
Neural NeRF Compression

Tuan Pham 1 Stephan Mandt 1

Abstract
Neural Radiance Fields (NeRFs) have emerged as
powerful tools for capturing detailed 3D scenes
through continuous volumetric representations.
Recent NeRFs utilize feature grids to improve
rendering quality and speed; however, these rep-
resentations introduce significant storage over-
head. This paper presents a novel method for
efficiently compressing a grid-based NeRF model,
addressing the storage overhead concern. Our
approach is based on the non-linear transform
coding paradigm, employing neural compression
for compressing the model’s feature grids. Due
to the lack of training data involving many i.i.d
scenes, we design an encoder-free, end-to-end
optimized approach for individual scenes, using
lightweight decoders. To leverage the spatial inho-
mogeneity of the latent feature grids, we introduce
an importance-weighted rate-distortion objective
and a sparse entropy model employing a mask-
ing mechanism. Our experimental results vali-
date that our proposed method surpasses existing
works in terms of grid-based NeRF compression
efficacy and reconstruction quality.

1. Introduction
Over the past few years, the field of 3D scene modeling
and reconstruction has been revolutionized by the advent of
Neural Radiance Fields (NeRF) methodologies (Mildenhall
et al., 2021; Zhang et al., 2020; Barron et al., 2021). NeRFs
offer a sophisticated method for 3D reconstruction, with
the ability to synthesize novel viewpoints from limited 2D
data. Yet, the original NeRF model requires millions of
MLP queries, which causes slow training and rendering.

To address these efficiency concerns, recent NeRF advance-
ments have transitioned to the integration of an explicit grid
representation (Yu et al., 2021; Sun et al., 2022; Fridovich-

1Department of Computer Science, University of California
Irvine. Correspondence to: Tuan Pham <tuan.pham@uci.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Keil et al., 2022; Chen et al., 2022; Fridovich-Keil et al.,
2023; Chan et al., 2022). While significantly accelerating
training and rendering processes, this change also poses
a new challenge: the storage cost for saving the explicit
grid NeRF representation increases. This problem is crucial,
especially in real-world (e.g., large-scale VR and AR) ap-
plications where storage and transmission impose critical
constraints.

Our work seeks to significantly reduce the storage costs of
NeRFs. Inspired by neural image compression methodol-
ogy (Yang et al., 2023b), we apply non-linear transform
coding techniques (Ballé et al., 2020) to compress the ex-
plicit grid NeRF representation efficiently. However, we
sidestep the conventional auto-encoder approach in favor
of an iterative inference framework, in which we jointly
optimize the latent code along with a lightweight decoder.
We further take account of the NeRF grid importance scores
while reconstructing the scene to boost the efficiency of our
compression model. Lastly, we propose a novel entropy
model that masks uninformative feature grid points. Utiliz-
ing a rate-distortion objective, we can choose from various
compression levels. Our proposed approach departs from
previous works on compressing explicit grid NeRF represen-
tations (Li et al., 2023a;b; Deng & Tartaglione, 2023) based
on voxel pruning and/or vector quantization (Gray, 1984)
while taking into account the varying importance levels of
different voxel grid locations.

To show the effectiveness of our proposed method, we per-
form extensive experiments on four different datasets. Our
results show that our model is capable of compressing di-
verse NeRF scenes to a much smaller size and improves over
previous works in terms of rate-distortion performance.

2. Background
2.1. Neural Radiance Fields

Neural radiance fields (Mildenhall et al., 2021) mark a
paradigm shift in 3D scene representation using deep neural
networks. Unlike traditional approaches that employ dis-
crete structures such as point clouds or meshes, NeRFs
model a scene using a continuous volumetric function
F : (x,d) → (c, σ). Here, an input comprising of spa-
tial coordinates x and a viewing direction d is mapped to

1

Neural NeRF Compression

an output representing color c and volume density σ.

For each pixel, the estimated color Ĉ(r) for the correspond-
ing ray r can be calculated by:

Ĉ(r) =

N∑
i=1

Ti · αi · ci, (1)

with the following definitions:

• αi = 1− exp(−σiδi) is the probability of light being
absorbed at the i-th point, dependent on the volume
density σi and the distance δi between adjacent sam-
pled points on the ray.

• Ti =
∏i

j=1(1− αj) represents the accumulated trans-
mittance, or the remaining light that has not been ab-
sorbed before reaching the i-th point.

NeRF is then trained to minimize total squared error loss
between the rendered and true pixel colors.

Lrender =
∑
r

||Ĉ(r)− C(r)||22 (2)

Despite NeRF’s ability to provide intricate scene details with
a relatively compact neural network, the computational de-
mand remains a significant constraint. The evaluation over
the volume often requires thousands of network evaluations
per pixel. To reduce training and inference time, recent
research has employed explicit grid structure into NeRF.
More specifically, they introduce voxel grids (Sun et al.,
2022; Fridovich-Keil et al., 2022) or decomposed feature
planes (Chen et al., 2022; Fridovich-Keil et al., 2023; Chan
et al., 2022) into the model, and query point features via
trilinear or bilinear interpolation. While this notably speeds
up training and inference, it does come at the expense of
greater storage needs from saving the feature grids.

2.2. Neural Compression

Neural compression utilizes neural networks to perform
end-to-end learned data compression (Yang et al., 2023b).
Traditional compression algorithms are handcrafted and
specifically tailored to the characteristics of the data they
compress, such as JPEG (Wallace, 1991) for images or
MP3 for audio. In contrast, neural compression seeks to
learn efficient data representations directly from the data,
exemplified by the nonlinear transform coding paradigm
(Ballé et al., 2020).

Existing lossy neural compression methods (Ballé et al.,
2016; 2018; Minnen et al., 2018; Cheng et al., 2020; Mat-
subara et al., 2022; Yang & Mandt, 2023a;b; Yang et al.,
2023a) often leverage an auto-encoder architecture (Kingma
& Welling, 2014). Here, an encoder E maps data X to con-
tinuous latent representations Z = E(X). This continuous

Z is then quantized to integers by Q, resulting in Ẑ = Q(Z).
An entropy model P is used to transmit Ẑ losslessly. Fi-
nally, a decoder D receives the quantized latent code Ẑ and
reconstructs the original data X̂ = D(Ẑ). One commonly
trains the encoder E, the decoder D and the entropy model
P jointly using a rate-distortion objective:

L(E,D,P) =EX∼p(X)[d(X, D(Q(E(X)))

− λ log2 P (Q(E(X)))]
(3)

where d(·, ·) is a distortion loss and the second term is the
rate loss that measures the expected code length. The pa-
rameter λ balances between the two loss terms. At training
time, the quantizer Q is typically replaced with injecting
uniform noise (Ballé et al., 2016). See (Yang et al., 2023b)
for a detailed review of neural compression.

