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Abstract

Machine learning often aims to produce latent em-
beddings of inputs which lie in a larger, abstract
mathematical space. For example, in the field of
3D modeling, subsets of Euclidean space can be
embedded as vectors using implicit neural repre-
sentations. Such subsets also have a natural alge-
braic structure including operations (e.g., union)
and corresponding laws (e.g., associativity). How
can we learn to “union” two sets using only their
latent embeddings while respecting associativity?
We propose a general procedure for parameter-
izing latent space operations that are provably
consistent with the laws on the input space. This
is achieved by learning a bijection from the latent
space to a carefully designed mirrored algebra
which is constructed on Euclidean space in ac-
cordance with desired laws. We evaluate these
structural transport nets for a range of mirrored
algebras against baselines that operate directly on
the latent space. Our experiments provide strong
evidence that respecting the underlying algebraic
structure of the input space is key for learning
accurate and self-consistent operations.

1. Introduction
Algebraic structure underpins a wide range of interesting
mathematical objects such as sets, functions, distributions,
and symbolic strings. In machine learning (ML), these ob-
jects are often learned and subsequently embedded into Eu-
clidean space for downstream tasks: consider embeddings
of implicit neural representations (INRs) for sets (De Luigi
et al., 2023), hypernetworks for functions (Ha et al., 2017),
conditional embeddings of generative architectures for prob-
ability distributions (Sohn et al., 2015; Winkler et al., 2019;
Nichol et al., 2021), and text embeddings for strings (Wang
et al., 2022; Devlin et al., 2018). Our goal is to enable math-
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ematical operations from the underlying algebraic structure
(e.g., set union when the underlying objects are sets) to be
applied directly to latent embeddings in a way that respects
axiomatic laws.

The importance of respecting mathematical structure has
motivated machine learning developments of immense im-
portance. Indeed, much of geometric deep learning is di-
rectly driven by symmetries in underlying objects (Bronstein
et al., 2021). Graph neural networks learn functions that
provably respect equivariance or invariance properties under
node-relabeling graph isomorphisms (Maron et al., 2018;
Azizian & Lelarge, 2020). The seminal DeepSet architecture
enforces permutation invariance, reflecting the unordered
nature of its finite set inputs (Zaheer et al., 2017). Convolu-
tional filters are also known to be approximately equivariant
to translations in input images—a structure which naturally
mirrors that of the underlying image manifold (Cohen &
Welling, 2016; Cohen et al., 2019; Kondor & Trivedi, 2018).

This work is a first attempt to transport general algebraic
structures from input data onto learned latent embeddings.
We outline a general procedure for defining algebraic oper-
ations on the latent space that respect laws on the source
space (input space). Defining operations directly on latent
space embeddings, rather than using the original source
objects, is crucial for computational efficiency and compat-
ibility with larger ML workflows. There has been some
interest in algebraic and category theoretic approaches to
the study of specific computational architectures and auto-
matic differentiation (Martin-Maroto & de Polavieja, 2018;
Shiebler et al., 2021; Sennesh et al., 2023), as well as in
the application of ML to computational problems arising
in algebra (He & Kim, 2023). However, to the best of our
knowledge, our work provides the first general method to
transport algebraic structures to learned embeddings.

We discuss our ideas using the language of universal alge-
bra, which studies algebraic structures as general pairings
of a set with a collection of operations (Burris & Sankap-
panavar, 1981). We note that universal algebra is subsumed
within category theory. As the universal algebraic perspec-
tive is sufficient here, we avoid generalizing to more com-
plex category-theoretic frameworks.

Source code for our experiments is available on GitHub.
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As our transport of algebraic structures relies on the con-
struction of a bijection map, we leverage architectures from
the invertible neural network literature. Our model of choice
is the seminal NICE architecture, which uses coupling layers
to enable easily-computable forward and inverse methods
(Dinh et al., 2015). These coupling layers have been shown
to be universal diffeomorphism approximators (Teshima
et al., 2020), and are best known for their usefulness in
constructing normalizing flows (Papamakarios et al., 2021;
Kobyzev et al., 2020). Since our application requires differ-
entiation through the function inverse, other architectures
which rely on solving fixed-point iterations to compute in-
verses are not considered (Behrmann et al., 2019).

We focus on embeddings of positive-volume subsets of Rd

as a working example. This is distinct from methods that
consider finite sets, such as DeepSets (Zaheer et al., 2017).
Our setting is motivated by the practical application of learn-
ing shapes for 3D modeling and graphics (Park et al., 2019).
Typical approaches parameterize a signed distance function
or simply regress on a shape indicator function (Park et al.,
2019; Mescheder et al., 2019; Chen & Zhang, 2019). As
the object surface is implicitly defined as a level set of the
resulting network, this is termed an Implicit Neural Rep-
resentation (INR). A subsequent innovation that we adopt
improves representation quality by introducing sinusoidal
activations (Sitzmann et al., 2020). While implicit represen-
tations of shapes achieve strong performance for a variety
of objects, the significant storage requirements of the cor-
responding networks are impractical for larger workflows.
Recent research has addressed this by directly compress-
ing INR weights into latent embeddings (De Luigi et al.,
2023), enabling a variety of downstream tasks such as shape
generation.

1.1. Contributions

Our work establishes the following contributions.

1. We develop a general procedure for transporting al-
gebraic structure from the source data to the latent
embedding space. This is accomplished via a learned
bijection to a carefully designed mirrored algebra.

2. We illustrate the subtleties that arise with this proce-
dure by considering algebras of sets as a case study.
Namely, we mathematically prove that transporting
all three basic set operations (union, intersection, and
complementation) is infeasible and subsequently drop
complementation, yielding a distributive lattice struc-
ture on the source space which is transportable.

3. We experimentally validate Hypothesis 1 on this dis-
tributive lattice of sets, showing that adherence to
source algebra laws is crucial for strong learned opera-
tion performance.

Hypothesis 1. Learned latent space operations will
achieve higher performance if they are constructed
to satisfy the laws of the underlying source algebra.

2. Universal algebra primer
In this section, we briefly recall the pertinent definitions and
notations used throughout this paper. We refer the reader
to Burris & Sankappanavar (1981) and Wechler (2012) for
detailed texts concerning universal algebra.

Algebras and isomorphisms. Let A be a nonempty set
and n a nonnegative integer. If n = 0, we define An = {∅}.
A function f : An → A is called an n-ary operation on
A, and n is called the arity of f . If the arity of f is 1,
then f is called a unary operation, and if the arity of f
is 2, then f is called a binary operation. If the arity of f
is 0, then f is called a nullary operation, which may be
identified with an element of A. We will commonly denote
nullary operations, unary operations, and binary operations
by f = f(∅), fa = f(a), and afb = f(a, b), respectively.

A type is a set F , whose elements are called operation sym-
bols, together with a function ar : F → N ∪ {0}. If f ∈ F
and ar(f) = n, then an n-ary operation fA : An → A is
called a realization of f on A.

An algebra of type F is an ordered pair A = (A,FA) with
A being a nonempty set and FA = {fA : f ∈ F} being a
family of realizations fA of operation symbols f on A, and
with FA in one-to-one correspondence with F .

One of the most fundamental algebras is a group, which is
an algebra (A, •,−1, e) whose operations satisfy

e • a = a, (G1)

(a−1) • a = e, (G2)
(a • b) • c = a • (b • c), (G3)

for all a, b, c ∈ A. Here, • is a binary operation, −1 is a
unary operation, and e is a nullary operation. The equations
(G1), (G2), and (G3) are the group’s underlying laws, which
we will define shortly. We use the term algebraic structure
to refer to a combination of a type and a collection of laws.

Consider two algebras A = (A,FA) and B = (B,FB) of
type F . A function φ : A→ B is called an homomorphism
from A to B if it satisfies

φ(fA(a1, . . . , an)) = fB(φ(a1), . . . , φ(an))

for all f ∈ F and all a1, . . . , an ∈ A, where of course
n = ar(f). If, additionally, φ is bijective, then it is called
an isomorphism from A to B. If A is isomorphic to B
(meaning there is an isomorphism φ from A to B), then we
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write A ∼= B. Isomorphic algebras satisfy the same laws,
and hence can be viewed as the same algebraic structures.

