
Learning Multiple Secrets in Mastermind

Milind Prabhu * 1 David Woodruff * 2

Abstract
In the Generalized Mastermind problem, there is
an unknown subset H of the hypercube {0, 1}d
containing n points. The goal is to learn H by
making a few queries to an oracle which given a
point q in {0, 1}d, returns the point in H nearest
to q. We give a two-round adaptive algorithm
for this problem that learns H while making at
most exp(Õ(

√
d log n)) queries. Furthermore,

we show that any r-round adaptive randomized
algorithm that learns H with constant probability
must make exp(Ω(d3

−(r−1)

)) queries even when
the input has poly(d) points; thus, any poly(d)
query algorithm must necessarily use Ω(log log d)
rounds of adaptivity. We give optimal query com-
plexity bounds for the variant of the problem
where queries are allowed to be from {0, 1, 2}d.
We also study a continuous variant of the prob-
lem in which H is a subset of unit vectors in Rd,
and one can query unit vectors in Rd. For this
setting, we give an O(n⌊d/2⌋) query deterministic
algorithm to learn the hidden set of points.

1. Introduction
Mastermind is a classic codebreaking board game that orig-
inated in 1970 and over the past few decades has inspired
several lines of research in theoretical computer science.
The game is played by two players one of whom is a code-
maker who chooses a secret sequence of four code pegs
each of which has one of six colors; the second player is
the codebreaker who wishes to determine the sequence by
guessing various four peg patterns. For each pattern the
codebreaker guesses, they learn the number of pegs in their
guess that are of the correct color and appear in the correct
position, as well as the number of pegs that are of the correct
color but are in the wrong position. The codebreaker wishes

*Equal contribution 1Department of Computer Science and
Engineering, University of Michigan 2Department of Com-
puter Science, Carnegie Mellon University. Correspondence
to: Milind Prabhu <milindpr@umich.edu>, David Woodruff
<dwoodruf@cs.cmu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

to learn the pattern while making as few guesses as possible.
The work of (Knuth, 1977) showed that the original Master-
mind game has an optimal strategy that uses 5 queries in the
worst case. The obvious generalization of the Mastermind
game to n pegs and k colors was studied in (Chvátal, 1983)
which gave an optimal strategy up to constant factors when
k ≤ n1−ε for any fixed constant ε > 0 and n arbitrarily
large. Better strategies for the regime when k ≥ n were
proposed in (Chen et al., 1996) and subsequently improved
in (Goodrich, 2009).
In this paper, we study variants of the Mastermind problem
in which the codemaker chooses not one hidden point but a
set H of n hidden points. The codebreaker operates under
a certain query model and has to learn all the points in H
while minimizing the number of queries they make. Specif-
ically, we consider three variants of this problem, each of
which is defined by the space from which H is chosen and
the query model under which the codebreaker operates. In
the first variant, we consider the setting of the problem when
the hidden points and queries lie in the hypercube.

Problem 1. The hidden set H is a subset of {0, 1}d
of size n. The codebreaker queries q ∈ {0, 1}d and
learns argminx∈H dist(x,q), i.e., the point in H with
the least Hamming distance to q.

Next, we consider a continuous variant of the problem.

Problem 2. The hidden set H is an n point subset
of Sd−1, the unit sphere in d dimensions. In each
query, the codebreaker picks q ∈ Sd−1 and learns
argminx∈H ∥x− q∥2, i.e., the point in H that has the
least Euclidean distance to q.

We also study the hypercube version of the problem with a
stronger query model.

Problem 3. The hidden set H is a subset of {0, 1}d
of size n. The codebreaker queries q ∈ {0, 1, 2}d and
learns minx∈H dist(x,q), i.e., the Hamming distance
of q to the point in H nearest to it.

One motivation for the study of such a query model with
extra characters is the work of (Hu et al., 2022). They
study the problem in which a secret binary string in {0, 1}d
has to be recovered via access to distance oracles for non-

1

Learning Multiple Secrets in Mastermind

decomposable distance metrics such as edit distance, (p)-
Dynamic Time Warping, and Fréchet distances. They
showed that for the exact recovery problem under some
distance metrics such as Dynamic Time Warping, recovery
is provably impossible unless extra characters are allowed
in the queries. For recovery using the edit distance oracle,
they gave algorithms with better query complexity when
queries were allowed to have extra characters. The question
of what advantage allowing extra characters gives us in our
setting is also of interest.
While our main goal is to design query-efficient algorithms
for Problems 1-3, we are also interested in the adaptivity of
algorithms. The adaptivity of an algorithm is the number
of rounds over which the algorithm makes queries and is
a measure of its parallelizability. Formally we have the
following definition:

Definition 1.1 (r-Round Adaptive Algorithm). An algo-
rithm is said to be r-round adaptive if it makes queries in r
batches B1, B2, . . .Br and for each j ∈ [r]\{1}, the queries
made by the algorithm in the j-th batch Bj are a function
only of the responses to queries in the batches B1, . . . Bj−1.

While it would be ideal to design algorithms that are both
query efficient and use few rounds of adaptivity (i.e., are
very parallelizable) we show that such algorithms do not
exist for Problem 1. Given this reality, one of our main
objectives is to understand the tradeoff between the query
complexity of algorithms and their adaptivity.

1.1. Motivation for Generalized Mastermind
One strong motivation for studying these problems is that
they seem to be very fundamental algorithmic questions and
have not been studied previously to the best of our knowl-
edge. Furthermore, several other questions similar in spirit
have been of interest to the community (see Section 1.3).
We now list some areas where the generalized mastermind
problem has applications or is relevant.

Data Reconstruction from a Nearest Neighbor Data
Structure. An obvious application of the generalized mas-
termind problem is the efficient recovery of data given ac-
cess to its nearest neighbor data structure. In particular, a
better understanding of these problems may help prevent
adversarial attacks from learning private data using a nearest
neighbor data structure.

Optimization. Problem 1 can be formulated as the algo-
rithmic task of recovering all global minima of the function
f(x) = dist(x,H) whose input is a point x ∈ {0, 1}d and
output is the hamming distance of x to the hidden set H .
Our lower bounds show that recovering all global minima
even in such a structured and simple setting is hard.
The key difficulty in designing algorithms for Problem 1
stems from a phenomenon akin to “getting trapped in local

minima” that arises in optimization. In the lower-bound for
Problem 1 (i.e., Theorem 3.8), the hardness arises from a
small set of hidden points H ′ ⊂ H preventing the remaining
points H \H ′ from being discovered. More precisely, H ′

has the property that a uniformly random point from {0, 1}d
is closer to some point in it than to any point in H \H ′ with
high probability. Therefore, the algorithm has to actively
evade points in H ′ to discover points in H \H ′.