3. Method
In this section, we describe our method for grid-based NeRF
compression. Our primary focus is on the compression of
the TensoRF-VM model (Chen et al., 2022), characterized
by its decomposed 2D feature plane structure (Kolda &
Bader, 2009). We select TensoRF-VM because of its profi-
cient 3D scene modeling capabilities, often outperforming
alternative methods like Plenoxels (Fridovich-Keil et al.,
2022) or DVGO (Sun et al., 2022). Our method has the po-
tential to be applied to other grid-based NeRF architectures.

Problem setting. We have a TensoRF-VM model that was
pre-trained for a single scene, and our task is to reduce its
size through compression while maintaining its reconstruc-
tion quality. We assume that we have access to the training
dataset comprising view images at compressing time.

Notation. The three feature planes (or matrix components)
of TensoRF-VM are denoted by {Pi}3i=1, in which sub-
script i signifies the index of the planes and each Pi ∈
RCi×Hi×Wi . In practice, {Pi}3i=1 is the channel-wise con-
catenation of the density planes and appearance planes of
TensoRF-VM. The vector components are not considered
in our compression and, hence, are not represented in our
notation. For indexing a specific spatial grid location j in
the feature plane i, we employ a superscript, represented as
Pj

i .

3.1. Compressing the feature planes

Most storage for compressing TensoRF-VM is spent on
the feature grids. To illustrate this, we analyze a trained
model for the Lego scene from the Synthetic-NeRF dataset
(Mildenhall et al., 2021). In this model, the 2D feature
planes take 67.61 MB, while the other components, such
as the rendering MLP, the rendering mask, and the vector

2

Neural NeRF Compression

D
ec

od
er

Latent codes
Reconstructed
feature planes TensoRF-VM

rendering

Entropy
Model

Pre-trained
feature planes

D
ec

od
er

Latent codes Reconstructed
feature planes TensoRF-VM

rendering

Entropy
Model

Bitstring

Training Rendering

Figure 1: Overview of our model. At training time (left), we learn the three latent codes {Zi}3i=1 to reconstruct the three
frozen feature planes {Pi}3i=1. The reconstructed feature planes {P̂i}3i=1. are used to render the scene and calculate the
rendering loss. The entropy model P is used to calculate the rate loss and compress the latent codes to bitstring. At rendering
time (right), we use P to decompress the bitstring to latent codes {Ẑi}3i=1 and then reconstruct the feature planes {P̂i}3i=1.

components, take only 1.21 MB. Given this disparity, we
focus on compressing TensoRF-VM’s feature planes.

In more detail, we can define an encoder E that embeds
the three feature planes {Pi}3i=1 to latent codes {Zi}3i=1, in
which the Zi may have lower resolution than Pi. The latent
codes are quantized to {Ẑi}3i=1 and compressed with en-
tropy coding using an entropy model P . At rendering time,
we decompress the quantized latent codes {Ẑi}3i=1 and for-
ward them to the decoder D to reconstruct the three feature
planes {P̂i}3i=1. We then use {P̂i}3i=1 to query sampling
point features and render the scene. The compressed NeRF
model includes the compressed latent codes, the decoder,
the entropy model, and the other components.

It is crucial to highlight that we only need to reconstruct
the three feature planes once, and all subsequent querying
operations for the sampling points are executed on these
reconstructed planes. Thus, the decompression process only
adds minimal overhead to the overall rendering procedure.

Per-scene optimization. The conventional approach to
neural image compression (Ballé et al., 2016; 2018) in-
volves training a compression model on a big dataset con-
taining thousands of images. However, applying this same
training method to NeRF compression presents three chal-
lenges: First, we need a dataset with numerous 3D objects.
Although datasets like Objaverse (Deitke et al., 2023) or
Objaverse-XL (Deitke et al., 2024) exist, they are synthetic
datasets and only contain a single object for each scene. Ad-
ditionally, pre-trained NeRF models are required for every
3D object in the dataset, demanding significant computa-
tional resources and storage. Finally, we cannot adapt other
components of the NeRF model, such as the rendering MLP
and the vector components of the TensorF-VM model. Due

to these challenges, we optimize each NeRF scene individ-
ually, a process we refer to as per-scene optimization. In
this approach, the compressor is overfitted to each NeRF
scene, which results in improved compression performance.

Transform coding without encoder. In nonlinear trans-
form coding (Ballé et al., 2020; Yang et al., 2023b), one
usually employs an encoder to obtain the latent code of a
new data point via amortized inference (Kingma & Welling,
2014; Gershman & Goodman, 2014). This is essential for
compressing a new data point quickly in a single network
pass. Nonetheless, in the case of per-scene TensoRF-VM
compression, our primary objective is to compress merely
the three feature planes, and our decoder is overfitted to a
single scene. Moreover, using an encoder for amortized
inference leads to an irreducible amortization gap in opti-
mization (Cremer et al., 2018; Marino et al., 2018), which
has been shown to degrade compression performance (Cam-
pos et al., 2019; Yang et al., 2020).

For these reasons, we remove the encoder and directly learn
the three latent codes {Zi}3i=1 for each scene. More specif-
ically, we initialize the {Zi}3i=1 as a tensor of zeros, and
jointly optimize {Zi}3i=1 with the decoder D and the en-
tropy model P . At decoding time, the receiver thus receives
a binary code along with the entropy model and decoder
to reconstruct the sample, all three of which are counted
towards the bitrate.

Architecture design. Since we must transmit the decoder
D along with the latent code {Zi}3i=1 to decompress the
scene, it’s essential for the decoder to be lightweight. Yang
& Mandt (2023b) established a lightweight decoder for neu-
ral image compression. We found that a two-layer trans-
posed convolutional neural network with SELU activation
(Klambauer et al., 2017) is effective for our needs.

3

Neural NeRF Compression

3.2. Importance-weighted training loss

Our model is trained end-to-end (on top of the pre-trained
NeRF) with a rate-distortion loss. The rate loss is defined
as the log-likelihood of the entropy model P , and it ensures
that the compressed feature planes have low relative entropy
to the prior P . For the distortion loss, we discover that using
only the NeRF rendering loss Lrender is not sufficient; we
also need to use an L2 feature plane reconstruction loss for
good rendering quality.

