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Abstract
Models trained on data composed of different
groups or domains can suffer from severe per-
formance degradation under distribution shifts.
While recent methods have largely focused on
optimizing the worst-group objective, this often
comes at the expense of good performance on
other groups. To address this problem, we intro-
duce an optimization scheme to achieve good per-
formance across groups and find a good solution
for all without severely sacrificing performance
on any of them. However, directly applying such
optimization involves updating the parameters of
the entire network, making it both computation-
ally expensive and challenging. Thus, we intro-
duce Controllable Prompt Tuning (CPT), which
couples our approach with prompt-tuning tech-
niques. On spurious correlation benchmarks, our
procedures achieve state-of-the-art results across
both transformer and non-transformer architec-
tures, as well as unimodal and multimodal data,
while requiring only 0.4% tunable parameters.

1. Introduction
Spurious correlation or shortcut learning arises when a clas-
sifier relies on non-predictive features that coincidentally
correlate with class labels among training samples. For ex-
ample, a majority of waterbirds are often found near water,
while landbirds mostly appear near land. Even when being
provided with a small number of minority group examples,
such as waterbirds on land, or landbirds on water, model
predictions are often still dominated by spurious features, in
this case, the background, ignoring the salient feature, the
foreground (Sagawa et al., 2019).

A variety of approaches aim to improve worst group per-
formance, by oversampling high-loss samples (Liu et al.,
2021b; Zhang et al., 2022), undersampling the majority
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group (Sagawa et al., 2020) or re-training a last layer on
group-balanced validation data (Kirichenko et al., 2022). A
particularly popular and effective baseline, Group Distribu-
tionally Robust Optimization (GroupDRO) (Sagawa et al.,
2019; 2020), directly minimizes an estimated upper bound
on worst group loss. However, all these procedures gener-
ally neglect knowledge transfer between groups. Moreover,
high-error samples can potentially include noisy-label data
that could hurt the model’s predictive ability if we try to
learn them exhaustively (Oh et al., 2022). Besides, DRO-
based methods in particular are susceptible to overfitting,
wherein their test performances can decline to the same as
ERM with sufficiently long training (Gulrajani & Lopez-
Paz, 2020; Piratla et al., 2021; Zhai et al., 2022).
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Figure 1: Accuracy curves on Waterbirds for four groups
during training. Vertical lines indicate early stopping epochs
as models obtain the best performance on the validation set.

To visually illustrate these limitations, we plot in Figure 1
the performance of a ResNet50 on the Waterbirds bench-
mark, trained with ERM, GroupDRO, and our approach
(to be explained later). The plots demonstrate that while
GroupDRO can improve the performance of the minority
group (green line) early in training compared to ERM, it
rapidly overfits and fails to maintain this performance over
time. After training for ten epochs, the test performance gap
between the minority and majority (blue line) groups grows
sharply. To address these critical limitations, we introduce
a systematic approach to train a model that exhibits consis-
tently high performance across all groups. Specifically, at
each iteration, we identify a descending direction that ben-
efits the groups simultaneously rather than focusing on an
individual group. Figure 1 shows that our proposed method
performs almost equally well in every group, thanks to our
balancing mechanism.

Moreover, we aim to control the group-wise learning pro-
cess by ensuring that the magnitude of loss for different
groups is inversely proportional to a predefined vector c.
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Varying this hyperparameter c adjusts the trade-off between
the worst group and the average performance, yielding a
more flexible method than prior work that only focuses on
maximizing the worst group accuracy. However, computa-
tion can grow linearly with the number of controlling vectors
c. To overcome this challenge, we propose decoupling our
optimization framework with parameter-efficient fine-tuning
(PEFT) techniques that considerably reduce the number of
trainable parameters. With the model compression ability
powered by prompt-tuning, our proposed model can scale
well for a large number of controlling vectors with a small
parameter increase, e.g., 0.01% and 0.003% per value of c
for Vision Transformer (Dosovitskiy et al., 2020) and CLIP
(Radford et al., 2021), respectively.

Contribution. In this work, we introduce CPT, a
Controllable Prompt Tuning method to prevent models from
learning spurious features. In summary, our key contribu-
tions are depicted as follows:

• Drawing inspiration from the principles of multi-objective
optimization theory, we introduce a novel balancing mech-
anism to address the challenges of group distributional ro-
bustness. Our method not only considers the worst group
but also leverages the gradient information from all groups
to determine an ultimate updating direction that benefits all
of them.

• While the above rigid balancing procedure works well in
different scenarios, we extend our method by introducing a
controlling vector that allows us to dynamically adjust the
priority across groups. Additionally, we integrate prompt
tuning techniques to enhance the scalability of our method
as the complexity and number of controlling vectors increase
and to make it applicable for de-biasing large transformers-
based models.

• We conduct intensive experiments on many different
benchmarks, where CPT consistently exhibits superior per-
formance. Our method surpasses the current state-of-the-
art baselines on Waterbirds andimprove the performance
CelebA datasets while updating 0.4% parameters. More-
over, it also outperforms recent proposed methods that aims
to de-bias Vision Transformer and CLIP models with mini-
mal training cost.

2. Related work
We first review relevant methods to enhance distributional
robustness and then discuss prior work related to the two
essential parts of our proposed method: transformer and
parameter-efficient fine-tuning.

Distributional robustness can be compromised for rea-
sons like selection bias or spurious correlation across tasks.
For selection bias on individual samples, prior works seek to

reduce bias via practices like importance reweighting (Heck-
man, 1979; Shimodaira, 2000; Cortes et al., 2010; Lei et al.,
2021), hard sample reweighting (Liu et al., 2021b; Nam
et al., 2020) or distribution matching and discrepancy mini-
mization (Cortes et al., 2015; Ben-David et al., 2010; Berth-
elot et al., 2021), and domain-adversarial algorithms (Ganin
et al., 2016; Long et al., 2018; Phan et al., 2023) across tasks
in their feature representation space (Tran et al., 2023). For
selection bias on groups or subpopulation, namely subpop-
ulation shift or dataset imbalance, label propagation (Cai
et al., 2021; Berthelot et al., 2021) or other consistency reg-
ularization (Miyato et al., 2018; Yang et al., 2023a) are used
to generalize the prediction to broader domains.

Improving distributional robustness also requires mitigating
the effect of environmental features. Prior work uses model
ensemble (Kumar et al., 2022) or model soups (Wortsman
et al., 2022) to learn rich features and reduce the effect of
spurious features. More practices include invariant feature
representation learning (Arjovsky et al., 2019; Chen et al.,
2022b), domain generalization (Krueger et al., 2021; Sun
et al., 2017; Shi et al., 2021) or through data augmentation
(Xu et al., 2020; Yao et al., 2022).

Transformer. In the past few years, transformer (Vaswani
et al., 2017) has emerged as a dominant architecture for a
wide range of applications, exhibiting their profound ca-
pacity in modeling different modalities: languages (Devlin
et al., 2018; Liu et al., 2019; Touvron et al., 2023), vision
(Dosovitskiy et al., 2020; Chen et al., 2021) and speech
(Radford et al., 2023; Wang et al., 2023). Due to its abil-
ity to process multiple modalities, transformer-based ar-
chitectures were widely adopted for image understanding
using different types of supervision. For example, Vision
Transformer (ViT) (Dosovitskiy et al., 2020) utilizes masked
patches for pre-training and image-label supervision for fine-
tuning. Notably, Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021), which was pre-trained on
billion-scale image-text pairs, has demonstrated excellent
zero-shot performance in image classification tasks. De-
spite obtaining impressive results on various downstream
tasks, over-parameterization is still a crucial problem for
transformer (Fan et al., 2019; Panahi et al., 2021) which po-
tentially causes overfitting (Li et al., 2023) and unintended
biases (Agarwal et al., 2021; Wang et al., 2021; Du et al.,
2022; Zhang & Ré, 2022) more severely than small-scale
architectures (Sagawa et al., 2020).

Parameter-Efficient Fine-Tuning. While conventional
training updates the entire network, prior work has shown
that it is possible to achieve performance comparable with
full fine-tuning by instead updating a small set of parame-
ters (Lialin et al., 2023; He et al., 2023; 2021). Early work
in this line of research includes adapter (Houlsby et al.,
2019; Chen et al., 2022a; Sung et al., 2022), which adds
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a lightweight fully connected network between the layers
of a frozen pre-trained model. Since then, there have been
many other methods that update subsets of the network
(Guo et al., 2021; Gheini et al., 2021; Zaken et al., 2022)
or reparametrize the weights of the network using low-rank
decompositions (Aghajanyan et al., 2020; Hu et al., 2021;
Edalati et al., 2022). Another appealing PEFT strategy is
prompt tuning, which prepends a few trainable tokens before
the input sequence or hidden state to encode task-specific
knowledge to the pre-trained model (Lester et al., 2021; Li
& Liang, 2021; Zhu et al., 2023b; Huang et al., 2023).