Adverserially Robust Learning. Deep learning methods,
in general, are not robust to adversarial examples (Zhang
et al., 2020; Miller et al., 2020; Akhtar & Mian, 2018). Re-
cent developments such as (Lecuyer et al., 2019; Cohen
et al., 2019) have led to methods achieving provable robust-
ness with respect to ℓp-norm perturbations for continuous
domains. A standard procedure to adapt these ideas for dis-
crete domains is to pre-process the inputs by first mapping
them to ℓp space before classification. As noted by (Hu
et al., 2022), efficient non-adaptive algorithms for the exact
recovery problems can be used to do exactly this. A non-
adaptive algorithm for the generalized Mastermind problem,
for instance, can be used to losslessly map the input to a
t-dimensional vector of responses to the t queries made by
the algorithm.

1.2. Our Contributions
For Problem 1, we present a two-round adaptive determin-
istic algorithm which makes 2O(

√
d·log d·logn) queries to

retrieve H . On the negative side, we show that any r-round
adaptive algorithm must make exp(Ω(d3

−(r−1)

)) queries
even when the input has O(d3) points. Firstly, this im-
plies that algorithms with poly(d) query complexity must
use Ω(log log d) rounds of adaptivity. Also, for the spe-
cial case of non-adaptive algorithms, this corresponds to
an exp(Ω(d)) query lower bound, and for the case of two-
round adaptive algorithms a lower bound of exp(Ω(d1/3))
queries. For Problem 2, we propose a deterministic algo-
rithm in Section 4. The algorithm makes O(n⌊d/2⌋) queries
over O(n + d) adaptive rounds. Finally, we give a deter-
ministic algorithm for Problem 3 that makes O(nd) queries
in Section 5. This shows that allowing extra characters in
the queries of Problem 1 makes the problem much easier. A
simple information-theoretic lower bound shows that this is
essentially optimal; any randomized algorithm that succeeds
with constant probability must make Ω(nd

log d) queries.

1.3. Related Work
Past work has studied several variants of the mastermind
problem, sometimes under different names. The work of
(Fernández et al., 2019) studied the Mastermind problem
in which the codemaker picks x ∈ {−k,−k + 1, · · · , k −
1, k}d and the codebreaker tries to infer x by making ℓp dis-
tance queries in which they pick y ∈ {−k,−k+1, · · · , k−
1, k}d of their choice and are told ∥x − y∥p. Their tech-

2

Learning Multiple Secrets in Mastermind

niques give non-adaptive algorithms for separable distance
metrics (which are metrics that decompose into coordinate
sums) such as ℓp-norms, smooth max, Huber loss, etc. The
study of the Mastermind problem with non-separable dis-
tance metrics such as edit distance, p-Dynamic Time Warp-
ing, and Fréchet distances was initiated by (Hu et al., 2022).
Inference problems involving graph metrics have been con-
sidered in (Jiang & Polyanskii, 2019; Rodrı́guez-Velázquez
et al., 2014). Permutation-based variants of Mastermind
are studied in (Afshani et al., 2019; El Ouali & Sauerland,
2020).
The well-known coin-weighing problem is equivalent to the
original Mastermind problem with two colors (Alon et al.,
1996). In this problem, given n coins each of whose weight
is either w0 or w1, the goal is to determine the weight of
each coin in a small number of weighings using a spring
balance. Optimal bounds for this problem were achieved
by (Bshouty, 2009). The problem of group testing, intro-
duced by (Dorfman, 1943), is also closely related. In this
problem, there is a group of people out of which some have
been infected by a disease. There is a testing procedure
that, when queried with a subset of people, can determine
either that there is someone in the subset who is infected
or that no one is. The goal of the problem is to identify
the infected population using the testing procedure as few
times as possible. The work of (Coja-Oghlan et al., 2020)
obtains optimal non-adaptive and two-round adaptive group
testing algorithms. Several other results for group testing
are surveyed in (Aldridge et al., 2019).

2. Notation
We use Õ(.) to hide factors that are logarithmic in the di-
mension d. The set {1, · · · , l} is denoted by [l]. We use
{0, 1, · · · , k}d to denote the set of vectors each of whose
coordinates is in [k] ∪ {0}. For x,y ∈ {0, 1, · · · , k}d, the
Hamming distance between x and y, denoted by dist(x,y),
is the number of coordinates i ∈ [d] such that x[i] ̸= y[i].
For a subset S ⊂ {0, 1}d and a point x ∈ {0, 1}d we use
the notation dist(x, S) to denote miny∈S dist(x,y). The
support of x, denoted by Supp(x), is the set of non-zero
coordinates of x and the Hamming weight of x, denoted
by wt(x), is the cardinality of the support. For a set of
coordinates I ⊂ [d], the restriction of x to I is the vector
in {0, 1, · · · , k}|I| obtained by deleting all the coordinates
of x except those in I . We denote the restriction of x to
the set I by xI . For a set S ⊂ Rd, the convex hull of S
will be denoted by CONV(S) and the span of the points in
S will be denoted by Span(S). For a subspace W of Rd, its
orthogonal complement is denoted by W⊥. We use Sd−1

to denote the unit sphere in Rd.

Algorithm 1 Two-Round Adaptive Algorithm

1: For t := 2
O
(√

d·log d·log(n)
)

, query t points y1, . . . ,yt

which are sampled independently and uniformly at ran-
dom from {0, 1}d. Let z1, . . . , zt be the responses to
the queries where zi = query(yi).

2: For each zi, query all points at Hamming distance at
most r from it where r = O(

√
(d log n)/ log d).

3: Output the set of all points discovered by the queries
made by the algorithm.

3. Results for Problem 1
In this section, we present results for Problem 1. Recall that,
in this setting the hidden set H consists of n points from the
d-dimensional hypercube {0, 1}d. The query model allows
the codebreaker to query q ∈ {0, 1}d to learn the point in H
with the smallest Hamming distance to q. We use query(q)
to denote this point.
In the following sections, we give upper and lower bounds
on the query complexity of Problem 1.

3.1. A Simple 2-Round Adaptive Algorithm
We analyze the natural algorithm which makes random
queries in the first round and then uses the information
revealed to adaptively make queries in the second round.

Overview of Algorithm 1. In the first round, the algo-
rithm queries t = 2Õ(

√
d logn) points y1,y2, . . . ,yt uni-

formly at random from {0, 1}d. In the second round, the
algorithm queries all points within Hamming distance r of
points discovered in the first round.

Theorem 3.1. Let H be a hidden set with n ≤ 2o(d/ log d)

points. Algorithm 1 makes at most 2O(
√
d·log d·logn) queries

and recovers H with probability at least 2/3.

Our main lemma is to show that, for any fixed x ∈ H , the
first round recovers a point z ∈ H such that dist(x, z) ≤
r = Õ(

√
d log n) with probability at least (1 − 1/3n). It

then follows by a union bound that, with probability at least
2/3, each point in the hidden set is at a distance at most r
from some point recovered in round 1. Thus, the algorithm
recovers all points after the second round of queries with
constant probability.