However, reconstructing the entire feature planes is not the
most efficient approach for compression. Prior research (Li
et al., 2023a;b; Deng & Tartaglione, 2023) has illustrated
that these feature grids possess significant redundancy and
could be pruned to decrease the size of the model. Conse-
quently, if we were to reconstruct every single grid location,
it would inevitably lead to additional storage costs.

To address this issue, we suggest computing weight maps,
defined below, that we use to re-weight the feature plane
reconstruction loss. With this approach, our model is guided
to reconstruct only high-density grid locations while ignor-
ing the less populated ones, ensuring a more optimized and
effectively compressed representation.

For each feature plane Pi ∈ RCi×Wi×Hi , we define Wi ∈
RWi×Hi as the corresponding weight map, shared across
all feature channels. These weight maps are constructed
based on the rendering importance score {Ii}3i=1 by Li et al.
(2023a;b), defined next.

As follows, we consider feature plane i and grid location j.
The collection of sampling points xk ∈ R3 in the vicinity of
location j (upon projection) shall be denoted as Nj . Since
the coordinates of xk are continuous and the grid locations
discrete, we distribute the ”mass” of each xk onto the rele-
vant grid locations using bilinear interpolation, resulting in
the interpolation weights ωi

kj for sampling point xk ∈ Nj .
In addition, each sampling point xk in Eq. 1 has a corre-
sponding transmittance coefficient Tk · αk that we interpret
as its importance. This lead to the following importance
scores for each grid location j in plane i,

Iji =
∑
k∈Nj

ωi
kj · Tk · αk (4)

In sum, each importance score Iji is a weighted aggregate
of the individual importance scores of the neighboring sam-
pling points xk over the feature grid.

Finally, we apply a log-transform to the importance maps
{Ii}3i=1, and then normalize them to the range of [0, 1] to
get the weights {Wi}3i=1:

Wi = normalize(log(Ii + ϵ)), (5)

in which ϵ = 0.01 to ensure that the log is well-defined.

3.3. Masked entropy model

Applying neural compression to TensoRF-VM enables us to
use a wide range of different entropy models. In this section,
we design a simple but effective entropy model that works
well for TensoRF-VM compression, exploiting the spatial
sparsity of the feature plane representation.

Theoretically, a learned entropy model, P , should result in
a close-to-optimal coding strategy, provided the model is
flexible enough. In practice, we observed that a predomi-
nant portion of the learned latent code is zero, especially in
the background. This observation might be attributed to our
choice of initializing the latent codes as zero tensors and the
fact that large parts of the feature planes are not used for ren-
dering. Such sparsity is poorly captured using the standard
entropy models used in neural image compression (Ballé
et al., 2016; 2018), leading to entropy coding inefficiencies.

To design a better entropy model, we construct a spike-and-
slab prior, oftentimes used in Bayesian statistics (Mitchell
& Beauchamp, 1988). To this end, we construct binary
masks {Mi}3i=1 into our entropy model P . The model P
compresses grid features Pj

i only when Mj
i = 1, allow-

ing selective compression of specific features and avoiding
others. Those masks are learnable and can be treated as
additional parameters of P .

In more detail, we design P to be a fully factorized probabil-
ity distribution as in Ballé et al. (2016) and Ballé et al.
(2018). Every grid location is independent and identi-
cally distributed by binary mixture, consisting of a non-
parametric distribution pθ(·) with learnable θ, and a Dirac
mass δ(·) at zero. For each latent code Ẑi to be compressed,
we establish a corresponding binary mask Mi that has the
same spatial size and is shared across features channels. The
conditional probability distribution P (given the mask) is
then factorized across spatial locations j as:

PMi
(Ẑi) =

∏
j

p(Ẑj
i |M

j
i);

p(Ẑj
i |M

j
i) =

{
δ(Ẑj

i) if Mj
i = 0

pθ(Ẑ
j
i) if Mj

i = 1.

(6)

We stress that we could also entropy-code the masks under a
hyperprior p(M), but found little benefit to do so in practice.

This construction implies that, if Mj
i = 0, then we designate

Ẑj
i = 0. Thus, the input to the decoder D can be calculated

as Ẑi ⊙Mi, and the reconstructed planes are

P̂i = D(Ẑi ⊙Mi). (7)

However, since the masks Mi are binary, they cannot be
learned directly. To address this, we turn to the Gumbel-
Softmax trick (Jang et al., 2016; Yang et al., 2020) to fa-

4

Neural NeRF Compression

cilitate the learning of Mi. For each Mi, we define the
binary probabilities denoted by π0

Mi
and π1

Mi
indicating

Mi = 0/1, respectively. At training time, we sample Mi

using the straight-through Gumbel-Softmax estimator (Ben-
gio et al., 2013; Jang et al., 2016):

Mi = argmax
j∈{0,1}

(gj + log πj
Mi

) (8)

in which gj are i.i.d samples drawn from Gumbel(0, 1).
The straight-through Gumbel-Softmax estimator allows us
to calculate the gradients of πj

Mi
. We then optimize the

mask probabilities πj
Mi

following the rate-distortion loss:

L =Lrender({P̂i}3i=1)

+

3∑
i=1

(
||(Pi − P̂i)⊙Wi||22 − λ log2 PMi(Ẑi)

)
,

(9)
where P̂i is calculated with Equation 7. In practice, we use
an annealing softmax temperature τ that decays from 10 to
0.1 to calculate the softmax gradients.

4. Experiments
As follows, we empirically demonstrate that our proposed
approach of learning a lightweight, per-scene neural com-
pression model without an encoder outperforms existing
approaches based on vector quantization and models trained
on multiple scenes in terms of rate-distortion performance.

4.1. Experiment Setting

Datasets. We perform our experiments on 4 datasets:

• Synthetic-NeRF (Mildenhall et al., 2021): This dataset
contains 8 scenes at resolution 800× 800 rendered by
Blender. Each scene contains 100 training views and
200 testing views.

• Synthetic-NSVF (Liu et al., 2020): This dataset also
contains 8 rendered scenes at resolution 800 × 800.
However Synthetic-NSVF contains more complex ge-
ometry and lightning effects compared to Synthetic-
NeRF.

• LLFF (Mildenhall et al., 2019): LLFF contains 8 real-
world scenes made of forward-facing images with non
empty background. We use the resolution 1008× 756.

