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Abstract

Ensemble of deep neural networks has achieved
great success in hedging against single-model
failure under distribution shift. However, exist-
ing techniques suffer from producing redundant
models, limiting predictive diversity and yielding
compromised generalization performance. Ex-
isting ensemble pruning methods can only guar-
antee predictive diversity for in-distribution data,
which may not transfer well to out-of-distribution
(OoD) data. To address this gap, we propose
a principled optimization framework for ensem-
ble pruning under distribution shifts. Since the
annotations of test data are not available, we
explore relationships between prediction distri-
butions of the models, encapsulated in a topol-
ogy graph. By incorporating this topology into
a combinatorial optimization framework, com-
plementary models with high predictive diversity
are selected with theoretical guarantees. Our ap-
proach is model-agnostic and can be applied on
top of a broad spectrum of off-the-shelf ensem-
bling methods for improved generalization per-
formance. Experiments on common benchmarks
demonstrate the superiority of our approach in
both multi- and single-source OoD generaliza-
tion. The source codes are publicly available at:
https://github.com/joffery/TEP.

1. Introduction
Despite the documented successes, the complex prediction
rules learned by modern machine learning (ML) models,
such as deep neural networks, are vulnerable to out-of-
distribution (OoD) data. This means that an ML model,
while highly accurate on average, may fail dramatically
when faced with rare or unseen data distributions (Sagawa
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et al., 2019; Qiao et al., 2020). Although numerous algo-
rithms have been proposed to improve OoD generalization,
recent studies (Wiles et al., 2021; Gulrajani & Lopez-Paz,
2020; Koh et al., 2021) indicate that no single model consis-
tently outperforms others across all theoretical or empirical
contexts, and many perform worse than the standard base-
line of empirical risk minimization (Vapnik, 1999).

Ensemble learning (Dong et al., 2020) emerges as a promis-
ing approach by leveraging the diversity of multiple models
to mitigate the risk of single-model failure under distribution
shifts. This diversity originates from variations in initializa-
tion (Lakshminarayanan et al., 2017), architectures (Li et al.,
2022), and training processes (Wortsman et al., 2022; Ramé
et al., 2023; Lin et al., 2024). However, due to the lack
of access to data from target distributions during training,
current methods tend to generate an excessive number of
models in the hope of ensuring diversity at test time. These
methods often lead to the creation of redundant models, and
merely combining all models can reduce their complemen-
tary strengths against the target distribution, resulting in
suboptimal generalization performance (see Fig. 1).

This underscores the importance of ensemble prun-
ing (Tsoumakas et al., 2009), a process that involves se-
lectively choosing an optimal subset from a pool of pre-
trained models. Ensemble pruning aims to retain models
that are most complementary to each other to enhance over-
all performance. Both theoretical analyses and empirical
studies (Martinez-Munoz et al., 2008; Caruana et al., 2004)
support the effectiveness of ensemble pruning in boosting
the generalization ability of ensembles, a concept some-
times referred to as the “many-could-be-better-than-all” the-
orem (Zhou et al., 2002). Existing pruning methods typi-
cally utilize supervised diversity metrics based on training
or validation data to inform the selection process. However,
this approach encounters difficulties with data exhibiting
distribution shifts, as the diversity metrics applicable to in-
distribution data may not be relevant for out-of-distribution
data. Consequently, the problem of efficiently pruning re-
dundant models to improve performance when faced with
distribution shifts remains an unexplored problem.

In this paper, we introduce a novel post-hoc optimiza-
tion approach designed to prune redundant models at test
time, thereby enhancing generalization to out-of-distribution
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Figure 1. We evaluate the Out-of-Distribution (OoD) accuracy of a uniform ensemble and its variations using the DomainBed bench-
mark (Gulrajani & Lopez-Paz, 2020). To construct our ensemble, we employ the state-of-the-art DiWA (Rame et al., 2022) method,
training ten models with varied hyperparameters. Our empirical analysis reveals selectively removing a particular model from the ensemble
pool can enhance OoD performance. This finding suggests that model redundancy is a widespread issue in ensemble learning for OoD
generalization, indicating the feasibility of creating more compact ensembles nonetheless exhibit superior generalization capabilities.