Lemma 3.2. Fix a hidden point x ∈ H and let z be the
nearest point to x among the points zi learned after the first
round of queries. With probability at least (1− 1/3n), we
have dist(x, z) ≤ r.

Proof. Let y = argminyi
dist(x,yi) be the nearest query

to x among the queries made in the first round. Let x′ ∈ H
be some arbitrary but fixed point hidden point satisfying
dist(x,x′) > r (the lemma trivially follows if no such x′

exists). We show that dist(x,y) < dist(x′,y) holds with

3

Learning Multiple Secrets in Mastermind

probability at least (1− 1/3n2). A union bound then shows
that with probability at least (1− 1/3n), we simultaneously
have dist(x,y) < dist(x′′,y) for all x′′ ∈ H satisfying
dist(x′′,x) > r. It then follows that dist(x, query(y)) ≤ r
holds with probability (1− 1/3n) thus proving the lemma.
We have reduced our task to showing that dist(x,y) <
dist(x′,y) holds with probability at least (1− 1/3n2). We
now make some assumptions that simplify the analysis. For
the rest of the analysis, we assume that x is the origin
(i.e., all the d coordinates of x are 0). This corresponds
to “shifting the origin to x” by XOR-ing all hypercube
points with x. This operation preserves distances between
any two points, so our analysis will not lose any generality.
We now have dist(x,y) = wt(y) where wt(y) = |supp(y)|
is the number of coordinates in the support of y. It is also
easy to see that dist(x′,y) = wt(x′) + wt(y) − 2I where
I := |Supp(x′) ∩ Supp(y)|. It follows that dist(x,y) <
dist(x′,y) is equivalent to

wt(x′) > 2I. (1)

In the rest of the proof, we focus on showing that Equa-
tion (1) holds with probability at least (1−1/3n2). We now
define some useful events that will help us prove this upper
bound on I . Specifically, we let G1 to be the good event that
wt(y) = d/2− Ω(

√
d log t). This is a good event because

we can use the fact that y has a small support to argue that
the size I of the common support of x′ and y. Also, we let
G2 be the good event that I is not too much more than its
expectation (wt(y)wt(x′))/d.

• For an integer w ∈ [0, d], let Ew denote the event that
wt(y) = w.

• Let G1 denote the event that wt(y) ∈ [d/4, d/2 −
(
√
d log t)/8].

• Let G2 denote the event that I < µ+
√
3µ log(12n2)

where µ = (wt(x′)wt(y))/d.

Using some simple algebra, we can now show the following
claim. The details are provided in Appendix B.

Claim 3.3. Suppose that the number of queries t satisfies
t = 2Ω((d logn)/r). If the good events G1, G2 both occur,
then wt(x′) > 2I .

Note that our choice of parameters t, r in Algorithm 1 satisfy
the first condition of the above claim. Therefore, our task
reduces to proving that G1 ∩ G2 holds with probability
(1− 1/3n2) to finish the proof of Lemma 3.2. This is what
we do next.
First, we show that G1 holds with high probability. We ob-
serve that wt(y) is the minimum of t i.i.d binomial random
variables distributed as Bin(d, 1/2). The claim below then
follows from standard concentration inequalities. Its proof
is deferred to Appendix B.

Claim 3.4. Pr[G1] ≥ (1− 1/6n2).

Next, we want to show that the upper bound on I guaranteed
by event G2 also holds with high probability. The key
observation is the following: conditioned on wt(y) = w,
the distribution of y is uniform over points in {0, 1}d with
weight w. Hence, the distribution of I is hypergeometric
with mean µ = (w · wt(x′))/d. Using tail bounds for
the hypergeometric distribution we then show that I =
µ + O(

√
µ log n) holds with high probability. The full

details are provided in Appendix B.

Claim 3.5. For any integer w ∈ [d/4, d/2] we have
Pr[G2 |Ew] ≥ (1− 1/6n2).

The below claim follows from Claim 3.4, Claim 3.5, and
the law of total probability. The details are again deferred
to Appendix B.

Claim 3.6. Pr[G1 ∩G2] ≥ (1− 1/3n2).

This completes the proof of Lemma 3.2

The following lemma bounds the number of queries made
by Algorithm 1 concluding the proof of Theorem 3.1.

Lemma 3.7. Algorithm 1 makes at most 2O(
√
d·log d·logn)

queries.

Proof. The number of queries in the first round is
clearly 2O(

√
d·log d·logn). In round 2, the algorithm

queries all points at a Hamming distance at most
r = O(

√
(d log n)/ log d) from the points discovered

in round 1. This is at most t ·
∑r

i=0

(
d
i

)
≤ tdr+1 =

2O(
√
d·log d·logn).

3.2. A Lower Bound Against r-Round Adaptive
Algorithms

The main goal of the section is to prove query complexity
lower bounds. In particular, we study the trade-off between
query complexity and adaptivity.
We say that a randomized algorithm has success probability
p, if, for each input H ⊂ {0, 1}d, it correctly learns all the
points in H with probability at least p. The main result of
this section is a lower bound on the query complexity of r-
round adaptive randomized algorithms which have constant
success probability.

Theorem 3.8. Let d be a sufficiently large integer and
r = O(log log d) be any positive integer. Any r-round
adaptive randomized algorithm for Problem 1 with suc-
cess probability at least 2/3 must make exp(Ω(d3

−(r−1)

))
queries even when the size of the hidden set H is promised
to be O(d3).

4

Learning Multiple Secrets in Mastermind

Let DET(q, r) denote the set of all deterministic algorithms
that make at most q queries over r adaptive rounds. We shall
use the following version of Yao’s lemma which reduces
proving randomized query complexity lower bounds to that
of designing hard distributions for deterministic algorithms.

Lemma 3.9 (Yao’s Principle). Suppose that there exists a
distribution D over instances of Problem 1 such that for
every deterministic algorithm A ∈ DET(q, r), we have,
PrH∼D[A succeeds on H] < δ; then any r-round random-
ized algorithm which makes at most q queries has success
probability at most δ.

This motivates the following definition of input distributions,
which are hard for deterministic algorithms.

Definition 3.10 ((d,m, q, r, δ)-Hard Distribution). Let D
be a distribution over subsets of {0, 1}d that contain at most
m points. Such a distributionD is called (d,m, q, r, δ)-hard
if any algorithm A ∈ DET(q, r) has at most a δ-probability
of learning a hidden set drawn from D.

It follows from Yao’s lemma that if a (d,m, q, r, δ)-hard
distribution exists, then any r-round randomized algorithm
with query complexity q has success probability at most
δ. Next, we construct a hard distribution for non-adaptive
algorithms.

Lemma 3.11 (Hard Distribution for 1-Round Algorithms).
For some constant c ∈ (0, 1), there exists a distribution D1

which is (d, d2, 2cd, 1, 2−Ω(d))-hard.

Proof. For a point x ∈ {0, 1}d let N(x, r) ⊂ {0, 1}d be
the set of points at Hamming distance exactly r from x.
The hard distribution D1 generates an input H as follows:

(i) Sample a uniformly random point u from {0, 1}d.