• Tanks and Temples (Knapitsch et al., 2017): We use 5
real-world scenes: Barn, Caterpillar, Family, Ignatus,
Truck from the Tanks and Temples dataset to experi-
ment with. They have the resolution of 1920× 1080.

In our compression experiments, we initially train a
TensoRF-VM model for every scene within the datasets

listed above. We use the default TensoRF-VM 192 hyperpa-
rameters, as detailed in (Chen et al., 2022). Subsequently,
we apply our proposed method to compress these trained
models. All experimental procedures are executed using Py-
Torch (Paszke et al., 2019) on NVIDIA RTX A6000 GPUs.

Baselines. We compare our compression paradigm with:
The original NeRF model with MLP (Mildenhall et al.,
2021), the uncompressed TensoRF-CP and TensoRF-VM
from Chen et al. (2022), two prior compression meth-
ods for TensoRF-VM based on pruning and vector quan-
tization named VQ-TensoRF from Li et al. (2023a) and
Re:TensoRF from Deng & Tartaglione (2023).

Hyperparameters. As discussed in Section 3.1, our de-
coder has two transposed convolutional layers with SELU
activation (Klambauer et al., 2017). They both have a kernel
size of 3, with stride 2 and padding 1. Thus, each layer
has an upsampling factor of 2. Given a feature plane sized
Ci ×Wi ×Hi, we initialize the corresponding latent code
Zi to have the size of CZi

×Wi/4×Hi/4.

Having a decoder with more parameters will enhance
the model’s decoding ability while also increase its size.
In light of this trade-off, we introduce two configura-
tions: ECTensoRF-H (stands for Entropy Coded Ten-
soRF - high compression) employs latent codes with
192 channels and a decoder with 96 hidden channels,
while ECTensoRF-L (low compression) has 384 la-
tent channels and 192 decoder hidden channels. Re-
garding the hyperparameter λ, we experiment within
the set {0.02, 0.01, 0.005, 0.001, 0.0005, 0.0002, 0.0001},
with higher λ signifying a more compact model.

We train our models for 30, 000 iterations with Adam opti-
mizer (Kingma & Ba, 2015). We use an initial learning rate
of 0.02 for the latent codes and 0.001 for the networks, and
apply an exponential learning rate decay.

4.2. Results

We first compare our results with the baselines quantitatively.
We use the PSNR and SSIM (Wang et al., 2004) metrics to
evaluate the reconstruction quality. The compression rate is
determined by the compressed file size in MB.

Quantitative Results. Table 1 showcases quantitative re-
sults in both rate and distortion in the high-quality/low-
distortion regime, where the reconstruction quality of all
compressed TensoRF models are close to other uncom-
pressed performances for novel view synthesis. This regime
is particularly relevant in NeRF compression applications,
where high-quality renderings for compressed models are
typically expected.

Compared to the other two TensoRF compression baselines,

5

Neural NeRF Compression

Table 1: Quantitative results comparing our method versus the baselines. PSNR is measured in dB, while the sizes are in
MB. We choose the λ to balance between the reconstruction quality and storage size.

Methods
Synthetic-NeRF Synthetic-NSVF LLFF Tanks and Temples

PSNR SSIM Size PSNR SSIM Size PSNR SSIM Size PSNR SSIM Size

U
nc

om
-

pr
es

se
d NeRF 31.01 0.947 5.0 - - - 26.50 0.811 5.0 25.78 0.864 5.0

TensoRF-CP 31.56 0.949 3.9 34.48 0.971 3.9 - - - 27.59 0.897 3.9
TensoRF-VM 33.09 0.963 67.6 36.72 0.982 71.6 26.70 0.836 179.8 28.54 0.921 72.6

C
om

-
pr

es
se

d

VQ-TensoRF 32.86 0.960 3.6 36.16 0.980 4.1 26.46 0.824 8.8 28.20 0.913 3.3
Re:TensoRF 32.81 0.956 7.9 36.14 0.978 8.5 26.55 0.797 20.2 28.24 0.907 6.7
TC-TensoRF-L (ours) 32.93 0.961 3.4 36.34 0.980 4.0 26.44 0.826 4.9 28.42 0.915 2.9
TC-TensoRF-H (ours) 32.31 0.956 1.6 35.33 0.974 1.6 25.72 0.786 1.7 28.08 0.907 1.6

Table 2: Relative improvement of our method versus VQ-TensoRF. BD-PSNR and BD-rate measure the average difference
in PSNR and bitrate between the two methods.

Synthetic-NeRF Synthetic-NSVF Tanks and Temples
BD-PSNR 0.279 dB 0.289 dB 0.344 dB
BD-Rate 28.827 % 21.104 % 16.717 %

VQ-TensoRF and Re:TensoRF, our variant ECTensoRF-L
shows superior reconstruction performance in this regime
in terms of both the PSNR and SSIM metrics while simul-
taneously maintaining a reduced file size across 3 datasets:
Synthetic-NeRF, Synthetic-NSVF, and Tanks & Temples.
In the case of the LLFF dataset, we are slightly behind
VQ-TensoRF and Re:TensoRF in PSNR. Despite this, our
achieved SSIM values surpass both baselines and, remark-
ably, the size of our compressed files is just about half of VQ-
TensoRF and a mere quarter when compared to Re:TensoRF.
For a smaller number of channels, our ECTensoRF-H is
able to compress the model sizes to less than 2MB while
maintaining a decent reconstruction quality. Notably, our
ECTensoRF-H has a similar SSIM as Re:TensoRF on
Synthetic-NeRF and Tanks&Temples.

Qualitative Results. We compare rendered images from
the Synthetic-NeRF dataset, using VQ-TensoRF and our
conpression method for both configurations: ECTensoRF-L
and ECTensoRF-H in Figure 3. Visually, there is minimal
disparity between the uncompressed and compressed Ten-
soRF models. We further show more qualitative results for
the other datasets in the Appendix.

Rate-distortion performance. The rate-distortion curve
is widely used in neural compression to compare the
compression performance across different compression
level. Here we analyze the rate-distortion curve of our
ECTensoRF-L with various λ values versus VQ-TensoRF
with various codebook size. For the VQ-TensoRF evalua-
tions, we employed the officially released code and utilized
the same pre-trained TensoRF models for consistency.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

31.0

31.5

32.0

32.5

33.0

PS
N

R
 (d

B
)

VQ-TensoRF
ECTensoRF-L (ours)
ECTensoRF-H (ours)
Uncompressed

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

0.9425

0.9450

0.9475

0.9500

0.9525

0.9550

0.9575

0.9600

0.9625

SS
IM

VQ-TensoRF
ECTensoRF-L (ours)
ECTensoRF-H (ours)
Uncompressed

Figure 2: Comparison of rate-distortion curves between our
proposed methods and the baseline VQ-TensoRF on the
Synthetic-NeRF dataset. The upper figure illustrates PSNR
against file size, and the lower figure showcases SSIM in
relation to file size.