Two algebras may be of the same type yet not be isomor-
phic, and thus have fundamentally different structures. For
example, rings and lattices are distinct algebraic structures
of common type F = {f1, f2} with ar(f1) = ar(f2) = 2.

Terms and laws. For a set of variables X and a type F ,
the set TF (X) is the set of terms of type F over X and con-
sists of all strings of variables in X and nullary operations
in F , connected by n-ary operations. For example, consider
a type F with one binary operation • and a nullary operation
e. IfX = {x, y}, then x, y, e, x •y, x • (y •e), and x • (x •y)
are all examples of terms in TF (X).

Note that a term p(x1, . . . , xn) ∈ TF (X) is defined inde-
pendently of any specific algebra of type F . Making the
term concrete for a particular algebra A = (A,FA) of
type F yields a term function pA : An → A. Namely,
pA(a1, . . . , an) substitutes ai ∈ A for xi in the term
p(x1, . . . , xn), and recursively evaluates using the realized
operations from A. Continuing the previous example, let A
be the group of the real numbers equipped with the standard
addition operation. The term p(x, y) = x • (y • e) would
yield the term function given by pA(a, b) = a+ (b+ 0).

We call two terms p(x1, . . . , xn), q(x1, . . . , xn) ∈ TF (X)
equivalent with respect to an algebra A if, for all ai ∈ A, it
holds that pA(a1, . . . , an) = qA(a1, . . . , an).

A law R for a type F is now defined as the equality of two
terms p(x1, . . . , xn), q(x1, . . . , xn) ∈ TF (X):

R : p(x1, . . . , xn) = q(x1, . . . , xn).

We useR instead of the more common letter L, which we re-
serve for referring to latent spaces. For our running example,
the commutative law for the underlying type F = {•,−1, e}
over a set of variables X = {x, y} is given by

x • y = y • x.

Finally, we say that an algebra A of type F satisfies, or
respects, a law R : p(x1, . . . , xn) = q(x1, . . . , xn) if the
law holds for realizations of the terms as term functions:

RA : pA(a1, . . . , an) = qA(a1, . . . , an) for all ai ∈ A.

It is clear that the group of reals under addition satisfies the
commutative law, since a+ b = b+ a for all a, b ∈ R.

3. Method
With the framework of universal algebra now developed, we
may formally describe the goal of this paper. Consider a
machine learning task in which input data is drawn from

Algorithm 1 Transport of algebraic structure from S to L
In: Source alg. S, latent space L, encoder E, decoder D
Out: Latent algebra L

Fix mirrored space M = Rl

Select mirrored algebraM # Same type as S
Parameterize bijection φ
Define induced latent algebra L # Via (1)
Learn parameters of φ # Via (2)

a source algebra S = (S,FS) of type F . The canonical
example we consider is that where input data takes the form
of a set, and hence has associated operations of intersection,
union, and complementation. The typical ML pipeline em-
beds source data from the source space S into a Euclidean
latent space L = Rl. However, such latent space embed-
dings do not respect the algebraic structures encoded in
S; they are only endowed with the unrelated vector space
structure of Rl. Thus, the goal of this paper is as follows:

Transport the algebraic structure S of the source space S
onto the latent space L.

Specifically, we seek to transport both the operations and
laws of S onto L. We emphasize that our goal of structural
transport is distinct from constructing an isomorphism (or
even a nontrivial homomorphism) S → L; this is not gener-
ally possible, since S is problem-determined and our setting
assumes a pretrained encoder-decoder architecture which
fixes L.

Description of the method. The general steps of our
method are described in Algorithm 1, with a corresponding
visualization in Figure 1. We assume that there is a fixed
encoder E : S → L mapping source data to latent embed-
dings and a corresponding decoder D (e.g., a pretrained
autoencoder-style network). To transport the algebraic struc-
ture from the source algebra S to the latent space L, we
propose to learn a bijective map φ from L to another space
M = Rl of the same dimension. We may consider M as
an “alternative latent space,” albeit one in which we have
complete design authority to impose operations that turn
M into an algebraM = (M,FM) of the same type F as
S. Although we focus on the pretrained encoder-decoder
setting for maximum flexibility, it is certainly possible to
jointly learn φ together with the E and D in practice.

Concretely, we endow our mirrored space M with an n-ary
operation fM for each n-ary operation fS from the source
algebra. For an exemplar S with group structure, we would
define one binary operation •M : Rl × Rl → Rl, one unary
operation (−1)M : Rl → Rl, and one nullary operation
identified with some element eM ∈ Rl.

We refer to the constructedM as the mirrored algebra. Al-
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Source Algebra S = (S,FS)
Elements: , , , . . .
Operations: •S , ∗S , ⋄S , . . .
Laws: ∗S = ∗S ,

⋄S ( •S )
= ( ⋄S ) •S ( ⋄S ), . . .

Encoder

Induced Latent Algebra L = (L,FL)

z z

z ∗L z
Elements: z = E( ), z = E( ), . . .
Operations: z •L z := φ−1(φ(z ) •M φ(z )), . . .
Laws: z ∗L z = z ∗L z , . . .

Designed Mirrored AlgebraM = (M,FM)

ẑ

ẑ

ẑ ∗M ẑ
Elements: ẑ = φ(z ), ẑ = φ(z ), . . .
Operations: •M, ∗M, ⋄M, . . .
Laws: ẑ ∗M ẑ = ẑ ∗M ẑ , . . .

Decoder

φ−1 φ (Learned)

φ ◦ E

E D

Figure 1. The proposed method for transporting algebraic structure from S onto the latent space L. The bijection φ is learned (hence the
dashed arrows) in such a way as to best “align” the latent structure L, induced from M, with the given source structure S. All other
components are either fixed (e.g., the encoder and decoder) or designed a priori (e.g., the mirrored algebra).

though it is always possible to endow M with an algebra
of the same type as S, it is generally not possible to ensure
that the resulting algebraM is isomorphic to S. This may
either be due to the fact that S has cardinality strictly greater
than M (due to the embedding process E), or due to inher-
ent incompatibilities between the laws of S and the natural
Euclidean structure on M . Such incompatibilities are dis-
cussed in further detail with our case study in Section 4. We
note that the term “mirrored algebra” is our own and should
not be conflated with other concepts in the literature.

We now transport the structure of our designed mirrored
algebra M to the latent space L via a learned bijection
φ : L → M . Bijectivity is ensured by parameterizing φ
as an invertible neural network using the architecture pro-
posed in Dinh et al. (2015). This automatically induces
an algebraic structure from M onto L. Namely, for ev-
ery n-ary operation fM ∈ FM, we define the realization
fL : Ln → L of the corresponding operation symbol f by

fL(z1, . . . , zn) := φ−1
(
fM(φ(z1), . . . , φ(zn))

)
, (1)

for z1, . . . , zn ∈ L and ar(f) = n. Intuitively, the opera-
tion fL is implemented by mapping latent embeddings into
the mirrored space M , performing the corresponding oper-
ation fM on these mirrored embeddings, and then pulling
the result back to the latent space L. Of course, if fM is
a nullary operation M , then we define the corresponding
operation fL to be the nullary operation on L given by
fL(∅) = φ−1(fM(∅)).

Learning φ. We briefly describe the process of learning
φ to “align” the induced latent algebra L with the source
algebra S . Aligning L to S may be viewed as learning φ so

that the laws of S are also satisfied by L. To achieve this
alignment, it suffices to align individual terms realized by S
andL, as laws are just equalities between terms. We propose
the following procedure, which is illustrated in Figure 2.

Let pi(x1, . . . , xni) ∈ TF (Xi) be a “sampled” term of type
F over a variable set Xi. The manner in which this term
is sampled is task-dependent, but it suffices to identify this
term as a random string involving operation symbols from
F and variables from Xi—see Section 5 for concrete exam-
ples. Next, consider data s1, . . . , sni

∈ S sampled from the
source space. The term is first realized on this source data
by computing pSi (s1, . . . , sni). The term is then also real-
ized by the induced latent algebra as D(pLi (z1, . . . , zni

)),
with zj = E(sj). The loss between this prediction and the
ground truth, as a function of the bijection φ, is given by

Li(φ) := Loss
(
D(pLi (z1, . . . , zni)), p

S
i (s1, . . . , sni)

)
,

for some appropriately chosen loss function Loss.