(OoD) data. The primary challenge is the selection of a
complementary subset of models without the accessibil-
ity of data annotations. To overcome this challenge, we
propose to learn an ensemble topology graph that captures
the relationships between model predictions. This graph
is integrated into a combinatorial optimization framework,
enabling the adaptive selection of a diverse ensemble of
models tailored to the test distribution. A distinctive feature
of our method is its reliance solely on test data predictions
for model selection, without necessitating any updates to
model parameters. This approach sets it apart from test-time
adaptation (Sun et al., 2020) strategies that typically involve
re-training models. Our method is designed to be model-
agnostic, making it compatible with a wide array of existing
ensembling techniques to boost generalization performance.
Through rigorous testing on well-established benchmarks,
our method has demonstrated its superiority in improving
generalization across both multi-source and single-source
OoD scenarios. Our contributions are threefold:

• We pioneer the exploration of ensemble pruning in the con-
text of distribution shifts, presenting a topology-informed
post-hoc optimization framework that selectively curates
a highly diverse ensemble for the test distribution.

• Our approach is model-agnostic and can be applied on top
of a broad spectrum of off-the-shelf ensembling methods
for improved generalization performance.

• Experiments on common benchmarks demonstrate the
effectiveness of our method in enhancing OoD general-
ization, setting new standards in both multi-source and
single-source contexts.

2. Preliminaries
The goal of ensemble pruning is to search for a good sub-
set of members that performs as well as, or better than,
the original ensemble. Error analysis of continuous prob-
lems (Breiman, 2001) shows that the ensemble error can
be represented by a linear combination of the individual
accuracy terms and pairwise diversity terms. Motivated by

it, (Zhang et al., 2006) formulated ensemble pruning as a
quadratic integer programming problem and utilized this
linear combination as the optimization objective.

To achieve it, firstly a matrix P is used to record the error
of all the member classifiers on the validation set:

Pij =

{
0, if classifier j correctly predicts i
1, otherwise

(1)

Thus, G = P⊤P is a matrix with the interesting properties
that the diagonal entries Gii represent the misclassification
errors made by each classifier i on the validation data, while
the off-diagonal entries Gij correspond to the number of
common errors made by classifier i and j. Normalization is
then applied on G to make its elements on the same scale:

G̃ii =
Gii

M
, G̃ij,i ̸=j =

1

2

(
Gij

Gii
+

Gij

Gjj

)
, (2)

where M is the number of data points. Intuitively, smaller
G̃ii corresponds to a more accurate member classifier, while
smaller G̃ij implies a more different classifier pair. There-
fore, it is straightforward that a small value of

∑
ij G̃ij

implies a good ensemble. Specifically, given N pre-trained
models, selecting a sub-ensemble of size K (K ≤ N ) with
both accuracy and diversity can now be formulated as:

min
z

zT G̃z

s.t.
∑
i

zi = K, zi ∈ {0, 1}. (3)

The binary variable zi serves as a 0/1 weight or an indica-
tor: when zi = 1, the i th classifier will be selected. The
parameter K controls the size of the pruned sub-ensemble
and needs to be specified beforehand.

Compared to existing heuristics that use simple greedy
search as the optimization method, solving Eq. 3 can rigor-
ously reduce the generalization error with theoretical guar-
antee when there are no distribution shifts. However, this
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Figure 2. Overview of different strategies for ensemble pruning. Different from existing works that are tailored for in-distribution data,
our proposed topology-informed ensemble pruning is capable of promoting predictive diversity and lowering generalization errors on
shifted distributions with theoretical guarantees.

method as well as other alternative ensemble pruning meth-
ods suffer from critical limitations under distribution shifts:
they typically utilize supervised diversity metrics based on
training/validation data to inform the selection process; the
diversity on in-distribution data may not be transferred to
out-of-distribution data. Consequently, the problem of effi-
ciently pruning redundant models to improve performance
under distribution shifts remains an unexplored problem.

3. Topology-informed Ensemble Pruning
It is non-trivial to select a subset of complementary models
for out-of-distribution (OoD) data as the annotations are
not available. To bridge this gap, we propose a topology-
informed optimization method for ensemble pruning under
distribution shifts. Our key idea is to explore an ensemble
topology that captures the relationships between model pre-
dictions. By incorporating this topological information into
the optimization in Eq. 3, we can theoretically guarantee
a selection of models with improved diversity on shifted
test distributions, thereby improving OoD robustness. Our
method consists of two steps: Topology Learning (Sec. 3.1)
and Learning on Topology (Sec. 3.2).