6

Neural NeRF Compression

Uncompressed VQ-TensoRF ECTensoRF-L ECTensoRF-H

Figure 3: Qualitative results on Chair and Mic scenes from the Synthetic-NeRF dataset. From left to right: uncompressed,
VQ-TensorF (average size 3.6 MB), ECTensoRF-L (3.4 MB), ECTensoRF-H (1.6 MB). Our decompressed renderings are
barely distinguishable in quality from both uncompressed and VQ-compressed versions at a significantly reduced file size.

Figure 2 shows that our ECTensoRF-L outpaces VQ-
TensoRF across various levels of compression in Synthetic-
NeRF dataset with both PSNR and SSIM metrics. Rate-
distortion curves for other datasets can be found in the Ap-
pendix A.2.

Moreover, Table 2 shows the relative improvement of our
method over VQ-TensoRF using Bjontegaard Delta (BD)
BD-PSNR and BD-rate metrics (Bjontegaard, 2001), high-
lighting that our model achieves better PSNR and bit-rate
across various compression levels.

Training and rendering time. Training an uncompressed
TensoRF model for a scene from the Synthetic-NeRF dataset
takes around 15 minutes on an NVIDIA A6000 GPU. Run-
ning on top of that, our compression method takes an ad-
ditional 40 minutes. Our framework is slower than the
baseline VQ-TensoRF, which runs in 7 minutes on the same
hardware. Regarding rendering, our approach adds a negli-
gible overhead of roughly 2 seconds for the decompression
of parameters. Once decompressed, the rendering procedure
is the same as TensoRF.

Compression details. The average storage size break-
down of our model on the Synthetic-NeRF dataset (with
the configuration from Table 1) is provided in the Table 3.
For the feature planes, we compresse them with the learned
entropy model. All the other components (the renderer MLP,
decoder, density/appearance vectors, learned masks, entropy

Table 3: Storage size breakdown.

Component Size (MB)
Feature planes 1.657
Decoder 1.380
Other components 0.366
Total 3.403

bottleneck parameters and model config) are packed into a
single file and compressed with LZ77 (ziv, 1977).

5. Ablation Studies
We conduct experiments to verify our design choices. We
test on the Synthetic-NeRF datasets, with our ECTensoRF-L
architecture.

5.1. Advantages of per-scene optimization

As outlined in Section 3.1, our compression methodology
is optimized on a per-scene basis. However, this raises
the question: how is the performance of traditional nonlin-
ear transform coding on TensoRF compression, even on a
small-scale dataset? To address this, we conduct a compar-
ative analysis. We compress the TensoRF model by first
training a compression network using an encoder-decoder
architecture, similar to traditional nonlinear transform cod-

7

Neural NeRF Compression

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

24

26

28

30

32

34

36
PS

N
R

 (d
B

)

ECTensoRF-L
ECTensoRF-H
NTC

Figure 4: Rate-distortion comparison between traditional
nonlinear transform coding (green), trained across 7 scenes,
and our per-scene compression methods (orange, blue).

ing. Specifically, we train the compression network on
seven scenes from the Synthetic-NeRF dataset and tested
the trained model on the remaining scene (Lego). We com-
pare this approach with our per-scene optimized model.

Figure 4 shows the results of this experiment. Compared
to per-scene training, pre-trained NTC suffers from inferior
reconstruction quality. More specifically, the maximum
PSNR that the pre-trained NTC can achieve is only 24.52 dB,
which is 12.03 dB lower than the uncompressed PSNR value
(36.55 dB) and also much lower than the PSNR values of
per-scene trained models. However, we note that the major
advantage of pre-trained NTC is a much faster compression
time. Using a pre-trained NTC model also avoids the need
to transmit the entropy model and the decoder, as we assume
that the receiver always has access to them, which is similar
to the image compression setting.

5.2. Ablation on other design choices

Using the encoder We first show the sub-optimal perfor-
mance of ECTensoRF-L compression with an encoder. As
discussed in Section 3.1, using an encoder leads to an irre-
ducible amortization gap in optimization, and the resulting
compression performance is worse, as shown in Figure 5.

Training without Importance-Weighted Loss. We ex-
amine the rate-distortion curves of ECTensoRF-L, trained
both with and without importance weight, as depicted in
Figure 5. At an identical PSNR of 32.98 dB, employing
importance weight in training our model helps reduce the
file size from 4.59 MB to 3.92 MB.

The Effect of the Masked Entropy Model. To demon-
strate the efficacy of our masked entropy model, we un-
dertook a comparative analysis between the compression

2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

31.25

31.50

31.75

32.00

32.25

32.50

32.75

33.00

PS
N

R
 (d

B
)

ECTensoRF-L
ECTensoRF-L with Encoder
Uncompressed

2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

31.25

31.50

31.75

32.00

32.25

32.50

32.75

33.00

PS
N

R
 (d

B
)

ECTensoRF-L
ECTensoRF-L with Factorized Prior
ECTensoRF-L without Importance Weight
Uncompressed

Figure 5: Ablation studies. Top: rate-distortion comparison
of our approach against a version with encoder, trained on a
single scene. Bottom: comparisons between model versions
with factorized prior and without importance weight.

performance of ECTensoRF-L using the conventional factor-
ized prior (Ballé et al., 2016; 2018) and our masked model.
The results related to rate distortion curves can be found in
the bottom plot of Figure 5.

It’s noteworthy that, due to the additional overhead intro-
duced by sending the masks, our results lag slightly behind
the factorized prior in a low-rate setting. Yet, in medium
to high-rate regimes, our prior emerges superior compared
to the traditional factorized prior. To illustrate, for a PSNR
value of 32.98 dB, the compressed file with the factorized
prior occupies 4.26 MB. In contrast, our method employing
the proposed masked entropy model results in a reduced file
size of 3.92 MB.

To further understand the behavior of our masked entropy
model, we visualize the masks learned for the Chair and
Mic scene from Synthetic-NeRF dataset in Figure 6. We can
observe that the masks resemble the rendering objects when
viewed from different angles, and they inherently ignore
the background. This behavior is similar to the pruning

8

Neural NeRF Compression

Figure 6: Ablation studies. We show the sparsity masks of
our entropy model learned on the Chair and Mic scene.

strategies employed in prior grid-based NeRF compression
works (Li et al., 2023a;b; Deng & Tartaglione, 2023).