For example, if S is the power set of Rd equipped with inter-
section and union, the true sampled term might be realized
as pSi (s1, s2, s3) = s1 ∩S (s2 ∪S s3) for some subset data
s1, s2, s3 ⊆ Rd, where ∩S and ∪S are actual set intersec-
tion and union operations, and the corresponding predicted
term would be given by D(E(s1) ∩L (E(s2) ∪L E(s3))),
where ∩L and ∪L are the intersection and union realized in
Euclidean space by efficient arithmetic operations.

The final learning problem then amounts to solving

inf
φ∈Φ

1

N

N∑
i=1

Li(φ), (2)

for some parameterized class Φ of bijections.
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Sampled Term
p(x1, x2, x3) = x1 • (x2 ∗ x3)

Sampled Data
, ,

Encoder
Latent Embeddings

z , z , z
Compute Predicted Term

pL(z , z , z ) = z •L (z ∗L z )

Compute True Term
pS( , , ) = •S ( ∗S )

Compute Loss
L(φ)

Decoder

Figure 2. The bijection φ is learned to align true sampled terms pSi (s1, . . . , sni) with predicted terms D(pLi (E(s1), . . . , E(sni))).

Theoretical developments. Our method comes equipped
with theoretical guarantees that the induced latent algebra re-
spects the underlying source algebra. First, we show that the
induced algebra is always isomorphic to the mirrored alge-
bra by construction. Full proofs for all results are provided
in Appendix A.

Proposition 3.1. Suppose that L,M = Rl and that
φ : L→M is a bijection. LetM = (M,FM) be an alge-
bra of type F and define the family FL := {fL : f ∈ F}
of n-ary operations on L by (1). Then, φ is an isomorphism
from the induced algebra L = (L,FL) toM.

As a consequence of Proposition 3.1, a well-constructed
mirrored space induces an algebra L such that laws on the
source space are satisfied.

Theorem 3.2. Consider a source algebra S = (S,FS) of
type F , and letM = (M,FM) be a mirrored space such
that every law R satisfied by S is also satisfied byM. Then,
the induced latent algebra L, defined by (1), also satisfies
every such law R, for any bijection φ : L→M .

Proof sketch. For a law p(x1, . . . , xn) = q(x1, . . . , xn)
which is satisfied by M, we want to show that
pL(z1, . . . , zn) = qL(z1, . . . , zn) for all zi ∈ L. Propo-
sition 3.1 implies that

φ(pL(z1, . . . , zn)) = pM(φ(z1), . . . , φ(zn)).

After applying a similar procedure to q, we can use the fact
that R is satisfied byM to conclude that

φ(pL(z1, . . . , zn)) = φ(qL(z1, . . . , zn)).

Inverting by φ concludes the proof.

Unfortunately, there is no general guarantee that an isomor-
phism, or even a nontrivial homomorphism, exists from the
source algebra S to the induced algebra on L, even when
the mirrored algebra satisfies the same laws as S.

Proposition 3.3. There exists a source algebra S = (S,FS)
and a mirrored algebra M = (M,FM) with M = Rl,
both of the same type F , such thatM satisfies every law R
that S satisfies, and, for all bijections φ : L→M , there is
no nontrivial homomorphism χ : S → L when L = Rl is
equipped with the algebra induced byM via (1).

On the other hand, under strong assumptions on the encoder
and the expressibility of the source data within Euclidean
space, we can guarantee the existence of a bijection φ that
recovers an isomorphism S ∼=M∼= L, despite the fact that
the encoder E is fixed.

Proposition 3.4. Consider a source algebra S = (S,FS)
of type F , the latent space L = Rl, and an arbitrary en-
coder E : S → L. If E is bijective and there exists a mir-
rored algebraM = (M,FM) withM = Rl and an isomor-
phism ψ : S →M , then there exists a bijection φ : L→M
such that φ ◦ E equals the isomorphism ψ.

Limitations. There is a major challenge in transporting
structure from S to L: the mirrored space structure may not
be amenable to the structure that we want. We will demon-
strate this in Section 4, providing a general impossibility
result as well as a specific corollary for the Boolean lattice
setting. Section 5 experimentally explores this challenge
and shows that even satisfying a subset of source algebra
laws can still yield substantial benefits. At this point, it is
also worth mentioning that our method requires the mir-
rored space to have the same dimension as the latent space,
since our transport of structure depends on the invertibility
of φ. Generalizing past this restriction poses an interesting
direction for future work.

4. Case study: transporting algebras of sets
We apply our framework to learning the algebra of subsets
of Euclidean space. This would empower neural networks
to operate directly on subsets of Rd (De Luigi et al., 2023).
Conventional networks generally only operate pointwise,
producing a single output for a single input in Rd. Allowing
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for sets to be tractably encoded and operated on unlocks
new approaches for a variety of downstream tasks, such as
prediction with set-valued uncertainties (Mahjourian et al.,
2022), reachable set computation (Meng et al., 2022), safety-
constrained trajectory optimization (Michaux et al., 2023),
bin packing (Pan et al., 2023), object pile manipulation
(Wang et al., 2023), and swept volume approximation in
robotics (Chiang et al., 2021).

The purpose of our work is to illustrate the general princi-
ples behind structural transport nets and to experimentally
test Hypothesis 1. We thus do not specialize to any particu-
lar downstream application. Instead, this section explores
the procedure for constructing a mirrored algebra via a con-
crete example, and Section 5 provides controlled synthetic
experiments which support Hypothesis 1.

4.1. Lattices of sets

We introduce here the algebraic structures that are con-
sidered in this section. A Boolean lattice is an algebra
(A,∧,∨,¬, 0, 1) such that the operations ∧, ∨, and ¬ sat-
isfy the laws listed in Table 1. In a Boolean lattice, the binary
operations ∧ and ∨ are read “meet” and “join,” respectively,
and the unary operation ¬ is read “not” or “complement.”
Since 0 and 1 are nullary operations, the “0” and “1” in the
listed laws are to be interpreted as these operations’ images
0(∅) and 1(∅) as elements in A. If S is a set and P(S) is
the power set of S, then (P(S),∩,∪, c, ∅, S) is a Boolean
lattice with c denoting set complementation. Dropping com-
plementation and nullary operations yields a distributive
lattice, which is depicted in the upper section of Table 1.

We denote the Boolean lattice type as FBool, and the dis-
tributive lattice type as FDist.

4.2. Boolean lattice infeasibility

This section shows that it is impossible to define continuous
operations on a Euclidean mirrored space M = Rl with
the type FBool such that the laws in Table 1 are satisfied.
Specifically, it is impossible to define a continuous involu-
tion with no fixed point, conflicting with complementation
laws. We prove this using results from homology and pro-
vide both a general statement of the result and its specific
implementations for Boolean lattices.

Restricting ourselves to continuous operations is important,
as the complementation operation itself is continuous with
respect to a natural topology on the space of sets; we explore
this more thoroughly in Appendix A.2. A more intuitive
justification arises by noting that small perturbations to a set
A will yield commensurate perturbations to Ac.

Our first result shows, informally, that it is impossible to
realize an algebra with a fixed point-free involution on the
mirrored space using continuous operations. We refer the

Table 1. Distributive and Boolean lattice laws.

Commutativity x ∧ y = y ∧ x
Commutativity∗ x ∨ y = y ∨ x
Associativity x ∧ (y ∧ z) = (x ∧ y) ∧ z
Associativity∗ x ∨ (y ∨ z) = (x ∨ y) ∨ z
Absorption x ∨ (x ∧ y) = x
Absorption∗ x ∧ (x ∨ y) = x

Distributivity x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
Distributivity∗ x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

↑ Distributive lattice (without 0, 1, ¬) ↑
Identity x ∧ 1 = x
Identity∗ x ∨ 0 = x

Complementation x ∧ (¬x) = 0
Complementation∗ x ∨ (¬x) = 1

↑ Boolean lattice (with 0, 1, ¬) ↑

reader to Appendix A.2 for more details and proofs.

Theorem 4.1. Consider an algebra A = (A,FA) with a
unary operation □A. Assume A satisfies laws R1, . . . , Rn

which imply that □ has no fixed point: □(x) ̸= x for all
x ∈ A. Furthermore, assume that one of the laws Ri is the
involution law given by

□(□(x)) = x.

Then, there exists no algebra B = (B,FB) on the Euclidean
space B = Rl such that □B is continuous and R1, . . . , Rn

are all satisfied by B.