Gradient-based multi-task learning. Prior work often
searches for an update direction that benefits all tasks (Yu
et al., 2020; Liu et al., 2021a; Phan et al., 2022a) or con-
trols the trade-offs between per-task performance (Lin et al.,
2019; Mahapatra & Rajan, 2020; Phan et al., 2022b). There-
fore, casting the problem of learning from multiple domains
into a multi-task problem (Liang et al., 2021; Kim et al.,
2023) allows us to apply results from multi-objective opti-
mization theory. Building on these insights, we propose a
method that prevents the dominance of any single domain.

3. Background
In this section, we first formulate the problem of group
robustness and recap the technical details of GroupDRO,
then revisit some concepts of multi-objective optimization.

3.1. Problem formulation
Formally, we consider the conventional setting of classifying
an input x ∈ X as a target y ∈ Y , where X ,Y are input and
label spaces, respectively. We are given a training dataset
composed of K groups from the set G, where each group
g ∈ G consists of ng instances sampled from the probability
distribution Pg(X ,Y). Since the numbers of examples are
different among groups in the training data, we consider
groups with relatively large ng as majority groups and those
with small ng as minority groups. Our main goal is to
develop a model that performs effectively across all groups
within G to avoid learning spurious correlations.

Following previous methods (Sagawa et al., 2020), we adopt
two metrics: worst group accuracy, indicating the minimum
test accuracy across all groups g ∈ G, and average accuracy,
which represents the weighted average test accuracy with
the weights corresponding to the relative proportions of each
group in the training data. It is worth noting that commonly
used datasets for group robustness often exhibit skewed
training set distributions, the weighted average score is thus
dominated by the performance of the model on groups that
include large numbers of training data. Therefore, we pro-
pose to evaluate the model performance by additionally
reporting the mean (unweighted average) accuracy score
across different groups.

3.2. Group distributionally robust optimization

GroupDRO learns the model parameters θ by directly opti-
mizing for the worst-group training loss as follows:

max
g∈G

E(x,y)∼Pg(X ,Y) [ℓ (fθ(x), y)]

for some loss function ℓ : Y × Y → R+. Then, their
updating formula at each step is given by:

g∗ = argmax ℓg(θ) and θt+1 = θt − η∇θℓg∗ ,
where η is the learning rate.

3.3. Multi-objective Optimization

Assume that we are given m objectives functions fi(x),
i ∈ [m] where x ∈ Rd and each fi : Rd → R is a scalar-
valued function (we use the [m] notation to denote the set
{1, 2, . . . ,m}) . In the multi-objective optimization (MOO)
problem, we are interested in minimizing a vector-valued
objective function whose i-th component is fi(x):

F⃗ (x) = [f1(x), f2(x), . . . , fm(x)] (1)

In general, an optimal solution for this objective vector func-
tion does not exist since each of the individual function
fi(x) does not necessarily guarantee to have the same mini-
mum solution. Alternatively, we expect to obtain a solution,
from which we cannot improve any specific objective with-
out hurting another. According to the above formulation,
the solution (Zitzler & Thiele, 1999) of the multi-objective
minimization problem is formally defined as follows:

Definition 3.1. (Pareto dominance) Let x1, x2 be two solu-
tions for the multi-objective optimization problem in Equa-
tion 1, x1 dominates x2 (x1 ≺ x2) if and only if fi(x1) ≤
fi(x2)∀i ∈ [m] and ∃j ∈ [m] s.t. fj(x1) < fj(x2).

Definition 3.2. (Pareto optimality) A solution x∗ in prob-
lem 1 is said to be Pareto optimal if it is not dominated
by any other solution. Therefore, the solutions set of the
multi-objective minimization problem is given by P :=
{x | ∄x′ : x′ ≺ x}. This set of all Pareto optimal solutions
is called the Pareto set while the collection of their images
in the objective space is called the Pareto front.

Gradient-based MOO. Désidéri (2012) shows that the
descent direction can be found in the convex hull com-
posed of gradients corresponding to different objectives
{hi := ∇fi}mi=1:

CH =

{
H⊤α =

m∑
i=1

αih
i | α ∈ ∆m

}
where ∆m denotes the m− 1 dimension simplex.

Moreover, they introduce the Multiple Gradient Descent
Algorithm (MGDA), which calculates the minimum-norm
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gradient vector h that lies in the convex hull: h =
argminh∈CH||h||2. This approach can guarantee that the
obtained solutions lie on the Pareto front, from which we
cannot find an updating direction that decreases all objec-
tives simultaneously.

4. Proposed method
In GroupDRO, the updating formula solely focuses on the
worst-performing group, which is susceptible to challenges
when groups exhibit varying levels of loss magnitude, noise,
and transfer characteristics. For example, among the high-
loss group, there might exist a few outliers that have large
input shifts or even wrong labels, which can raise the train-
ing loss of the whole group and prevent the model from
fitting other groups.

4.1. Balancing group distributional robustness

In this paper, we go beyond the worst group approach of
GroupDRO to examine all groups at a time. To encourage
the model to learn from different groups at each step to
avoid struggling on just the hardest one only, we propose to
minimize the following K-dimension loss vector:

L⃗(θ) =
{
E(x,y)∼P

gk
(X ,Y) [ℓ (fθ(x), y)]

}K

k=1
(2)

where K is the number of groups and gk is the k-th group.

At t-th iteration, we search for an update vector that mini-
mizes the weighted sum of group losses:

dt(w) = w⊤∇L⃗(θt) =
K∑

k=1

wk∇ℓk(θt) (3)

where ℓk(θ) = EP
gk

[ℓ (fθ(x), y)] and w ∈ ∆
K

.

Then, the updating formula of our algorithm is then given
by θt+1 = θt − ηdt(w) for some step size η ∈ R+. The co-
efficient w is chosen such that our update rule can benefit all
groups dt(w)⊤∇ℓk(θt) ≥ 0. To this end, a straightforward
approach that is readily applicable to optimize the objective
(2) is applying MGDA to find the solution of (3) that yields
the minimum Euclidean norm of the composite gradient:

d∗t = argmin
w∈∆

K

∥∥∥∥∥
K∑

k=1

wk∇ℓk(θt)

∥∥∥∥∥
2

(4)

However, MGDA is often biased toward objectives with
smaller gradient magnitudes (Liu et al., 2020), and lacks
controllable property (i.e. could not adjust the group that
we want to focus more or less at each update), which can
be utilized to balance the loss between groups. Hence, we
introduce a new objective that steers the updating direction
to obtain our desired balanced magnitude among groups.

Assuming that the entropy H(p) measures the diversity of a
continuous distribution p, this behavior could be achieved
via maximization of the entropy with respect to the distribu-
tion of loss functions:

Lent(θ) = H
(
softmax

(
L⃗(θ))

)
= H

(
softmax

({
EP

gk
[ℓ (fθ(x), y)]

}K

k=1

))
(5)

Theorem 4.1. Assume that the loss function ℓ is differen-
tiable up to the first order with respect to θ, then following

dent :=

K∑
i=1

∇ℓi(θ)
[
pi log(pi)− pi

K∑
j=1

log(pj)pj ]
]

where pi =
eℓi(θ)∑K

j=1 eℓj(θ)
, maximizes the objective Lent(θ).

The proof of Theorem 4.1 is deterred to Appendix A. The-
orem 4.1 provides us with the updating rule that increases
the entropy term in Equation (5) the most. To balance
the learning across groups, we seek the coefficient w that
maximizes the cosine similarity with dent and does not con-
flict against the gradient vector of each group. Denotes
w′

i = pi log(pi)− pi
∑K

j=1 log(pj)pj , this is equivalent to
optimizing:

w∗ = argmax
w∈∆K

dt(w)
⊤dent (6)

s.t. dt(w)
⊤∇ℓk(θt) ≥ 0 ∀ k ∈ [K].

While the balance between loss magnitude is not achieved,
we strictly follow the updating direction that decreases train-
ing errors of high-loss groups, but slightly relax constraints
in the optimization problem (6) to allow bounded increases
among groups that already have small loss magnitudes.

w∗ = argmax
w∈∆K

dt(w)
⊤dent

= argmax
w∈∆K

w⊤∇L⃗(θ)⊤∇L⃗(θ)w′ (7)

s.t. ∀ k ∈ [K] :

dt(w)
⊤∇ℓk(θt) ≥ 0 if ℓk(θt) = max

k∈[K]
ℓk(θt).

dt(w)
⊤∇ℓk(θt) ≥ d⊤ent∇ℓk(θt) if ℓk(θt) < max

k∈[K]
ℓk(θt).

The second constraint guarantees that the obtained solution
is not worse than dent on those groups in which the model
is performing well or when dent itself intrinsically supports
learning them. Once the loss magnitude is almost balanced
(||dent|| ≤ ϵ), we simply update the model parameter by the
average group gradients, i.e. w = ( 1

K , 1
K , . . . , 1

K ).

In summary, the key difference between our proposed
method and GroupDRO is that we solve a small K-
dimensional optimization problem to find the updating di-
rection that not only focuses on the worst group but also
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Figure 2: Overview of our method on the Waterbirds dataset. Our main objective is to not only improve model performance
across groups by optimizing their loss functions ℓ1, ℓ2, ℓ3, ℓ4, but also maximize the entropy over this loss distribution.

improves the performance in other groups and balances the
loss magnitude between them at the same time. In practi-
cal settings, the group number K is often a small number
(e.g. K = 4), thus could be efficiently solved using stan-
dard linear programming libraries (Diamond & Boyd, 2016;
Andersen et al., 2020) without introducing significant com-
putational overhead.

