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Abstract
In Federated Continual Learning (FCL), the chal-
lenge lies in effectively facilitating knowledge
transfer and enhancing the performance across
various tasks on different clients. Current FCL
methods predominantly focus on avoiding inter-
ference between tasks, thereby overlooking the
potential for positive knowledge transfer across
tasks learned by different clients at separate time
intervals. To address this issue, we introduce
a Prompt-based knowledge transfer FCL algo-
rithm, called Powder, designed to effectively
foster the transfer of knowledge encapsulated
in prompts between various sequentially learned
tasks and clients. Furthermore, we have de-
vised a unique approach for prompt generation
and aggregation, intending to alleviate privacy
protection concerns and communication over-
head, while still promoting knowledge transfer.
Comprehensive experimental results demonstrate
the superiority of our method in terms of re-
duction in communication costs, and enhance-
ment of knowledge transfer. Code is available at
https://github.com/piaohongming/Powder.

1. Introduction
Federated learning (FL) is a distributed training framework
that allows for learning from tasks on different clients with-
out transmitting raw data, while continual learning (CL)
aims to enable a model to continuously learn new tasks
without catastrophic forgetting. From spatial dimension and
temporal dimension respectively, FL and CL try to tackle
the non independent and identically (non-iid) distribution
between tasks, which poses challenges to the model’s mem-
ory stability and knowledge transfer between tasks. How-
ever, existing federated learning algorithms are based on
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Figure 1. Various knowledge transfer types in different settings,
where T tc

c denotes the tc-th task on the c-th client.

Table 1. Transfer under different task correlation, measures by
overlapped level between tasks.

METHOD
OVERLAPPED LEVEL

50% 70% 90%
FEDSPACE -5.95 -3.11 -8.26

FED-CODAP -1.18 -0.59 -0.73
OURS 6.04 6.40 6.68

the assumption that there is a stable data distribution on
clients, thus struggle to adapt to the continuous changes of
data distribution in the environment of clients. Meanwhile,
Clients running centralized continual learning cannot utilize
information from other clients under the premise of privacy
protection, facing issues of insufficient and biased data. To
address these problems, recent studies have begun focusing
on federated continual learning (FCL). Federated continual
learning retains the challenges of both federated learning
and continual learning: knowledge transfer, catastrophic
forgetting, privacy protection and communication overhead.

Research in federated continual learning can be broadly
categorized into rehearsal-based and rehearsal-free ap-
proaches. rehearsal-based methods use a memory buffer to
save raw samples or prototypes of previous tasks, then replay
them with model decomposition such as FedWEIT (Yoon
et al., 2021), with knowledge distillation such as GLFC
(Dong et al., 2022) and CFeD (Ma et al., 2022b), or with reg-
ularization such as Fedspace (Shenaj et al., 2023). However,
memory buffer leads to additional storage overhead and pri-
vacy issue on clients, which are always edge devices with
limited resource. To alleviate this problem, rehearsal-free
methods such as TARGET (Zhang et al., 2023) and Fed-
CIL (Qi et al., 2023) are proposed. They generate pseudo-
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samples by training additional generative models to replace
the memory buffer. However, research on model inversion
attacks (Carlini et al., 2023) shows that additional gener-
ative models pose privacy risks. Besides, methods above
transmit the entire model parameters between server and
clients, leading to unacceptable communication overhead.
With the development of vision foundation models, prompt-
based methods, which concatenate trainable parameters to
multi-head self-attention layers, have gained increasing at-
tention in federated continual learning. This is not only
because their parameter-efficient characteristics, but also
the capability of prompts to continuously enhance foun-
dation models in a federated way. Fed-CPrompt (Bagwe
et al., 2023) applies a global prompt pool consisting of
task-specific prompts following CODAPrompt (Smith et al.,
2023)(Sec.3), and designs a contrastive continual loss to
address non-iid distribution among tasks. Similarly, HePCo
(Halbe et al., 2023) introduces CODAPrompt and further
trains a pseudo-representation generator on the server to
address forgetting during global aggregation. However, ex-
isting prompt-based methods solve catastrophic forgetting
by avoiding the impact between tasks, overlooking dual
knowledge transfer over spatial and temporal dimension
in federated continual learning, as shown in Fig.1. Further-
more, in real-world applications, there are different degrees
of correlation between different tasks. we argue that knowl-
edge transfer between tasks with high correlation brings
better performance. Table 1 verifies this intuition by com-
paring the combined transfer (Sec.5.1) of Fedspace, Fed-
CODAP and our method under different overlapped level
between tasks. The knowledge transfer of ours improves
with increased task correlation, but existing methods fail
to achieve positive transfer despite task correlation. Ad-
ditionally, as the number of tasks increases, the prompt
pool size grows continuously. Communicating the entire
prompt pool, which contains task-specific parameters, not
only boosts communication overhead, but also leads to
privacy problem.

In order to achieve positive dual knowledge transfer under
acceptable communication overhead and privacy protec-
tion, we propose a Prompt-based dual knowledge transfer
method in federated continual learning (Powder). Our main
contributions are as follows:

• For federated continual learning, we first take into account
the dual knowledge transfer which includes both spatial
transfer and forward/backward transfer. And we construct
a benchmark that can effectively evaluate the knowledge
transfer under controllable different task correlation.

• We propose a prompt-based method that can 1) estimate
task correlation for selective knowledge transfer; 2) trans-
fer the most related knowledge among dual dimensions
via two-step prompt aggregation, with the consideration
of communication overhead and privacy. 3) Avoid the

erasure of transferred knowledge via dual distillation loss.

• We conduct comprehensive experiments at different scales,
with out-of-distribution dataset ImageNet-R and Domain-
Net commonly used for continual learning, providing em-
pirical evidence for the effectiveness of Powder.

2. Related Work
Federated Learning. Federated learning is a distributed
training framework that operates under the premise of pri-
vacy protection. In this framework, individual clients train
parameters on their private data and upload them to a central
server for global aggregation. This process allows for a
better global model without the transmission of raw data.
FedAvg (McMahan et al., 2016), a cornerstone of feder-
ated learning, aggregates models trained on multiple clients
by computing a weighted average based on the number of
samples on clients. The three crucial challenges in feder-
ated learning are forgetting alleviation, knowledge transfer
among spatial dimension and communication overhead un-
der non-iid distribution. For the first challenge, common
methods involve adding regularization to models’ weight
(Li et al., 2020; Shoham et al., 2019) or output (Lee et al.,
2021) to control their update directions. For the second chal-
lenge, beyond transferring with simple global aggregation in
FedAvg, some personalized federated learning methods (Ma
et al., 2022a; Chen et al., 2023) attempt to transfer the most
related information by designing different client-specific ag-
gregation algorithms. For the third challenge, the research
focus is on training and transmitting only a subset of pa-
rameters (Chen et al., 2019) and accelerating convergence
(Karimireddy et al., 2020). With the development of vision
foundation model (e.g., Vision Transformer (Dosovitskiy
et al., 2020)), recent research suggests that using parameter-
efficient transfer learning methods, such as Visual Prompt
Tuning (Jia et al., 2022) can effectively address these chal-
lenges (Feng et al., 2023; Yang et al., 2023). However, in
real-world applications, client environments are constantly
changing. Existing federated learning methods, based on
the assumption of static client data distribution, can not
adequately address this challenge.

