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Abstract
The usage of Rational Speech Acts (RSA) frame-
work has been successful in building pragmatic
program synthesizers that return programs which,
in addition to being logically consistent with user-
generated examples, account for the fact that a
user chooses their examples informatively. We
present a general method of amortizing the slow,
exact RSA synthesizer. Our method first query
the exact RSA synthesizer to compile a commu-
nication dataset. The dataset contains a number
of example-dependent rankings of subsets of pro-
grams. It then distills a single global ranking of
all programs as an approximation to every rank-
ing in the dataset. This global ranking is then
used at inference time to rank multiple logically
consistent candidate programs generated from a
fast, non-pragmatic synthesizer. Experiments on
two program synthesis domains using our ranking
method resulted in orders of magnitudes of speed
ups compared to the exact RSA synthesizer, while
being more accurate than a non-pragmatic synthe-
sizer when communicating with humans. Finally,
we prove that in the special case of synthesis from
a single example, this approximation is exact.

1. Introduction
For intelligent systems to be accessible to end users, it is im-
portant that they can infer the user’s intent under ambiguity.
Imagine a person asking an AI assistant to generate a regu-
lar expression that matches the string 123-7890. It would
be unhelpful if the AI assistant simply returned the regu-
lar expression Σ∗ – the expression that matches all strings
– although it is technically correct. The rational speech
acts model (RSA) of pragmatics (Frank & Goodman, 2012)
gives an algorithm for resolving ambiguities by modeling
the user as a speaker that chooses informative examples for
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Figure 1. (left) Directly using the exact RSA algorithm in a prag-
matic synthesizer L1 is slow. (right) Our approach uses RSA to
generate a simulated communication dataset between the infor-
mative speaker S1 and the pragmatic synthesizer L1, and stores
the responses of L1 as example-dependent rankings of subsets
of programs. We then distill the dataset into a single example-
agnostic global ranking of all programs σ[w]. This global ranking
is then used to build a fast pragmatic synthesizer Lσ , by using
the examples only to filter out consistent programs, then using the
global ranking to sort them. This amortized synthesizer performs
similar selections of programs as an exact RSA synthesizer, while
being orders of magnetudes faster.

the system, via recursive Bayesian reasoning. Given several
competing responses, for instance regex1 = \d{3}-\d{4}
and regex2 = Σ∗, RSA would reason that it is more likely
that an informative user would use the example 123-7890
to describe regex1 over regex2, allowing it to prefer the
intended regex. Recent works (Pu et al., 2020; Vaithilingam
et al., 2023) have leveraged the RSA algorithm to build
pragmatic program synthesizers – interactive systems that
take in user given examples (e.g. strings) and return pro-
grams (e.g. regexes) that are both logically consistent and
take into account the informativity of the chosen examples.
Their algorithm, which we refer to as RSA, is applicable
to any program synthesis domain where programs can be
efficiently enumerated (Feser et al., 2015; Solar-Lezama,
2008; Gulwani, 2011), and produces a pragmatic synthe-
sizer which interacts well with humans, while requiring no
labeled human data.

The RSA algorithm marginalizes across all possible exam-
ples (e.g. all strings) and programs (e.g. all regexes) mul-
tiple times. This makes it difficult to scale RSA to large
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domains, where users expect the system to complete its
inference in real-time. Prior works in scaling up RSA com-
putation (Monroe et al., 2017; Andreas & Klein, 2016) have
largely focused on sampling and re-ranking, curbing RSA’s
computation to a small subset of programs and examples. In
this work, we show a simple yet effective way of amortiz-
ing RSA via a single global ranking of all programs. Rather
than using RSA directly at inference time, our method uses
it to generate training data in the form example-dependent
rankings of subsets of programs. We then distill a global
ranking from the training data, amortizing the computation
of RSA (Figure 1). At inference time, a fast, non-pragmatic
synthesizer is used to propose multiple logically consistent
programs, and the global ranking is used to quickly rank
them,1 resulting in a pragmatic yet efficient synthesizer.

This work makes the following contributions. (1) We de-
scribe a general method of amortizing the RSA algorithm
(considered in Cohn-Gordon et al. (2018b); Pu et al. (2020);
Vaithilingam et al. (2023)) applicable to any pragmatic pro-
gram synthesis domains. (2) Using global ranking, we scale
the model proposed by Vaithilingam et al. (2023) to a larger
domain while still allowing for real-time interaction. We
conduct a small user study validating that end-users are more
accurate communicating with a ranking based program syn-
thesizer compared to a non-pragmatic one (+27%, +41%
relative). (3) We conduct simulated user studies by replay-
ing the human interactive synthesis data collected from Pu
et al. (2020) and Vaithilingam et al. (2023). We confirm that
our ranking-based synthesizer retains the communicative
accuracy of RSA (55%, 92% respectively), while running or-
ders of magnitudes(over 100 times) faster. (4) We prove that
in the special case of synthesis from just a single example,
RSA single, a setting studied in the original RSA literature
(Goodman & Frank, 2016; Vogel et al., 2013; Monroe &
Potts, 2015; Smith et al., 2013), the approximation using a
global ranking is exact.

2. Background on Pragmatic Synthesis
In this section, we provide background on a reference game
framework of program synthesis, which affords building
a pragmatic synthesizer that can infer a user’s intended
program from few examples (Pu et al., 2020). We illustrate
this framework using a toy example from a small version of
the regular expression domain of this work.