4.2. Controllable prompt tuning for balancing group
distributional robustness

To achieve the controllable property, we apply the
optimization procedure in section 4.1 on ℓk(θ) =
ckEP

gk
[ℓ (fθ(x), y)] where c ∈ RK is a pre-defined vector

that is used to adjust the magnitude of group losses. In-
tuitively, the principle behind our proposed objective is to
enforce the loss vector L⃗(θ) to be inversely proportional to
c, from which we can adjust the group loss magnitude, and
thus control the trade-off between them by varying c. For
example, we can put more weight on penalizing loss terms
of some specific groups to accelerate the learning progress
on those groups, or conversely slow down the learning to
avoid overfitting on oversampled groups (Deng et al., 2023).

In practice, tuning the value of c to obtain our desired model
behavior requires learning multiple models individually and
independently. Therefore, the computational complexity of
our proposed method can grow linearly with the number of
vectors c, thus being very expensive in the context of deep
learning. To reduce overhead, we adopt the usual practice of
parameter-efficient fine-tuning methods and optimize only
a small portion of the model. In particular, we freeze the
main backbone while introducing lightweight prompt sets,
one for each task. For example, we employ the same ViT
backbone for the two datasets Waterbirds, CelebA, but using
different sets of prompts (Section 5).

Overview of our proposed method is depicted in Fig-

ure 2, given an input image belonging to one of a group
{g1, g2, . . . , gK} and a set of classes, we solve the optimiza-
tion problem (7) to find the reweighting coefficient w that
maximizes the entropy Lent(θ) while reasonably decreases
group losses. Please note that while Figure 2 illustrates our
proposed method on the CLIP model on the image clas-
sification task, it is applicable to other transformer-based
models and task types. In our experiment, we exploit both
image-end prompts and language-end prompts tuning on
frozen ViT and CLIP backbones, respectively.

Prompt tuning for Vision Transformer: Regarding the
prompt design for a ViT of N layers, we use the set of
continuous learnable tokens {Pn}N−1

n=0 . Each Pn ∈ RL×D,
where L, D ∈ N indicate the prompt length and latent
space dimension, respectively. Subsequently, the input at
the (n + 1)-th layer follows the format of [xn,Pn,En],
where xn,En ∈ RD represent the [CLASS] token and
image patch embeddings after n-th layer while [·, ·] denotes
the concatenation operator. Thus, the number of trainable
parameters for this image-end prompt set is N × L×D.

Prompt tuning for CLIP: Being trained on an enormous
amount of image-text pairs, CLIP offers an expressive repre-
sentation for both language and image inputs by using two
separate encoders, one for each modality, as shown in Figure
2. Since the image encoder can be either ResNet (He et al.,
2016), ConvNeXt (Liu et al., 2022) or ViT (Dosovitskiy
et al., 2020), we conduct prompt tuning on the transformer
text encoder for consistency. In short, we employ a learn-
able context prompt of length L: P ∈ RL×D, to replace the
hand-crafted prompt used by the original CLIP (i.e., “this is
a photo of a ”). Based on this design, the input for the text
encoder of each class has the format of [x,P], where x is
the [CLASS] embedding of the corresponding class name
and has the same dimension of D. These learnable tokens
P are better at capturing domains-specific knowledge than
those artificial prompt (Zhou et al., 2022; Zhu et al., 2023a)
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and can be learned to de-bias the original CLIP model while
introducing a few trainable parameters (L×D).

5. Experiments
In this section, we evaluate the effectiveness of the proposed
CPT method on benchmark image datasets in the presence of
spurious features: Waterbirds (Sagawa et al., 2019), CelebA
(Liu et al., 2015), MetaShift (Liang & Zou, 2021) and ISIC
(Codella et al., 2019). Due to the space limit constraint, we
briefly provide an overview of our experimental setup below,
see Appendix B for more details and additional results. Our
implementation is available at https://github.com/
VietHoang1512/CPT.

5.1. Datasets

Waterbirds is created by placing bird photos from the
Caltech-UCSD Birds dataset (Wah et al., 2011) with back-
ground images taken from Places (Zhou et al., 2017). The
target attributes are foreground objects (i.e. landbird or
waterbird) while spurious correlations are background (i.e.
land or water landscape). CelebA is a factual dataset con-
taining 200K face images of celebrities. The goal is to
classify blond/non-blond hair color. Statistically, more than
94% of blond hair examples in the training set are women.

MetaShift is another real-world dataset for cat-dog clas-
sification, where the cat and dog images are spuriously
correlated with indoor (e.g. bed) and outdoor objects (e.g.
bike). For evaluation, models are given dog and cat images
associated with shelf backgrounds, which do not appear in
the training set. Thus, this dataset represents a more co-
herent distributional shift, compared to other benchmarks.
ISIC is an even more challenging dataset with the appear-
ance of multiple spurious features (Codella et al., 2019),
which includes dermoscopic images of skin lesions with
target attributes benign or melanoma. Visual examples of
those datasets, along with the size for each group in train,
validation, and test sets are given in Appendix B.

5.2. Baselines

Following the previous studies, we compare CPT against
other state-of-the-art methods for mitigating spurious cor-
relations, including DFR (Kirichenko et al., 2022), Group-
DRO (Sagawa et al., 2019), PDE (Deng et al., 2023), Sub-
sample (Deng et al., 2023), CGD (Piratla et al., 2021) with
the access to the group information during training. Besides,
we consider those methods require group labels for valida-
tion: LfF (Nam et al., 2020), JTT (Liu et al., 2021b), PGI
(Ahmed et al., 2020), CIM (Taghanaki et al., 2021), CNC
(Zhang et al., 2022), or those do not use group annotations
at all like ERM and AFR (Qiu et al., 2023). Moreover, we
also report the results from two recent studies of spurious

correlation on ViT (Ghosal & Li, 2023) and CLIP (Yang
et al., 2023b; Dehdashtian & Boddeti, 2024).

Regarding the baselines for those experiments further taking
the distribution shift into account, we follow exactly the
protocol of Wu et al. (2023b) and compare our method to
Upweighting (UW), IRM (Arjovsky et al., 2019), IB-IRM
(Ahuja et al., 2021), V-REx (Krueger et al., 2021), CORAL
(Sun et al., 2017), and Fish (Shi et al., 2021); instance
reweighting methods: JTT (Liu et al., 2021b), DM-ADA
(Xu et al., 2020), LISA (Yao et al., 2022) and the current
state-of-the-art method, DISC (Wu et al., 2023b).

5.3. Model training and evaluation

We examine our proposed method on ResNet50 (He et al.,
2016), ViT-B/16 (Dosovitskiy et al., 2020) and different
variants of OpenAI’s CLIP (Radford et al., 2021) to align
with previous work (Kirichenko et al., 2022; Ghosal & Li,
2023; Yang et al., 2023b). For prompt tuning on ViT, we
employ prompts of lengths L = 5 in the MetaShift and
ISIC, or L = 10 in the Waterbirds and CelebA datasets.
Similarly, L is set to 16 for all CLIP backbones throughout
our experiment. Unless otherwise explicitly mentioned in
the experiment, the value of the controlling vector c is set to
the default value of (1, . . . , 1). Other detailed configurations
are relegated to Appendix B.

Due to the large number of groups in ISIC, we calculate the
AUROC score (Bradley, 1997), following (Wu et al., 2023b;
Bissoto et al., 2020) while computing average, worst-group
and mean (if possible) accuracy scores for other datasets.
For a fair and precise comparison, results of baselines are
taken from recent studies (Deng et al., 2023; Wu et al.,
2023b; Piratla et al., 2021; Zhang et al., 2022; Kim et al.,
2023) and reported directly from original papers.

5.4. Results

Waterbirds and CelebA. We start by validating CPT on
two well-established benchmarks for investigating spuri-
ous correlation, namely Waterbirds and CelebA in Table 1.
From the results, we see that CPT consistently achieves the
best worst-group accuracy compared with the recent state-
of-the-art methods such as DFR and PDE on both datasets.
Remarkably, our method only updates a tiny portion (0.4%)
of parameters. As such, CPT is much more computationally
efficient than methods that need to update the entire network.
Furthermore, we see that CPT has strong gains in average
accuracy, thus not only outperforming other spurious cor-
relation methods on both metrics but also closing the gap
to the average accuracy of ERM. Another interesting obser-
vation is that those baselines aim to balance the learning
between groups are effective in alleviating spurious corre-
lation, e.g. via downsampling the majority groups (Sub-
sample), reweighting group losses inversely proportional to
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Table 1: Overall results on Waterbirds and CelebA datasets with best methods are highlighted in bold. Performance is
evaluated on the test set with models early stopped at the highest worst-group accuracy on the validation set.