(ii) Add all the points in N(u, 2) to H .

(iii) Add a uniformly random subset S of N(u, 1) to H .

We now show that for some constant c ∈ (0, 1), any algo-
rithm in DET(2cd, 1) learns H ∼ D1 with probability at
most 2−Ω(d). The intuition is that if the number of queries
is 2cd, all the queries of the algorithm will be at a distance
greater than 2 from u with high probability. In this case,
the points in N(u, 2) “block” the algorithm from learning
which subset S of N(u, 1) was added to H in step (iii). We
formalize this argument below.
Let A ∈ DET(s, 1) be a non-adaptive deterministic algo-
rithm that queries the points y1, . . . ,ys. Let E be the event
that for all i ∈ [s] we have dist(yi,u) ≥ 2. Since u is sam-
pled uniformly at random, for a fixed yi, dist(yi,u) ≥ 2
holds with probability (1− (1 + d)2−d) ≥ (1− 2d · 2−d).
A union bound then gives Pr[E] ≥ (1− 2sd · 2−d).
Now, observe that if event E occurs, for each query yi

we have dist(yi, N(u, 2)) < dist(yi, N(u, 1)). Moreover,

Figure 1. The figure illustrates how a hard distribution for r round
algorithms can be used to create a hard distribution for r+1 round
algorithms.

since all the points in N(u, 2) are in H , the responses to the
queries are entirely determined by the choice of u (and, in
particular, are independent of S). It follows that if the event
E occurs, then the algorithm has at most a 2−d probability
of correctly guessing S. The success probability of the
algorithm, therefore, is at most Pr[E] ·2−d+Pr[E] ≤ 2−d+
2sd · 2−d = 2−Ω(d) if s ≤ 2cd for a sufficiently small
constant c ∈ (0, 1).

We now show that hard distributions can be constructed
recursively: a hard distribution for (r+1) round algorithms
can be constructed using a hard distribution for r-round
algorithms. The new distribution will, however, be over
points whose dimension is significantly larger (in fact, it
will be approximately the cube of the dimension of the
former).

Lemma 3.12 (Inductive Step). Suppose that a
(t,m, q, r, δ1)-hard distribution exists; then a
(t′,m′, q, r + 1, δ1 + δ2)-hard distribution also ex-
ists for some t′ ≤ 2500t2(t + log2(q/δ2)) + t and
m′ ≤ m+ 25(t+ log2(q/δ2)).

Proof. Let Dr be the (t,m, q, r, δ1)-hard distribution. Let
t′ = 2500t2(t + log2(q/δ2)) + t. The hard distribution
Dr+1 generates an input Hr+1 ⊂ {0, 1}t

′
as follows (see

the illustration above):

(i) Sample Hr ⊂ {0, 1}t from the distribution Dr.

(ii) Let A ⊂ {0, 1}t′ be the set of points obtained by
padding (t′ − t) zeros to the end of each point in Hr.

(iii) Let ℓ = 100t2 and m1 = 25(t+ log2(q/δ2)). Define
B = {x1, . . . ,xm1

} where xi is given by:

xi[j] =

{
1 If j ∈ [t+ (i− 1) · ℓ+ 1, t+ i · ℓ]
0 Otherwise

5

Learning Multiple Secrets in Mastermind

(iv) For u sampled uniformly at random from {0, 1}t′ let
Au = {u ⊕ x |x ∈ A} and Bu = {u ⊕ x |x ∈ B}
where ⊕ denotes the bitwise-XOR operation.

(v) Let Hr+1 = Au ∪Bu.

It is easy to check that the bounds on the size of Hr+1 and
the dimension t′ satisfy the lemma statement.
Next, we prove that Dr+1 is indeed a hard distribution for
(r + 1)-round adaptive algorithms. Consider an algorithm
in DET(r+ 1, q) and an input Hr+1 drawn from Dr+1. We
show that after the first round of queries, with high proba-
bility, the algorithm gains no information about the set Hr.
However, the input Hr is itself drawn from a distribution
that is hard for r-round algorithms; thus the algorithm has a
low probability of learning A in the remaining r rounds.
Let C ⊂ {0, 1}t′ denote the set of 2t points whose support
is a subset of the first t coordinates. The main claim we
show is that if z is a uniformly random point in {0, 1}t′ then
its distance to B is less than its distance to any point in C.
To prove this claim, we will require the following simple
observation whose proof is provided in Appendix B.

Claim 3.13. Let x be a point in B and y be a point in C.
If z is a point in {0, 1}t′ satisfying |Supp(x) ∩ Supp(z)| >
ℓ/2 + t then dist(z,x) < dist(z,y).

We now prove the main claim of the argument.

Claim 3.14. If z is sampled uniformly at random from
{0, 1}t′ then dist(z, C) > dist(z, B) with probability at
least 1− δ2/q.

Proof. Fix a point y ∈ C. We shall show that for a uni-
formly random point z, we have dist(z,y) ≤ dist(z, B)
with probability at most 2−tq−1δ2. The claim then follows
by a union bound over the |C| = 2t points in C.
Let x be a point in B. Since z is chosen uniformly at ran-
dom from {0, 1}t′ and wt(x) = ℓ, we have that |Supp(x) ∩
Supp(z)| is a Bin(ℓ, 1/2) random variable. Using Fact A.2,
the probability that |Supp(x) ∩ Supp(z)| ≥ (ℓ/2 + 2t) is
at least 1

15 exp(−64t
2/ℓ) = 1

15 exp(−16/25) > 1/30. It
follows from Claim 3.13 that dist(z,x) < dist(z,y) holds
with probability at least 1/30. Since B = {x1, . . . ,xm1

}
consists of points with pairwise disjoint support, the ran-
dom variables |Supp(xi) ∩ Supp(z)| corresponding to dif-
ferent i are mutually independent. Thus, the probabil-
ity that dist(z, B) > dist(z,y) is at most (29/30)m1 <
2−tq−1δ2. Claim 3.14

We now use the claim above to show that after the first round
of queries, with high probability, the algorithm learns no
information about the set of points Hr sampled in line (i).
Suppose that the algorithm queries the points z1, . . . , zs
in the first round. Let E be the event that dist(zi, C) >

dist(zi, Bu) holds for all zi. Observe that dist(zi, C) >
dist(zi, Bu) holds iff dist(zi ⊕ u, C) > dist(zi ⊕ u, B).
Since z⊕u is distributed uniformly over {0, 1}t′ , it follows
from Claim 3.14, a union bound that Pr[E] ≤ δ2s/q ≤ δ2.
Conditioned on event E, the responses to the queries in
round 1 are determined by u and specifically are indepen-
dent of the set Au ⊂ C and thus are also independent of
the points Hr sampled in line (i). Therefore, if the event
E occurs, the conditional distribution of Hr after the first
round of queries is stochastically identical to the distribution
of Hr prior to the queries.
Even if the algorithm is informed what u is after the first
round of queries, it still has to learn the set of points Hr in
the remaining r rounds. Since the points in Hr are from
a (t,m, q, r, δ1)-hard distribution, the algorithm learns Hr

with probability at most δ1. Therefore the success proba-
bility of the algorithm is bounded by Pr[E] · δ1 + Pr[E] ≤
δ1 + δ2.