2.1. Synthesis as a Reference Game

Consider the problem where a user gives example strings to
a synthesis system, and asks it to find a matching regular ex-
pression. This process can be modeled as a reference game

1In our example, the regex Σ∗ would be ranked lower than
other consistent programs.

Figure 2. A boolean lexicon for a small reference game of regular
expressions. The rows are the utterances (strings) and the columns
are hypotheses (regexes), and each entry denotes if a string is
consistent with a regex. The L0 and L1 matrices show conditional
probabilities that would be inferred by a synthesizer performing
literal and pragmatic inference respectively.

(Lewis, 1979), where a speaker (the user) chooses a few
utterances (strings) to give to the listener (the synthesizer),
with the intention that the listener can infer the correct hy-
pothesis (regular expression). This reference game is charac-
terized by the lexicon M , a boolean matrix of 1s and 0s (Fig-
ure 2). In M , each row corresponds to an utterance/example
and each column corresponds to a hypothesis/program, and
1s indicating consistency of its corresponding utterance and
a hypothesis: whether the program’s output (e.g. deciding
whether a regular expression matches a string) is consistent
with the example (e.g. the string). As we can see, a given
utterance (such as 001) may be consistent with multiple
hypotheses (0+{1}, 0{2}1+, and 0+1*).

2.2. A Literal Program Synthesizer

How might we build a system that takes an utterance (say
01) and produces the intended hypothesis 0+1{1}? As 01
is consistent with multiple hypotheses (0+1{1} and 0+1*), a
naive strategy is to treat all consistent hypotheses as equally
likely, scaled by a prior distribution of hypotheses P (w):

L0(w|u) ∝ P (w)M [u,w] (1)

= P (w)
M [u,w]∑
w′ M [u,w′]

(2)

A synthesizer built this way is a literal listener L0 (Bergen
et al., 2016). Assuming the prior P (w) is uniform over
programs, we can construct it by normalizing the rows of
the matrix M , resulting in a probability distribution over
hypotheses W given utterances u (Figure 2). As we can
see, given the utterance 01, this listener predicts an equal
probability of 0+1{1} and 0+1* being the intended program.

2.3. A Pragmatic Synthesizer from a Single Example

A key insight to improving on the literal synthesizer is to
consider that a user is cooperatively choosing an utterance to
be informative about the intended program to the synthesizer.
The Rational Speech Acts (RSA) framework models this
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informative choice of utterances using recursive Bayesian
reasoning (Frank & Goodman, 2012). By reasoning about
why a speaker (user) might have chosen a particular ut-
terance (examples), rather than possible alternatives, the
listener (synthesizer) can disambiguate the hypothesis (pro-
gram) to which the speaker was referring to. Formally, the
RSA framework produces a chain of alternating listeners
and speakers beginning with the L0 model above.

S1(u|w) ∝ L0(w|u) = L0(w|u)∑
u′ L0(w|u′)

L1(w|u) ∝ S1(u|w) = S1(u|w)∑
w′ S1(u|w′)

(3)

Applying this framework amounts to normalizing the
columns of the L0 matrix to obtain a pragmatic speaker
distribution S1, then normalizing the rows of S1 to obtain
a pragmatic listener (synthesizer), L1 (Figure 2). As we
can see, given the utterance 01, this listener prefers 0+1{1}
over 0+1*, reflecting the reasoning that if the user wanted
to refer to 0+1*, they might have provided an example that
highlights the possibility of no 1s in the string. In this paper,
we shall call this algorithm RSA single. As this algorithm
only depends on M , it is applicable to all program synthesis
domains where programs and examples can be effectively
enumerated.

2.4. A Pragmatic Synthesizer from Multiple Examples

Figure 3. In the case of incremental RSA, the meaning matrix be-
comes smaller as more utterances are given, as each utterance rules
out hypotheses that are inconsistent with it.

RSA single is capable of producing a program synthesis
algorithm from a single example. However, the users will
typically have to clarify their intent interactively, by giving
a sequence of multiple utterances u = u1, u2, . . . , un. The
synthesizer must infer the intended program after every turn.
With each new utterance, the meaning matrix M becomes
smaller, as hypotheses inconsistent with the new utterance
are ruled out (Figure 3). This is an instance of incremental
RSA (Cohn-Gordon et al., 2018b), which models the infor-

mative speaker S1 generating utterances auto-regressively:

S1(u|w) = S1(u1, u2, . . . , un|w)

=

n∏
i=1

S1(ui|w, u1, . . . , ui−1)

=

n∏
i=1

L0(w|u1, . . . , ui)∑
w′ L0(w′|u1, . . . , ui)

In essense, the S1 is the product of multiple single-utterance
S1 computed on separate meaning matrixes (like those in
Figure 3). The synthesizer L1(w|u) is defined recursively
on top of S1, L1(w|u) ∝ S1(u|w).
Pu et al. (2020) builds on top of the incremental RSA algo-
rithm with additional memoization strategies. In this work,
we shall call their algorithm RSA. Similar to RSA single,
this algorithm is applicable to enumerative program syn-
thesis domains such as Feser et al. (2015); Solar-Lezama
(2008); Gulwani (2011).