Train
group info

Validation
group info

Train
once

Waterbirds CelebA

Method Worst Average # Params Worst Average # Params

ERM × ×
√

70.0±2.3 97.1±0.1 23M 45.0±1.5 94.8±0.2 23M
AFR × × × 90.4±1.1 94.2±1.2 23M 82.0±0.5 91.3±0.3 23M

LfF ×
√

× 78.0N/A 91.2N/A 23M 77.2N/A 85.1N/A 23M
SSA ×

√
× 89.0±0.6 92.2±0.9 23M 89.8±1.3 92.8±1.3 23M

JTT ×
√

× 86.7N/A 93.3N/A 23M 81.1N/A 88.0N/A 23M
PGI ×

√
× 79.5±1.9 95.5±0.8 23M 85.3±0.3 87.3±0.1 23M

CIM ×
√

× 77.2N/A 95.6N/A 23M 83.6N/A 90.6N/A 23M
CnC ×

√
× 88.5±0.3 90.9±0.1 23M 88.9±1.3 88.9±0.5 23M

DFR ×
√

× 92.9±0.2 94.2±0.4 23M 88.3±1.1 91.3±0.3 23M

UW
√ √ √

88.0±1.3 95.1±0.3 23M 83.3±2.8 92.9±0.2 23M
Subsample

√ √ √
86.9±2.3 89.2±1.2 23M 86.1±1.9 91.3±0.2 23M

LISA
√ √

× 89.2±0.6 91.8±0.3 23M 89.3±1.1 92.4±0.4 23M
GroupDRO

√ √ √
86.7±0.6 93.2±0.5 23M 86.3±1.1 92.9±0.3 23M

CGD
√ √ √

88.9±0.8 91.3±0.6 23M 90.0±0.8 92.5±0.2 23M
DISC

√ √
× 88.7±0.4 93.8±0.7 23M N/A N/A N/A

PDE
√ √ √

90.3±0.3 92.4±0.8 23M 91.0±0.4 92.0±0.6 23M

CPT
√ √ √

93.5±0.4 96.3±0.2 94k 92.0±0.3 93.2±0.3 94k

the group populations (UW), or computing scaling weights
using group training performance to upweight the worst-
group loss (GroupDRO). Even though, CPT still exhibits
impressive performance compared to the aforementioned
methods by using an adaptive balancing mechanism at each
iteration instead of relying on fixed reweighting coefficients.

707580859095100
Worst group accuracy (%)
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80.5

77.5
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23.5M

211M

42.5M

5.6M
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Figure 3: Results of fine-tuning ViT backbones on Wa-
terbirds. Error bars represent the standard deviation over
independent runs.

De-bias ViT and CLIP. Motivated by recent studies fo-
cusing on investigating spurious correlations of pre-trained
transformer-based models (Yang et al., 2023b; Dehdashtian
& Boddeti, 2024), we apply our proposed algorithm on ViT
and CLIP and then compare them against those work. It is
worth noting that, the authors did not experiment on CelebA
with the blond hair target. Hence, we only show their origi-
nal results on Waterbirds in Figure 3 and Table 2. As can be
seen in Figure 3, while CPT enjoys much less computation
and memory overhead (only 0.1% and 0.04% compared to
ViT-B/16 itself and BiT-M-R50x3 (Ghosal & Li, 2023)) it
still outperforms the second-best model by a large margin.
This significant improvement comes from our prompting
design and optimization contribution, respectively. Details
of backbones are given in Appendix B.

Table 2: Performance of CLIP models on Waterbirds. †
indicates our implemented results. We use Bold font to
indicate the best methods for different numbers of trainable
parameters. N/A denotes those methods do not report the
number of trainable parameters.

Model ResNet50 ViT-L/14@336px
Average Worst # Params Average Worst # Params

Pre-trained CLIP 90.8 44.9 0 88.5 34.0 0
Fine-tuned CLIP 81.3 77.1 14789632 97.2 89.7 786432

ERM 93.5 54.4 14789632 96.8 58.1 786432
ERM Adapter 96.0 63.0 524288 97.8 76.1 524288
Contrastive Adapter 88.2 82.5 263424 94.5 85.3 197632
DFR 91.8 63.9 N/A 96.1 65.9 N/A
FairerCLIP 84.3 75.4 N/A 92.2 86.0 N/A

GroupDRO 83.3 73.7 14789632 94.1 90.8 786432
Yang et al. (2023b) 83.2 77.5 14789632 96.9 90.5 786432
CPTbalance 85.8 82.8 14789632 94.0 92.9 786432

ERM† 85.7 64.6 8192 97.4 84.3 12288
GroupDRO† 81.0 76.7 8192 95.8 90.5 12288
CPT 83.3 78.4 8192 97.0 90.2 12288
CPTbalance 81.8 79.8 8192 95.6 91.9 12288

As shown in Table 2, CPTbalance (i.e. CPT with c =
(1, . . . , 1)) clearly outperforms all other alternatives using
the same number of trainable parameters, which proves the
effectiveness of our optimization framework. Furthermore,
when varying the coefficient c, one can control the trade-off
between group performance, yielding a much more flexi-
ble learning algorithm for group distributional robustness.
Indeed, increasing coefficients of the majority groups (e.g.
c = (2, 1, 1, 1.5) in this setting) helps improve the average
accuracy of CPT to perform on par or better than Yang et al.
(2023b) on both metrics while updating only 0.05% and 1%
of the model parameters. Thus, this again suggests the clear
efficiency advantage of our prompt tuning, which offers scal-
ability for controlling adjustment. Since CPT has a larger
capacity to control the learning between groups, we can
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sacrifice worst-group accuracy for the gain in performance
on other groups and vice-versa (last two rows). Intriguingly,
while obtaining impressive performance on CLIP-RN50,
Contrastive Adapter (Zhang & Ré, 2022) falls far behind
other baselines on CLIP ViT-L/14@336px.

Table 3: Experimental results on MetaShift and ISIC dataset.

MetaShift ISIC

Method Average Worst AUROC # Params

ERM 72.9±1.4 62.1±4.8 36.4±0.7 23M
UW 72.1±0.9 60.5±3.8 39.2±0.6 23M
IRM 73.9±0.8 64.7±2.1 45.5±3.6 23M
IB-IRM 74.8±0.2 65.6±1.1 38.6±1.7 23M
V-REx 72.7±1.7 60.8±5.5 24.5±6.4 23M
CORAL 73.6±0.4 62.8±2.7 37.9±0.7 23M
Fish 64.4±2.0 53.2±4.5 42.0±0.8 23M
GroupDRO 73.6±2.1 66.0±3.8 36.4±0.9 23M
JTT 74.4±0.6 64.6±2.3 33.8±0.0 23M
DM-ADA 74.0±0.8 65.7±1.4 35.8±1.0 23M
LISA 70.0±0.7 59.8±2.3 38.0±1.3 23M
DISC 75.5±1.1 73.5±1.4 55.1±2.3 23M

CPT 79.8±2.6 77.0±0.8 64.9±1.2 47k

MetaShift and ISIC. Results on those datasets are depicted
in Table 3, along with the number of parameters required
for each baseline. We mostly pick those that utilize group
information during training for better benchmarking the
efficiency of our proposed framework. In summary, the per-
formance of CPT exceeds other methods by large margins,
especially ≈ 10 AUROC score on ISIC. On MetaShift, it is
also the best method in terms of average and worst-group
accuracy, improving the performance by approximately 4%.

5.5. Ablation studies

In this section, we provide different ablation studies to see
how each component in our proposed method individually
contributes to the overall improvement of CPT.

Optimization and Backbones. In Table 4, CPTw/o entropy
eliminates the entropy objective and uses the average gradi-
ent 1/K

∑
∇ℓi(θ) to update the model. While this strategy

can improve mean accuracy among groups, compared to
ERM, the performance has a significant drop compared to
our optimization procedure. This conclusion suggests that
conducting simple gradient averaging when there are still
large differences among group losses could cause severe
bias in training. On the other hand, there is no significant
difference between the performance of fully fine-tuning
ResNet50 and prompt tuning on ViT-B/16, which indicates
that our method does not benefit much from more powerful
backbones. Instead, we remind readers that prompting in
CPT is introduced to scale up our proposed algorithm. Thus,
even applying our proposed balancing method alone can
boost the performance of ResNet to exceed GroupDRO by
large margins on WaterBirds (5.2%) and CelebA (5.1%).

Table 4: Ablation results for different architectures and
optimization procedures.