3.1. Topology Learning

We represent the ensemble topology as a weighted graph
G = (V,E,W ) that captures predictive relationships be-
tween models. The nodes V symbolize individual mod-
els, the edges E depict connectivities between models,
and the adjacency matrix W contains edge weights. The
edge weight between models i and j is defined as: Wij =
exp(−D2

ij/2) where Dij represents the distance between
models i and j. We employ the discrepancy between Fisher
Information Matrices (FIM) (Fisher, 1922) as the distance
metric due to its sensitivity in capturing parameter-output
relationships. This allows us to assess model similarities
in their prediction mechanisms, laying the foundation for
further analysis of model redundancy.

For a network with parameters θ, the Fisher matrix Fθ is a

positive semi-definite matrix that expresses how changes to
θ impact the output distribution:

Fθ = Ex[Ey∼pθ(y|x)[∇θ log pθ(y|x)(∇θ log pθ(y|x))T ]].
(4)

The full Fisher matrix is intractable to compute and store for
large networks. A common approximation uses the diagonal
Fisher (Matena & Raffel, 2022), which has a similar cost to
backpropagating gradients over N examples. Specifically,
we estimate the diagonal Fisher Fθ via:

F̂θ =
1

M

M∑
i=1

E
y∼pθ(y|xi)

(∇θ log pθ (y | xi))
2
. (5)

In Eq. 5, the gradients are computed over M inputs sampled
from the test set.

Alternative distance metrics. In our preliminary exper-
iments, we have explored several common distance met-
rics including ℓ2 distance, Earth Mover’s Distance (EMD),
and Maximum Mean Discrepancy (MMD). We empirically
found these metrics are not as effective as FIM (see Fig. 6).
This indicates the parameter-output sensitivity plays a key
role in topology learning.

3.2. Learning on Topology

After acquiring the ensemble topology G, we integrate G
into the integer programming in Eq. 3 and formulate the
optimization problem as:

min
z

zT G̃z︸ ︷︷ ︸
In-Distribution

+λ zTWz︸ ︷︷ ︸
Out-of-Distribution

s.t.
∑
i

zi = K, zi ∈ {0, 1}.
(6)

Here, λ is a hyperparameter to balance in-distribution accu-
racy and out-of-distribution diversity. Direct solution of the
problem in Eq. 6 is challenging due to its NP-hard nature
and binary constraints. To make it tractable, we propose to
relax the binary constraints by replacing zi ∈ {0, 1} with
0 ≤ zi ≤ 1. This changes the problem from a combina-
torial optimization problem to a continuous one, which is
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easier to solve. To further simplify, we employ semi-definite
relaxation by introducing a matrix Z = zzT :

min
Z

tr(G̃Z) + λ tr(WZ)

s.t. tr(Z) = K, Z ⪰ zzT , Z ⪰ 0.
(7)

Eq. 7 can be solved by standard semi-definite programming
(SDP) solvers. After solving the relaxed continuous opti-
mization problem, we obtain a relaxed solution matrix Z.
To convert Z into a discrete 0-1 solution z that selects the
models, we apply an efficient rounding procedure. Specifi-
cally, we pick the K indices corresponding to the K largest
values in the diagonal of Z and set them to 1 in z, while
setting all other entries to 0. We empirically found the SDP-
relaxation yields almost the same OoD accuracy as brute
force (see Tab. 5), indicating the relaxation provides a tight
approximation to the original combinatorial problem.

The proposed topology-informed optimization framework
seamlessly incorporates ensemble topology and accuracy
information to select a subset of models suited for OoD
data. By relaxing the integer constraints, we transform the
intractable problem into an efficiently solvable SDP. The ob-
tained continuous solution is rounded to retrieve a 0-1 model
selection vector z. Our approach provides the following key
advantages: (i) Jointly optimizes for OoD diversity and in-
distribution accuracy without separate steps. (ii) Agnostic
to the model family and applicable to any pre-trained mod-
els. (iii) Efficient test-time computation that only requires
forwarding samples through models without re-training. In
summary, the ensemble topology graph captures predictive
relationships, while the Gram matrix provides accuracy val-
idation. Fusing both sources of information into a combina-
torial optimization formulation allows intelligently pruning
the ensemble to improve robustness under distribution shift.
In Sec. 4, we show that the pruned ensemble obtained by
solving the quadratic programming problem in Eq. 7 leads
to promoted diversity (Lem. 4.1) and lower generalization
error (Thm. 4.4) on target distributions.