2.5. Exact RSA is Slow

In practice, it is infeasible to explicitly store the matrices
M,L0, S1, L1. Instead, computing L1 using RSA requires
O(|W |) calls to S1. Each call to compute S1 requires
O(|U |) calls to L0, which in turn requires O(|W |) oper-
ations to determine a set of consistent programs. In practice,
the pragmatic synthesizer L1 runs in O(|W |2|U |) time. In
the incremental RSA setting with multiple (say ℓ) utter-
ances, the runtime of L1 is O(|W |2|U |ℓ). As the number
of hypotheses and utterances becomes large in a program
synthesis domain, it becomes infeasible to compute L1 at a
speed required for end-user interactions.

3. Amortizing RSA with Rankings
We explain how the pragmatic listener L1, derived from
the RSA algorithm can be amortized using a single global
ranking of programs.

Finding Consistent Programs Finding correct programs
given a sequence of examples u = u1, u2, . . . is the primary
challenge of program synthesis, with solutions ranging from
enumeration (Feser et al., 2015), constraint solving (Solar-
Lezama et al., 2006), neuro-symbolic (Polosukhin & Ski-
danov, 2018; Balog et al., 2016), and using large language
models for code (Li et al., 2022). In this work, we assume
the a set of k consistent programs w1, w2, . . . , wk can be
found using any of these techniques.

Ranking Consistent Programs with a Prior A global
ranking σ is an un-normalized prior (a score) over all pro-
grams. The global ranking is example-agnostic: given two
programs wa and wb, either σ[wa] ≻ σ[wb] or σ[wa] ≺
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σ[wb], irrespective of the given examples u.

Lσ(w|u) ∝ σ[w]M [u, w]

As we can see, ranking the consistent programs under σ[w]
can be very efficient. In practice, efficient synthesis al-
gorithms are built using either domain-specific heuristics
for rankings (Singh & Gulwani, 2015; Polozov & Gulwani,
2015), or a learned prior from a code corpus (Li et al., 2022).

Ranking with L1 Rather than relying on heuristics or
learning from a large corpus, RSA automatically derives a
ranked synthesizer L1(w|u):

L1(w|u) ∝ S1(u|w)M [u, w]

To rank the consistent programs, L1 uses S1(u|w), an
example-dependent ranking function, that ranks the satis-
fying programs differently depending on the sequences of
examples u given. In this setting with multiple examples,
there could be cycles where a pair2 of satisfying programs
wa and wb, which is ranked S1(u1|wa) > S1(u1|wb) un-
der some examples u1 and ranked S1(u2|wa) < S1(u2|wb)
given different examples u2. In this work, we assume that
S1 can be tractably computed at non-interactive speed.

Amortizing L1 with a Ranking In this work, we explore
whether the example-dependent ranking of S1(u|w) can be
approximated — to have similar top-k responses — with
an example-agnostic ranking function σ[w]. Note that due
to the existence of cycles, it may be impossible to find a
global ranking that is consistent with all example-dependent
rankings. Our key findings are as follows:

Key Finding 1: One can distill a pragmatic rank-
ing σL1

from L1. While this is an approximation,
it nonetheless retains much of the L1’s commu-
nicative accuracy when interacting with end-users,
and running orders of magnetudes faster.

Key Finding 2: In the special case where only a
single example is used, RSA single, the approxi-
mation can be made exact: There exists a global
ranking σ∗ that perfectly matches the top-k re-
sponses of L1 over any example u.

4. Distilling L1 of RSA to a Global Ranking
Distilling the example-dependent L1 rankings into a global
ranking has two stages. First, we generate a dataset of
D = {(w,u, σ̃u), . . . }, where w is a program, u is a spec-
ification (sequence of examples) used to describe w, and
σ̃u = [w1, w2, . . . , wk] are the k example-dependent rank-
ings of consistent programs given u.3 Then, we distill a

2or a triple or larger cycles
3it is a mouthful, we are terribly sorry

global ranking that aggregates the example-dependent rank-
ings in D.

4.1. Dataset Generation via Simulated Communications

The pragmatic listener L1 can generate a partial ranking
of consistent programs for any sequences of examples u.
As arbitrary examples u are unlikely to reflect what a user
might give at inference time, we use the informative speaker
S1 as a “stand-in”. Specifically, we generate D in a form
of simulated interactions between the pragmatic speaker S1

and the pragmatic listener L1. We enumerate over the set of
programs w ∈ W , then use the pragmatic speaker to sam-
ple the most likely specifications (sequence of examples)
u ∼top−1 S1(·|w) of length 1 to length N . For each speci-
fication, we query L1 for a partial ranking σ̃u of consistent
programs, and add it to the dataset D (Algorithm 1).