We provide a specific instantiation of the above theorem for
our considered case of Boolean lattices, leveraging the fact
that the complementation operation is unrealizable.

Corollary 4.2. The Boolean lattice type FBool cannot be
realized on M = Rl with continuous operations such that
the Boolean lattice laws in Table 1 are satisfied.

Proof sketch. The Boolean not operator ¬ satisfies
¬(¬a) = a for any a in the domain. Furthermore, Boolean
lattice laws show that if there were a fixed point b = ¬b,
we must have both b = 0 and b = 1; this is a contradiction
and thus ¬ is an involution with no fixed points. Applying
Theorem 4.1 concludes the proof.

4.3. Relaxing to a distributive lattice

Section 4.2 shows that a Boolean lattice structure cannot be
realized on M = Rl. We relax our requirements to that of a
distributive lattice, and present a structure known as a Riesz
algebra that realizes FDist and satisfies all associated laws.
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Definition 4.3. The Riesz mirrored algebra is the distribu-
tive latticeM = (M,FM

Dist) with operations given by

a ∧M b = min(a, b) and a ∨M b = max(a, b)

on M = Rl, where min and max are defined elementwise.
This algebra satisfies the distributive lattice laws in Table 1.

Since our specific application concerns the distributed lattice
of sets, we can equivalently take our operation symbols to be
∩ and ∪ in place of ∧ and ∨, respectively. With this notation,
the realization ∩S : S × S → S is standard set intersection
on S = P(Rd), the realization ∩M : M ×M → M is
elementwise maximum on the mirrored space M = Rl, and
∩L : L × L → L is the operation on L = Rl induced via
(1). Analogous notational identifications also hold for ∪.

5. Experiments
This section details our experimental results on transport-
ing structure from algebras of sets to latent embeddings.
Following the infeasibility result and subsequent structural
relaxation in Section 4, we seek to transport the distributive
lattice defined by set intersection and set union, disregarding
complementation. Our desired laws are listed in the upper
section of Table 1, identifying ∧ with ∩, and ∨ with ∪.

Our experiments explore the impact of different choices
for mirrored algebra operations ∩M and ∪M. Section 5.1
shows that operations that are well-aligned with source al-
gebra laws outperform those that satisfy few laws, affirming
Hypothesis 1. Section 5.2 shows that well-designed mir-
rored algebras are crucial for ensuring self-consistency: the
property that equivalent terms produce the same prediction.

We now introduce the shared portions of the experimental
setup, with further details deferred to Appendix B.

Candidate operations. Our distributive lattice of sets con-
tains two binary operations: meet (∩) and join (∪). We must
realize these on the mirrored space as binary vector oper-
ations ∩M and ∪M. We restrict ourselves to closed-form
operations that are well-conditioned (as opposed to elemen-
twise division or exponentiation, for example). The list of
candidate operations in Table 2 includes the Riesz algebra
min and max operations, as well as the standard vector
operations of addition, subtraction, and Hadamard product.
For diversity, we include an operation that is commutative
but not associative (scaled addition), associative but not
commutative (matrix product), and neither (cyclic addition).

We define the function sq : Rl → R
√
l×

√
l to reshape a

vector into a square matrix (assuming l is a square number),
and roll : Rl → Rl to cycle vector elements by one index.
We denote the set of all candidate operations by

C = {min,max,+,−,⊙,+s,×mat,+c}.

Table 2. List of candidate operations on M .

Element min (min) (a, b) 7→ min(a, b)
Element max (max) (a, b) 7→ max(a, b)
Addition (+) (a, b) 7→ a+ b
Subtraction (−) (a, b) 7→ a− b
Hadamard prod. (⊙) (a, b) 7→ a⊙ b
Scaled addition (+s) (a, b) 7→ 2a+ 2b
Matrix prod. (×mat) (a, b) 7→ sq−1(sq(a) · sq(b))
Cyclic addition (+c) (a, b) 7→ roll(a) + b

Dataset. To generate a synthetic random subset of Rd for
d = 2, we first uniformly sample two random integers ni, no
from {1, 2, . . . , 10}. We then restrict ourselves to the zero-
centered square and sample ni and no points from [−1, 1]2
to yield I = {vi1, . . . , vini

} and O = {vo1, . . . , vono
}. We

then generate a set U from these points as follows:

U =
{
u ∈ [−1, 1]2 : min

v∈I
∥v − u∥2 ≤ min

v∈O
∥v − u∥2

}
.

We generate 104 such random sets with an 80% training,
10% validation, and 10% testing split. For each set, an INR
is trained on evaluations of the set indicator function using a
SIREN architecture (Sitzmann et al., 2020). An inr2vec
architecture (De Luigi et al., 2023) is then trained over this
dataset, resulting in: 1) an encoder E : S → L mapping a
set (as represented by the raw weight matrices of an INR)
to a latent embedding space L = Rl with l = 1024, and
2) a decoder D : [−1, 1]2 × L→ R that predicts whether a
particular point is in the set associated with a latent.

With some abuse of notation, we let E(U) ∈ L denote the
embedding of the INR trained on a set U ⊆ [−1, 1]2 as de-
scribed above. We precompute and store latent embeddings
for all INRs, after which the encoder is no longer required.
Decoder weights are also fixed for our later experiments.

Parameterizations. A particular training run starts with
a fixed choice of operations ∩M,∪M : M ×M → M on
the mirrored space (e.g., ∩M = min and ∪M = max
for the Riesz mirrored algebra). The learned bijection
φ : L → M is constructed as a modified NICE architec-
ture (Dinh et al., 2015). At training time, φ is the only
learned component. Importantly, φ induces latent space
operations ∩L,∪L : L× L→ L from ∩M,∪M via (1).

For reference, we also try to directly parameterize opera-
tions on the latent space as ∩L = f∩ and ∪L = f∪, with
learned functions f∩, f∪ : L × L → L. We compare two
options for this parameterization. The first is simply con-
structing f∩ and f∪ as multilayer perceptrons on the vec-
tor concatenation of inputs (no law guarantees). The sec-
ond involves parameterizing in a symmetric, commutativity-
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Figure 3. a) Learned operation performance vs. satisfaction of distributive lattice laws (solid line is mean). b) Self-consistency vs. number
of random symbolic manipulations (i.e., law applications). Solid lines are medians, shaded areas capture 20th to 80th percentile ranges.

preserving manner via the form

f(z1, z2) = h
(
g(z1) + g(z2)

)
,

where h and g are separate MLPs with compatible domains
and codomains. We annotate this second parameterization
using “sym” in our plots (see Zaheer et al. (2017)).

Loss and metrics. The training loss and evaluation met-
rics are computed over randomly constructed terms with a
random number of starting symbols ℓ ∈ {1, 2, . . . , ℓmax}
(in our experiments, ℓmax = 10). We generate these by
recursively combining random pairs of terms with either
∩ or ∪, starting with ℓ singleton terms (i.e., variables) and
ending after ℓ− 1 operations when only the final combined
term remains.

For a particular such term p(x1, . . . , xℓ), we fetch ℓ sets
U1, . . . , Uℓ from data with corresponding precomputed
inr2vec latent embeddings z1, . . . , zℓ, recalling that
zi = E(Ui) ∈ L. We evaluate the ground truth set
Utrue ⊆ [−1, 1]2 via the realized term value

Utrue = pS(U1, . . . , Uℓ),

taking ∩S and ∪S to be standard set-theoretic intersection
and union. We similarly evaluate the predicted latent

zpred = pL(z1, . . . , zℓ), (3)

using ∩L and ∪L, that are induced from ∩M and ∪M via
(1). The predicted set is then given by

Upred = {u ∈ [−1, 1]2 : D(u, zpred) ≥ 0}. (4)

All metrics are then approximated using uniformly sampled
u ∈ [−1, 1]2. Our loss is the expectation of the binary cross-
entropy loss against the ground truth set indicator function

Loss(Upred, Utrue) = Eu

[
BCE

(
D(u, zpred),1Utrue(u)

)]
,

and our intersection over union (IoU) metric is written as

IoU(Upred, Utrue) =
Eu[1Utrue∩Upred(u)]

Eu[1Utrue∪Upred(u)]
.

The IoU score ranges from zero to one (perfect prediction).