Continual Learning. Continual Learning aims to enable
a model to continuously learn new tasks while avoiding
forgetting previous tasks. The two crucial challenges in con-
tinual learning are catastrophic forgetting and knowledge
transfer among temporal dimensions. For the first challenge,
Replay-based methods (Rebuffi et al., 2017; Aljundi et al.,
2019; Wang et al., 2023; Wu et al., 2024) optimize the use
of a memory bufferM storing samples from previous tasks,
and design sampling algorithms to select and store the most
representative of these samples. For the more challenging
rehearsal-free scenario, regularization-based methods (Kirk-
patrick et al., 2017; Zenke et al., 2017) limit or penalize the
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update of parameters with higher importance for previous
tasks, while optimization-based methods explicitly control
the optimization procedure of current tasks by performing
gradient projection (Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2020), meta-learning (Javed & White, 2019; Gupta
et al., 2020), or finding robust representation (Mirzadeh
et al., 2020b;a). For the second challenge, PR (Henning
et al., 2021) utilizes the Bayesian strategy to learn task-
specific posteriors with a shared meta-model. CUBER (Lin
et al., 2022) categorizes regularization into different trans-
fer types based on the angles between the tasks gradient
and the sample space. D-TS (Ye & Bors, 2022) selectively
distills knowledge for new tasks from a dynamically ex-
panding teacher module. With the development of visual
foundation models with robust representations, as well as
the emergence of Visual Prompt Tuning (Jia et al., 2022),
some prompt-based methods have shown remarkable effec-
tiveness. L2P (Wang et al., 2022b) introduces a key-query
similarity method to select prompts from a prompt pool
and uses them to adapt the visual foundation model to dif-
ferent tasks in continual learning. Built upon L2P (Wang
et al., 2022b), DualPrompt (Wang et al., 2022a) divides the
prompt pool into task-specific and task-invariant parts. CO-
DAPrompt (Smith et al., 2023) transforms prompt selection
into a differential process with an attention mechanism and
adds a portion of prompts for each task in the prompt pool,
achieving superior performance. However, existing prompt-
based methods do not discuss knowledge transfer between
tasks. Additionally, centralized continual learning faces
data scarcity and biased data due to device environments
and privacy concerns, but current methods are insufficient
to address this issue.

3. Preliminaries
Problem Statement. Suppose there are N tasks T =
{T 1, ..., T N}. In the scenario of asynchronous FCL with C
clients sharing a single server, each client c ∈ {1, 2, ..., C}
can learn tasks sequentially at their own pace. We de-
note T tc

c as the current tc-th task being learned by the c-th
client.The model parameters of the c-th client during train-
ing the tc-th task are denoted as θtcc . To clarify, we define
the parameters of all clients on previous tasks T pre as θpre

and the parameters of all clients on current task T cur as θcur

as:

θpre ≜ θpre
[1:C] = ∪

C
c=1θ

[1:tc−1]
c , θcur ≜ θcur

[1:C] = ∪Cc=1θ
tc
c

Besides, we use | · | to represent the size of sets, [ · ]i,j to
represent the ij-th entry of a matrix.

CODAPrompt. For prompt-tuning methods for ViT, We
illustrate them and discuss which one has the best transfer
capability in Appendix A. For the generation of prompts,
existing prompt-based FCL methods (Bagwe et al., 2023;

Halbe et al., 2023) mainly follow CODAPrompt (Smith
et al., 2023), a state-of-the-art prompt-based CL method.
During the training of T tc

c , there is a set of task-specific
prompts Ptc

c ∈ RM×L×D for T tc
c , where M is the length

of the set, L is the length of a prompt, D is the output
dimension of a ViT encoder. The prompts from previous
tasks T pre and current tasks T cur collectively form the
global prompt pool Pg ∈ RMg×L×D, where Mg = M×N .
N = |{T pre, T cur}| is the number of existing tasks. For
each sample x, its prompt p ∈ RL×D is generated by a
weighted sum of the prompts,

p =
∑Mg

m
αm[Pg]m , (1)

where the weights α = {α1, α2, . . . , αMg
} are achieved

through query-key similarity:

α = {γ(q(x)⊙ [Ag]1, [Kg]1), γ(q(x)⊙ [Ag]2, [Kg]2),

. . . , γ(q(x)⊙ [Ag]Mg
, [Kg]Mg

)}, (2)

where Kg ∈ RMg×D and Ag ∈ RMg×D are trainable
keys and trainable attention weights corresponding to each
prompt in Pg respectively. ⊙ is the Hadamard prod-
uct. γ(·, ·) is the cosine similarity. Due to the one-to-
one correspondence between Ag, Kg, Pg, we use Pg ∈
RMg×(2+L)×D to represent them together as the global
prompt pool for simplicity.

4. Method
4.1. Prompt Generation with Two-step Aggregation

We divide the prompt generation with query-key similar-
ity (Sec.3) into two steps, aiming to transfer more useful
knowledge with fewer parameters and privacy protection.

First-step. Initially, we estimate a dual task correlation
matrix Gtask

g ∈ RMg×Mg to represent the dual dimension
correlations between existing tasks, where [Gtask

g ]i,j repre-
sents the similarity between i-th task and j-th task. We
update this matrix when new tasks emerge in the system.
The specific estimation and update algorithms are detailed
in Sec.4.3. With Gtask

g , the prompts corresponding to each
task in the global prompt pool Pg ∈ RMg×(2+L)×D are
aggregated with other prompts based on task correlation to
transfer the most relevant knowledge, that is:

P̂g = Gtask
g ·Pg, (3)

where [P̂g]n =
∑Mg

m
[Gtask

g ]n,m[Pg]m,

Second-step. Since transferring the entire prompt pool
in each round would incur increasing communication and
computational overhead, we select the top-k relevant tasks
(including itself) for each task T tc

c based on the dual task
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Figure 2. The proposed Powder. When new tasks T i
1 and T j

2 appears, the server requests for their prompt selection weights and update
the task correlation matrix (Sec.4.3). During the training of T i

1 and T j
2 , the server first operates first-step aggregation on global prompt

pool by aggregating the most relevant task-specific prompts with the task correlation matrix (Sec.4.1). A task and its task-specific prompts
in the server prompt pool are represented in the same color. In the second-step aggregation, the server selects smaller local prompt pool
and transmits it to clients, which generate prompt for each sample via query-key similarity. (Sec.4.1). During the local training procedure,
Ldual is proposed to retain the transferred knowledge.

correlation matrix Gtask
g , that is:

Plocal
tc = { [P̂g]s | s ∈ top-k([Gtask

g ]tc) }, (4)

where [Gtask
g ]tc is the correlation of T tc

c with other tasks.
Then, the server transmits the aggregated prompts to the
client where task T tc

c is located. The prompts for sample
x of task T tc

c are calculated by aggregation with query-key
similarity introduced in Sec.3, but with the local prompt
pool Plocal

tc .

Although only a subset of the global prompt pool is transmit-
ted between the client and server to mitigate the commu-
nication overhead, the existence of the first-step aggrega-
tion allows the client to forward transfer knowledge from
the entire global prompt pool, which has also been filtered
through task correlation. Additionally, the task correla-
tion matrix is continuously updated (Sec.4.3), and as new
tasks emerge, previous tasks continuously gain knowledge
from the most relevant new tasks, thus achieving backward
transfer. Moreover, due to the first-step aggregation, we
avoid transmitting prompts containing task-specific knowl-
edge unaltered to the client, and the transmitted prompts
have a high relevance to the tasks on the client, which alle-
viates privacy concerns to some extent.