Algorithm 1 Algorithm to obtain a dataset of simulated
interactions between a speaker S and listener L. For each
turn of each interaction, a ranking of programs is obtained.
Require: Set of programs W
Require: Length of specification to generate N
Require: Speaker model S(u|w,u)
Require: Listener model L(w|u)
Require: Function MAKERANKING that ranks samples

from a distribution based on the probability
D ← {}
for w in W do
u← [ ]
for i = 1 to N do
unext ← argmaxu S(u|w,u)
u← u+ [unext]
σ̃u ← MAKERANKING(L(·|u))
D ← D ∪ {(w,u, σ̃u)}

end for
end for

4.2. Distillation via Annealing

The most straight-forward representation of a ranking is as
an explicit list of programs σglobal = [w1, w2, . . . , wn]. We
describe a process of finding an approximate global ranking
using annealing. We repeatedly sample example-dependent
rankings σ̃u from D, and update the global ranking σglobal
to match σ̃u for a single pair of programs sampled from σ̃u.
Since cycles exist in example-dependent rankings, we termi-
nate the annealing procedure once the number of swaps in a
sliding window has stabilized (Algorithm 2). The resulting
σglobal is then used at inference time.
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Algorithm 2 Algorithm to infer a global order σ based on a
dataset of simulated interactions, that terminates based on a
validation criterion determined by the validation frequency
V , patience t and convergence threshold T

Require: Dataset of simulated interactions D
σ ← randomly initialized ranking
converged← FALSE
Nswaps ← [ ]
nswaps ← 0
i← 0
while not converged do
(p, σ̃,u) ∼ D
Sample programs p1, p2 in σ̃
if σ̃ [p1] ≻ σ̃ [p2] and σ [p1] ≺ σ [p2] then

Swap σ [p1] , σ [p2]
nswaps ← nswaps + 1

end if
i← i+ 1
if i ≡ 0 mod V then
Nswaps ← Nswaps + [nswaps], nswaps ← 0
if maxNswaps [−t :]−minNswaps [−t :] < T then

converged← TRUE
end if

end if
end while
return σ

S→ RP | S RP

RP→ ‘[01]’ OP | ‘0’ OP | ‘1’ OP

OP→ ‘*’ | ‘+’ | ‘{1}’ | ‘{2}’

Figure 4. Grammar for the regex domain

4.3. Distillation via Learning a Score Function

An alternative method to distill D is to train a score function
sθ : w → R that determines a score for a program w that
is independent of the specifications u. We can optimize
θ to minimize disagreement with the generated dataset of
example-dependent rankings, by minimizing the loss

L(θ) =
E

σ̃u∼D
w1,w2∼σ̃u: σ̃u[w1]≻σ̃u[w2]

− log(sig(sθ(w1)− sθ(w2)))

where sig is the sigmoid function. This follows estimating a
score function from a set of pairwise preferences (Bradley
& Terry, 1952; Christiano et al., 2017). We parametrize sθ
as a small neural network that scores programs. To reduce
variance, we fit an ensemble of score functions and use their
average to rank the consistent programs at inference time
(Christiano et al., 2017). Details of the neural models are in
Appendix E.

Figure 5. Success rate of the literal L0 and ranking-based Lanneal

synthesizers inferring the correct regex as a function of numbers of
examples given (turn). Lanneal achieves a success rate of 93.75%,
L0 achieves only 65.63%. The ranking-based synthesizer also
achieves higher success with fewer utterances. Bands indicate 95%
CI over 24 regexes for each condition.

5. Experiments
To validate the accuracy and run-time of an approximate
ranking listener, we perform two sets of experiments. First,
we conduct a small (n = 8) human experiment by building
a ranking-based synthesizer in a regular expression synthe-
sis domain where it is infeasible to run the RSA algorithm L1

at interaction time. Second, we conduct two replay stud-
ies by simulating virtual users giving examples one after
another using human interaction data collected from prior
works. We seek to answer the following questions: (Q1)
Can ranking based synthesizers accurately infer programs
from humans (both in live interaction and in simulated re-
plays)? (Q2) Are ranking-based synthesizers fast to run
when compared to L0 and L1?

Metrics In our experiments, the users (real or simulated)
will be given a target program, and attempt to communicate
it to the synthesizers using examples. The synthesizers will
be measured on their communication accuracy — whether
the synthesizers can infer the target program from the ex-
amples given. A synthesizer is better than another if it can
recover the target program using fewer examples.

5.1. Interactive User Study

We conduct a user study where people interacted with
both the ranking-based synthesizer distilled with anneal-
ing Lanneal and the literal synthesizer L0 on the domain of
regular expression synthesis.

The Regex Domain The regex domain is a scaled up
version of Vaithilingam et al. (2023), which has a total of
350 regular expressions from their grammar (Figure 4. For
this study, we expanded the space of programs to 3500
regular expressions from the same grammar – a setting that
would make live interaction infeasible running L1 with RSA.
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Figure 6. Animal domain replay results. Fraction of successfully
communicated target programs (success) vs number of examples
given (turn). Bands are 95% confidence interval across interactions
(254 for H0 and 291 for H1). Two kinds of simulated speakers:
H0 — replaying the interactions where participants communicated
with a literal L0 synthesizer from the original study; H1 — with
a pragmatic L1 synthesizer. On H0 replay, L0 performs worst
(63.78%), and Lanneal (71.65%), L1 (74.80%), Lneural (78.34%)
performing similarly to each other. On H1 replay, L0 (15.46%)
performs worst, with Lanneal (49.82%) in the middle, while L1

(91.75%) and Lneural (86.94%) perform best.

Procedure We recruited 8 participants from our institu-
tion. Each participant was given a short tutorial on how to
use the interface, then attempted to communicate a total of
4 regexes using examples. For each regex, the participant
communicated with both the literal synthesizer L0 and the
ranking synthesizer Lσ, anonymized as simply a “green
robot” and a “blue robot” in randomized order. The partici-
pants gave example strings one at a time until the regex is
recovered by the synthesizer, or they may give up early. The
communication is interactive: When the participant added a
new example, they were immediately shown the current top-
1 guess of the synthesizer, which allowed them to choose
the next example accordingly.