Dataset Method Average Worst # Params

MetaShift

ERM 72.9±1.4 62.1±4.8 23M
GroupDRO 73.6±2.1 66.0±3.8 23M
DISC 75.5±1.1 73.5±1.4 23M
CPTw/o entropy (ResNet50) 76.1±0.7 62.8±1.8 23M
CPT (ResNet50) 78.2±2.5 76.9±2.0 23M
ERM (prompt-tuning) 78.4±1.4 65.0±2.4 47
CPTw/o entropy 77.3±0.8 74.7±2.5 47k
CPT 79.8±2.6 77.0±0.8 47k

Waterbirds

ERM 97.1±0.1 70.0±2.3 23M
GroupDRO 93.2±0.5 86.7±0.6 23M
CPT (ResNet50) 90.9±0.2 91.9±0.3 23M
ERM (prompt-tuning) 97.5±0.2 64.4±2.6 94k
CPT 96.3±0.2 93.5±0.4 94k

CelebA

ERM 94.8±0.2 45.0±1.5 23M
GroupDRO 92.9±0.3 86.3±1.1 23M
CPT (ResNet50) 92.7±0.3 91.4±0.8 23M
ERM (prompt-tuning) 95.6±0.3 58.3±1.9 94k
CPT 93.2±0.3 92.0±0.3 94k

Gap among group performance. Apart from Figure 1,
we visualize the performance of each comparative method
at its early stopping epoch and the point when it actually
obtains the highest score on the minority group in Figure
4. Those points collapse in the case of ERM since it does
not have any balancing mechanism. Unsurprisingly, the
gap between minority and majority performance of ERM is
largest (> 10%) while this figure decreases for GroupDRO
and CPT. It is true that GroupDRO can obtain a relatively
high score on the minority group early in training, even on
par with CPT. However, its majority group performance
at this point has not converged yet (≈ 90.5%), and when
converged, its performance on the minority group declines
considerably (91% → 88%). By contrast, the is only a
small difference in terms of minority performance for CPT
at those points, allowing to have equally good performance
across groups through training.
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Figure 4: Performance of ResNet50 at: the last checkpoint
used for evaluation (highest worst group accuracy on val-
idation set), denoted by △, and the checkpoint where the
performance on the minority group is highest, denoted by
□. Results are obtained on three random seeds.
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Effect of controlling vector Table 5 presents the distribu-
tion of the CelebA dataset and the performance of Group-
DRO and our proposed method with different values of
the controlling vectors. We can see that setting c equal to
the default value (1, 1, 1, 1) can perfectly balance the ac-
curacy score across groups while GroupDRO encounters
difficulty in fitting the minority one. Furthermore, by vary-
ing the value of c, we could observe different behavior of
the model in each group. For example, the accuracy scores
on two smaller groups (2&3) increase significantly, as a
result of the loss magnitudes decrease when we put more
weight on penalizing those two. With a tiny sacrifice on
the performance of two majority groups, the model could
gain considerable improvement in minority groups and the
overall performance.

Table 5: Performance of the model after training for one
epoch. Here, we simply adjust the optimization in favor of
two minority groups to observe their improvement.

Group g (size) 0 (44%) 1 (41%) 2 (14%) 3 (1%) Worst Avg Mean

GroupDRO 92.0 92.5 91.5 86.1 86.1 92.08 89.4

CPT c = (1, 1, 1, 1) 92.9 93.4 92.8 91.7 91.7 93.1 92.7
CPT c = (1, 1, 1, 2) 92.0 91.1 93.1 95.6 91.1 91.9 93.0
CPT c = (1, 1, 2, 1) 91.2 91.8 95.2 95.0 91.2 92.0 93.3

Saliency maps. We plot the saliency maps (Selvaraju et al.,
2017) produced when predicting the target attribute of in-
domain images in Figure 5 and out-of-domain images in
Figure 6. Pixels highlighted by warmer colors indicate
higher contributions to the model predictions. Our proposed
method can learn causal features rather than focusing on spu-
rious background features when making predictions. Hence,
balancing the learning among groups not only de-bias the
classifier in-domain but also robustifies it in tackling distri-
butional shifts.

Original ERM GroupDRO Ours Original ERM GroupDRO Ours

Figure 5: GradCAM of ResNet50 on in-domain samples.

Running time Figure 7 summarizes the total runtime and
the time for solving the linear programming problem on
each epoch. The introduction of the optimization (7) in the
main paper leads to a small overhead in terms of training
time. However, this small sacrifice significantly boosts the
performance of different backbones, especially for CLIP
and prompt-based models. For example, prompt-tuning
on CLIP variants takes only 0.3 second per epoch since

Original ERM GroupDRO Ours Original ERM GroupDRO Ours

Figure 6: GradCAM of ResNet50 on OOD samples.

it does not have to update the entire network or even the
classification head.

ResNet50 ViT-B/16 CLIP-RN50 Prompt CLIP-RN50 last layers CLIP-ViT-L/14@336px
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Figure 7: Total running time and the time for solving the
linear programming (LP) problem on epoch with Intel(R)
Xeon(R) Platinum 8358 CPU @ 2.60GHz and NVIDIA
A100-SXM4-80GB GPU. Results are averaged over 5
epochs.

6. Limitations
We discuss the limitations of our approach here. While
we scale our method when the number of controlling vec-
tors grows via prompt-tuning, we indeed still have to train
different prompt sets separately and individually for prede-
termined values of c (Table 5). Furthermore, in cases where
those models could not perform as expected, one might con-
sider incorporating another controlling vector which would
require retraining another prompt set from scratch.

To address this limitation, one promising approach is em-
ploying hypernetworks (Qu et al., 2022; Do et al., 2023;
Jiang et al., 2023), which take controlling vectors as input
to generate corresponding prompt sets. This enables us to
train the hypernetwork in an end-to-end fashion without
predefining c and maintaining separate prompt sets. Despite
this potential limitation, our method is generally tractable
and readily applicable.

7. Conclusion
In this paper, we propose Controllable Prompt Tuning, a
novel training method that not only improves the perfor-
mance across groups but also allows us to control the trade-
off between them. Our proposed method can effectively de-
bias the training of different types of backbones and achieves
state-of-the-art performance on benchmark datasets.
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algorithm and theory based on generalized discrepancy.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 169–178, 2015.

Dehdashtian, Sepehr Wang, L. and Boddeti, V. Fairerclip:
Debiasing zero-shot predictions of clip in rkhss. In Inter-
national Conference on Learning Representations, 2024.

Deng, Y., Yang, Y., Mirzasoleiman, B., and Gu, Q. Robust
learning with progressive data expansion against spurious
correlation. Advances in neural information processing
systems, 2023.

Désidéri, J.-A. Multiple-gradient descent algorithm (mgda)
for multiobjective optimization. Comptes Rendus Mathe-
matique, 350(5-6):313–318, 2012.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

10



Controllable Prompt Tuning For Balancing Group Distributional Robustness

Diamond, S. and Boyd, S. Cvxpy: A python-embedded
modeling language for convex optimization. The Journal
of Machine Learning Research, 17(1):2909–2913, 2016.

Do, G., Le, K., Pham, Q., Nguyen, T., Doan, T.-N., Nguyen,
T.-B., Liu, C., Ramasam, S., Li, X., and Hoi, S. Hy-
perrouter: Towards efficient training and inference of
sparse mixture of experts via hypernetwork. In The 2023
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023 Main, pp. 1–12, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Du, Y., Wei, F., Zhang, Z., Shi, M., Gao, Y., and Li, G.
Learning to prompt for open-vocabulary object detec-
tion with vision-language model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14084–14093, 2022.

Edalati, A., Tahaei, M., Kobyzev, I., Nia, V. P., Clark,
J. J., and Rezagholizadeh, M. Krona: Parameter ef-
ficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. In Interna-
tional Conference on Learning Representations, 2019.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–2030,
2016.

Gheini, M., Ren, X., and May, J. Cross-attention is all
you need: Adapting pretrained transformers for machine
translation. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp.
1754–1765, 2021.

Ghosal, S. S. and Li, Y. Are vision transformers robust to
spurious correlations? International Journal of Computer
Vision, pp. 1–21, 2023.

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization. In International Conference on Learning
Representations, 2020.

Guo, D., Rush, A., and Kim, Y. Parameter-efficient transfer
learning with diff pruning. In Annual Meeting of the
Association for Computational Linguistics, 2021.

He, H., Cai, J., Zhang, J., Tao, D., and Zhuang, B.
Sensitivity-aware visual parameter-efficient fine-tuning.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 11825–11835, 2023.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient trans-
fer learning. In International Conference on Learning
Representations, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Heckman, J. J. Sample selection bias as a specification error.
Econometrica: Journal of the econometric society, pp.
153–161, 1979.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2021.

Huang, Q., Dong, X., Chen, D., Zhang, W., Wang, F., Hua,
G., and Yu, N. Diversity-aware meta visual prompting. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10878–10887, 2023.

Jiang, G., JIANG, C., Xue, S., Zhang, J. Y., ZHOU, J., Lian,
D., and Wei, Y. Towards anytime fine-tuning: Continually
pre-trained language models with hypernetwork prompts.
In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

Kim, N., Kang, J., Ahn, S., Ok, J., and Kwak, S. Removing
multiple biases through the lens of multi-task learning.
International Conference on Machine Learning, 2023.

Kirichenko, P., Izmailov, P., and Wilson, A. G. Last layer
re-training is sufficient for robustness to spurious corre-
lations. In The Eleventh International Conference on
Learning Representations, 2022.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J.,
Gelly, S., and Houlsby, N. Big transfer (bit): General vi-
sual representation learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part V 16, pp. 491–507.
Springer, 2020.