4.2. Dual Distillation Loss

Although we have transferred knowledge from tasks with
high relevance through a two-step aggregation, due to the

non-iid distribution of tasks, tasks can easily overfit to the
current task data during training, leading to the erasure of
transferred knowledge. The mainstream methods to address
this issue include adding regularization to model weights
(Kirkpatrick et al., 2017; Li et al., 2020), knowledge distil-
lation from previous models (Dong et al., 2022; Ma et al.,
2022b; Shenaj et al., 2023), avoiding the impact on other
tasks through gradient projection (Lin et al., 2022), etc.
However, these methods limit the performance on individ-
ual tasks, which contradicts our goal of fully utilizing trans-
ferred knowledge to improve the performance of each task.
Further, since there is dual correlation in terms of spatial
and temporal dimensions between classes of different tasks,
some classes of the current task may have little relevance
to the knowledge transferred through prompts while other
classes have high relevance with the knowledge. Therefore,
for classes with little relevance, restricting their learning
only has a negative effect. For classes with high relevance,
we need to increase their constraints to align with the trans-
ferred prompts, namely learn and retain knowledge trans-
ferred from outside the local data distribution. Based on
the analysis above, we propose a dual distillation loss as
follows:

Ldual(ŷcu, ŷtr) = −β
K∑

k=0,k ̸=y

[ŷtr]klog
[ŷcu]k
[ŷtr]k

, (5)

where β =
exp(

∑
i[G

class
g ]y,i)∑

(x′,y′)∈T exp(
∑

i[G
class
g ]y′,i)

.
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In Ldual, ŷcu represents the output logits of the current
model. ŷtr represents the output logits of the model at
the beginning of current round, which contains the newest
knowledge transferred from other tasks. Gclass

g represents
the dual class correlation matrix after t-th tasks. We use
the dual class correlation matrix Gclass

g to control the de-
gree of distillation for different samples. Specifically,
[Gclass

g ]y,i represents the correlation between class y and
i, thus

∑
i[G

class
g ]y,i represents the overall correlation be-

tween class y and other classes. In this way, if class y has
higher correlation with other classes, samples of class y will
get a larger β. Additionally, to further mitigate the negative
impact of distillation on sample learning, we follow Fed-
NTD (Lee et al., 2021) by masking the logits corresponding
to the sample labels (k ̸= y) during the distillation process.

4.3. The Proposed Powder Algorithm

Task & Class Correlation Update. Gclass
g is updated in

the same way as Gtask
g , thus we take Gtask

g as an example
here. When task T tc

c first appears in the FCL system, the
server initializes a set of prompts Ptc

c in the global prompt
pool Pg. At the same time, the server initializes a new
row and a new line in current task correlation matrix Gtask

g ,
denoted by the tc-th row and line. In initialized [Gtask

g ]tc,:
and [Gtask

g ]:,tc , the relevance of task T tc
c with itself is 1 and

with other tasks is 0. Subsequently, the server performs
the first step aggregation as described in Sec.4.1, and sends
the aggregated global prompt pool P̂g to the client c where
task T tc

c is located. Client c calculates the average prompt
selection weight αtc

c from the global prompt pool for task
T tc
c and sends it back by

αtc
c =

1

|T tc
c |

∑
x∈T tc

c

αx, (6)

where αx is the prompt selection weights of sample x. The
server determines the new task correlation matrix Gtask

g be-
tween tasks by comparing the cosine similarity between
different prompt selection weights:

[Gtask
g ]n,m =

(
αn
∗ · αm

∗
∥αn

∗∥∥αm
∗ ∥

)p

, n,m ∈ [0, N ], (7)

where N represents the number of existing tasks and αn

represents the prompt selection weights of n-th tasks in the
FCL system. p is a hyperparameter to increase the difference
between different cosine similarity. It is noteworthy that to
ensure the accuracy of correlation estimation, we transmit
Pg to the clients when a new task appears in the system.
However, in real-world applications, the same task often
lasts for a relatively long time, and the rounds in which new
tasks appear in the FCL system account for only a small part
of the entire FCL process. Therefore, these communication
overheads are minimal. We conduct experiments with new

Algorithm 1 The training procedure of Powder.

1: Input Dataset {T (1:tc)
(1:c) }, Pre-trained ViT encoder ξ,

hyperparameters k, λ, p, global prompt pool Pg ← {}
2: Output global prompt pool Pg = {Ptc

c |T tc
c ∈ T },

task-specific classification head ψg = {ψtc
c |T tc

c ∈ T },
dual task correlation matrix Gtask

g , dual class correlation
matrix Gclass

g

3: for round r = 1, 2, . . . do
4: if new tasks set |T new

r | > 0 then
5: for T tc

c ∈ T new
r ⊂ T cur

r do
6: Initialize task-specific parameters Ptc

c ∈
Pg, ψtc

c , [Gtask
g ]tc,:, [Gtask

g ]:,tc , [Gclass
g ]tc,:,

[Gclass
g ]:,tc

7: end for
8: Server transmits P̂g calculated in Eq. (3) to clients.
9: Clients calculate prompt weights for current

tasks {αtc
c |T tc

c ∈ T cur
r } and tasks just finished

{αtc
c |T tc

c ∈T fin
r } by Eq.(6) and transmit to server.

10: Server updates Gtask
g , Gclass

g by Eq.(7)
11: end if
12: for current tasks T tc

c ∈ T cur
r do

13: Server calculates P̂g by the first-step aggregation
with Eq.(3)

14: Server selects and transmits Plocal
tc to client c by

the second-step aggregation with Eq.(4)
15: Solve the problem in Eq.(8) for local CL
16: Client c transmits optimized Ptc

c to server and
server updates Pg

17: end for
18: end for

tasks appearing every 3 rounds, which is enough to show
our advantage in communication overhead.

Training & Inference In conclusion, we denote the pa-
rameters used for the inference of task T tc

c as θtcc , which
includes fixed ViT encoder ξ, local prompt pool Plocal

tc at
the beginning of the round, task-specific classification head
ψtc

c . During the training of task T tc
c , we learn Ptc

c and ψtc
c

by optimizing the following objective:

min
Ptc

c ,ψtc
c

Lce(θ
tc
c ; T tc

c ) + λLdual(θ
tc
c ; T tc

c ,Plocal
tc ), (8)

where Lce is cross entropy and λ is a hyperparameter to
control the effect of distillation. We describe the Powder
Algorithm in Algorithm1.

