio, we swept over (0.25, 0.5, 0.75) with 0.75 being the
default value based on the paper. We found worst group performance using a fixed GroupDRO phase-2 training varied by as
much as ±7% on Waterbirds.

C XRM in PyTorch
1 import torch
2 from torch.nn.functional import cross_entropy
3

4 def balanced_cross_entropy(p, y):
5 losses = torch.nn.functional.cross_entropy(p, y, reduction="none")
6 return sum([losses[y == yi].mean() for yi in y.unique()])
7

8 def xrm(x_tr, y_tr, x_va, y_va, lr=1e-2, max_iters=1000):
9 # init twins and assign examples (Section 4.1)

10 nc = len(y_tr.unique())
11 net_a = torch.nn.Linear(x_tr.size(1), nc)
12 net_b = torch.nn.Linear(x_tr.size(1), nc)
13 net_a.weight.data.mul_(0.0)
14 net_b.weight.data.mul_(0.0)
15 ind_a = torch.zeros(len(x_tr), 1).bernoulli_(0.5).long()
16

17 # training (Section 4.2)
18 opt = torch.optim.SGD(
19 list(net_a.parameters()) + list(net_b.parameters()), lr)
20

21 for iteration in range(max_iters):
22 pred_a, pred_b = net_a(x_tr), net_b(x_tr)
23 pred_hi = pred_a * ind_a + pred_b * (1 - ind_a)
24 pred_ho = pred_a * (1 - ind_a) + pred_b * ind_a
25

26 opt.zero_grad()
27 balanced_cross_entropy(pred_hi, y_tr).backward()
28 opt.step()
29

30 # label flipping, useful for model selection (Section 4.3)
31 p_ho, y_ho = pred_ho.softmax(dim=1).detach().max(1)
32 is_flip = torch.bernoulli((p_ho - 1 / nc) * nc / (nc - 1)).long()
33 y_tr = is_flip * y_ho + (1 - is_flip) * y_tr
34

35 # environment discovery (Section 4.4)
36 cm = lambda x, y: torch.logical_or(
37 net_a(x).argmax(1).ne(y),
38 net_b(x).argmax(1).ne(y)).long().detach()
39

40 return cm(x_tr, y_tr), cm(x_va, y_va)

The code above may be helpful to clarify our exposition in the main text. For an end-to-end example running linear XRM
and GroupDRO, see: https://github.com/facebookresearch/XRM/quick_run.py.
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