11



Controllable Prompt Tuning For Balancing Group Distributional Robustness

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Bi-
nas, J., Zhang, D., Le Priol, R., and Courville, A. Out-
of-distribution generalization via risk extrapolation (rex).
In International Conference on Machine Learning, pp.
5815–5826. PMLR, 2021.

Kumar, A., Ma, T., Liang, P., and Raghunathan, A. Cali-
brated ensembles can mitigate accuracy tradeoffs under
distribution shift. In Uncertainty in Artificial Intelligence,
pp. 1041–1051. PMLR, 2022.

Lei, Q., Hu, W., and Lee, J. Near-optimal linear regression
under distribution shift. In International Conference on
Machine Learning, pp. 6164–6174. PMLR, 2021.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 3045–3059, 2021.

Li, B., Hu, Y., Nie, X., Han, C., Jiang, X., Guo, T., and Liu,
L. Dropkey for vision transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22700–22709, 2023.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics), pp. 4582–4597, 2021.

Lialin, V., Deshpande, V., and Rumshisky, A. Scaling down
to scale up: A guide to parameter-efficient fine-tuning.
arXiv preprint arXiv:2303.15647, 2023.

Liang, J., Gong, K., Li, S., Liu, C. H., Li, H., Liu, D., Wang,
G., et al. Pareto domain adaptation. Advances in Neural
Information Processing Systems, 34:12917–12929, 2021.

Liang, W. and Zou, J. Metashift: A dataset of datasets
for evaluating contextual distribution shifts and training
conflicts. In International Conference on Learning Rep-
resentations, 2021.

Lin, X., Zhen, H.-L., Li, Z., Zhang, Q.-F., and Kwong, S.
Pareto multi-task learning. Advances in neural informa-
tion processing systems, 32, 2019.

Liu, B., Liu, X., Jin, X., Stone, P., and Liu, Q. Conflict-
averse gradient descent for multi-task learning. Advances
in Neural Information Processing Systems, 34:18878–
18890, 2021a.

Liu, E. Z., Haghgoo, B., Chen, A. S., Raghunathan, A.,
Koh, P. W., Sagawa, S., Liang, P., and Finn, C. Just train
twice: Improving group robustness without training group
information. In International Conference on Machine
Learning, pp. 6781–6792. PMLR, 2021b.

Liu, L., Li, Y., Kuang, Z., Xue, J.-H., Chen, Y., Yang,
W., Liao, Q., and Zhang, W. Towards impartial multi-
task learning. In International Conference on Learning
Representations, 2020.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11976–11986, 2022.

Long, M., Cao, Z., Wang, J., and Jordan, M. I. Condi-
tional adversarial domain adaptation. Advances in neural
information processing systems, 31, 2018.

Mahapatra, D. and Rajan, V. Multi-task learning with user
preferences: Gradient descent with controlled ascent in
pareto optimization. In International Conference on Ma-
chine Learning, pp. 6597–6607. PMLR, 2020.

Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. Virtual
adversarial training: a regularization method for super-
vised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence, 41(8):1979–
1993, 2018.

Nam, J., Cha, H., Ahn, S., Lee, J., and Shin, J. Learning
from failure: De-biasing classifier from biased classifier.
Advances in Neural Information Processing Systems, 33:
20673–20684, 2020.

Oh, D., Lee, D., Byun, J., and Shin, B. Improving group
robustness under noisy labels using predictive uncertainty.
arXiv preprint arXiv:2212.07026, 2022.

Panahi, A., Saeedi, S., and Arodz, T. Shapeshifter: a
parameter-efficient transformer using factorized reshaped
matrices. Advances in Neural Information Processing
Systems, 34:1337–1350, 2021.

Phan, H., Tran, L., Tran, N. N., Ho, N., Phung, D., and Le,
T. Improving multi-task learning via seeking task-based
flat regions. arXiv preprint arXiv:2211.13723, 2022a.

Phan, H., Tran, N., Le, T., Tran, T., Ho, N., and Phung,
D. Stochastic multiple target sampling gradient descent.
Advances in neural information processing systems, 35:
22643–22655, 2022b.

12



Controllable Prompt Tuning For Balancing Group Distributional Robustness

Phan, H., Le, T., Phung, T., Bui, A. T., Ho, N., and Phung, D.
Global-local regularization via distributional robustness.
In International Conference on Artificial Intelligence and
Statistics, pp. 7644–7664. PMLR, 2023.

Piratla, V., Netrapalli, P., and Sarawagi, S. Focus on the
common good: Group distributional robustness follows.
In International Conference on Learning Representations,
2021.

Qiu, S., Potapczynski, A., Izmailov, P., and Wilson, A. G.
Simple and fast group robustness by automatic feature
reweighting. In International Conference on Machine
Learning. PMLR, 2023.

Qu, J., Faney, T., Wang, Z., Gallinari, P., Yousef, S., and
de Hemptinne, J.-C. Hmoe: hypernetwork-based mix-
ture of experts for domain generalization. arXiv preprint
arXiv:2211.08253, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey,
C., and Sutskever, I. Robust speech recognition via large-
scale weak supervision. In International Conference on
Machine Learning, pp. 28492–28518. PMLR, 2023.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks. In International
Conference on Learning Representations, 2019.

Sagawa, S., Raghunathan, A., Koh, P. W., and Liang, P. An
investigation of why overparameterization exacerbates
spurious correlations. In International Conference on
Machine Learning, pp. 8346–8356. PMLR, 2020.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference on
computer vision, pp. 618–626, 2017.

Shi, Y., Seely, J., Torr, P., Siddharth, N., Hannun, A.,
Usunier, N., and Synnaeve, G. Gradient matching for
domain generalization. In International Conference on
Learning Representations, 2021.

Shimodaira, H. Improving predictive inference under covari-
ate shift by weighting the log-likelihood function. Jour-
nal of statistical planning and inference, 90(2):227–244,
2000.

Sun, B., Feng, J., and Saenko, K. Correlation alignment for
unsupervised domain adaptation. Domain adaptation in
computer vision applications, pp. 153–171, 2017.

Sung, Y.-L., Cho, J., and Bansal, M. Vl-adapter: Parameter-
efficient transfer learning for vision-and-language tasks.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 5227–5237,
2022.

Taghanaki, S. A., Choi, K., Khasahmadi, A. H., and Goyal,
A. Robust representation learning via perceptual simi-
larity metrics. In International Conference on Machine
Learning, pp. 10043–10053. PMLR, 2021.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Tran, N. N., Duong, S., Phan, H., Pham, T., Phung, D., and
Le, T. Sharpness & shift-aware self-supervised learning.
arXiv preprint arXiv:2305.10252, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. 2011.

Wang, C., Chen, S., Wu, Y., Zhang, Z., Zhou, L., Liu, S.,
Chen, Z., Liu, Y., Wang, H., Li, J., et al. Neural codec
language models are zero-shot text to speech synthesizers.
arXiv preprint arXiv:2301.02111, 2023.

Wang, J., Liu, Y., and Wang, X. Are gender-neutral queries
really gender-neutral? mitigating gender bias in image
search. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, pp.
1995–2008, 2021.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference time.
In International Conference on Machine Learning, pp.
23965–23998. PMLR, 2022.

Wu, C.-E., Tian, Y., Yu, H., Wang, H., Morgado, P., Hu,
Y. H., and Yang, L. Why is prompt tuning for vision-
language models robust to noisy labels? In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 15488–15497, 2023a.

Wu, S., Yuksekgonul, M., Zhang, L., and Zou, J. Discover
and cure: Concept-aware mitigation of spurious corre-
lation. International Conference on Machine Learning,
2023b.

13



Controllable Prompt Tuning For Balancing Group Distributional Robustness

Xu, M., Zhang, J., Ni, B., Li, T., Wang, C., Tian, Q., and
Zhang, W. Adversarial domain adaptation with domain
mixup. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 34, pp. 6502–6509, 2020.

Yang, S., Dong, Y., Ward, R., Dhillon, I. S., Sanghavi,
S., and Lei, Q. Sample efficiency of data augmentation
consistency regularization. In International Conference
on Artificial Intelligence and Statistics, pp. 3825–3853.
PMLR, 2023a.

Yang, Y., Nushi, B., Palangi, H., and Mirzasoleiman, B.
Mitigating spurious correlations in multi-modal models
during fine-tuning. International Conference on Machine
Learning, 2023b.

Yao, H., Wang, Y., Li, S., Zhang, L., Liang, W., Zou, J.,
and Finn, C. Improving out-of-distribution robustness via
selective augmentation. In International Conference on
Machine Learning, pp. 25407–25437. PMLR, 2022.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K.,
and Finn, C. Gradient surgery for multi-task learning.
Advances in Neural Information Processing Systems, 33:
5824–5836, 2020.

Zaken, E. B., Goldberg, Y., and Ravfogel, S. Bitfit: Sim-
ple parameter-efficient fine-tuning for transformer-based
masked language-models. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Zhai, R., Dan, C., Kolter, J. Z., and Ravikumar, P. K. Under-
standing why generalized reweighting does not improve
over erm. In The Eleventh International Conference on
Learning Representations, 2022.
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Supplementary Materials for “Controllable Prompt Tuning for
Balancing Group Distributional Robustness”

Due to space constraints, some details were omitted from the main paper. We therefore include proof for Theorem 4.1 in the
main paper (Appendix A) and more detailed experimental results (Appendix B) in this supplementary material.