4. Theoretical Analysis
In this section, we provide theoretical guarantees for the
proposed topology-aware ensemble pruning. In Lem. 4.1
(Diversity Promotion), we show the pruned ensemble pro-
motes diversity compared to the original set of models. In
Thm. 4.4 (Generalization Error of the Pruned Ensemble), we
present a bias-variance-diversity decomposition of the ex-
pected ensemble risk, which highlights the role of diversity
in reducing the generalization error on target distributions.
We provide the step-by-step proof in the Appendix.

Lemma 4.1 (Diversity Promotion). Let S ⊆ V be the
pruned ensemble with the size of K, obtained by solving the
optimization problem in Eq. 6. Define the average pairwise

similarity among all models in V as:

WV =
2

N(N − 1)

∑
i<j

Wij , (8)

and the average pairwise similarity among models in the
pruned ensemble S as:

WS =
2

K(K − 1)

∑
i<j

Wijzizj . (9)

Then, the following statement holds:

1−WS ≥ 1−WV . (10)

Remark. Lem. 4.1 shows that the average pairwise distance
among models in the pruned ensemble S is higher than the
average pairwise distance among all models in V . This im-
plies that the pruned ensemble promotes diversity compared
to the original set of models.

Definition 4.2 (Bias-Variance Decomposition. Adapted
from (Geman et al., 1992)). Given a loss function ℓ, we
define Ỹ

def
= argminY ∈Y ED[ℓ(Ŷ , Y )] as the centroid of

the model distribution. The bias-variance decomposition is
formulated as:

ED[EX,Y [ℓ(Ŷ , Y )]]︸ ︷︷ ︸
Expected risk

= EX [EY |X [ℓ(Y ∗, Y )]︸ ︷︷ ︸
Noise

+ ℓ(Ỹ , Y ∗)︸ ︷︷ ︸
Bias

+ED[ℓ(Ŷ , Ỹ )]︸ ︷︷ ︸
Variance

],
(11)

where the conditional mean Y ∗ def
= EY |X [Y ] is the Bayes-

optimal prediction.

Definition 4.3 (Centroid Combiner Rule). For a test point
(x, y), given a set of model predictions {Ŷi}Ki=1, the centroid
combiner Y is the minimizer of the averaged loss ℓ(Ŷi, Y ),
over all ensemble members:

Y
def
= argmin

Y ∈Y

1

K

K∑
i=1

ℓ(Ŷi, Y ). (12)

Theorem 4.4 (Generalization Error of the Pruned Ensemble.
Adapted from (Wood et al., 2023)). Given a set of model
predictions {Ŷi}Ki=1 and a loss function ℓ, assuming a bias-
variance decomposition holds in Def. 4.2, the following
decomposition also holds:

ED[EX,Y [ℓ(Y , Y )]]︸ ︷︷ ︸
Expected ensemble risk

= EX [EY |X [ℓ(Y ∗, Y )]︸ ︷︷ ︸
Noise

+
1

K

K∑
i=1

ℓ(Ỹi, Y
∗)︸ ︷︷ ︸

Average bias

+
1

K

K∑
i=1

ED[ℓ(Ŷi, Ỹi)]︸ ︷︷ ︸
Average variance

−ED[
1

K

K∑
i=1

ℓ(Ŷi, Y )]︸ ︷︷ ︸
Diversity

],

(13)
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VLCS Terra Incognita
Method Caltech101 LabelMe SUN09 VOC2007 Avg. Loc.100 Loc.38 Loc.43 Loc.46 Avg.
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
SWAD 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0

DENS (Lakshminarayanan et al., 2017) (Average Model Outputs)
+ Uniform 98.7 ± 0.5 64.2 ± 0.4 73.4 ± 0.3 78.6 ± 1.2 78.7 53.3 ± 1.6 42.8 ± 1.1 60.5 ± 0.8 41.0 ± 0.5 49.4
+ Greedy 98.8 ± 0.1 64.3 ± 0.4 72.6 ± 0.5 79.7 ± 0.7 78.9 52.8 ± 1.0 43.1 ± 0.7 59.2 ± 0.3 40.2 ± 0.7 48.8
+ Ours 98.8 ± 0.2 64.6 ± 0.5 74.9 ± 0.1 79.5 ± 0.7 79.5 55.6 ± 1.6 43.9 ± 0.8 60.0 ± 0.7 42.5 ± 0.3 50.5