5.1. Operation performance vs. structure choice

This experiment tests various candidate realizations of ∩
and ∪ on M , with the aim of evaluating whether satisfy-
ing distributed lattice laws induces superior performance.
We consider all possible assignments (∩M,∪M) ∈ C × C
with ∩M ̸= ∪M, excluding flipped assignments (e.g.,
(max,min) versus (min,max)) due to the exact symmetry
of distributive lattice laws and our data generating process.
This results in

(|C|
2

)
=

(
8
2

)
= 28 possible combinations. For

each assignment (∩M,∪M), we determine which distribu-
tive lattice laws from Table 1 are satisfied using numerical
testing. We provide some illustrative examples in Table 3,
with the full list provided by Table 4 in the appendix.

Our results are depicted in Figure 3a. Each dot represents
a particular choice of operations (i.e., a particular mirrored
algebra). The x-axis groups together algebras which satisfy
the same number of distributive lattice laws (# column in
Table 4). The y-axis reports the mean IoU performance of a
particular algebra, averaged over random terms.
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Table 3. Selection of candidate operations on the mirrored space with the satisfied distributive lattice laws (fully reproduced in Table 4).
Due to distributive lattice symmetries, we have two laws for each column (e.g., a ∩M b = b ∩M a and a ∪M b = b ∪M a). The first row
imposes a Riesz algebra structure. The second column counts how many laws are satisfied by a particular pair of operations.

Operations # Commutativity (∗) Associativity (∗) Absorption (∗) Distributivity (∗)

∩M = max ∪M = min 8 ✓✓ ✓✓ ✓✓ ✓✓
∩M = max ∪M = ⊙ 6 ✓✓ ✓✓ ✗✓ ✓✗
∩M = min ∪M = + 6 ✓✓ ✓✓ ✗✓ ✓✗
∩M = max ∪M = + 5 ✓✓ ✓✓ ✗✗ ✓✗
∩M = min ∪M = ⊙ 5 ✓✓ ✓✓ ✗✗ ✓✗
∩M = min ∪M = +s 5 ✓✓ ✓✗ ✗✓ ✓✗
∩M = + ∪M = ⊙ 5 ✓✓ ✓✓ ✗✗ ✓✗

...
∩M = ×mat ∪M = +c 1 ✗✗ ✓✗ ✗✗ ✗✗
∩M = − ∪M = +c 0 ✗✗ ✗✗ ✗✗ ✗✗

Figure 3a provides clear experimental support for Hypoth-
esis 1: the accuracy of learned set operations is strongly
tied to the number of satisfied source algebra laws. The
Riesz algebra completely satisfies all 8 laws and achieves
the best performance, while operations with few satisfied
laws struggle. Despite significantly underperforming the
Riesz algebra, the direct latent parameterizations surpass
transported algebras with a similar number of satisfied laws,
suggesting that the flexibility of their parameterization some-
what mitigates their lack of algebraic structure. Interestingly,
algebras that only violate a few laws substantially outper-
form algebras that violate most or all; there is a notable
increasing trend in performance. Thus even when not all
laws can be satisfied, a reasonably well-aligned mirrored
algebra can still provide substantial benefits.

5.2. Consistency under equivalent terms

This experiment adopts the same setting as above, but con-
siders a different question: how self-consistent are the pre-
dictions of a model for terms that are distinct but equivalent
with respect to FDist? Naturally, we expect a good model to
provide the same predicted set for A ∩B and B ∩A.

Consider a random term p(x1, . . . , xℓ), with sampled la-
tents z1, . . . , zℓ yielding a predicted set Upred via (3) and (4).
Instead of comparing Upred to Utrue, we generate a family of
equivalent terms qi(x1, . . . , xℓ) by randomly selecting laws
and substituting their expressions into p(x1, . . . , xℓ) if such
expressions are present in p(x1, . . . , xℓ). For each equiva-
lent term, we compare the new predicted set Vpred (computed
via (3) and (4) as before) with the original prediction Upred
and compute the corresponding IoU metric.

Figure 3b summarizes our results. The x-axis represents the
number of law applications, and the y-axis represents the

self-consistency IoU. The solid lines represent the median
performance for each choice of candidate operations, with
the shaded areas representing the direct parameterizations’
20-to-80th percentile ranges.

Our Riesz mirrored algebra is perfectly self-consistent, ex-
perimentally validating Proposition 3.1. While the median
performance of the learned baselines degrades moderately
as the terms diverge, the bottom quartile drops sharply with
even just two random symbolic manipulations. Interestingly,
the direct parameterizations have a higher self-consistency
than most other algebras, despite satisfying only zero or
two laws. This suggests that a flexible parameterization can
learn the appropriate symmetries to some degree, although
we note that the Riesz algebra is decidedly superior to both
across all experiments.

6. Conclusion
Interesting mathematical objects generally carry additional
algebraic structure, such as operations and laws. Machine
learning methods often encode such objects (sets, functions,
etc.) into latent embeddings for downstream tasks. This
paper examines the possibility of learning latent space op-
erations that provably satisfy the same structural laws as
the source algebra of input data. We provide a general pro-
cedure for constructing structural transport nets to carry
out such transport of structure, and we illustrate the method
in a concrete case study of the algebra of sets. Experi-
ment results support our key hypothesis: stronger alignment
between latent space operations and source algebra laws
improves the performance of learned operations. Exciting
future research involves further developing the theory of re-
alizable latent-space operations and exploring downstream
applications of structural transport nets.
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Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Shiebler, D., Gavranović, B., and Wilson, P. Category theory
in machine learning. arXiv preprint arXiv:2106.07032,
2021.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. Implicit neural representations with periodic
activation functions. In Advances in Neural Information
Processing Systems, 2020.

Sohn, K., Lee, H., and Yan, X. Learning structured output
representation using deep conditional generative models.
Advances in neural information processing systems, 28,
2015.

Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M., and
Sugiyama, M. Coupling-based invertible neural networks
are universal diffeomorphism approximators. Advances in
Neural Information Processing Systems, 33:3362–3373,
2020.

Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L.,
Jiang, D., Majumder, R., and Wei, F. Text embeddings
by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Wang, Y., Li, Y., Driggs-Campbell, K., Fei-Fei, L., and
Wu, J. Dynamic-resolution model learning for object pile
manipulation. arXiv preprint arXiv:2306.16700, 2023.

Wechler, W. Universal Algebra for Computer Scientists,
volume 25. Springer Science & Business Media, 2012.

Winkler, C., Worrall, D., Hoogeboom, E., and Welling, M.
Learning likelihoods with conditional normalizing flows.
arXiv preprint arXiv:1912.00042, 2019.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In Ad-
vances in Neural Information Processing Systems, 2017.

11



Transport of Algebraic Structure to Latent Embeddings

A. Proofs
A.1. Proofs for Section 3

Proposition 3.1. Suppose that L,M = Rl and that φ : L→M is a bijection. LetM = (M,FM) be an algebra of type F
and define the family FL := {fL : f ∈ F} of n-ary operations on L by (1). Then, φ is an isomorphism from the induced
algebra L = (L,FL) toM.

Proof of Proposition 3.1. Let f ∈ F , let n = ar(f), and consider the realization fM on M and the realization fL on L
induced by (1). Let z1, . . . , zn ∈ L. We have that

φ(fL(z1, . . . , zn)) = φ(φ−1(fM(φ(z1), . . . , φ(zn))))

= fM(φ(z1), . . . , φ(zn))

by construction of the operation fL. Hence, we see that φ is an isomorphism from the induced algebra L to the algebra
M.

Theorem 3.2. Consider a source algebra S = (S,FS) of type F , and letM = (M,FM) be a mirrored space such that
every law R satisfied by S is also satisfied byM. Then, the induced latent algebra L, defined by (1), also satisfies every
such law R, for any bijection φ : L→M .

Proof of Theorem 3.2. Let φ : L→M be a bijection, and let L be the induced latent algebra defined by (1). Let R be a law
that is satisfied by S (and hence satisfied byM), given by

p(x1, . . . , xn) = q(x1, . . . , xn).