We now combine Lemma 3.11 and Lemma 3.12 to complete
the inductive proof and show the existence of a certain hard
distribution against r-round adaptive algorithms. Due to
space constraints, the proof of the below lemma has been
moved to Appendix B.

Lemma 3.15. For any integer t ≥ c1 and an integer r
satisfying 1 ≤ r ≤ t there exists a distribution Dr which is
((100t)3

r−1

, t3
r

, 2ct, r, 2/3)-hard where c1 is a sufficiently
large constant and c is a constant in (0, 1).

We now complete the proof of Theorem 3.8.

Proof of Theorem 3.8. Pick d sufficiently large and r =

O(log log d) so that r ≪ d3
−(r−1)

. Setting t =

(d3
−(r−1)

)/100 in Lemma 3.15 shows the existence of a

(d, d3, 2O(d3−(r−1)
), r, 1/3)-hard distribution. Theorem 3.8

then follows by Yao’s lemma. Theorem 3.8

4. A Deterministic Algorithm for Problem 2
In Problem 2, there is a hidden set H = {x1,x2, · · ·xn}
of n points on the unit sphere Sd−1 ⊂ Rd. The goal is
to learn the set H while making queries to unit vectors in
Sd−1 where a query to the unit vector q returns a point in H
which has the least Euclidean distance to q. In other words,
x = argmin

xi∈H
∥xi − q∥2. Note that since

∥x− q∥2 = ∥x∥2 + ∥q∥2 − 2 · ⟨x,q⟩ = 2− 2 · ⟨x,q⟩,

the point x also has the maximum inner product with q
among points in H . We present a deterministic algorithm
that learns the set H using nO(d) queries using O(n + d)
rounds of adaptivity.
Overview of Algorithm 2: Suppose that the points in H
have rank k. The algorithm first finds a basis B of k linearly

6

Learning Multiple Secrets in Mastermind

Algorithm 2 Deterministic Algorithm for Points on Sd−1.
1: Initialize B := ϕ. {When the loop on line 2 terminates

B will be a set of vectors which form a basis of H}.
2: repeat
3: Find an orthonormal basis {v1,v2, · · · ,vt} of

Span(B)⊥.
4: Query vj and −vj for 1 ≤ j ≤ t. Let C ⊂ H be the

points learned.
5: if there exists a point x in C such that ⟨x,vj⟩ ̸= 0

for some vj then
6: B = B ∪ {x}.
7: end if
8: until No new point is added to B
9: Define k := |B|. { k is the rank of points in H .}

10: Initialize Ĥ := B
{When the loop on line 11 terminates Ĥ will equal H .
This loop finds all points in H −B.}

11: repeat
12: Find all the (k − 1) dimensional faces of CONV(Ĥ).
13: Let D be the set of unit vectors in the Span(Ĥ) nor-

mal to some (k − 1)-face of the CONV(Ĥ).
{Note that each (k − 1)-face of CONV(Ĥ) has two
unit normal vectors.}

14: Let E ⊂ H denote the set of new points learned on
querying points in D.

15: Ĥ = Ĥ ∪ E.
16: until |E| = 0
17: Output Ĥ .

independent points in H . This is done by repeatedly query-
ing points in the orthogonal complement of points discov-
ered thus far until no new points are discovered. Henceforth,
the algorithm only queries points in Span(B) effectively
reducing the problem to k dimensions. In each iteration, the
algorithm constructs a convex hull of the points of H found
so far and queries the normal vectors of all the (k − 1)-
dimensional faces of the convex hull thus constructed. If no
new points are recovered, the algorithm terminates.
Theorem 4.1. Algorithm 2 recovers the set H ⊂ Sd−1

containing n points with rank k while making at most
O(n⌊

k
2 ⌋+1 + kd) queries.

It is easy to see that at the end of the first loop, Algorithm 2,
recovers a basis B ⊆ H . We now show that the algorithm
discovers all remaining points in the second loop. Towards
this end, we state the following simple fact and move its
proof to Appendix C.
Fact 4.2. Let T be a finite subset of Sd−1; then CONV(T)∩
Sd−1 = T .
Lemma 4.3. The output Ĥ of Algorithm 2 is H .

Proof. Consider the stage of the algorithm when it is ex-
ecuting an iteration of the loop on line 11. Also, suppose

that there is an undiscovered point y ∈ H \ Ĥ at this stage.
By Fact 4.2, CONV(Ĥ) = Ĥ and therefore y is not in
CONV(Ĥ). Therefore, there is a (k − 1)-face of CONV(B)
which separates y from all the points in Ĥ . Therefore, the
unit vector m normal to this face of CONV(Ĥ) satisfies
⟨m,y⟩ > ⟨m,x⟩ for all x in Ĥ . Hence querying the unit
vectors corresponding to all (k−1)-faces of CONV(Ĥ) (line
14) recovers a point in H \Ĥ . This proves that the algorithm
terminates only after all the points in H are recovered.

To bound the query complexity of the algorithm, we use the
following standard result about the number of facets of the
convex hull of n points in d dimensions.

Lemma 4.4 (Upper Bound Theorem, (Theorem 5.5.1 in
(Matousek, 2013))). The number of (d − 1)-faces of the
convex hull of n points in d dimensions is O(n⌊

d
2 ⌋).

Lemma 4.5. Algorithm 2 makes at most O(n⌊
k
2 ⌋+1 + kd)

queries where k = rank(H).

Proof. Algorithm 2 uses O(kd) queries to recover a basis
of H . Each iteration of the loop beginning in line 11 queries
the two normal vectors to the faces of the convex hull of a
set of at most n points in k dimensions. By Lemma 4.4, each
iteration makes at most O(n⌊

k
2 ⌋) queries. Since there are at

most n iterations of this loop, the total number of queries
made by the algorithm overall is O(n⌊

k
2 ⌋+1 + kd).

5. A Near Optimal Algorithm for Problem 3
In this section, we present results for Problem 3. In this
problem, the hidden set H is a subset of {0, 1}d of car-
dinality n and that in each query the codebreaker learns
minx∈H dist(x,q) for q ∈ {0, 1, 2}d of their choice. The
codebreaker’s goal is to learn H with as few queries as
possible. For x ∈ {0, 1}d and I ⊂ [d], xI denotes the
restriction of x to I (see Section 2 for a definition). Ob-
serve that the query model defined above is equivalent to the
following query model which is more convenient to work
with. In each query, the codebreaker picks I ⊂ [d] and a
vector q ∈ {0, 1}|I| and as a response to this query learns
minx∈H dist(xI ,q) which is the minimum distance of q to
points in H when restricted to the indices in I . We will
denote such a query by query(I,q).