More experimental results. We further conduct experi-
ments on different latents initialization and end-to-end train-
ing in the Appendix A.2.

6. Related Works and Discussion
Grid-based NeRF compression. Since storage cost is
a significant challenge of grid-based NeRF, several meth-
ods were proposed to solve this problem. Li et al. (2023a)
introduces a three-stage approach, integrating voxel prun-
ing and vector quantization (Gray, 1984) through a learn-
able codebook. Similarly, Re:NeRF (Deng & Tartaglione,
2023) employs voxel pruning, but adopts a strategy of se-
quentially removing and reintegrating parameters to prevent
a significant drop in performance. Meanwhile, Takikawa
et al. (2022) adopts the codebook idea from Instant-NGP
(Müller et al., 2022), but substitutes hash-based encoding
with a learned mapping that associates grid positions to
corresponding codebook indices. However this approach
requires considerable training memory. Li et al. (2023b) ap-
plies downsampling to the voxels and employs a network to
enhance render quality. Our method shares some similarity
to Li et al. (2023b), but we learn the downsampled latent
codes with a novel entropy model to effectively compress
them. Additionally, while our masked factorized prior also
resembles the pruning mechanism used in previous works,
our method differentiates itself by adaptively learning the
masks instead of relying on fixed thresholds.

Neural compression for NeRF. Applying neural com-
pression to NeRF is a relatively young field. Bird et al.
(2021) learns an entropy model to compress the MLP-based
NeRF (Mildenhall et al., 2021) network weights, based on

the prior model compression work of Oktay et al. (2019). In
contrast, our work focuses on compressing the feature grids
of grid-based NeRF. We additionally improve the conven-
tional compression procedure and propose a novel entropy
model. Concurrent to our work, Li et al. (2024) also applies
neural compression to TensoRF by leveraging a pretrained
image comression network.

Discussion. Throughout this paper, our emphasis has been
on applying neural compression techniques specifically to
TensoRF. Nonetheless, our method has the potential to be
applied to other grid-based NeRF methods beyond just Ten-
soRF, such as Triplanes (Chan et al., 2022; Fridovich-Keil
et al., 2023), Factor Fields (Chen et al., 2023) or DVGO
(Sun et al., 2022). Taking DVGO as an example, we can
learn a 4D latent code and have an entropy model to model
its probability density. Then a decoder may decode this 4D
latent code to render the scene.

7. Conclusion
In this study, we present a novel approach to applying neural
compression to the TensoRF model, a prominent grid-based
NeRF method. Our approach adapts traditional neural com-
pression techniques, commonly used in image and video
compression, to NeRF models. We develop an efficient
per-scene optimization scheme and propose various designs,
such as importance-weighted feature reconstruction and a
masked entropy model. Our experiments demonstrate that
we can significantly reduce storage requirements of a NeRF
model with only a minimal compromise in rendering qual-
ity, and outperform previous NeRF compression baselines.
More importantly, our compression method only adds mini-
mal overhead to the rendering process.

Limitation and future work. One limitation of our neural
compression approach is the longer training time compared
to the baseline VQ-TensoRF, as mentioned in Section 4.
Additionally, the final compressed model still includes the
cost of transmitting the decoder. Future work could focus on
reducing compression time, learning a network compression
model (Oktay et al., 2019; Girish et al., 2022) to compress
the decoder network, and applying our method to other
NeRF architectures.

Impact Statement
Neural compression is a collection of methods that advance
data compression with end-to-end learning approaches. Bi-
ased training data may influence how models reconstruct
data and may lead to misrepresentations, e.g., of individuals,
especially at low bitrates.

9

Neural NeRF Compression

Acknowledgements
The authors acknowledge support from the National Sci-
ence Foundation (NSF) under an NSF CAREER Award
(2047418), award numbers 2003237 and 2007719, by the
Department of Energy under grant DE-SC0022331, the
IARPA WRIVA program, and by gifts from Qualcomm
and Disney. We also thank Justus Will for his meticulous
proofreading and valuable suggestions for this paper.

References
A universal algorithm for sequential data compression.

IEEE Transactions on information theory, 23(3):337–343,
1977.

Ballé, J., Laparra, V., and Simoncelli, E. P. End-to-end
optimization of nonlinear transform codes for perceptual
quality. In 2016 Picture Coding Symposium (PCS), pp.
1–5. IEEE, 2016.

Ballé, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston,
N. Variational image compression with a scale hyperprior.
In International Conference on Learning Representations,
2018.

Ballé, J., Chou, P. A., Minnen, D., Singh, S., Johnston, N.,
Agustsson, E., Hwang, S. J., and Toderici, G. Nonlinear
transform coding. IEEE Journal of Selected Topics in
Signal Processing, 15(2):339–353, 2020.

Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P.,
Martin-Brualla, R., and Srinivasan, P. P. Mip-nerf: A
multiscale representation for anti-aliasing neural radiance
fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5855–5864, 2021.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Bird, T., Ballé, J., Singh, S., and Chou, P. A. 3d scene com-
pression through entropy penalized neural representation
functions. In 2021 Picture Coding Symposium (PCS), pp.
1–5. IEEE, 2021.

Bjontegaard, G. Calculation of average psnr differences
between rd-curves. ITU SG16 Doc. VCEG-M33, 2001.

Campos, J., Meierhans, S., Djelouah, A., and Schroers, C.
Content adaptive optimization for neural image compres-
sion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp.
0–0, 2019.

Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan,
B., De Mello, S., Gallo, O., Guibas, L. J., Tremblay, J.,

Khamis, S., et al. Efficient geometry-aware 3d generative
adversarial networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 16123–16133, 2022.

Chen, A., Xu, Z., Geiger, A., Yu, J., and Su, H. Tensorf:
Tensorial radiance fields. In European Conference on
Computer Vision, pp. 333–350. Springer, 2022.

Chen, A., Xu, Z., Wei, X., Tang, S., Su, H., and Geiger, A.
Factor fields: A unified framework for neural fields and
beyond. arXiv preprint arXiv:2302.01226, 2023.

Cheng, Z., Sun, H., Takeuchi, M., and Katto, J. Learned
image compression with discretized gaussian mixture
likelihoods and attention modules. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

Cremer, C., Li, X., and Duvenaud, D. Inference subopti-
mality in variational autoencoders. In International Con-
ference on Machine Learning, pp. 1078–1086. PMLR,
2018.

Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel,
O., VanderBilt, E., Schmidt, L., Ehsani, K., Kembhavi,
A., and Farhadi, A. Objaverse: A universe of annotated
3d objects. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13142–
13153, 2023.

Deitke, M., Liu, R., Wallingford, M., Ngo, H., Michel,
O., Kusupati, A., Fan, A., Laforte, C., Voleti, V., Gadre,
S. Y., et al. Objaverse-xl: A universe of 10m+ 3d objects.
Advances in Neural Information Processing Systems, 36,
2024.

Deng, C. L. and Tartaglione, E. Compressing explicit voxel
grid representations: fast nerfs become also small. In
Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pp. 1236–1245, 2023.

Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B.,
and Kanazawa, A. Plenoxels: Radiance fields without
neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
5501–5510, 2022.

Fridovich-Keil, S., Meanti, G., Warburg, F. R., Recht, B.,
and Kanazawa, A. K-planes: Explicit radiance fields
in space, time, and appearance. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12479–12488, 2023.

Gershman, S. and Goodman, N. Amortized inference in
probabilistic reasoning. In Proceedings of the annual
meeting of the cognitive science society, volume 36, 2014.

10

Neural NeRF Compression

Girish, S., Gupta, K., Singh, S., and Shrivastava, A. Lilnetx:
Lightweight networks with extreme model compression
and structured sparsification. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Gray, R. Vector quantization. IEEE Assp Magazine, 1(2):
4–29, 1984.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In International Conference
on Learning Representations, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter,
S. Self-normalizing neural networks. Advances in neural
information processing systems, 30, 2017.

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. Tanks
and temples: Benchmarking large-scale scene reconstruc-
tion. ACM Transactions on Graphics (ToG), 36(4):1–13,
2017.

Kolda, T. G. and Bader, B. W. Tensor decompositions and
applications. SIAM review, 51(3):455–500, 2009.

Li, L., Shen, Z., Wang, Z., Shen, L., and Bo, L. Compressing
volumetric radiance fields to 1 mb. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4222–4231, 2023a.

Li, L., Wang, Z., Shen, Z., Shen, L., and Tan, P. Compact
real-time radiance fields with neural codebook. In 2023
IEEE International Conference on Multimedia and Expo
(ICME), pp. 2189–2194. IEEE, 2023b.

Li, S., Li, H., Liao, Y., and Yu, L. Nerfcodec: Neu-
ral feature compression meets neural radiance fields for
memory-efficient scene representation. arXiv preprint
arXiv:2404.02185, 2024.

Liu, L., Gu, J., Zaw Lin, K., Chua, T.-S., and Theobalt, C.
Neural sparse voxel fields. Advances in Neural Informa-
tion Processing Systems, 33:15651–15663, 2020.

Marino, J., Yue, Y., and Mandt, S. Iterative amortized infer-
ence. In International Conference on Machine Learning,
pp. 3403–3412. PMLR, 2018.

Matsubara, Y., Yang, R., Levorato, M., and Mandt, S. Su-
pervised compression for resource-constrained edge com-
puting systems. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pp.
2685–2695, 2022.

Mildenhall, B., Srinivasan, P. P., Ortiz-Cayon, R., Kalantari,
N. K., Ramamoorthi, R., Ng, R., and Kar, A. Local light
field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on Graphics
(TOG), 38(4):1–14, 2019.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Minnen, D., Ballé, J., and Toderici, G. D. Joint autoregres-
sive and hierarchical priors for learned image compres-
sion. Advances in neural information processing systems,
31, 2018.

Mitchell, T. J. and Beauchamp, J. J. Bayesian variable
selection in linear regression. Journal of the american
statistical association, 83(404):1023–1032, 1988.

Müller, T., Evans, A., Schied, C., and Keller, A. Instant
neural graphics primitives with a multiresolution hash
encoding. ACM Transactions on Graphics (ToG), 41(4):
1–15, 2022.

Oktay, D., Ballé, J., Singh, S., and Shrivastava, A. Scalable
model compression by entropy penalized reparameteriza-
tion. In International Conference on Learning Represen-
tations, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Sun, C., Sun, M., and Chen, H.-T. Direct voxel grid op-
timization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
5459–5469, 2022.

Takikawa, T., Evans, A., Tremblay, J., Müller, T., McGuire,
M., Jacobson, A., and Fidler, S. Variable bitrate neural
fields. In ACM SIGGRAPH 2022 Conference Proceed-
ings, pp. 1–9, 2022.

Wallace, G. K. The jpeg still picture compression standard.
Communications of the ACM, 34(4):30–44, 1991.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

Yang, R. and Mandt, S. Lossy image compression with
conditional diffusion models. Advances in Neural Infor-
mation Processing Systems, 36, 2023a.

11

Neural NeRF Compression

Yang, R., Yang, Y., Marino, J., and Mandt, S. Insights from
generative modeling for neural video compression. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2023a.

Yang, Y. and Mandt, S. Computationally-efficient neural im-
age compression with shallow decoders. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 530–540, 2023b.

Yang, Y., Bamler, R., and Mandt, S. Improving inference
for neural image compression. Advances in Neural Infor-
mation Processing Systems, 33:573–584, 2020.

Yang, Y., Mandt, S., Theis, L., et al. An introduction to
neural data compression. Foundations and Trends® in
Computer Graphics and Vision, 15(2):113–200, 2023b.

Yu, A., Li, R., Tancik, M., Li, H., Ng, R., and Kanazawa,
A. Plenoctrees for real-time rendering of neural radiance
fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021.

Zhang, K., Riegler, G., Snavely, N., and Koltun, V. Nerf++:
Analyzing and improving neural radiance fields. arXiv
preprint arXiv:2010.07492, 2020.