Results: end-users interact well with an amortized rank-
ing synthesizer (Q1) Figure 5 shows the communication
success rate over numbers of given exmaples (turns) for both
the literal and ranking-based synthesizers. We can see that
(1) Lanneal has a higher overall success rate with humans,
and (2) It also achieves a higher success rate with fewer
number of examples (Q1).

5.2. Simulated User Studies Using Replays

We evaluate the ranking-based synthesizers by replaying the
interaction data collected from Vaithilingam et al. (2023)
and Pu et al. (2020) – small pragmatic program synthesis
domains where it is feasible to run L1 with RSA.

Replay Data In the human studies by Vaithilingam et al.
(2023) and Pu et al. (2020), a human H is given a target pro-
gram w, and attempt to get the synthesizer (L0 or L1) to in-
fer the target using a sequence of examples u = u1, u2, . . . .
Thus, two sets of data are generated, one where the hu-
man is interacting with the literal synthesizer L0, which

Figure 7. Regex domain replay results. Bands are 95% confidence
interval across interactions (60 interactions for both H0 and H1).
On H0 replay, L0 (28.33%) performs worst, Lneural (35.00%)
slightly better, and Lanneal (81.67%), L1 (88.33%) perform best.
On H1 replay we observe the same trend, with L0 (13.33%), Lneural

(28.33%), Lanneal (68.33%), L1 (81.67%) respectively.
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Figure 8. The wall clock time for each synthesizer given different
numbers of examples (turn). We see that L1 is consistently much
slower than either Lanneal or L0 in both domains. Note that time
is on a logarithmic scale for the animals domain. The difference
slopes for L1 (trending up for regex and trending down for animals)
is due to an optimization of the L1 synthesizer for the animals
domain, which filters out invalid programs as a pre-proccessing
step using L0, making it having to rank fewer programs over turns

we term H0, and one where the human is interacting with
the pragmatic synthesizer L1, which we term H1. Specif-
ically, from each domain we extract the following dataset
{(w,uj

i )|w ∈Ws, j ∈ P, i ∈ {0, 1}}. Here, Ws are the set
of programs used for the human study (the stimuli), P is
the set of participants, and i indicates if the participant is
communicating with L0 or L1.

Experiment Setup We can simulate an user interaction
by using the replay data. Given a datapoint w,u, we create a
simulated user that iteratively gives the examples u1, u2, . . .
in multiple turns to communicate a given target program w.
At every turn, the synthesizer returns the top-1 responses,
Ltop-1(u1), L

top-1(u1, u2), . . . , and we can check if any of
them matches the target program w. If they do, we mark the
communication as successful and stop early. Otherwise, we
keep adding examples until the u runs out, and we mark the
communication as unsuccessful. Note that our evaluation
cannot account for a user adapting their choice of examples
to L, as the simulated user can only give scripted examples
according to the replay data.
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Domain 1: Animals Pu et al. (2020) used a domain of
grid patterns generated by an underlying domain-specific
language (see Appendix for the grammar of the DSL and
semantics). The space contains 17,976 semantically distinct
programs and 343 possible examples, where a user uses
a sequence of multiple examples to communicate a target
program. They conducted a study with 48 human subjects,
collecting data for 10 programs (10 distinct grid patters).
The data includes interactions between humans and both a
literal synthesizer (H0 − L0) and a pragmatic synthesizer
(H1 − L1). In total, there are 254 interactions from H0 −
L0 and 291 interactions from from H1 − L1, where each
interaction consists of multiple turns until either the target
program is successfully communicated or the user gives up.

Domain 2: Regular expressions Vaithilingam et al.
(2023) studied the usability of pragmatic program synthesiz-
ers in the domain of binary regular expressions. The space
contains 350 distinct regular expressions. A sample of 2000
strings was used to compute the S1 and L1 distributions.
Their study included 30 participants interacting with both
L0 and L1 models. In total, there are 60 interactions from
H0 − L0 and 60 interactions from from H1 − L1, where
each consisting of multiple turns.

Result: rank-based synthesizers are comparable to L1 in
terms of communication accuracy with simulated users
(Q1) The replay study results are shown in Figure 6 (an-
imals domain) and Figure 7 (regex domain). For either
domain, there is a rank-based synthesizer that vastly out-
performs the literal synthesizer L0, and is close to perfor-
mance to the pragmatic synthesizer L1 derived from RSA.

The existence of a rank-based synthesizer (be it Lanneal or
Lneural) that matches the performance of L1 entails that there
exists some ranking of programs that effectively amortizes
L1 for either domain. For the animals domain, Lneural is
better able to discover an effective ranking, while Lanneal
is more effective at discovering the ranking for the regex
domain. This is likely due to the differences of the sizes of
the communicative datasets for the two domains — 17,976
programs for the animals domain vs 350 for the animals do-
main, which makes it more feasible to learn a generalizable
neural scoring function for the animals domain.

Result: rank-based synthesizers are orders of magne-
tudes faster than L1 (Q2) For both domains, the ranking-
based synthesizer is much faster than L1, requiring approx-
imately the same time as L0 (Figure 8). This implies that
most of the computation cost of a ranking-based synthesizer
lies in coming up with consistent programs — the primary
challenge of program synthesis — while the computation
for ranking the top-k programs can be made negligible in
comparison (Q2).