5.1. The Algorithm
In the following section, we present a deterministic algo-
rithm for Problem 3 that finds H using O(nd) queries.
Throughout this section, we define for each i ∈ [d] the set
Ci = {1, . . . , i}. In the following lemma, we show that
a point in H with a given prefix can be recovered using
O(d) queries. This lemma will be used as a subroutine in
Algorithm 3.

7

Learning Multiple Secrets in Mastermind

Algorithm 3 A Deterministic Algorithm for the Stronger
Query Model.

1: For 1 ≤ i ≤ d, let Ci denote the set of coordinates
{1, 2, · · · , i}

2: Initialize H∗ := ϕ {H∗ is the subset of H learned by
the algorithm.}

3: Initialize N := ϕ {N is the “most recently” learned
subset of H}

4: Use Lemma 5.1 to find some point x0 in H (the prefix
in the lemma can be set to be the null prefix).

5: Add x0 to N and H∗.
6: while N is non-empty do
7: for x ∈ H∗ do
8: for i from 1 to d do
9: Let x∼i ∈ {0, 1}i be the i-th prefix of x but

with the i-th coordinate negated.
10: if x∼i is not the prefix of any point in H∗ and

query(Ci,x∼i) = 0 then
11: Use Lemma 5.1 to find a point in H with

prefix x∼i.
12: end if
13: end for
14: end for
15: Let N be the set of new points learned in this iteration

of the while loop. H∗ ← H∗ ∪N .
16: end while
17: Output H∗

Lemma 5.1. Given x′ ∈ {0, 1}i, with i satisfying 0 ≤ i ≤
d, we can recover a point x ∈ H with prefix x′ (given that
such an x exists in H) using at most d queries.

Proof. Suppose that x is a point in H with prefix x′; since
x′ is a prefix of x we have query(Ci,x

′) = 0. Let (x′, 0)
denote the point in {0, 1}i+1 obtained by appending a 0
to x′. To determine the (i + 1)-th coordinate we perform
query(Ci+1, (x

′, 0)) . If the response to the query is 0, then
xi+1 = 0; otherwise xi+1 = 1. We now know the prefix
of x of length (i + 1). Repeating this for the subsequent
coordinates reveals x using at most a total of d queries.

Overview of Algorithm 3: Consider the execution of the
algorithm when it has discovered a subset H∗ of H . It finds
the prefix p of some point in H \H∗ such that p is not the
prefix of any point in H∗. It then uses the subroutine of
Lemma 5.1 to learn a point in H with this prefix, thereby
learning a previously unknown point in H . To find p, the
algorithm iterates over all prefixes of points in H∗. For each
prefix q, the algorithm negates the last coordinate of q to
obtain q̃. It then checks if q̃ is the prefix of any point in
H∗ and if this is not true queries q̃. If the query returns
0, then the algorithm has found the required prefix of an
undiscovered point.

Theorem 5.2. Algorithm 3 recovers the set H ⊂ {0, 1}d
while making at most O(nd) queries.

The following lemma proves the correctness of Algorithm 3.

Lemma 5.3. The set H∗ output by Algorithm 3 equals H .

Proof. First, we prove that the algorithm terminates. The
while loop ends as soon as no new points are learned in its
most recent iteration. Therefore, there are at most n itera-
tions of the while loop after which the algorithm terminates.
Next, we show that the algorithm learns all points in H .
Suppose that the execution of the algorithm is at the while
loop on line 6. Also, suppose that there exists y ∈ H \H∗;
we show that the algorithm learns a point in H \H∗ in this
iteration of the while loop. Among points in H∗, let z be
the point that has the largest common prefix with y and the
length of this prefix be l. Observe that x∼(l+1) is not the pre-
fix of any point in H∗ and that query(Cl+1,x∼(l+1)) = 0
since x∼(l+1) is a prefix of y. Therefore, we are done if
we argue that z is contained in N . This is true since, if
z ∈ H∗ \ N , then a previous iteration of the while loop
would have retrieved a point the length of whose common
prefix with y would be at least (l + 1). This leads to a
contradiction.

Next, we bound the query complexity of Algorithm 3, com-
pleting the proof of Theorem 5.2.

Lemma 5.4. Algorithm 3 makes O(nd) queries.

Proof. For each point in H , the algorithm makes at most
one query for each of its prefixes. Having learned the prefix
of some undiscovered point in line 10, the algorithm uses
Lemma 5.1 to learn a new point making at most d queries.
Therefore, the total number of queries made is O(nd).

A simple information-theoretic lower bound shows that Al-
gorithm 3 is almost optimal.

Theorem 5.5. Consider a randomized algorithm for Prob-
lem 3 that for any set H ⊂ {0, 1}d containing n points,
learns all the points in H with probability at least 2/3.
The worst-case query complexity of such an algorithm is
Ω
(

nd
log d

)
.

Proof. Let D denote the uniform distribution over all n-
subsets of {0, 1}d. Let A be a deterministic algorithm that
learns an input H ∼ D with success probability at least
2/3 while making at most t queries. By Yao’s principle, it
suffices to show that t = Ω(nd

log d).
SinceA is deterministic, its output is completely determined
by the responses to its queries. For each query, it receives a
response of length O(log d) bits. It, therefore, outputs one
of 2O(t log d) subsets of {0, 1}d and can be correct on at most
2O(t log d) inputs. Since it succeeds with probability at least
2/3, we must have t = Ω(1

log d · log
(
2d

n

)
) = Ω(nd

log d).

8

Learning Multiple Secrets in Mastermind

Adaptivity. While Algorithm 3 is almost optimal in terms of
query complexity, it requires several rounds of adaptivity.
In particular, the algorithm as described in Algorithm 3 can
be implemented so as to use O(n) rounds of adaptivity, i.e.,
O(1) rounds to discover each new point. Alternatively, one
can also get a d-round adaptive algorithm with the same
query complexity as follows: for i = 1, . . . d, in the i-th
round, the algorithm learns the length i prefix of each point
in H . Given all length i prefixes, the algorithm can figure
out all length (i + 1) prefixes using at most 2n queries.
Therefore, overall, we can achieve a query complexity of
O(nd) using O(min(n, d)) adaptive rounds.
It would be interesting if query-efficient algorithms that use
fewer rounds of adaptivity exist. In any case, non-adaptive
algorithms for Problem 3 can be ruled out via an argument
almost identical to the one used to prove a lower bound for
Problem 1 against non-adaptive algorithms.

Theorem 5.6. Consider a non-adaptive randomized algo-
rithm for Problem 3 that for any set H ⊂ {0, 1}d containing
n points, learns all the points in H with probability at least
2/3. Such an algorithm must make Ω(2d) queries.