12

Neural NeRF Compression

A. Appendix
A.1. Algorithm

Algorithm 1 TensoRF-VM compression

Input: Pretrained TensoRF-VM model
Output: Compressed TensoRF-VM model
Calculate {Wi}3i=1 using Eq 4 and 5
Initialize {Zi}3i=1 as 0-tensors
Initialize decoder D and entropy model P with masks parameters {π0

Mi
}3i=1 and {π1

Mi
}3i=1

while not converged do
Sample {Mi}3i=1 using Gumbel-Softmax as in Eq 8
Reconstruct {P̂i}3i=1 by Eq 7
Render the scene with {P̂i}3i=1

Calculate the loss in Eq 9 and update the model
end while

A.2. More experimental results

A.2.1. RATE-DISTORTION COMPARISON ON OTHER DATASETS

We further compare the rate-distortion curves of ECTensoRF and the baseline VQ-TensoRF on the Synthetic-NSVF, LLFF
and Tanks&Temples datasets in Figure 7, 8 and 9.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

PS
N

R
 (d

B
)

VQ-TensoRF
ECTensoRF-L (ours)
ECTensoRF-H (ours)
Uncompressed

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

0.960

0.965

0.970

0.975

0.980

SS
IM

VQ-TensoRF
ECTensoRF-L (ours)
ECTensoRF-H (ours)
Uncompressed

Figure 7: Comparison on Synthetic-NSVF dataset.

A.2.2. ADDITIONAL EXPERIMENTS

Latent initialization. We compare the performance of Gaussian initialization and Zero initialization of the latents code.
The results are shown in Table 4.

13

Neural NeRF Compression

1 2 3 4 5 6 7 8 9
File Size (MB)

25.6

25.8

26.0

26.2

26.4

26.6

PS
N

R
 (d

B
)

VQ-TensoRF
ECTensoRF-L (ours)
ECTensoRF-H (ours)
Uncompressed

2 3 4 5 6 7 8
File Size (MB)

0.79

0.80

0.81

0.82

0.83

0.84

SS
IM

VQ-TensoRF
ECTensoRF-L (ours)
ECTensoRF-H (ours)
Uncompressed

Figure 8: Comparison on LLFF dataset.

1.0 1.5 2.0 2.5 3.0 3.5
File Size (MB)

26.75

27.00

27.25

27.50

27.75

28.00

28.25

28.50

PS
N

R
 (d

B
)

VQ-TensoRF
ECTensoRF-L (ours)
ECTensoRF-H (ours)
Uncompressed

1.0 1.5 2.0 2.5 3.0 3.5
File Size (MB)

0.885

0.890

0.895

0.900

0.905

0.910

0.915

0.920

SS
IM

VQ-TensoRF
ECTensoRF-L (ours)
ECTensoRF-H (ours)
Uncompressed

Figure 9: Comparison on Tanks and Temples dataset.

Table 4: Comparison of Zero Initialization vs. Gaussian Initialization

λ Values Zero Initialization Gaussian Initialization
PSNR (dB) Size (MB) PSNR (dB) Size (MB)

2e-2 31.31 1.86 31.13 1.85
1e-2 31.80 1.99 31.75 1.99
5e-3 32.25 2.20 32.26 2.20
1e-3 32.83 3.00 32.83 3.01
5e-4 32.93 3.40 32.92 3.42
2e-4 32.98 3.92 32.98 3.94
1e-4 33.00 4.24 32.99 4.26

End-to-end training. We conduct experiments to compare the performance of our two-stage training (by first using a
pre-trained TensoRF model, and train the compression model) and a single stage (by training the compression model from
scratch). We show the results in Table 5.

14

Neural NeRF Compression

Table 5: Comparison of End-to-End Training vs. Two Stages Training

λ Values End-to-End Training Two Stages Training
PSNR (dB) Size (MB) PSNR (dB) Size (MB)

2e-2 25.86 1.69 31.31 1.86
1e-2 28.30 1.71 31.80 1.99
5e-3 30.05 1.81 32.25 2.20
1e-3 31.29 2.39 32.83 3.00
5e-4 31.53 2.57 32.93 3.40
2e-4 31.86 2.69 32.98 3.92
1e-4 31.80 2.95 33.00 4.24

Hyperprior model. We also perform experiments using a version of hyperprior model (Ballé et al., 2018) with our
masking mechanism. More specifically, we apply masking on both the hyper-latents and latents. Both type of latents are
directly optimized without using amortized inference. The hyper decoder has two transposed convolutional layers with
SELU activation. We show the result on NeRF-Synthetic on Table 6.

Table 6: Comparison of ECTensorF-L with and without Hyperprior

λ Values ECTensorF-L + Hyperprior ECTensorF-L
PSNR (dB) Size (MB) PSNR (dB) Size (MB)

2e-2 31.31 1.92 31.31 1.86
1e-2 31.92 2.04 31.80 1.99
5e-3 32.35 2.25 32.25 2.20
1e-3 32.85 2.97 32.83 3.00
5e-4 32.93 3.32 32.93 3.40
2e-4 32.98 3.72 32.98 3.92
1e-4 33.00 3.95 33.00 4.24

At lower bit rates, the hyperprior is slightly worse than the ECTensoRF-L baseline because of the irreducible cost to transmit
the hyper decoder and hyper entropy model. At higher bit rates, the compression performance with the hyperprior method
is better than using only a single entropy model, which aligns with prior observations in image compression (Ballé et al.,
2018).

Preliminary results for Factor Fields. We show the potential of applying our method to other grid-based NeRF
architectures. We choose Factor Fields (Chen et al., 2023) to experiment with. We show the result of our method for Factor
Fields in Table 7. Note that for Factor Fields, we compress the basis 4D tensors and do not compress the coefficient 4D
tensors.

Table 7: Factor Fields experiments

λ Values PSNR (dB) Rate (MB)
1e-3 26.19 1.12
1e-4 29.67 1.23
1e-5 31.35 1.82

Uncompressed 33.09 18.89

A.2.3. MORE QUALITATIVE RESULTS

We show qualitative results on all scenes from Synthetic-NeRF, Synthetic-NSVF, LLFF and Tanks&Temples datasets in
Figure 10, 11, 12 and 13.

15

Neural NeRF Compression

Figure 10: Qualitative results on Tanks and Temples dataset. From left to right: TensoRF, ECTensoRF-L, ECTensoRF-H,
ECTensoRF-L difference and ECTensoRF-H difference.

16

Neural NeRF Compression

Figure 11: Qualitative results on Synthetic-NeRF dataset. From left to right: TensoRF, ECTensoRF-L, ECTensoRF-H,
ECTensoRF-L difference and ECTensoRF-H difference.

17

Neural NeRF Compression

Figure 12: Qualitative results on Synthetic-NSVF dataset. From left to right: TensoRF, ECTensoRF-L, ECTensoRF-H,
ECTensoRF-L difference and ECTensoRF-H difference.

18

Neural NeRF Compression

Figure 13: Qualitative results on LLFF dataset. From left to right: TensoRF, ECTensoRF-L, ECTensoRF-H, ECTensoRF-L
difference and ECTensoRF-H difference.

19