6. RSA single Can Be Distilled Completely
In this section, we prove a strong approximation result for a
special case of RSA, RSA single, where only a single exam-
ple u is used to communicate. In accordance with the termi-
nologies of Goodman & Frank (2016); Vogel et al. (2013);
Monroe & Potts (2015); Smith et al. (2013) and Franke &
Degen (2016), we’ll use the term “hypothesis” instead of
“program”. We prove that a global pragmatic ranking of
hypotheses must exist for any listeners L0, L1, . . . result-
ing from the RSA single algorithm.4 In other words, the
rankings over consistent hypotheses in these listeners are
example-agnostic.

Theorem: For a sequence of listeners in the RSA algo-
rithm L0, L1, . . . over a boolean-valued lexicon M , there
exists a sequence of global pragmatic rankings σL0

, σL1
, . . .

such that:

∀w,w′, u. if Li(w|u) > 0 ∧ Li(w
′|u) > 0.

then Li(w|u) > Li(w
′|u) ⇐⇒ σLi

[w] ≻ σLi
[w′]

(4)

This means the partial rankings produced by any Li over
consistent hypotheses are example-agnostic, where a global
ranking preferring certain hypotheses unconditionally over
others (e.g. a convention) is sufficient to explain the relative
rankings of Li resulting from RSA single.

Proof: Let M be a boolean lexicon of size m rows and
n columns. Let r0 = r10 . . . r

m
0 be the row-normalizing

vector such that rj0 = (
∑

M [j, :])−1, which is to say, each
element rj0 is the normalization term for row j of L0. Let
*↔ denotes row-wise multiplication:

L0 = M *↔ r0

Which is to say, starting from M , L0 can be obtained by
scaling each row j by their respective normalization constant
rj0. Let c1 = c11 . . . c

n
1 be the col-normalizing vector such

that cj1 = (
∑

L0[:, j])
−1, which is to say, each element cj1

is the normalization term for column j of S1. Similarly, let
*↕ denotes column-wise multiplication

S1 = L0 *↕ c1 = M *↔ r0 *↕ c1

Computing Li under RSA amounts to applying row and
column normalization alternatively multiple times:

Li = M *↔ r0 *↕ c1 . . . *↕ ci−1 *↔ ri

Let ∗ be element-wise multiplication, let⊗ be outer-product,
we can rearrange the terms:

Li =M ∗ ((r0 ∗ · · · ∗ ri)⊗ (c1 ∗ · · · ∗ ci−1))

=M ∗ (r0...i ⊗ c1...i−1)
(5)

4one can derive the same result for pragmatic ranking of speak-
ers by taking a transpose of M

7
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Here, r0...i = r0 ∗ · · · ∗ ri is a vector of size m, and
c1...i−1 = c1 ∗ · · · ∗ ci−1 is a vector of size n. As we
can see, following the RSA algorithm, Li can be decom-
posed to to multiplication of 2 parts: the lexicon M , and a
matrix that is formed by the outer product r0...i ⊗ c1...i−1

5.

Claim: The ordered indexes of c1...i−1 is the global prag-
matic ranking σLi

:

σLi
[w] ≻ σLi

[w′] ⇐⇒ c1...i−1[w] > c1...i−1[w
′]

Proof: We show both sides of the ⇐⇒ . Suppose that for
some w,w′, u, both Li(w|u) > 0 and Li(w

′|u) > 0 (i.e.
M [u,w] = M [u,w′] = 1).

(1) Show⇒: Suppose Li(w|u) > Li(w
′|u). We have

Li(w|u) = Li[u,w] = r0...i[u] ∗ c1...i−1[w]

Li(w
′|u) = Li[u,w

′] = r0...i[u] ∗ c1...i−1[w
′]

As r0...i[u] is a constant, we have

Li(w|u) > Li(w
′|u)⇒ c1...i−1[w] > c1...i−1[w

′] □.

(2) Show⇐: Suppose c1...i−1[w] > c1...i−1[w
′].

c1...i−1[w] > c1...i−1[w
′]

M [u,w] ∗ r0...i[u] ∗ c1...i−1[w] >

M [u,w′]∗r0...i[u] ∗ c1...i−1[w
′]

Li[u,w] > Li[u,w
′]

Li(w|u) > Li(w
′|u) □.

Thus, c1...i−1 is the global ranking σLi
as claimed ■.

We check the our proof using simulations on 10000 ran-
domly generated boolean lexicons size ranging from 10×10
to 20× 20, and running a chain of 100 listeners on top. A
total ordering can be found for all of them (Appendix B.1).
We further study the stability of these ranks as they are
formed, finding that the formed rankings tend to be stable
across different RSA iterations (Appendix B.2).

7. Related Works
Scaling RSA without Global Ranking Prior work such
as that by Monroe et al. (2017) and Andreas & Klein (2016)
has largely focused on sample and re-rank as a way of scal-
ing RSA, making the example-dependent ranking function
S1(u|w) more efficient at a cost of accuracy. Recent work
by Key et al. (2022) and Vaduguru et al. (2024) apply the
sample and re-rank approach to program synthesis, resulting
in neural program synthesizers that also rank programs in
an example-dependent way. Our work enables a different

5note that any prior over hypotheses and utterance can be simi-
larly absorbed into these outer products terms

kind of synthesis algorithm altogether — that of a distilled
pragmatic ranking that rank consistent programs agnostic
to examples given. We view these works as complimen-
tary, able to efficiently produce a simulated communication
dataset D which our approach can distill from.