DiWA (Rame et al., 2022) (Average Model Weights)
+ Uniform 98.7 ± 0.2 64.1 ± 0.3 75.5 ± 0.1 79.1 ± 0.2 79.3 55.3 ± 2.0 45.3 ± 0.2 62.0 ± 0.4 42.7 ± 0.3 51.3
+ Greedy 98.9 ± 0.1 64.5 ± 0.2 72.8 ± 0.1 80.6 ± 0.5 79.2 54.4 ± 1.3 46.0 ± 0.3 60.1 ± 0.3 41.0 ± 0.5 50.4
+ Ours 99.0 ± 0.1 64.6 ± 0.3 76.5 ± 0.3 79.6 ± 0.2 79.9 57.0 ± 1.6 46.7 ± 0.2 60.7 ± 0.7 43.9 ± 0.5 52.1

Model Ratatouille (Ramé et al., 2023) (Average Model Weights)
+ Uniform 99.3 ± 0.0 60.8 ± 0.3 74.3 ± 0.3 79.5 ± 0.3 78.5 57.9 ± 0.2 50.1 ± 0.7 59.8 ± 0.1 38.9 ± 0.5 51.8
+ Greedy 99.0 ± 0.0 62.4 ± 0.5 73.8 ± 0.3 79.5 ± 0.1 78.7 54.0 ± 2.0 47.7 ± 0.8 57.3 ± 0.8 37.9 ± 1.2 49.2
+ Ours 99.0 ± 0.1 62.8 ± 0.3 76.1 ± 0.4 79.6 ± 0.1 79.4 58.4 ± 0.9 49.6 ± 0.5 58.4 ± 0.1 40.3 ± 0.8 51.7

Table 1. Accuracy (%) of multi-source out-of-distribution generalization on Terra Incognita (Beery et al., 2018) and VLCS (Fang et al.,
2013) datasets. The models are tested on the specified distribution and trained on all the other distributions. Our method consistently
outperforms uniform ensemble and greedy selection on both datasets. We highlight the best results and the second best results. Results of
other baselines are from Gulrajani and Lopez-Paz (Gulrajani & Lopez-Paz, 2020). The results are an average of three trials.

where Ỹi
def
= argminY ∈Y ED[ℓ(Ŷi, Y )]. Eq. 18 decom-

poses the expected ensemble risk into the noise, the average
bias, the average variance, and the diversity.

Remark. Thm. 4.4 presents the bias-variance-diversity de-
composition of the expected ensemble risk. It shows the
diversity term, which measures the expected disagreement
among ensemble members, reduces the overall risk. This
highlights the importance of promoting diversity in ensem-
ble pruning, as achieved by the proposed topology-aware
method. However, maximizing OoD diversity alone might
not suffice, as it could lead to the selection of models with
lower OoD accuracy, thereby increasing the average bias.
The challenge lies in choosing models with high OoD ac-
curacy without access to target data during training or an-
notation during testing. Recent studies (Miller et al., 2021)
indicate a strong correlation between out-of-distribution per-
formance and in-distribution performance. Thus, we priori-
tize models with high in-distribution accuracy to potentially
mitigate the average bias, which justifies the in-distribution
accuracy term included in Eq. 6.

5. Experiments
We evaluate our method on the common OoD generalization
benchmark DomainBed (Gulrajani & Lopez-Paz, 2020). We
conduct experiments on both multi- and single-source (Peng
et al., 2024) out-of-distribution generalization. Following
(Gulrajani & Lopez-Paz, 2020), we use a validation set
selected from the training domains for model selection and
all the experimental results are averaged over 3 trials.

Baselines. We evaluate our method on top of three repre-
sentative ensemble methods: DENS (Lakshminarayanan
et al., 2017), Model Ratatouille (Ramé et al., 2023), and
DiWA (Rame et al., 2022). In DENS, the models are trained
with different initialization. In DiWA, the models are ob-
tained from independent runs that differ in hyperparame-
ters, data augmentations, and batch orders. To ensure the
model weights are averageable, the models share the same
pre-trained initialization and use a mild range of hyperpa-
rameters. In Model Ratatouille, the models are trained with
diverse auxiliary tasks.