A. Proof of Theorem 4.1
Theorem 4.1. Assume that the loss function ℓ is differentiable up to the first order with respect to θ, then following

dent :=

K∑
i=1

∇ℓi(θ)

pi log (pi)− pi

K∑
j=1

log (pj) pj



where pi =
eℓi(θ)∑K

j=1 eℓj(θ)
, maximizes the objective Lent (θ):

Lent(θ) = H
(
softmax

(
L⃗(θ))

)
= H

(
softmax

({
EP

gk
[ℓ (fθ(x), y)]

}K

k=1

))

Proof: For brevity of notations, we denote EPgi
[ℓ (fθ(x), y)] as ℓi(θ) and pi =

eℓi(θ)∑K
j=1 eℓj(θ)

. The derivative of Lent with

respect to θ is computed as:

∇Lent(θ) = −
K∑
i=1

{
∇pi[log(pi) + 1]

}
= −

K∑
i=1

{
[log(pi) + 1]∇ eℓi(θ)∑K

j=1 e
ℓj(θ)

}

= −
K∑
i=1

{
[log(pi) + 1]

∑K
j=1 e

ℓj(θ)eℓi(θ)∇ℓi(θ)− eℓi(θ)
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j=1 e
ℓj(θ)∇ℓj(θ)

(
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}
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eℓj(θ)(∇ℓi(θ)−∇ℓj(θ))
}

= − 1
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]
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=
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log(pj)pj − pi log(pi)] (8)

We conclude the proof. It is noteworthy that when the loss function ℓ is positive, one can also simplify the computation by
minimizing the following balancing function:

L′
ent(θ) := H

({ EPgi
[ℓ (fθ(x), y)]∑K

j=1 EPgj
[ℓ (fθ(x), y)]

}K

i=1

)
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Eliminating the exponential term and denoting qi =
ℓi(θ)∑K

j=1 ℓj(θ)
, the gradient direction of the entropy term is given by:

∇L′
ent(θ) =

K∑
i=1

{
∇qi[log(qi) + 1]

}
=

K∑
i=1

{ [∑K
j=1 ℓj(θ)]∇ℓi(θ)− ℓi(θ)[

∑K
j=1 ∇ℓj(θ)]

[
∑K

j=1 ℓj(θ)]
2

[log(qi) + 1]
}

∝
K∑
i=1

∇ℓi(θ)
{
log(qi)

[ K∑
j=1

ℓj(θ)
]
−

K∑
j=1

log(qj)ℓj(θ)
}

B. Experiment details and additional empirical results
In this section, we first describe the datasets and models used in Appendix B.1 along with the detailed training configuration
for our method, then provide additional results for the experiment in Appendix B.2. Example images and data statistics are
presented in Table 7, 8, 9 and 10.

B.1. Implementation details

Hyper-parameter We mainly examine the proposed method on ResNet50 (He et al., 2016), ViT B/16 (Dosovitskiy et al.,
2020) and different variants of OpenAI’s CLIP1 model. The hyperparameters selected for each experiment are given in
Table 6. Unless stated otherwise, results of baselines are taken from original papers and (Deng et al., 2023; Wu et al.,
2023b; Piratla et al., 2021; Zhang et al., 2022; Kim et al., 2023), which provide standard evaluation protocols for different
backbones and datasets. Performance of ERM and GroupDRO (Sagawa et al., 2019) at different amount of training data and
their training curves are obtained from the released codebase of GroupDRO2 using their provided commands.

Dataset Architecture Learning Rate Weight Decay Batch Size # Epochs Prompt length

Waterbirds ViT B/16 0.1 0.001 64 100 10
Waterbirds Last layers CLIP-RN50 0.003 0.01 32 100 -
Waterbirds Prompt CLIP-RN50 0.03 0.01 32 100 16
Waterbirds Last layer CLIP-ViT-L/14 0.01 0.01 32 100 -
Waterbirds Prompt CLIP-ViT-L/14 0.001 0.01 32 100 16
CelebA ViT B/16 0.01 0.001 128 100 10
MetaShift ResNet50 0.003 0.01 16 100 -
MetaShift ViT B/16 0.01 0.1 16 100 5
ISIC ViT B/16 0.003 0.01 16 100 5

Table 6: Hyperparameter for different experiments throughout our paper. We report the hyper-parameters selected for our
proposed method after performing grid-search.

Classifier design. While we train a classification head from scratch for ResNet50 or ViT, CLIP allows us to utilize its
meaningful multimodality embeddings as a zero-shot classifier. In particular, given an image embedding ei and a text class
embedding ekt for some class index k ∈ {1, 2, . . . ,Nc}, where Nc is the number of categories. The probability of the given
image belonging to k-th class is computed as:

p(y = k | ei) =
exp

(
< ei, e

k
t > /τ

)∑Nc

j=1 exp
(
< ei, e

j
t > /τ

)
where < ·, · > denotes the cosine similarity and τ is the temperature parameter.

Dataset statistics. We evaluate CPT on Waterbirds (Sagawa et al., 2019) (Table 7), CelebA (Liu et al., 2015) (Table 8),
MetaShift (Liang & Zou, 2021) (Table 9) and ISIC (Codella et al., 2019) (Table 10), following previous work (Sagawa
et al., 2019; Deng et al., 2023; Wu et al., 2023b). While the objective of those image classification tasks is predicting the

1https://github.com/openai/CLIP
2https://github.com/kohpangwei/group_DRO
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categories of input images, those target attributes are often correlated well with spurious features (please refer to each table
for detailed descriptions of spurious features and group partitions for each dataset).

Image

Group 0 1 2 3
Label 0 (landbird) 0 (landbird) 1 (waterbird) 1 (waterbird)
Spurious feature 0 (land) 1 (water) 0 (land) 1 (water)
Description landbird on land landbird on water waterbird on land waterbird on water
# Train data 3, 498(73%) 184(4%) 56(1%) 1, 057(22%)
# Val data 467 466 133 133
# Test data 2, 255 2, 255 642 642

Table 7: Example images of Waterbirds (Sagawa et al., 2019).

Image

Group 0 1 2 3
Label 0 (non-blond) 0 (non-blond) 1 (blond) 1 (blond)
Spurious feature 0 (woman) 1 (man) 0 (woman) 1 (man)
Description non-blond woman non-blond man blond woman blond man
# Train data 71, 629(44%) 66, 874(41%) 22, 880(14%) 1, 387(1%)
# Val data 8, 535 8, 276 2, 874 182
# Test data 9, 767 7, 535 2, 480 180

Table 8: Example images of CelebA (Liu et al., 2015).

Image

Group 0 1 2 3 4 5
Label 0 (cat) 0 (cat) 1(dog) 1 (dog) 0 (cat) 1 (dog)
Spurious feature 0 (sofa) 1 (bed) 2 (bench) 3 (bike) 4 (shelf) 4 (shelf)
# Train data 231 380 145 367 - -
# Val data (OOD) - - - - 34 47
# Test data - - - - 201 259

Table 9: Example images of MetaShift (Liang & Zou, 2021).

Image . . .

Label 0 (benign) 0 (benign) 1 (malignant) . . . 0 (benign) 1 (malignant)
Spurious feature hair dark corner gel bubbles . . . ink ruler

# Train data: 1,826
# Val data: 154
# Test data: 618

Table 10: Example images of ISIC (Codella et al., 2019).
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B.2. Additional experiments

Prompt length Thanks to the design of the prompting component, the computational burden during training is modest: only
a small portion of the model parameters are updated through back-propagation. Here, we vary the value of prompt length L
to observe its effect on the model performance in Table 11. Results of ERM, GroupDRO, the second-best method in this
dataset DFR (Kirichenko et al., 2022) and a recent baseline in this line of research PDE (Deng et al., 2023) are also included
for a general comparison. While increasing the prompt length can improve the performance of the model, we find that
just pretending one token per transformer layer (L = 1) can outperform the second-best method that requires ×2200 more
trainable parameters via better training. Last, it is noteworthy to highlight that L = 16 can help CPT match the average
accuracy score of ERM in this scenario, which demonstrates the large modeling capacity of our proposed method.

Table 11: Ablation results for different prompt length N on ViT B/16 on Waterbirds.