Scaling RSA with Human Data RSA has been applied
to improve the performance of language interfaces in a vari-
ety of other domains, such as image description (Andreas
& Klein, 2016; Cohn-Gordon et al., 2018a;b), instruction
generation and interpretation (Fried et al., 2018a;b), and
grounded interaction (Fried et al., 2021; Lin et al., 2022).
These works all use speaker models trained on labeled data
from people. Our approach requires no human-produced
data, and can be run entirely from the lexicon M of the syn-
thesis problem. On the other hand, we can easily integrate
human data within our approach by training similar speaker
models on the collected interactive data.

Ranking Functions in Synthesis Prior works on resolv-
ing ambiguity in program synthesis have relied on example-
agnostic ranking functions. Works such as Singh & Gulwani
(2015); Polozov & Gulwani (2015) use scoring functions
to penalize certain properties of programs (e.g. discour-
aging the use of constants), effectively inducing a global
ranking over all programs; Ellis & Gulwani (2017) uses a
set of hand-crafted features to learn a naturalistic ranking
from data. Synthesis algorithms that use a large neural code
model to sample a large number of programs (Chen et al.,
2021; Li et al., 2022) implicitly rank the programs based on
their naturalistic distributions in its training data. Our work
is unique in that (1) the learned ranking is rooted in efficient
communication rather than hand-crafted features and (2) our
approach does not require human annotated data.

Other Theoretical Works on Ranking Recent work by
Muggleton FREng (2023) shows that in the case of single-
example, the MAP estimate of the learner can be completely
ranked by sz(H) + ln g(H) an example-agnostic global
ranking. Our work can be viewed as a strict generalization
in the following sense: They consider the chain of recursive
bayesian reasoners of the form M → S0 → L1, whereas
our result applies to any alternating chains speakers and
listeners of arbitrary depth. Their notion of “specificity” and
“program length” also has direct analogies to the normaliza-
tion terms in Equation (5), except these analogies do not
carry over to deeper recursive depths.

8. Conclusion
We present a way of amortizing the expensive RSA algorithm
by an example-agnostic global ranking. We have shown this
amortization interacts well with humans when applied to
two program synthesis domains. We have further proved

8
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this amortization is exact in the case of communication with
a single example. In addition of being a practical method
for scaling up RSA, these findings may provide an alternative
account for pragmatic behaviour in humans – one rooted
in relative rankings of hypotheses (e.g. a pragmatic prior),
perhaps distilled from the expensive RSA computation over
time.

8.1. Limitation and Future Directions

The limitation of our approach is two-fold: First, whether
an optimal global ranking exists for the multi-example PBE
setting; Second, whether our distillation algorithm can find
this optimal ranking.

Existence of an effective global ranking The effective-
ness of a global ranking is upper-bounded by the amount of
cycles that exists in the communicative dataset of example-
dependent rankings of subsets of programs. A cycle exists if
under one ranking we have wa ≻ wb, and under a different
one we have wb ≻ wa, which no single ranking can approx-
imate exactly. Forecasting the number of cycles from the
meaning matrix M is an exciting future work.

Effectiveness of distilling an effective global ranking
Our experiments have shown that given a communicative
dataset, both the annealing (in the case of a small dataset)
and neural scoring (in the case of a larger dataset) have their
merits in deriving a ranking. Thus, running the slow RSA
in the dataset generation itself is the likely bottleneck. We
believe recent works by Key et al. (2022) and Vaduguru
et al. (2024) using sample-and-rerank may be used in gen-
erating the communicative dataset instead of the exact RSA
algorithm.

Impact Statement
This work builds a system where end-users may use ex-
amples to generate programs. While the proposed method
is more intuitive to use by humans, it is possible that for
some interactions, it may generate unexpected programs.
Therefore, it could be of potential danger when humans do
not manually verify the generated program, as it may have
unintended outcomes when executed.
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A. Code and Assets
Please find all simulation, replay results at this repository https://github.com/evanthebouncy/pragmatic synthesis
ranking/tree/main

B. Simulated Studies
B.1. Ranking Always Exists

We empirically validate that in the case of single utterances, a ranking can always be found. See simulation/single utter/
exp exists orders.py

B.2. Stability of Ranks Across RSA Iterations

We’ve shown that for every L0, L1, . . . , there exists a corresponding global, utterance agnostic ranking σL0 , σL1 , . . . . We
now explore the relationship between these rankings as a function of the RSA iteration i. Specifically, how stable is the
relative ranks of w and w′ once it is formed?