By Proposition 3.1, φ is an isomorphism from L toM. Let f ∈ F be an arbitrary operation symbol. Then, by the properties
of isomorphisms, it must be that

φ(fL(z1, . . . , zn)) = fM(φ(z1), . . . , φ(zn))

for all z1, . . . , zn ∈ L. Thus, it holds that

φ(pL(z1, . . . , zn)) = pM(φ(z1), . . . , φ(zn))

for all z1, . . . , zn ∈ L, and similarly,

φ(qL(z1, . . . , zn)) = qM(φ(z1), . . . , φ(zn))

for all such z1, . . . , zn. Therefore, sinceM satisfies the law R, we conclude that

φ(pL(z1, . . . , zn)) = φ(qL(z1, . . . , zn))

for all z1, . . . , zn ∈ L. Hence, by invertibility of φ, we also find that

pL(z1, . . . , zn) = qL(z1, . . . , zn)

for all z1, . . . , zn ∈ L, and therefore L satisfies the law R.

Proposition 3.3. There exists a source algebra S = (S,FS) and a mirrored algebraM = (M,FM) with M = Rl, both
of the same type F , such thatM satisfies every law R that S satisfies, and, for all bijections φ : L → M , there is no
nontrivial homomorphism χ : S → L when L = Rl is equipped with the algebra induced byM via (1).

Proof of Proposition 3.3. We prove the claim by construction. Consider the source algebra S = (R, •), with a sole binary
operation • defined by

s1 • s2 = |s1|s2,
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where, of course, |s1| represents the absolute value of the real number s1, and |s1|s2 represents the usual product of the
two real numbers |s1| and s2. This source algebra is a semigroup, namely, R is closed under the binary operation •, and •
satisfies the associativity law, since

s1 • (s2 • s3) = |s1|(s2 • s3)
= |s1|(|s2|s3)
= |s1s2|s3
=

∣∣|s1|s2∣∣s3
= (|s1|s2) • s3
= (s1 • s2) • s3

for all s1, s2, s3 ∈ R. Now, consider the mirrored algebraM = (R,+), with + being the standard addition operation on
the real numbers. Obviously,M is also a semigroup, since R is closed under +, and + is associative.

We now show thatM satisfies every law R that S does. Let R be a law for type F defined by

R : p(x1, . . . , xn) = q(x1, . . . , xn)

for some arbitrary terms p(x1, . . . , xn), q(x1, . . . , xn) ∈ TF (X). Suppose that S satisfies the law R. Then,

pS(s1, . . . , sn) = qS(s1, . . . , sn)

for all si ∈ R. Since the associative binary operation • is the only operation in FS , it must be that the term function pS is
given by some repeated application of •:

pS(s1, . . . , sn) = si1 • si2 • · · · • simp

for some mp ∈ N and some tuple (i1, . . . , imp) ∈ {1, . . . , n}mp . Similarly,

qS(s1, . . . , sn) = sj1 • sj2 • · · · • sjmq

for some mq ∈ N and some tuple (j1, . . . , jmp) ∈ {1, . . . , n}mp . Thus,

|si1 · · · simp−1|simp
= |sj1 · · · sjmq−1|sjmq

. (5)

If mp > mq , then there exists some factor si appearing in the product |si1 · · · simp−1|simp
at least once more than it does in

the product |sj1 · · · sjmq−1|sjmq
. Thus, if the equality (5) holds for some s1, . . . , sn ∈ S, doubling this particular value si

would result in the law being violated, as the left-hand side of (5) would have an extra factor of 2 that the right-hand side
would not. This implies that mp ≤ mq. Analogous reasoning shows that mq ≤ mp, and hence it must be that mp = mq;
the same number of factors appear in the left-hand and right-hand sides of the law’s realizations. Furthermore, the same
reasoning goes to show that the left-hand and right-hand products in (5) actually must contain exactly the same factors
with the same multiplicity (albeit in possibly different order), i.e., the ordered tuple (si1 , . . . , simp

) of real numbers is some
permutation of the ordered tuple (sj1 , . . . , sjmq

). Hence, it must be the case that

si1 + si2 + · · ·+ simp
= sj1 + sj2 + · · ·+ sjmq

,

implying that
pM(s1, . . . , sn) = pM(s1, . . . , sn).

That is, the law is satisfied byM as well. Since R was arbitrarily chosen, we conclude that indeedM satisfies every law R
that S does.

Now, let ψ : S →M be a homomorphism from S toM. Then, it holds that

ψ(s1 • s2) = ψ(s1) + ψ(s2)

for all s1, s2 ∈ S = R. Therefore, for s1 = 0 and s2 = s with s ∈ S arbitrary, we conclude that

ψ(0) = ψ(|0|s) = ψ(0 • s) = ψ(0) + ψ(s),
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and hence
ψ(0) + ψ(s) = ψ(0) + ψ(t)

for all s, t ∈ S. However, since + is the standard addition operation on R, this is only possible if

ψ(s) = ψ(t)

for all s, t ∈ S, meaning the homomorphism ψ must be the trivial mapping ψ : s 7→ C with C = ψ(0).

Now, let φ : L→M be an arbitrary bijection. Equip L with the algebra L induced byM, as defined by (1). Let χ : S → L
be a homomorphism from S to L. Then, since φ is an isomorphism from L toM (per Proposition 3.1), the composition
φ ◦ χ is a homomorphism from S toM. Therefore, by our analysis above, φ ◦ χ must be a trivial homomorphism given by
φ ◦ χ : s 7→ C with C = φ ◦ χ(0). Hence, for all s ∈ S, we conclude that

χ(s) = φ−1(C),

implying that χ must be a trivial homomorphism from S to L. This concludes the proof.

Proposition 3.4. Consider a source algebra S = (S,FS) of type F , the latent space L = Rl, and an arbitrary encoder
E : S → L. If E is bijective and there exists a mirrored algebraM = (M,FM) with M = Rl and an isomorphism
ψ : S →M , then there exists a bijection φ : L→M such that φ ◦ E equals the isomorphism ψ.

Proof of Proposition 3.4. Suppose that E is bijective and that there exists a mirrored algebraM = (M,FM) with M = Rl

and an isomorphism ψ : S → M . Define φ : L→ M by φ(z) = ψ ◦ E−1(z), which is well-defined since E is bijective.
Then, it holds that

φ ◦ E(s) = ψ(E−1(E(s))) = ψ(s)

for all s ∈ S, which proves the result.
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A.2. Proofs for Section 4

Continuity of complementation. We briefly explain why we only consider continuous operations on the mirrored space
to represent the complementation operation ¬ in the Boolean lattice type FBool. Consider the complementation operation
c : P(Rd) → P(Rd). As there is no ambient topology on P(Rd), the continuity of c is not well-defined in this context.
However, a natural topology arises by passing first to the Borel sets Σ on Rd and then quotienting by the null ideal Σ ∩N ,
with set intersection, union, and complementation inherited in the natural way. Following Fremlin (2002, 323A.iii.e), this
allows us to define a topology via the symmetric difference metric:

d(A,B) := µ(A△B) for all A,B ∈ Σ/Σ ∩N ,

where µ is inherited naturally on the quotiented space from the Borel measure on Rd. Since the symmetric difference
between A and B satisfies A△B = (Ac)△(Bc), it is immediate that the inherited complementation operation is continuous
with respect to this topology.

Negative result. Before proving our main result, we first present a key result from the algebraic topology literature.

Proposition A.1. Any continuous involution on Rn has a fixed point.

Proof of Proposition A.1. This is an easy application of Theorem 9 in Jaworowski (1956). Namely, Rn is a separable metric
space, and it is acyclic because it is contractible.

Lemma A.2. Consider a Boolean lattice A = (A,∧,∨,¬, 0, 1) of type FBool and its associated laws in Table 1. Then, it
holds that ¬ is an involution with no fixed points.

Proof of Lemma A.2. Clearly, the Boolean lattice laws in Table 1 imply that ¬(¬a) = a for all a ∈ A, and thus ¬ is an
involution. Now assume for the sake of contradiction that ¬ has a fixed point b ∈ A, so that ¬b = b. Then, by the Boolean
lattice laws,

(¬b) ∧ b = 0 =⇒ b ∧ b = 0 =⇒ b = 0,

and, similarly,
(¬b) ∨ b = 1 =⇒ b ∨ b = 1 =⇒ b = 1.

This is a contradiction.

We are now ready to prove a general negative result.

Theorem 4.1. Consider an algebra A = (A,FA) with a unary operation □A. Assume A satisfies laws R1, . . . , Rn which
imply that □ has no fixed point: □(x) ̸= x for all x ∈ A. Furthermore, assume that one of the laws Ri is the involution law
given by

□(□(x)) = x.