5. Experiment
5.1. Evaluation Benchmarks

Dataset: We construct our benchmarks based on two
image datasets commonly used for prompt-based contin-
ual learning: ImageNet-R and DomainNet. ImageNet-R
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(Hendrycks et al., 2021; Wang et al., 2022a) contains 30,000
samples from 200 categories, including hard samples from
ImageNet (Deng et al., 2009) and newly collected sam-
ples with various styles. This dataset is more distant from
the pre-trained distribution of ViT, making it suitable for
FCL research based on vision foundation models. Follow-
ing DualPrompt (Wang et al., 2022a), we split the dataset
into a training set with 24,000 images and a test set with
6,000 images. To search for more suitable values of k and
λ, we selected 20% of the training set as a validation set.
DomainNet (Peng et al., 2019) includes 600,000 images
from six domains and 345 classes, making it an important
dataset for transfer learning research. Although DomainNet
is relatively close to the pre-trained distribution of ViT, its
prominent class diversity still reflects the effectiveness of
our method to a certain extent. To fully validate our method
and to better align with real-world applications, we consid-
ered several dimensions when constructing the benchmark:

• Transferability: In the real world, tasks encountered by
different edge devices often have varying degrees of sim-
ilarity. Therefore, we hope that the classes included in
different tasks within the benchmark have varying lev-
els of overlap, as better transfer performance might be
achieved between tasks with higher overlap. Additionally,
samples of the same class encountered by different edge
devices in the real world are often biased, so we expect
that each task contains only a small portion of the total
data volume for each class.

• Asynchrony. Following (Yoon et al., 2021; Qi et al., 2023;
Shenaj et al., 2023), in real-world FCL, edge devices
switch tasks asynchronously, which presents additional
challenges to avoid negative impacts between tasks.

Based on the above considerations, we design our bench-
mark. For ImageNet-R, each task contains 20 randomly
selected classes from ImageNet-R, with each class contain-
ing 20% of the total samples of that class. These tasks are
randomly distributed across all clients, with each task last-
ing a different number of rounds. For DomainNet, each task
contains 35 randomly selected classes. Since DomainNet is
closer to the pre-trained distribution, we randomly sample
2% of the total samples for each class, while the rest is the
same as ImageNet-R. Our benchmark controls the overlap
between tasks by controlling random selection of classes
with the least overlap τ , in order to more thoroughly study
the performance of FCL systems under different overall
task correlation. It is worth noting that we did not use the
common method of constructing tasks using a Dirichlet dis-
tribution in FL, as this assumes that all clients will learn the
same class set in order to better control task similarity. How-
ever, in the FCL scenario, the class sets learned by different
tasks on each client can vary greatly, even being disjoint,
making it difficult to control task similarity using Dirichlet
distribution sampling directly. To achieve asynchrony, after

every 3 rounds, we randomly select 40% clients and switch
their tasks.

Evaluation metrics: We evaluate the effectiveness, trans-
fer capacity, and communication overhead by adapting six
metric to FCL scenario, including Average Incremental
Accuracy (AIA) (Douillard et al., 2020), Forgetting Mea-
sure (FM) (Chaudhry et al., 2018), Forward Transfer (FT)
(Lopez-Paz & Ranzato, 2017), Backward Transfer (BT)
(Lopez-Paz & Ranzato, 2017), Combined Transfer (CT),
Total Communication Parameter Size between Client and
Server(C2S&S2C).

• Average Incremental Accuracy (AIA): This metric mea-
sures the average accuracy over the FCL process, com-
puted as AIA = 1

|R|
∑

r∈R
∑

T t
c ∈Tr

atc,r, where R de-
notes set of round with task switch, Tr denotes the set of
existing tasks at round r, atc,r denotes the accuracy of T t

c

at round r.

• Forgetting Measure (FM): Forgetting is measured by
the difference between the highest historical accuracy
and the current accuracy of a task. This metric quan-
tifies the model’s memory stability by the average for-
getting over the FCL process, computed as FM =
1

|R|
∑

r∈R
∑

T t
c ∈Tr

atc,r − ãtc,r, where ãtc,r denotes the
max accuracy of T t

c before round r.

• Forward Transfer (FT): This metric assesses the
model’s ability to transfer knowledge into a task, from
both previously learned tasks and other currently learned
tasks, computed as FT = 1

|T |
∑

T t
c ∈T ȧtc − âtc, where

T denotes all tasks during the FCL process, ȧtc denotes
the accuracy of T t

c when it finished and âtc denotes the
accuracy of single task training.

• Backward Transfer (BT): This metric evaluates the
model’s ability to transfer knowledge from new tasks
back to previously learned tasks, computed as BT =
1

|T |
∑

T t
c ∈T atc,max(R) − ȧtc, where atc,max(R) denotes the

final accuracy of T t
c .

• Combined Transfer (CT): This metric is a combina-
tion of FT and BT, evaluating the amount of informa-
tion that a task T t

c acquires from other tasks. The other
tasks can have any sequence relationship with task T t

c

in terms of temporal dimension. It is computed as
CT = 1

|T |
∑

T t
c ∈T atc,max(R) − âtc.

Baselines: To the best of our knowledge, we are the first
to investigate dual task knowledge transfer in FCL based
on visual foundation models. Therefore, our baselines are
selected as follows: 1) We adapt state-of-the-art non-ViT-
based FCL methods to ViT-based and our benchmark, in-
cluding: FedWEIT (Yoon et al., 2021), CFeD (Ma et al.,
2022b), GLFC (Dong et al., 2022), Fedspace (Shenaj et al.,
2023). Due to the fact that prompt-tuning itself has a certain
effect on improving the model’s performance, and non-ViT-
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Figure 3. Changes in accuracy and transfer during the FCL process,
on ImageNet-R with C = 5 clients and r = 15 rounds.

based methods have difficulty in transferring knowledge
between tasks when the encoder is frozen, therefore, we
combine these methods with basic prompt-tuning and CO-
DAPrompt for a fair comparison. Please refer to Appendix
D for their results with prompt-tuning and CODAPrompt.
2) We combine state-of-the-art prompt-based CL methods
(Wang et al., 2022b;a; Smith et al., 2023) with FedAvg
(McMahan et al., 2016), including: Fed-L2P, Fed-Dual,
Fed-CODAP. 3) The latest ViT-based method: FedCPrompt
(Bagwe et al., 2023). Please refer to Appendix B for more
implementation details.

5.2. Performance Comparison

Table 2 demonstrates the performance of all methods dur-
ing the FCL process, measured by the first five metrics in
Sec.5.1, with 5 clients in the FCL system and 15 rounds
in total. Powder not only achieves a significantly leading
Average Incremental Accuracy (AIA) across both datasets
but also realizes the only positive Combined Transfer(CT)
among all methods. Not prompt-based methods, despite
utilizing a memory buffer, still exhibit relatively high catas-
trophic forgetting. Prompt-based methods experience less
forgetting, but Forward Transfer (FT) remains negative, in-
dicating that the negative knowledge transfer between dif-
ferent tasks’ prompts outweighs the positive transfer, high-
lighting the necessity for selective transfer.

Furthermore, we compare the communication overhead and
the storage overhead of Powder with prompt-based methods
in Table 3. We achieve a performance improvement of 9%
to 12% while reducing the communication overhead by 20%
to 40%. Besides, we have the minimum storage overhead
during task training and inference, namely the minimum
additional parameters. These advantages alleviates the prob-
lem of limited client resources, while achieving less train-
ing and inference time under the same device conditions
as shown in Table 4. Not prompt-based methods, which
require a memory buffer to store raw data or prototypes
and are designed based on transferring all model parame-
ters, are not included in the comparison. Additionally, we
analyze the changes in average accuracy and average com-
bined transfer during the FCL process. See Fig.3, where

not prompt-based methods show a gradual decrease in accu-
racy over the CL process, while prompt-based methods can
maintain or slightly increase accuracy. This indicates that
in FCL based on vision foundation models, prompt-tuning
not only achieves rehearsal-free learning but also results in
lighter catastrophic forgetting. Meanwhile, the combined
transfer of baselines generally fluctuates around a negative
value, with only Powder consistently maintaining a stable
positive value.