Stable Order A pair-wise order between w and w′ is stable from iteration i onward if:

stable(i, w ≻ w′) ⇐⇒
∧

j∈i,i+1,...,∞
σLj

[w] ≻ σLj
[w′]

Which means the relative ranking of σLi [w] ≻ σLi [w
′] holds true for every subsequent iterations until σL∞ . Let the

minimal-index of a stable pair-wise ordering be the first iteration i such that w ≻ w′ becomes stable:

imin(w ≻ w′) = argminjstable(j, w ≻ w) (6)

As σL1 is the first time any ranking can exist (L0 is a uniform distribution over valid hypotheses, i.e. no rankings), we
explore the following: For a lexicon M , what fraction of stable orderings have a minimal-index of 1?

frac-stableL1
(M) =

|{w ≻ w′ | imin(w ≻ w′) = 1}|
|{w ≻ w′ | ∃i. stable(i, w ≻ w′)}| (7)

Simulation We measure stableL1
(M) on a population of sampled random boolean lexicons. We sample square lexicons

of size lexicon size ∈ 2× 2 . . . 100× 100. Each lexicon is sampled with Ptrue ∈ {0.1, 0.2, 0.5}, where larger value of
Ptrue makes the lexicon have more 1s. We make sure each sampled lexicon is valid in the following sense: (1) all rows
are unique – every utterance must communicate a unique subset of valid hypotheses (2) all columns are unique – every
hypothesis has a unique set of utterances that can refer to it. For every combination of (Ptrue, lexicon size) we randomly
sample 100 lexicons. As it is infeasible to run RSA until iteration∞, we run RSA for 100 iterations for each lexicon (i.e.
L100 ≈ L∞). We measure stableL1

for each sampled lexicon. The result is shown in 9. As we can see, of all the stable
pair-wise orderings, a large fraction (> 0.8) are formed during σL1

, this is increasingly true as we (1) increase Ptrue,
making the boolean lexicons having more number of 1s – i.e. the lexicon is more ambiguous for a literal speaker and listener
and (2) increase lexicon size. We suspect this is due to faster “mixing time” of the RSA algorithm under these conditions,
but this is just a guess.

Takeaway This study may provide an alternative explanation as to why humans do not perform RSA for more than few
iterations (Franke & Degen, 2016). In addition to it being computationally expensive, it is also not necessary as the majority
of top-k orderings becomes available at σL1 , and remains stable for all subsequent iterations of the RSA algorithm. In
another word, Ltop−k

1
∼= Ltop−k

i>1 . Code in simulation/single utter

C. Animals domain
In the Animals domain, a program is a pattern on a grid formed from a set of objects. These objects may be a colourless
pebble, or a chicken or pig that may be red, green or blue. An utterance reveals one square on the grid, and the speaker has
to communicate the pattern by choosing which square to reveal. The pattern is formed according to rules specified in the
domain-specific language in Figure 10. Examples of programs shown in Figure 11. The description of the domain-specific
language and the examples are due to Vaduguru et al. (2022).
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Figure 9. Fraction of stable orders that were formed in σL1 as a function of increasing lexicon size. Points are raw samples (n=100 per
lexicon size and Ptrue), bars are 95% bootstrapped CI (nboot = 1000). Overall, increasing Ptrue and lexicon size increases the fraction of
stable orders that were formed in σL1

D. Human study interface
The interface for the human study on regular expression programs is shown in Figure 12.

E. Neural model
The neural scoring model maps from the program to a real number. The program is input as vector encoding the productions
of the grammar that produce the program. That is, we construct a vector of the index of the production that is used to expand
each non-terminal in the DSL grammar. We then convert this vector to a one-hot matrix. There are 12 rules, with any single
rule having at most 7 possible expansions resulting in an input vector of dimension 12 × 7 = 84. The input is then passed
through 3 hidden layers of size 128, each of which has as ReLU activation, and then mapped to a scalar output with a linear
layer.

The model is trained on a dataset of rankings of the form D = (w,u, σ̃u). For each program w, we sample a pair of
programs from the inferred ranking σ̃u and use this pair to compute the loss function for this sample. We train the model for
a maximum of 20 epochs, where one epoch of training corresponds to presenting the model with every element in D once.
We train with a batch size of 32 using the Adam optimizer. We use a validation set generated similarly to D (on a disjoint
set of programs) to perform validation, choosing the model that results in the highest synthesis accuracy on this validation
dataset with synthetically produced examples (from the S1 speaker model).

We train an ensemble of 10 models. For each model, we normalize the scores to be of zero mean and unit variance based on
the empirical mean and standard deviation computed on the validation set. We then average the scores for the 10 models at
inference time.
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Program → ⟨Shape, Colour⟩
Shape → Box(Left, Right, Top, Bottom, Thickness, Outside, Inside)

Left → 0 | 1 | 2 | 3 | ... | 6

Right → 0 | 1 | 2 | 3 | ... | 6

Top → 0 | 1 | 2 | 3 | ... | 6

Bottom → 0 | 1 | 2 | 3 | ... | 6

Thickness → 1 | 2 | 3

O → chicken | pig

I → chicken | pig | pebble

Colour → [red , green , blue][A2(A1)]

A1 → x | y | x + y

A2 → λz:0|λz:1|λz:2|λz:z%2|λz:z%2+1|λz:2*(z%2)

Figure 10. Grammar of the DSL

(a) [·, ·, 1 , 5, 1, 6, 2, chicken , pebble, ·, x , λz:z%2] (b) [·, ·, 0 , 5, 1, 6, 2, pig , pebble, ·, y , λz:z%2]

Figure 11. Two patterns in our layout domain and their corresponding programs, represented as a sequence of production rules: [Program,
Shape, Left, Right, Top, Bottom, Thickness, O, I, Colour, A1, A2]. The symbol · indicates rules which only have 1 choice of expansion
(Program, Shape, and Colour). The rules where these two programs differ are marked with a box .
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Figure 12. User interface for the regex domain
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