Then, there exists no algebra B = (B,FB) on the Euclidean space B = Rl such that □B is continuous and R1, . . . , Rn are
all satisfied by B.

Proof of Theorem 4.1. Suppose for the sake of contradiction that there exists an algebra B = (B,FB) on B = Rl such that
□B is continuous and the laws R1, . . . , Rn are all satisfied by B. Then, by assumption it must be the case that □B(b) ̸= b
for all b ∈ B. However, since □B is a continuous involution on B = Rl, by Proposition A.1, □B has a fixed point, i.e.,
□B(b) = b for some b ∈ B. This is a contradiction, and hence the result is proven.

Corollary 4.2. The Boolean lattice type FBool cannot be realized on M = Rl with continuous operations such that the
Boolean lattice laws in Table 1 are satisfied.

Proof of Corollary 4.2. This follows directly from Lemma A.2 and Theorem 4.1.

15



Transport of Algebraic Structure to Latent Embeddings

B. Experiments
This appendix describes our experimental setup and provides additional figures conveying our results.

Reproducing these experiments takes approximately 5 GPU-days on an RTX A6000 GPU with an i7 core CPU. Our codebase
was developed against PyTorch 2.1.2.

B.1. Hyperparameters and metrics

This section details the training hyperparameters and model architectures for reproducing our results. When training any
model, we later reload model weights from the checkpoint with the best validation loss. All of our reported metrics are
evaluated against a separate testing set.

Implicit neural representations. We train each INR using binary cross-entropy loss over the provided shape indicator
function (Section 5) sampled at 5000 points in [−1, 1]2. Our INR function is a standard sinusoidal activation SIREN network,
with 128 hidden neurons, 3 layers, and ω0 = 30. Training uses the Adam optimizer with a learning rate of 0.01 and batch
size of 103 for 10 epochs. These hyperparameters were chosen to enable fast convergence (on the order of seconds), as
this training process is repeated 104 times in total. All INRs were trained using the same weight initialization for easier
downstream embedding (De Luigi et al., 2023).

Latent embeddings (inr2vec). After producing the dataset of INRs, we train one latent embedder over the training
split. We reuse the architecture of De Luigi et al. (2023) to train a model which takes in all MLP weights for the input
INR for completeness (as opposed to just the hidden layer weights). Our latent embedding dimension is 1024–all other
architecture hyperparameters are as in De Luigi et al. (2023). We use the Adam optimizer for 50 epochs with a learning rate
of 10−4, weight decay of 10−3, and batch size of 16.

Structural transport nets. When learning a structural transport net, we have a fixed decoder D and fixed mirrored algebra
M. The only learned parameters are those defining the map φ : Rl → Rl, which must be a bijection in order to achieve
transport of structure and the isomorphism L ∼=M. We parameterize φ as a series of additive coupling layers to enable
easy differentiation through both the forward and inverse maps. We reuse the seminal NICE architecture, reducing the
number of additive coupling layers to 2 and the number of nonlinear layers to 3 for efficiency (Dinh et al., 2015). Since
our application requires differentiation through the function inverse, other architectures which rely on solving fixed-point
iterations to compute inverses are not considered (Behrmann et al., 2019). Training runs for 10 epochs using Adam with a
learning rate of 10−3.

Direct latent space-parameterized baselines. Latent space-parameterized baselines are instantiated as functions
f∩, f∪ : Rl × Rl → Rl. As described in Section 5, we compare two parameterizations:

1. Let each f be realized by a standard multilayer perceptron (MLP) with ReLU nonlinearities, operating on the vector
concatenation of the inputs.

2. Let each f take the form
f(z1, z2) = h(g(z1) + g(z2)),

with g : Rl → R256 and h : R256 → Rl MLPs.

Notably, the second option satisfies commutativity via commutativity of the operation +, and thus satisfies two of the distribu-
tive lattice laws. We perform a hyperparameter sweep for each parameterization over the learning rates {10−4, 10−3, 10−2},
layer counts {2, 3, 4}, and hidden dimension {64, 128, 256, 512}; the final optimal hyperparameters set the learning rate to
10−4, layer count to 2, and hidden dimension to 256.

Computed metrics. We discuss a few details of our reported metrics. While the IoU metric is standard, it can occasionally
be undefined if the union volume is zero; we exclude these datapoints from our computed statistics. We also tested an
accuracy metric

Acc(Upred, Utrue) = Eu

[
1Upred(u)

?
= 1Utrue(u)

]
,
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where ?
= outputs 1 for equality and 0 otherwise. The results were qualitatively similar to that of the IoU metric so we omit

them for simplicity.

B.2. Procedures

Random term generation. Section 3 and Section 5 describe a procedure for generating random terms of a particular type.
Algorithm 2 provides more detailed pseudocode for the set distributive lattice type FDist. We also work through an example
for ℓ = 5 starting symbols.

v w x y z

v w x (y ∨ z)

v (w ∧ x) (y ∨ z)

(v ∨ (w ∧ x)) (y ∨ z)

(v ∨ (w ∧ x)) ∧ (y ∨ z)

The final line is the finished random term.

Equivalent term generation. The experiment in Section 5.2 outlines a scheme for randomly generating a term
q(x1, . . . , xℓ) which is equivalent to some original term p(x1, . . . , xℓ). At a high level, this works by successively
substituting terms from distributive lattice laws. Algorithm 3 provides informal pseudocode for this procedure, and rests
on the idea of applying laws to manipulate terms; a formal treatment of this is outside the scope of our paper, and we will
explain our ideas informally.

Whether a law applies to a particular expression and how a law is then applied to that expression depends on which law is
considered. We provide a concrete example for the distributive laws, with other laws following similarly.

Consider the distributive laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). (6)

Let X , Y , and Z be unspecified terms—either single variables, or more complicated compound terms—and consider
a particular term p̂(X,Y, Z). Then we say that the distributive law applies to p̂(X,Y, Z) if p̂(X,Y, Z) is of one of the
following forms:

X ∨ (Y ∧ Z) or (X ∨ Y ) ∧ (X ∨ Z) or (7)
X ∧ (Y ∨ Z) or (X ∧ Y ) ∨ (X ∧ Z).

If this is the case, we say that the distributive law is then applied to p̂(X,Y, Z) by applying the appropriate symbolic
substitution to p̂(X,Y, Z) from (6). If multiple forms from (7) are appropriate, one is chosen at random.

Algorithm 3 essentially randomly applies a certain number of these transformations to random subterms of a particular
starting term, yielding a chain of equivalent terms. We provide an example of such a chain here, starting from the operational
polynomial p(x, y, z) = x ∧ (y ∨ z) and proceeding for three steps:

x ∧ (y ∨ z) = x ∧ (z ∨ y) (commutativity)
= (x ∧ z) ∨ (x ∧ y) (distributivity)
= ((x ∧ (x ∨ y)) ∧ z) ∨ (x ∧ y) (absorption)
=: q(x, y, z).

In our self-consistency experiments, we then compare the realizations of our learned operations on the final term q(x, y, z)
against those of the starting term p(x, y, z).
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Algorithm 2 Random term generation
In: Number of symbols ℓ
Out: Term p(x1, . . . , xℓ)
P̂ ← (x1, . . . , xℓ) # Initialize list of terms

while length(P̂ ) > 1 do
i← random integer in {1, . . . , length(P̂ )}
p̂1 ← pop(P̂ , i) # Extract ith term and remove from list

j ← random integer in {1, . . . , length(P̂ )}
p̂2 ← pop(P̂ , j) # Extract jth term and remove from list
sym← random operation symbol in {∩,∪} # Select operation symbol
q̂ ← p̂1 sym p̂2 # Apply operation symbol

append(P̂ , q̂) # Append new term to list
end
return P̂ [1] # Return remaining term in list

Algorithm 3 Equivalent term generation
In: Starting term p(x1, . . . , xℓ), number of law applications J
Out: Equivalent term q(x1, . . . , xℓ)
for ← 1 to J do

Recursively extract all subterms of p into a collection (tree search):
P̂ ← (p̂1, . . . , p̂n) # Specific subterms in p

Î ← (̂i1, . . . , în) # Indices for each p̂ in p
laws← (“associativity”, “commutativity”, “absorption”, “distributivity”)
Randomly shuffle P̂ and Î (with the same shuffle)
Randomly shuffle laws
for j ← 1 to length(laws) do

law← laws[j]
for k ← 1 to length(P̂ ) do

p̂, î← P̂ [k], Î[k]
if law applies to p̂ then

q̂ ← law applied to p̂
p← q̂ substituted for p̂ at î in P̂

end
end

end
end
return P̂
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B.3. Additional visualizations

This section provides additional tables and graphics for our experiments.