5.3. Ablation Study

As shown in Table 5, we evaluate the effects of each module
through ablation studies. OURS in Table 5 represents the
proposed Powder. FED-CODAP++ in Table 5 adapts the
prompt-tuning method we use to CODAPrompt, proving
that our advantage is not solely derived from the prompt-
tuning method. AGG represents the first-step aggregation
introduced in Section 4.1. SEL represents the selection of
prompts from top-k related tasks during S2C communica-
tion. For a fair comparison, when removing SEL, we re-
place it with the randomly selected prompts of the same size.
OURS-AGG and OURS-SEL in Table 5 demonstrate the
necessity of filtering more relevant knowledge for transfer
with AGG and SEL, and also prove that our proposed two-
step aggregation achieves more effective dual knowledge
transfer under communication-efficient conditions. DUAL
represents the proposed dual distillation loss Ldual, with
DIS representing the classic knowledge distillation (Hin-
ton et al., 2015), Ldis(ŷcu, ŷtr) = −ŷtrlog ŷcu

ŷtr
. We remove

Ldual directly in OURS-DUAL in Table 5 and replaceLdual

with the classic knowledge distillation (Hinton et al., 2015)
in OURS-DIS in Table 5. They prove the significant role
of Ldual in avoiding the erasure of transferred knowledge,
while avoiding negative effect on learning new tasks. Addi-
tionally, as can be seen from Table 5, only when the various
modules of Powder work in concert can the overall positive
knowledge transfer be ultimately achieved.

To validate that Powder can maintain its leading perfor-
mance in larger-scale real-world applications, we expand
our experimental setting to 20 clients and 60 rounds, where
each client sequentially learns up to 20 tasks. We selected
Fedspace (Shenaj et al., 2023) and Fed-CODAP as repre-
sentatives of not prompt-based and prompt-based methods,
respectively. As can be seen from Fig.6, while existing non
prompt-based and prompt-based methods suffer from neg-
ative knowledge transfer, Powder consistently maintains a
higher accuracy and knowledge transfer capability in larger-
scale FCL systems.

5.4. Effect of Top-k in Prompt Selection

Due to the critical role of top-k prompt selection in the
second-step aggregation (Sec.4.1) for controlling commu-
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Table 2. Performance measured by metrics in Sec.5.1, on ImageNet-R and DomainNet with with C = 5 clients and r = 15 rounds.

IMAGENET-R
METHOD AIA(%) FM(%) FT(%) BT(%) CT(%)

N
O

-P
R

O
M

P
T FEDWEIT-VIT 29.26(0.82) 18.12(0.63) 6.74(1.27) −24.51(2.23) −12.87(1.00)

CFED-VIT 59.79(1.17) 3.81(0.39) −17.67(8.19) −14.92(2.65) −29.60(6.28)
GLFC-VIT 75.21(1.05) 1.10(0.16) −3.87(0.70) −1.55(0.76) −5.11(0.99)

FEDSPACE-VIT 73.36(0.82) 2.01(0.13) −2.60(0.59) −4.19(0.51) −5.95(0.48)

P
R

O
M

P
T

FED-L2P 75.03(0.88) 0.41(0.06) −2.79(0.13) −0.17(0.26) −2.92(0.23)
FED-DUAL 74.91(0.87) 0.49(0.08) −3.12(0.17) 0.22(0.32) −2.95(0.43)

FED-CODAP 75.14(1.06) −0.68(0.55) −2.53(2.87) 1.69(1.63) −1.18(1.62)
FEDCPROMPT 72.59(0.44) 0.63(0.06) −3.16(0.94) 0.00(0.00) −3.16(0.94)

POWDER 84.08(0.56) −0.54(0.07) 4.48(0.13) 1.95(0.60) 6.04(0.50)

DOMAINNET

METHOD AIA(%) FM(%) FT(%) BT(%) CT(%)

N
O

-P
R

O
M

P
T FEDWEIT-VIT 28.58(0.82) 17.12(1.10) 7.38(0.74) −22.13(5.14) −10.32(3.37)

CFED-VIT 60.19(0.23) 1.65(0.55) −4.98(0.25) −13.32(0.51) −15.64(0.46)
GLFC-VIT 70.34(0.00) 1.23(0.02) −4.08(0.42) −2.46(0.10) −6.04(0.50)

FEDSPACE-VIT 70.71(0.19) 1.80(0.12) 1.87(0.23) −4.16(0.22) −1.45(0.06)

P
R

O
M

P
T

FED-L2P 72.36(0.44) 0.16(0.03) −2.18(0.21) 0.10(0.04) −2.09(0.24)
FED-DUAL 72.15(0.22) 0.16(0.02) −1.82(0.11) 0.41(0.03) −1.49(0.08)

FED-CODAP 72.84(0.40) 0.01(0.04) −0.82(0.37) 0.83(0.28) −0.15(0.29)
FEDCPROMPT 69.92(0.56) 0.19(0.09) −2.78(0.36) 0.00(0.00) −2.78(0.36)

POWDER 77.28(0.18) 0.10(0.06) 1.28(0.04) 0.14(0.20) 1.40(0.19)

Table 3. Communication overhead and storage overhead compared
with prompt-based methods. Communication overhead is mea-
sured on ImageNet-R with C = 5 clients and r = 15 rounds.
Storage overhead is measured by additional parameters needed for
the training and inference of a task on ImageNet-R.

METHOD COMMUNICATION STORAGE

FED-L2P 686.69MB 3.96MB
FED-DUAL 621.78MB 4.73MB

FED-CODAP 815.63MB 11.43MB
FED-CPROMPT 815.63MB 11.43MB

POWDER 493.08MB 2.64MB

nication overhead, we aim to avoid significant impact on
performance caused by the selection of k. In the Fig.4, we
test the AIA metric and CT metric for k ranging from 1 to
5, and the experimental results show that the AIA fluctuates
around 0.2%, while the CT fluctuates around 0.5%. This
demonstrates that our method provides users with ample
room to balance model performance and communication
overhead. In the experiments of this paper, we choose k = 3
with the highest AIA.

5.5. Effect of Task Frequency

In real-world applications, the task frequency can be vari-
able, namely the minimal task duration can be variable.
Therefore, we analyzed the performance of powder under

Table 4. Average training and inference time between tasks com-
pared with prompt-based methods on ImageNet-R with C = 5
clients and r = 15 rounds.