6. Conclusions and Open Problems
This work introduces the natural extension of the Master-
mind problem to the setting when there are multiple secrets.
In the context of Problem 1, our work focused on understand-
ing the query complexity of two-round adaptive algorithms.
We proposed a 2Õ(

√
d logn) query upper bound and showed

that any algorithm with poly(d) query complexity must use
Ω(log log d) rounds of adaptivity. Designing such an algo-
rithm with polynomial query complexity is a natural and
interesting open question.
For Problem 2 we gave a simple deterministic algorithm
with nO(d) query complexity. This query complexity arose
from the fact that convex polytopes with n vertices in d
dimensions can have as many as nO(d) faces. For this prob-
lem, we do not know of any non-trivial lower bounds and it
would be nice to make progress in this direction.
In the case of Problem 3, we have an almost optimal algo-
rithm that recovers the hidden set while making at most
O(nd) queries. It however suffers from having to use
O(min(n, d)) rounds of adaptive queries. While we show
that any non-adaptive algorithms must make Ω(2d) queries
it would be interesting to establish the correct tradeoff be-
tween query complexity and adaptivity for Problem 3.
Another interesting direction to explore is the study of the
generalized mastermind problem for non-separable distance
metrics such as edit distance, Fréchet distance, and dynamic
time warping.

Acknowledgements
We thank Rahul Ilango for the helpful discussions during the
initial phases of this work. We would also like to thank Rajiv
Gandhi for making the collaboration between the authors
possible.
David P. Woodruff was supported in part by a Simons Inves-
tigator Award and NSF Grant No. CCF-2335412.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen,

K. G., and Mehlhorn, K. The query complexity of a
permutation-based variant of mastermind. Discrete Ap-
plied Mathematics, 260:28–50, 2019.

Akhtar, N. and Mian, A. Threat of adversarial attacks on
deep learning in computer vision: A survey. IEEE Ac-
cess, 6:14410–14430, 2018. doi: 10.1109/ACCESS.2018.
2807385.

Aldridge, M., Johnson, O., Scarlett, J., et al. Group test-
ing: an information theory perspective. Foundations and
Trends® in Communications and Information Theory, 15
(3-4):196–392, 2019.

Alon, N., Kozlov, D., and Vu, V. The geometry of coin-
weighing problems. In Proceedings of 37th Conference
on Foundations of Computer Science, pp. 524–532, 1996.
doi: 10.1109/SFCS.1996.548511.

Bshouty, N. H. Optimal algorithms for the coin weighing
problem with a spring scale. In COLT, volume 2009, pp.
82, 2009.

Chen, Z., Cunha, C., and Homer, S. Finding a hidden code
by asking questions. In International Computing and
Combinatorics Conference, pp. 50–55. Springer, 1996.

Chvátal, V. Mastermind. Combinatorica, 3(3):325–329,
1983.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In international
conference on machine learning, pp. 1310–1320. PMLR,
2019.

Coja-Oghlan, A., Gebhard, O., Hahn-Klimroth, M., and
Loick, P. Optimal group testing. In Conference on Learn-
ing Theory, pp. 1374–1388. PMLR, 2020.

9

Learning Multiple Secrets in Mastermind

Dorfman, R. The detection of defective members of large
populations. The Annals of mathematical statistics, 14
(4):436–440, 1943.

El Ouali, M. and Sauerland, V. The exact query complexity
of yes-no permutation mastermind. Games, 11(2):19,
2020.

Fernández, M., Woodruff, D. P., and Yasuda, T. The query
complexity of mastermind with lp distances. Approxima-
tion, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 2019.

Goodrich, M. T. On the algorithmic complexity of the
mastermind game with black-peg results. Information
Processing Letters, 109(13):675–678, 2009.

Hu, Z., Li, X., Woodruff, D. P., Zhang, H., and Zhang,
S. Recovery from non-decomposable distance oracles.
arXiv preprint arXiv:2209.05676, 2022.

Janson, S. Large deviation inequalities for sums of indicator
variables. arXiv preprint arXiv:1609.00533, 2016.

Jiang, Z. and Polyanskii, N. On the metric dimension of
cartesian powers of a graph. Journal of Combinatorial
Theory, Series A, 165:1–14, 2019.

Knuth, D. E. The computer as master mind. Journal of
Recreational Mathematics, 9:1–6, 1977.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and
Jana, S. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), pp. 656–672. IEEE, 2019.

Matousek, J. Lectures on discrete geometry, volume 212.
Springer Science & Business Media, 2013.

Miller, D. J., Xiang, Z., and Kesidis, G. Adversarial
learning targeting deep neural network classification:
A comprehensive review of defenses against attacks.
Proceedings of the IEEE, 108(3):402–433, 2020. doi:
10.1109/JPROC.2020.2970615.

Rodrı́guez-Velázquez, J. A., Yero, I. G., Kuziak, D., and
Oellermann, O. R. On the strong metric dimension of
cartesian and direct products of graphs. Discrete Mathe-
matics, 335:8–19, 2014.

Zhang, W. E., Sheng, Q. Z., Alhazmi, A., and Li, C. Adver-
sarial attacks on deep-learning models in natural language
processing: A survey. ACM Transactions on Intelligent
Systems and Technology (TIST), 11(3):1–41, 2020.

10

Learning Multiple Secrets in Mastermind

A. Some Useful Concentration Inequalities
The binomial distribution with n trials and success probability p is denoted by Bin(n, p). The following are some standard
concentration inequalities for the binomial distribution.

Fact A.1 (Hoeffding’s Inequality). Let Y be random variable sampled from Bin(d, 1/2). For t > 0 we have,

Pr[|Y − d/2| ≥ t] ≤ 2 · exp(−2t2/d).

The following is an anti-concentration inequality for binomial random variables.

Fact A.2 (Anti-Concentration Inequality for the Binomial Distribution). Let Y be random variable sampled from Bin(d, 1/2).
When 0 ≤ t ≤ d/8 we have:

Pr[Y ≤ d/2− t] ≥ 1

15
· exp(−16t2/d).

The above fact implies the following inequality for the minimum of m independent binomial random variables.

Corollary A.3. Suppose that Y1, Y2, · · · , Ym are m independent Bin(d, 1/2) random variables. Define Ymin to be the
minimum of the random variables Yi, i.e., Ymin = min

i
Yi. For m = 2o(d) and 1

2m < δ < 1 we have,

Pr
[
Ymin ≤

d

2
− 1

4

√
d(logm− log(15 · log(1/δ)))

]
≥ 1− δ.

We now define the hypergeometric distribution and state a corresponding concentration inequality.

Definition A.4 (Hypergeometric Distribution). Suppose that d balls are drawn randomly without replacement from an urn
containing N balls out of which K are white. The distribution of the random variable X which equals the number of white
balls drawn is denoted by Hypergeometric(N,K, d).