Table of operations. Table 4 lists all combinations of candidate operations that we trained. For each combination, we
numerically tested whether the 8 distributive lattice laws in Table 1 are satisfied. Summing the number of satisfied laws for a
particular pair of combination yields the count (#) column.

The symmetric directly parameterized baseline satisfies two laws (commutativity in both directions), while the naive MLP
satisfies no laws. These are not listed in the table.

Table 4. Candidate operations on the mirrored space with the satisfied distributive lattice laws. Due to distributive lattice symmetries, we
have two laws for each column (e.g., a ∩M b = b ∩M a and a ∪M b = b ∪M a). The first row imposes a Riesz algebra structure on the
mirrored space. The second column counts how many laws are satisfied by a particular pair of candidate operations.

Operations # Commutativity (∗) Associativity (∗) Absorption (∗) Distributivity (∗)

∩M = max ∪M = min 8 ✓✓ ✓✓ ✓✓ ✓✓
∩M = max ∪M = ⊙ 6 ✓✓ ✓✓ ✗✓ ✓✗
∩M = min ∪M = + 6 ✓✓ ✓✓ ✗✓ ✓✗
∩M = max ∪M = + 5 ✓✓ ✓✓ ✗✗ ✓✗
∩M = min ∪M = ⊙ 5 ✓✓ ✓✓ ✗✗ ✓✗
∩M = min ∪M = +s 5 ✓✓ ✓✗ ✗✓ ✓✗
∩M = + ∪M = ⊙ 5 ✓✓ ✓✓ ✗✗ ✓✗
∩M = max ∪M = +s 4 ✓✓ ✓✗ ✗✗ ✓✗
∩M = min ∪M = ×mat 4 ✓✗ ✓✓ ✗✓ ✗✗
∩M = + ∪M = ×mat 4 ✓✗ ✓✓ ✗✗ ✓✗
∩M = ⊙ ∪M = +s 4 ✓✓ ✓✗ ✗✗ ✗✓
∩M = max ∪M = − 3 ✓✗ ✓✗ ✗✓ ✗✗
∩M = max ∪M = ×mat 3 ✓✗ ✓✓ ✗✗ ✗✗
∩M = max ∪M = +c 3 ✓✗ ✓✗ ✗✗ ✓✗
∩M = min ∪M = +c 3 ✓✗ ✓✗ ✗✗ ✓✗
∩M = + ∪M = +s 3 ✓✓ ✓✗ ✗✗ ✗✗
∩M = ⊙ ∪M = ×mat 3 ✓✗ ✓✓ ✗✗ ✗✗
∩M = +s ∪M = ×mat 3 ✓✗ ✗✓ ✗✗ ✓✗
∩M = min ∪M = − 2 ✓✗ ✓✗ ✗✗ ✗✗
∩M = + ∪M = − 2 ✓✗ ✓✗ ✗✗ ✗✗
∩M = + ∪M = +c 2 ✓✗ ✓✗ ✗✗ ✗✗
∩M = − ∪M = ⊙ 2 ✗✓ ✗✓ ✗✗ ✗✗
∩M = ⊙ ∪M = +c 2 ✓✗ ✓✗ ✗✗ ✗✗
∩M = − ∪M = +s 1 ✗✓ ✗✗ ✗✗ ✗✗
∩M = − ∪M = ×mat 1 ✗✗ ✗✓ ✗✗ ✗✗
∩M = +s ∪M = +c 1 ✓✗ ✗✗ ✗✗ ✗✗
∩M = ×mat ∪M = +c 1 ✗✗ ✓✗ ✗✗ ✗✗
∩M = − ∪M = +c 0 ✗✗ ✗✗ ✗✗ ✗✗
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Operation performance and self-consistency scatter plots. We supplement our plots in Figure 3 with two in-depth
scatter plots which elucidate interesting details in the data.

Figure 4a presents the same Section 5.1 experimental data as in Figure 3a. Namely, Figure 4a teases apart the influence of
the length ℓ of the random symbol term, which is simply averaged in Figure 3a. The IoU performance metric, originally on
the y-axis of Figure 3a, is now visualized in the color bar. The y-axis of Figure 4a starts with two-symbol terms (either
x ∪ y or y ∪ x) up to terms with 10 symbols. Each “column” in Figure 4a corresponds to one specific choice of algebra
operations, which is represented as just a dot in Figure 3a. We annotate a few explicitly in both plots. These algebras are
then grouped by how many distributive lattice laws they satisfy, which can be found in Table 4.

Figure 4a shows a moderate performance degradation as the length of the random term increases. This is less pronounced
for methods with a low IoU to begin with, but can be more easily seen with better-performing methods, especially in
the algebras with 5 and 6 satisfied laws. These algebras perform similarly to the Riesz algebra for terms with only a few
symbols; however, as the length of the term increases the Riesz algebra emerges as a favorite. We believe this is attributable
to the fact that the Riesz algebra exclusively satisfies all the desired distributive lattice laws.

Figure 4b similarly corresponds to Figure 3b and the experiment in Section 5.2. Each column in Figure 4b is a particular
algebra, corresponding to one line in the line plot of Figure 3b. The color bar encodes the same self-consistency metric
discussed in Section 5.2 and plotted on the y-axis of Figure 3b. However, the y-axis of Figure 4b corresponds to the x-axis
of Figure 3b, and the x-axis of Figure 4b simply serves to arrange the different algebras in order with their alignment to the
source algebra.

Figure 4b shows that all methods besides the Riesz algebra struggle to maintain self-consistency for equivalent terms.
Naturally, for unchanged terms (0 on the y-axis) all methods are deterministic and hence self-consistent. The Riesz algebra
is also perfectly self-consistent for all equivalent terms, as a direct consequence of Theorem 3.2. All other algebras degrade
significantly as the equivalent terms become more complex. This stems from the fact that, unlike the Riesz algebra, all
other operations must implicitly learn the underlying source algebra laws. This is always an inexact process and produces
compounding errors for more complex terms.
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Figure 4. a) Average learned operation performance, plotted on the color bar, against number of satisfied distributive lattice laws and
random term length. b) Average self-consistency, plotted on the color bar, against number of satisfied distributive lattice laws and number
of random law applications.
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Breakdown of specific laws. This series of plots breaks down the Section 5.1 data, plotted in Figure 3a and Figure 4a, at a
more granular level. Instead of only considering the aggregate number of laws satisfied, Figure 5 analyzes the satisfaction of
specific laws and its impact on learned operation performance.

Each point in any of the Figure 5 subplots represents a single algebra, with its color encoding the mean operation performance
averaged over different term lengths, as in the y-axis of Figure 3a. For two particular distributive lattice laws, we group the
algebras by the degree to which they satisfy each of the laws: this can include both of the forms in Table 1 (✓✓), just one or
the other (✓✗/ ✗✓), or neither (✗✗). As with the other plots, we annotate our best-performing structural transport net and the
two direct latent parameterization baselines.

Figure 5 broadly shows that satisfaction of any laws is positively related to learned operation performance. Specifically,
moving from left-to-right and from bottom-to-top generally results in an increased average IoU score. However, conditioned
on a particular law being satisfied, certain other laws seem to be less important. We enumerate a few such observations here:

1. Conditioned on the level of distributivity, increasing absorption seems to yield minimal benefits (Figure 5a).

2. Conditioned on the level of commutativity, increasing absorption seems to yield minimal benefits (Figure 5d).

3. Completely satisfying both commutativity and associativity is highly indicative of strong performance, but only partial
satisfaction of either results in substantial degradation (Figure 5e).

Certain combinations of law satisfaction were not covered by our set of candidate operations. For example, no operations
in C × C resulted in an algebra which was completely distributive and not at all absorptive Figure 5a. Future work can
consider more sophisticated methods for constructing a set of candidate operations C which results in complete coverage of
all possible law satisfactions.
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Figure 5. The performance of different algebras, grouped by their satisfaction of specific law combinations.
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