METHOD TRAINING INFERENCE

FED-L2P 297.63S 5.69S

FED-DUAL 294.06S 6.56S

FED-CODAP 316.03S 6.52S

FED-CPROMPT 458.89S 6.47S

POWDER 262.65S 3.73S

different task frequencies. As can be seen in Fig.5, with
the minimal task duration increases, the AIA first increases
and then fluctuates around 84%. The CT first increases and
then decreases, eventually stabilizing at around 4.84%. Pow-
der still achieves positive dual knowledge transfer. When
the minimum task duration is small, it is difficult to train
a task adequately, and there is few interactions between
tasks through the server. This leads to a lower AIA and
CT. As the minimum task duration increases, the training
and knowledge transfer for a task become more sufficient,
and the performance of a task gradually reaches its upper
bound, reflected by an increase in AIA. As for CT, knowl-
edge transfer has the effect of accelerating training, enabling
the model to improve its performance on a task more quickly.
However, when calculating CT following evaluation metrics
in Section 5.1, the performance improvement of a model
trained with single task training is slower, and it takes a
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Table 5. Ablation study on the proposed Powder, on ImageNet-R with C = 5 clients and r = 15 rounds.
IMAGENET-R

METHOD FUS SEL DUAL DIS AIA(%) FM(%) FT(%) BT(%) CT(%)
FED-CODAP++ ✗ ✗ ✗ ✗ 74.96(1.47) −0.73(0.76) −5.13(1.69) 3.42(1.00) −2.39(1.87)

OURS-FUS ✗ ✓ ✓ ✗ 79.88(0.83) 0.56(0.36) −0.10(0.42) −0.04(0.86) −0.12(0.90)
OURS-SEL ✓ ✗ ✓ ✗ 79.23(0.87) 0.41(0.31) −0.76(0.39) 0.12(0.49) −0.66(0.78)

OURS-DUAL ✓ ✓ ✗ ✗ 76.38(0.89) 1.48(0.22) −4.13(0.81) −0.30(0.59) −4.37(0.92)
OURS-DIS ✓ ✓ ✗ ✓ 81.35(0.94) 0.01(0.06) 0.97(0.49) 0.79(0.19) 1.60(0.48)

OURS ✓ ✓ ✓ ✗ 84.08(0.56) −0.54(0.07) 4.48(0.13) 1.95(0.60) 6.04(0.50)
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Figure 4. Effect of Top-k in prompt selection on the performance
on ImageNet-R, with k ranging from 1 to 5.
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Figure 5. Effect of task frequency on the performance on
ImageNet-R, with minimal task duration from 1-5.

longer task duration to reach the upper bound, which results
in a decrease in CT as the task duration increases. This
experimental result confirms the advantage of Powder in
utilizing dual knowledge transfer to accelerate training. In
summary, Powder is capable of adapting to asynchronous
tasks with different duration in real-world applications.

6. Conclusion
In this paper, we propose Powder, to tackle the dual knowl-
edge transfer in federated continual learning. Specifically,
Powder selectively transfer the most related knowledge via
task correlation estimation and two-step aggregation, which
also takes the communication overhead and privacy protec-
tion into consideration. To retain the knowledge transferred
from different tasks without limiting learning plasticity, we
proposed a dual distillation loss based on class correlation
estimation. Moreover, we construct a scalable benchmark
with controllable task correlation for thorough evaluation.
Comprehensive experiments verify that Powder is the first
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Figure 6. Accuracy and transfer in large-scale experiment, on
ImageNet-R with C = 20 clients and r = 60 rounds.

FCL method that achieves positive dual knowledge transfer.
For the future work, we will continue to explore new prompt-
tuning methods to achieve more efficient dual knowledge
transfer in FCL.

Acknowledgements
We thank all the anonymous reviewers for their construc-
tive suggestions on improving this paper. This work was
supported by the Innovation and Technology Fund (No.
MHP/034/22) funded by the Innovation and Technology
Commission, the Government of the Hong Kong Special
Administrative Region.

Impact Statement
This paper presents work whose goal is to advance the field
of federated continual learning. Federated continual learn-
ing is a cutting-edge concept that holds immense signif-
icance in a variety of critical and rapidly evolving fields,
including but not limited to medical imaging analysis, au-
tonomous driving technology, and robotics. In these sce-
narios, different models face private, biased and changing
environments, thus they need to transfer knowledge to each
other without leaking private information to better adapt to
new tasks and improve previous learned tasks. Our research
has taken a systematic step towards addressing federated
continual learning, leading to safer, more efficient, and more
ethical applications across a broad spectrum of industries.

9



Federated Continual Learning via Prompt-based Dual Knowledge Transfer

References
Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradi-

ent based sample selection for online continual learning.
Advances in neural information processing systems, 32,
2019.

Bagwe, G., Yuan, X., Pan, M., and Zhang, L. Fed-cprompt:
Contrastive prompt for rehearsal-free federated continual
learning. arXiv preprint arXiv:2307.04869, 2023.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag,
V., Tramer, F., Balle, B., Ippolito, D., and Wallace, E.
Extracting training data from diffusion models. In 32nd
USENIX Security Symposium (USENIX Security 23), pp.
5253–5270, 2023.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H.
Riemannian walk for incremental learning: Understand-
ing forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), pp.
532–547, 2018.

Chaudhry, A., Khan, N., Dokania, P., and Torr, P. Continual
learning in low-rank orthogonal subspaces. Advances in
Neural Information Processing Systems, 33:9900–9911,
2020.

Chen, H.-Y., Zhong, J., Zhang, M., Jia, X., Qi, H., Gong,
B., Chao, W.-L., and Zhang, L. Federated learning of
shareable bases for personalization-friendly image classi-
fication. arXiv preprint arXiv:2304.07882, 2023.

Chen, Y., Sun, X., and Jin, Y. Communication-efficient fed-
erated deep learning with layerwise asynchronous model
update and temporally weighted aggregation. IEEE trans-
actions on neural networks and learning systems, 31(10):
4229–4238, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dong, J., Wang, L., Fang, Z., Sun, G., Xu, S., Wang, X.,
and Zhu, Q. Federated class-incremental learning. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10164–10173, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Douillard, A., Cord, M., Ollion, C., Robert, T., and Valle,
E. Podnet: Pooled outputs distillation for small-tasks
incremental learning. In Computer Vision–ECCV 2020:

16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XX 16, pp. 86–102. Springer,
2020.

Feng, C.-M., Li, B., Xu, X., Liu, Y., Fu, H., and Zuo, W.
Learning federated visual prompt in null space for mri
reconstruction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
8064–8073, 2023.

Gupta, G., Yadav, K., and Paull, L. Look-ahead meta learn-
ing for continual learning. Advances in Neural Informa-
tion Processing Systems, 33:11588–11598, 2020.

Halbe, S., Smith, J. S., Tian, J., and Kira, Z. Hepco: Data-
free heterogeneous prompt consolidation for continual
federated learning. arXiv preprint arXiv:2306.09970,
2023.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F.,
Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M.,
et al. The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 8340–8349, 2021.

Henning, C., Cervera, M., D’Angelo, F., Von Oswald, J.,
Traber, R., Ehret, B., Kobayashi, S., Grewe, B. F., and
Sacramento, J. Posterior meta-replay for continual learn-
ing. Advances in neural information processing systems,
34:14135–14149, 2021.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Javed, K. and White, M. Meta-learning representations
for continual learning. Advances in neural information
processing systems, 32, 2019.

Jia, M., Tang, L., Chen, B.-C., Cardie, C., Belongie, S.,
Hariharan, B., and Lim, S.-N. Visual prompt tuning. In
European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International conference on
machine learning, pp. 5132–5143. PMLR, 2020.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference

10



Federated Continual Learning via Prompt-based Dual Knowledge Transfer

on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, G., Jeong, M., Shin, Y., Bae, S., and Yun, S.-Y. Preser-
vation of the global knowledge by not-true distillation
in federated learning. arXiv preprint arXiv:2106.03097,
2021.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Lin, S., Yang, L., Fan, D., and Zhang, J. Beyond not-
forgetting: Continual learning with backward knowledge
transfer. Advances in Neural Information Processing
Systems, 35:16165–16177, 2022.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. Advances in neural information
processing systems, 30, 2017.