Fact A.5 (Theorem 4 of (Janson, 2016)). Let Y ∼ Hypergeometric(N,K, d) and µ = E[Y] = NK
d . For ε > 0 less than a

sufficiently small constant,

Pr [|Y − µ| ≥ εµ] ≤ 2 · exp
(
−ε2µ
3

)
.

B. Missing Details from Section 3
Proof of Claim 3.3 If the event G1 ∩G2 occurs then we have,

2I < 2
wt(y) · wt(x′)

d
+ 2

√
3wt(y) · wt(x′) · log(12n2)

d

<
2
(
d
2 −

1
8

√
d · log t

)
· wt(x′)

d
+ 2

√
3 ·

d
2 · wt(x′) · log(12n2)

d

= wt(x′)− 1

4
· wt(x′) ·

√
log t

d
+
√
6 · wt(x′) · log(12n2).

Therefore, wt(x′) > 2I holds if

1

4
· wt(x′) ·

√
log t

d
>
√

6 · wt(x′) · log(12n2).

The above inequality on rearranging is equivalent to t > exp(96 d log(12n2)/wt(x′)). Since wt(x′) > r, we conclude that
t > exp(96 d log(12n2)/r) is a sufficient condition for wt(x′) > 2I . Claim 3.3

Proof of Claim 3.4 The queries y1, . . . ,yt are chosen independently uniformly at random, and therefore, the distribution
of the random variable dist(x,yi) = wt(yi) is Bin(d, 1/2). Since y is the nearest query to x it follows that wt(y) is the
minimum of t independent Bin(d, 1/2) random variables. If n = 2o(d/ log d) we have that t = 2O(

√
d log d logn) = 2o(d).

11

Learning Multiple Secrets in Mastermind

Applying Corollary A.3, we conclude that wt(y) < d/2 − 1
4

√
d · (log t− log(15(log 12n2))) holds with probability

at least (1 − 1/12n2). For sufficiently large d we have, log(15(log 12n2)) ≤ 2 log d ≤ 3
4 log t. Therefore, wt(y) <

d/2− (
√
d log t)/8 holds with probability at least (1− 1/12n2).

To show the lower bound on wt(y) we use Fact A.1. The probability that a binomial random variable Bin(d, 1/2) is less than
d/4 is at most 2 exp(−d). By a union bound the probability that the minimum of t = 2o(d) such binomial random variables
is less than d/4 is at most exp(−Ω(d)) ≤ 1/12n2. Therefore, wt(y) ≥ d/4 with probability at least (1− 1/12n2).
A final union bound shows that both the lower and upper bounds on wt(y) hold with probability at least (1 − 1/6n2).

Claim 3.4

Proof of Claim 3.5 Conditioning on wt(y) = w (the event Ew), by symmetry, the distribution of y is uniform over the
points in the hypercube with weight w. It follows that conditioned on Ew, the random variable I is distributed according
to Hypergeometric(d,wt(y),wt(x′)) (see Definition A.4). The claim then follows by setting ε =

√
3 log(12n2)/µ and

µ = (wt(y) · wt(x′))/d in Fact A.5. Claim 3.5

Proof of Claim 3.6 Let J denote the set of integers in the interval [d/4, d/2−(
√
d log t)/8]. Observe that G1 =

⋃
w∈J Ew.

It follows that:

Pr[G1 ∩G2] =
∑
w∈J

Pr[G2 ∩ Ew] =
∑
w∈J

Pr[G2 |Ew]Pr[Ew] ≥ (1− 1/6n2) ·
∑
w∈J

Pr[Ew]

= (1− 1/6n2)Pr[G1] ≥ (1− 1/6n2)2 ≥ 1− 1/3n2. Claim 3.6

Proof of Claim 3.14 Note that we have the following formula for the Hamming distance between a,b ∈ {0, 1}t′ :
dist(a,b) = wt(a) + wt(b) − 2|Supp(a) ∩ Supp(b)|. Using this formula and the fact that |Supp(x)| = ℓ and 0 ≤
|Supp(y)| ≤ t we obtain,

dist(z,x)− dist(z,y)
= wt(x)− 2|Supp(x) ∩ Supp(z)| − wt(y) + 2|Supp(y) ∩ Supp(z)|
< ℓ− 2 · (ℓ/2 + t)− 0 + 2t = 0. Claim 3.14

Proof of Lemma 3.15 We shall prove this by the following induction. For each i ∈ [r], we show that there is a
(d(i),m(i), 2ct, i, i/3r)-hard distribution where

d(i) ≤ 201.5(3
i−1−1) · t3

i−1

and m(i) ≤ t3
i

.

The lemma then follows by setting i = r, since d(r) ≤ 201.5(3
r−1−1) · t3r−1 ≤ (100t)3

r−1

.
The bounds on m(1) and d(1) in the base case i = 1 follow from Lemma 3.11 which guarantees the existence of
(t, t2, 2ct, 1, 2−Ω(t))-hard distribution. Suppose that the claim holds until i = j for some j ≥ 1.
We now use Lemma 3.12 to perform the induction step. Setting δ2 = 1/r ≥ 1/t in this lemma, we deduce that there is a
(d(j + 1),m′, 2ct, j + 1, (j + 1)/r)-hard distribution with d(j + 1) ≤ 2500d(j)2(d(j) + log2(q/δ2)) + d(j). Noting that
q ≤ 2t and 1/δ2 ≤ t ≤ 2t we conclude that log2(q/δ2) ≤ 2t ≤ 2d(j). This implies that

d(j + 1) ≤ 2500d(j)2(3d(j)) + d(j) ≤ (20d(j))3.

Using the induction hypothesis for i = j, we further conclude that

d(j + 1) ≤ (20 · 201.5(3
j−1−1) · t3

j−1

)3 ≤ 201.5(3
j−1) · t3

j

.

Next, we use Lemma 3.12 to bound m(j + 1). We have,

m(j + 1) ≤ m(j) + 25(d(j) + log2(q/δ2)) ≤ m(j) + 75d(j) ≤ t3
j

+ 75(100t)3
j−1

≤ t3
j+1

where the last inequality holds for t sufficiently large. Lemma 3.15

12

Learning Multiple Secrets in Mastermind

C. Missing Details from Section 4
Proof of Fact 4.2. Let x be a point in CONV(T). By definition, x =

∑m
i=1 αiui where αi ∈ [0, 1] for 1 ≤ i ≤ m and∑m

i=1 αi = 1. We have by the Cauchy-Schwarz inequality that,

∥x∥22 =
∑

1≤i,j≤m

αiαj⟨ui,uj⟩ ≤
∑

1≤i,j≤m

αiαj∥ui∥2∥uj∥2 =
∑

1≤i,j≤m

αiαj =

(
m∑
i=1

αi

)2

= 1.

Since the ui are distinct, the equality above holds only if αiαj = 0 whenever i ̸= j. This is only possible if there exists k
such that αk = 1 and αi = 0 for i ̸= k. It therefore follows that if x ∈ CONV(T) and ∥x∥2 = 1 then x ∈ T . Fact 4.2

13