N 1 2 4 8 10 16 ERM GroupDRO PDE DFR

Worst 92.9±0.8 93.3±0.9 93.5±0.6 93.8±0.5 93.5±0.4 93.9±0.7 70.0±2.3 86.7±0.6 90.3±0.3 92.9±0.2

Average 95.8±0.9 95.9±0.9 96.4±0.1 96.5±0.0 96.3±0.1 97.1±0.3 97.1±0.1 93.2±0.5 92.4±0.8 94.2±0.2

Mean 94.9±0.8 95.2±0.0 95.6±0.4 96.0±0.8 95.7±0.2 95.7±0.3 N/A N/A N/A N/A
# Params 10754 19970 38402 75266 93698 148994 23512130 23512130 23512130 23512130

Performance at different number of training samples. In order to comprehensively assess the performance of our
proposed model, we conduct a series of experiments to analyze its behavior across varying sizes of training data. Those
experiments were designed to investigate the impact of data size on the model performance of comparative methods. We
keep group ratios preserved while subsampling a part of the training data. The x-axis of Figure 8 denotes the percentages of
the Waterbirds and CelebA training set used in each sub-experiment. It can be seen that CPT is better than GroupDRO or
ERM in lower data regimes. Remarkably, by using 20% and 10% data, our proposed method can still outperform other
baselines when using the full training set.
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Figure 8: Data Efficiency on Waterbirds (left) and CelebA (right). Error bars correspond to standard deviations over three
trials.

Similarly, we run the above experiment but replace the main backbone with CLIP-RN50 and plot the performance of
different baselines. Note that we freeze both image and text encoders and employ prompt tuning on their text encoder only.
The text prompt used for training CLIP models is:

“a type of bird, a photo of a waterbird/landbird”

While the pretrained CLIP model obtains 90.9% average accuracy on Waterbirds (Table 2 in the main paper), it severely
suffers from unintended bias when attaining only 44.9% worst-group accuracy. This motivates the need for debiasing
methods to remove such bias and mitigate the reliance on spurious features when making predictions of foundation models.
Figure 9 shows that while using more data can help enhance the pre-trained CLIP model better for all methods, CPT obtains
the best worst group accuracy for every amount of data and surpasses the current state-of-the-art method (Yang et al., 2023b).
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Figure 9: Data Efficiency of CLIP-RN50. CPT with 75% data can outperform the current state-of-the-art method for
debiasing CLIP (Yang et al., 2023b) which uses ×1800 trainable parameters.

Table 12: Comparison of different backbones on Waterbirds

Model Average Acc. Worst-Group Acc. # Params

BiT-M-R50x1 92.05±0.05 75.10±0.62 23.5M
BiT-M-R50x3 94.90±0.05 80.51±1.02 211M
BiT-M-R101x1 94.05±0.07 77.50±0.50 42.5M
ViT-Ti/16 89.50±0.05 71.65±0.16 5.6M
ViT-S/16 96.30±0.51 85.45±1.16 21.8M
ViT-B/16 96.75±0.05 89.30±1.95 86.1M

CPT 96.33±0.15 93.51±0.36 94k

Debiasing ViT. For the experiment
of debiasing Vision Transformer,
we compare CPT against different
ViT and Big Transfer (BiT) mod-
els introduced in (Kolesnikov et al.,
2020; Ghosal & Li, 2023). More
detailed results are given in Table
12, from which we can see that CPT
not only obtains the best worst-
group accuracy score but also per-
forms on par with the second-best
method in terms of average accu-
racy while using much fewer pa-
rameters. Note that other models scale up the resolution to 384× 384 while CPT keeps using the 224× 224 resolution.

Performance on CLIP variants. Table 13 presents the scores of ERM, GroupDRO, and CPT on a wide range of CLIP
backbones, including CLIP with ResNet101, ViT-B/16, ViT-B/32, ViT-L/14. Here we simply use the balanced version of
CPT instead of hyperparameter tuning on c. Therefore, note that we do not try to beat GroupDRO on all metrics, but focus
on investigating how our optimization procedure helps close the gap among groups. In summary, balancing the learning
among groups results in large improvements in worst-group and mean accuracies for all backbones.

Table 13: Performance on other CLIP variants, where CPT has the lowest gap between worst and average accuracy.

Model Last layers ResNet101 Prompting ResNet101 Last layer ViT-B/16 Prompting ViT-B/16
# Params 13740544 8192 393216 8192
Accuracy Average Worst Mean Average Worst Mean Average Worst Mean Average Worst Mean

Pre-trained 91.7 46.8 71.1 91.7 46.8 71.1 90.6 50.1 75.5 90.6 50.1 75.5
ERM 89.3 69.4 80.2 88.6 67.2 80.0 95.7 77.4 87.8 96.1 82.2 89.7
GroupDRO 88.5 74.9 82.1 86.3 74.0 80.7 91.4 88.5 90.2 93.3 85.5 90.4
CPT 87.7 75.2 83.9 83.1 78.9 81.2 91.4 89.4 90.5 92.2 89.2 91.5

Model Last layer ViT-B/32 Prompting ViT-B/32 Last layer ViT-L/14 Prompting ViT-L/14
# Params 393216 8192 786432 12288
Accuracy Average Worst Mean Average Worst Mean Average Worst Mean Average Worst Mean

Pretrained 90.1 49.0 72.2 90.1 49.0 72.2 89.4 36.1 83.9 89.4 36.1 83.9
ERM 94.7 73.5 85.2 94.0 76.0 85.7 96.6 85.8 91.8 96.8 83.1 91.6
GroupDRO 90.7 81.6 86.8 88.3 82.3 85.9 95.8 88.9 92.8 95.5 86.3 91.5
CPT 87.4 86.3 87.4 86.8 85.2 87.5 94.8 90.7 92.9 94.9 90.0 92.6
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Prompt-tuning with decoupled backbones. While the proposed method works well with CLIP, which has jointly-trained
image and text encoders, we also examine it on decoupled backbones to show that the efficiency of CPT does not rely on
powerful pretrained models. We thus accordingly expanded our experimental scope to include decoupled backbones and
provide the results in Table 14. Since there is some difference between the original architecture of CLIP’s image encoder
and the ImageNet-pre-trained encoder, we need to train additional bottleneck layers to map both image and text inputs to a
unified dimensional space.

Table 14: Performance of decoupled vision-language backbones on Waterbirds

Backbone Method Average Worst # Params

CLIP-RN50 Pre-trained 90.8 44.9 0
ERM 85.7 64.6 8192

GroupDRO 81.0 76.7 8192
Ours 81.8 79.8 8192

CLIP & RN50 ImageNet ERM 93.9 69.8 2105344
GroupDRO 92.3 75.7 2105344

Ours 92.4 79.3 2105344

CLIP-ViT-B/16 Pre-trained 90.6 50.1 0
ERM 96.1 82.2 8192

GroupDRO 93.3 85.5 8192
Ours 92.2 89.2 8192

CLIP & ViT-B/16 ImageNet ERM 75.5 47.9 401408
GroupDRO 71.5 55.5 401408

Ours 70.9 58.6 401408

Since there are mismatches between how the image and text encoders comprehend and represent information, the performance
of those decoupled CLIP models drop significantly. However, in such cases, CPT still consistently exhibits superior worst-
group accuracy compared to ERM or GroupDRO.

Label noise robustness. CPT is empowered by prompt-tuning, which has been shown to be more robust to noisy labels
than full fine-tuning or linear probing, as discussed in (Wu et al., 2023a), underscoring its practical advantage in the
outliers problem. To examine the robustness against noisy labels of different training methods, we conducted an additional
experiment on the CLIP-RN50 and Waterbird dataset under different levels of label noise, ranging from 20% to 60%.

Table 15: Accuracy for models trained on Waterbirds with different levels of noisy labels.

20% 40% 60%

Method Average Mean Worst Average Mean Worst Average Mean Worst

Last Layers (Yang et al., 2023b) 79.27± 2.74 75.85± 1.89 66.15± 2.31 67.16± 2.20 63.70± 2.32 57.84± 2.12 42.51± 1.49 45.59± 3.72 39.37± 1.50
Linear Probing 79.47± 2.48 75.76± 0.42 70.44± 2.67 67.05± 2.56 63.15± 0.96 57.06± 1.61 40.16± 1.48 40.79± 2.05 35.39± 2.08
Prompt-Tuning 77.66± 0.61 74.20± 1.43 70.35± 2.17 69.76± 2.89 64.71± 1.33 58.82± 1.67 50.00± 1.14 46.69± 1.60 42.76± 1.73
CPT 76.57± 1.65 75.38± 1.69 75.14± 2.51 67.67± 2.02 67.48± 0.43 61.83± 3.22 51.61± 1.06 49.91± 0.99 46.08± 1.28

As can be seen from Table 15, while those baselines achieve comparable performance at 20% noise rates, the accuracy
scores of last layers tuning and linear probing drop significantly as the noise rate increases, compared to prompt tuning
and CPT. In summary, CPT consistently achieves best worst-group accuracy in all settings and prompt. Interestingly, our
optimization procedure helps improve prompt tuning on all metrics when the noise level is higher than 50%, which shows
the benefit of effectively leveraging gradient information from multiple groups in deriving the updating direction.
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Saliency maps. We here provide more GradCAM visual explanations for ERM, GroupDRO and CPT on Waterbirds in
Figure 10. From those images, CPT shows its ability to identify causal features for making predictions, compared to ERM
and GroupDRO. Hence, our balancing mechanism helps prevent the model from learning spurious features that occur
frequently during training.

Original ERM GroupDRO Ours Original ERM GroupDRO Ours

Figure 10: Waterbirds GradCAM.
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