Ma, X., Zhang, J., Guo, S., and Xu, W. Layer-wised model
aggregation for personalized federated learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10092–10101, 2022a.

Ma, Y., Xie, Z., Wang, J., Chen, K., and Shou, L. Continual
federated learning based on knowledge distillation. In
Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, volume 3, 2022b.

McMahan, H. B., Moore, E., Ramage, D., and y Arcas,
B. A. Federated learning of deep networks using model
averaging. arXiv preprint arXiv:1602.05629, 2:2, 2016.

Mirzadeh, S. I., Farajtabar, M., Gorur, D., Pascanu, R., and
Ghasemzadeh, H. Linear mode connectivity in multitask
and continual learning. arXiv preprint arXiv:2010.04495,
2020a.

Mirzadeh, S. I., Farajtabar, M., Pascanu, R., and
Ghasemzadeh, H. Understanding the role of training
regimes in continual learning. Advances in Neural Infor-
mation Processing Systems, 33:7308–7320, 2020b.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang,
B. Moment matching for multi-source domain adaptation.
In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1406–1415, 2019.

Qi, D., Zhao, H., and Li, S. Better generative re-
play for continual federated learning. arXiv preprint
arXiv:2302.13001, 2023.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001–2010, 2017.

Shenaj, D., Toldo, M., Rigon, A., and Zanuttigh, P. Asyn-
chronous federated continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5054–5062, 2023.

Shoham, N., Avidor, T., Keren, A., Israel, N., Benditkis,
D., Mor-Yosef, L., and Zeitak, I. Overcoming forgetting
in federated learning on non-iid data. arXiv preprint
arXiv:1910.07796, 2019.

Smith, J. S., Karlinsky, L., Gutta, V., Cascante-Bonilla, P.,
Kim, D., Arbelle, A., Panda, R., Feris, R., and Kira,
Z. Coda-prompt: Continual decomposed attention-based
prompting for rehearsal-free continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 11909–11919, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Q., Wang, R., Wu, Y., Jia, X., and Meng, D. Cba:
Improving online continual learning via continual bias
adaptor. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19082–19092, 2023.

Wang, Z., Zhang, Z., Ebrahimi, S., Sun, R., Zhang, H., Lee,
C.-Y., Ren, X., Su, G., Perot, V., Dy, J., et al. Dualprompt:
Complementary prompting for rehearsal-free continual
learning. In European Conference on Computer Vision,
pp. 631–648. Springer, 2022a.

Wang, Z., Zhang, Z., Lee, C.-Y., Zhang, H., Sun, R., Ren,
X., Su, G., Perot, V., Dy, J., and Pfister, T. Learning
to prompt for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 139–149, 2022b.

Wu, Y., Huang, L.-K., Wang, R., Meng, D., and Wei, Y.
Meta continual learning revisited: Implicitly enhancing
online hessian approximation via variance reduction. In
The Twelfth International Conference on Learning Repre-
sentations, 2024.

Yang, F.-E., Wang, C.-Y., and Wang, Y.-C. F. Effi-
cient model personalization in federated learning via
client-specific prompt generation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 19159–19168, 2023.

11



Federated Continual Learning via Prompt-based Dual Knowledge Transfer

Ye, F. and Bors, A. G. Dynamic self-supervised teacher-
student network learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(5):5731–5748,
2022.

Yoon, J., Jeong, W., Lee, G., Yang, E., and Hwang, S. J.
Federated continual learning with weighted inter-client
transfer. In International Conference on Machine Learn-
ing, pp. 12073–12086. PMLR, 2021.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International conference
on machine learning, pp. 3987–3995. PMLR, 2017.

Zhang, J., Chen, C., Zhuang, W., and Lv, L. Addressing
catastrophic forgetting in federated class-continual learn-
ing. arXiv preprint arXiv:2303.06937, 2023.

12



Federated Continual Learning via Prompt-based Dual Knowledge Transfer

A. Transferability of Prompting Method
Prompt-tuning In this paper, we focus on prompt-based knowledge transfer among tasks in FCL. Therefore, we empirically
explore the transferability of the knowledge learned by different prompt methods. It is noteworthy that the transferability
here refers to the transfer between downstream tasks, rather than the transfer from a pre-trained foundation model to
downstream tasks.. In the CL, FL, and FCL communities, the two mainstream prompt methods are prompt-tuning and
prefix-tuning. Both methods operate on the multi-head self-attention layers (MHA) (Vaswani et al., 2017):

MHA(hQ,hK ,hV ) = Concat(h1, . . . ,hm)WO (9)

where hi = Attention(hQW
Q
i ,hKWK

i ,hV W
V
i ),

where m is the number of heads and WO, WQ
i , WK

i , WV
i are projection matrices. hQ, hK , hV are the same in ViT

(Dosovitskiy et al., 2020). Prompt-tuning concatenates prompts to input tokens or input of MHA layers, which is equivalent
to concatenate the same prompt parameter p to hQ, hK and hV , namely MHA([p;hQ], [p;hK ], [p;hV ]). Prefix-tuning
concatenates two prompt parameters pK , pV to hK and hV respectively, thus keep the input and output sequence lengths
the same, namely MHA(hQ, [pK ;hK ], [pV ;hV ]). We empirically choose prompt-tuning in 4,5,6 layers by evaluating the
transferability of prompts in AppendixA
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Figure 7. Transferability of different prompting method in CL and FL

DualPrompt (Wang et al., 2022a) empirically demonstrates that prefix-tuning has better performance in class-incremental
learning and also explores which MHA layers to insert prompts in yields better results. However, in the class-incremental
scenario, better performance may not necessarily come from task-to-task transfer but from:

• Prompts are able to learn task-specific knowledge more thoroughly.

• Prompts are able to distinguish between tasks to avoid mutual interference in the class-incremental scenario.

To our best knowledge, no method has yet been developed to study the transfer capability of the knowledge learned by
prompts. We believe that in prompt-based FCL, prompt-based knowledge transfer between tasks is crucial:

• Allow previous tasks and current tasks on each client to fully leverage each other’s knowledge to achieve better
performance.

• Treating prompts as part of the pre-trained foundation model, we can help enhance the pre-trained foundation model
continuously through a federated way, which has significant application value in fields such as CV and NLP that heavily
rely on pre-trained foundation models.

We designed two sets of experiments from both the Federated and Continual dimensions. In the Federated experiments, two
clients have the same task, each holding 20% of the task’s data. In the continual side experiments, the two tasks are the
same, with the first task occupying 80% of the task’s data and the second task occupying 20%. Following DualPrompt, we
evaluate prefix-tuning or prompt-tuning at different MHA layers of ViT. The experimental results, as shown in the figure,
indicate that prompt-tuning at the middle layers (layers 4, 5, and 6 in ViT) performs better and learns more transferable
knowledge, both in the FL side and the CL side.
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B. Implementation Details
We implement our method and all baselines in PyTorch (Paszke et al., 2019) using the ViT-B/16 (Dosovitskiy et al., 2020)
backbone pre-trained on ImageNet-21K (Deng et al., 2009). All results are averaged over three runs and are obtained on
46GB NVIDIA RTX A6000 GPU. Each task lasts for at least 3 rounds. Local epochs for each round are set to 10 for
ImageNet-R and 4 for DomainNet for local convergence. To achieve asynchrony, after every 3 rounds, we randomly select
40% clients and switch their tasks. The learning rate is set to 0.005. The hyperparameters λ and p are set as 1 and 30
respectively. We select three hyperparameters above by cross-validation on small validation sets. For the size of prompt
pool, we set it for Fed-L2P and Fed-Dual following (Wang et al., 2022b;a) with the best performance; M = 10, L = 8 and
D = 768 for Fed-CODAP, Fed-CPrompt and Powder for a fair comparison. For the prompts initialization, the proposed
Powder, Fed-CODAP and FedCPROMPT, following CODAPrompt (Smith et al., 2023), employ orthogonal initialization
where the initialized prompts are orthogonal to each other. This is different from Fed-L2P and Fed-Dual, where the prompts
are uniformly initialized following (Wang et al., 2022b;a)

C. Application Scenarios
Consider several hospitals, each equipped with a disease diagnosis model that continuously learns to diagonse new groups
of diseases (i.e., new tasks). In a specific task at a particular hospital, the scarcity of disease samples often makes it
challenging to effectively learn its local model (e.g., fine-tuning the hospital’s pre-trained model with limited examples). In
such situations, the proposed Powder significantly enhances the effectiveness of each hospital’s disease diagnosis tasks by
enabling dual knowledge transfer between tasks without the need to transmit private data between different clients.

D. Additional Experimental Results
Here, we additionally provide experimental results for combining FedWEIT, CFeD, GLFC, Fedspace with basic prompt-
tuning (Basic PT) and with CODAPrompt (CODAP), as shown in Table 6. It can be seen that basic prompt-tuning and
CODAPrompt have a certain enhancing effect on these four methods, and even a few methods achieve a combined transfer
slightly greater than zero (e.g., GLFC-VIT+Basic PT). This phenomenon implies that parameter-efficient transfer learning
methods such as prompt-tuning can complement classic federated learning, continual learning and federated continual
learning methods that learn from scratch to achieve better performance. Our proposed Powder still maintains its leading
performance.
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Table 6. Performance measured by metrics in Sec.5.1, on ImageNet-R and DomainNet with with C = 5 clients and r = 15 rounds.

IMAGENET-R
METHOD AIA(%) FM(%) FT(%) BT(%) CT(%)

N
O

-P
R

O
M

P
T FEDWEIT-VIT 29.26(0.82) 18.12(0.63) 6.74(1.27) −24.51(2.23) −12.87(1.00)

CFED-VIT 59.79(1.17) 3.81(0.39) −17.67(8.19) −14.92(2.65) −29.60(6.28)
GLFC-VIT 75.21(1.05) 1.10(0.16) −3.87(0.70) −1.55(0.76) −5.11(0.99)

FEDSPACE-VIT 73.36(0.82) 2.01(0.13) −2.60(0.59) −4.19(0.51) −5.95(0.48)

B
A

S
IC

P
T FEDWEIT-VIT 73.91(0.62) 0.80(0.46) −1.48(0.68) −0.98(0.55) −2.27(1.07)

CFED-VIT 57.60(2.58) 7.97(2.21) −4.44(1.89) −26.48(0.93) −25.63(2.40)
GLFC-VIT 76.86(0.78) 0.91(0.15) 0.48(0.89) −0.59(0.20) 0.01(1.00)

FEDSPACE-VIT 75.17(0.79) 1.13(0.38) −3.49(0.92) −1.43(0.79) −4.64(1.53)

C
O

D
A

P FEDWEIT-VIT 74.13(0.43) 0.59(0.02) −1.63(0.63) −0.60(0.36) −2.11(0.63)
CFED-VIT 55.71(2.84) 8.98(2.52) −4.92(1.88) −28.32(1.03) −27.57(2.46)
GLFC-VIT 75.52(0.85) 0.83(0.08) 0.51(0.82) −0.59(0.19) 0.04(0.95)

FEDSPACE-VIT 73.92(0.96) 1.44(0.43) −3.19(0.31) −1.92(0.82) −4.73(0.39)

P
R

O
M

P
T

FED-L2P 75.03(0.88) 0.41(0.06) −2.79(0.13) −0.17(0.26) −2.92(0.23)
FED-DUAL 74.91(0.87) 0.49(0.08) −3.12(0.17) 0.22(0.32) −2.95(0.43)

FED-CODAP 75.14(1.06) −0.68(0.55) −2.53(2.87) 1.69(1.63) −1.18(1.62)
FEDCPROMPT 72.59(0.44) 0.63(0.06) −3.16(0.94) 0.00(0.00) −3.16(0.94)

POWDER 84.08(0.56) −0.54(0.07) 4.48(0.13) 1.95(0.60) 6.04(0.50)

DOMAINNET

METHOD AIA(%) FM(%) FT(%) BT(%) CT(%)

N
O

-P
R

O
M

P
T FEDWEIT-VIT 28.58(0.82) 17.12(1.10) 7.38(0.74) −22.13(5.14) −10.32(3.37)

CFED-VIT 60.19(0.23) 1.65(0.55) −4.98(0.25) −13.32(0.51) −15.64(0.46)
GLFC-VIT 70.34(0.00) 1.23(0.02) −4.08(0.42) −2.46(0.10) −6.04(0.50)

FEDSPACE-VIT 70.71(0.19) 1.80(0.12) 1.87(0.23) −4.16(0.22) −1.45(0.06)

B
A

S
IC

P
T FEDWEIT-VIT 71.78(0.36) 0.42(0.22) 0.64(0.64) −0.97(0.34) −0.13(0.91)

CFED-VIT 57.14(3.68) 5.11(3.06) −9.27(3.18) −19.35(8.01) −24.75(8.09)
GLFC-VIT 73.44(0.44) 0.92(0.15) −2.60(0.58) −1.49(0.35) −3.79(0.83)

FEDSPACE-VIT 72.53(0.35) 0.94(0.07) −1.75(0.35) −1.73(0.05) −3.13(0.38)

C
O

D
A

P FEDWEIT-VIT 71.77(0.47) 0.37(0.17) 0.98(0.40) −0.72(0.20) 0.40(0.56)
CFED-VIT 55.28(3.85) 5.72(3.12) −9.59(2.99) −20.49(7.62) −25.98(7.59)
GLFC-VIT 72.35(0.55) 0.66(0.11) −3.15(0.58) −0.99(0.20) −3.94(0.64)

FEDSPACE-VIT 71.70(0.32) 1.05(0.20) −1.89(0.88) −2.05(0.49) −3.53(1.14)

P
R

O
M

P
T

FED-L2P 72.36(0.44) 0.16(0.03) −2.18(0.21) 0.10(0.04) −2.09(0.24)
FED-DUAL 72.15(0.22) 0.16(0.02) −1.82(0.11) 0.41(0.03) −1.49(0.08)

FED-CODAP 72.84(0.40) 0.01(0.04) −0.82(0.37) 0.83(0.28) −0.15(0.29)
FEDCPROMPT 69.92(0.56) 0.19(0.09) −2.78(0.36) 0.00(0.00) −2.78(0.36)

POWDER 77.28(0.18) 0.10(0.06) 1.28(0.04) 0.14(0.20) 1.40(0.19)
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