We compare our method with Uniform Ensemble, Greedy
Selection, and traditional ensemble pruning methods.
Greedy selection is a popular method for model selection
in OoD generalization and has been adopted in (Rame
et al., 2022; Ramé et al., 2023; Wortsman et al., 2022): mod-
els are ranked in decreasing order of validation accuracy
and sequentially added only if they improve the ensem-
ble’s validation accuracy. This method is a.k.a. restricted
selection. traditional ensemble pruning methods can be
broadly categorized into three primary families: ranking-
based (Guo & Boukir, 2013), clustering-based (Onan et al.,
2017), and optimization-based (Bian et al., 2019). We com-
pare with several representative methods: DREP (Li et al.,
2012), DivP (Cavalcanti et al., 2016), Spectral (et al, 2014),
SDP (Zhang et al., 2006), and COMEP (Bian et al., 2019).

We also compare with other single-model based OoD base-
lines, including ERM (Vapnik, 1999), SagNet (Nam et al.,
2021), RSC (Huang et al., 2020), and SWAD (Cha et al.,
2021). Following (Gulrajani & Lopez-Paz, 2020; Koh et al.,
2021), we use a ResNet-50 (He et al., 2016) pre-trained on
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Order-based Clustering-based Optimization-based
Dataset Uniform Greedy DREP DivP Spectral SDP COMEP Ours
Terra Incognita 51.3 50.4 50.6 50.8 49.8 50.9 51.5 52.1
VLCS 79.3 79.2 78.9 78.5 78.0 79.2 78.7 79.9

Table 2. Accuracy (%) of ensemble pruning methods on Terra Incognita (Beery et al., 2018) and VLCS (Fang et al., 2013) datasets. We
found existing ensemble pruning methods cannot substantially outperform uniform ensemble under distribution shifts. This indicates that
in-distribution diversity does not transfer well to out-of-distribution data.

Terra Incognita VLCS
Method Loc.100 Loc.38 Loc.46 Avg. Caltech101 SUN09 VOC2007 Avg.
ERM 36.5 30.6 37.4 34.8 89.0 52.9 63.4 68.5
SagNet 31.0 39.0 39.1 36.4 88.5 55.6 65.8 70.0
RSC 38.3 31.4 39.4 36.4 88.3 55.6 64.5 69.4
SWAD 34.0 35.5 44.7 38.0 82.5 58.6 70.8 70.6

DiWA (Rame et al., 2022) (Average Model Weights)
+ Uniform 38.2 35.0 44.4 39.2 89.7 58.8 70.2 72.9
+ Greedy 35.8 33.3 44.1 37.7 85.2 57.2 72.5 71.6
+ Ours 38.9 35.7 44.9 39.8 90.3 59.5 71.0 73.6

Table 3. Accuracy (%) of single-source out-of-distribution generalization on Terra Incognita (Beery et al., 2018) and VLCS (Fang et al.,
2013) datasets. The models are trained on the specified distribution and tested on all the other distributions. In Terra Incognita, we train
models on “Loc.43” and test on other locations; In VLCS, we train models on “LabelMe” and test on other datasets.

ImageNet (Russakovsky et al., 2015) as the backbone for
all experiments.

5.1. Multi-source OoD Generalization

In multi-source OoD generalization, the models are tested
on the specified distribution and trained on all the other dis-
tributions (domains). We show the detailed results on VLCS
and Terra Incognita. VLCS contains photographic images
from four domains: Caltech101, LabelMe, SUN09, and
VOC2007. There are 10,729 total images with dimensions
of (3, 224, 224) pixels across 5 classes. Terra Incognita
consists of photos of wild animals captured by camera traps
at four different locations. The dataset contains 24,788 im-
ages of size (3, 224, 224) pixels from 10 different classes.
The results are shown in Tab. 1. On both datasets, DiWA
with our approach achieves the best average test accuracy.
On VLCS dataset, it outperforms uniform ensemble by 0.6%
and greedy selection by 0.7%. More significantly, on the
challenging Terra Incognita dataset, it surpasses uniform en-
semble by 0.8% and greedy selection by 1.7%. The results
demonstrate the effectiveness of our method for improving
generalization across diverse domains. We compare with
traditional ensemble pruning methods. Results on Terra
Incognita and VLCS are shown in Tab. 2. We found existing
ensemble pruning methods cannot substantially outperform
uniform ensemble under distribution shifts. This indicates
in-distribution diversity does not transfer well to out-of-
distribution data.

5.2. Single-source OoD Generalization

In single-source OoD generalization (Qiao & Peng, 2021),
the models are trained on the specified distribution and
tested on all other distributions. Specifically, in Terra Incog-
nita, we train models on “Loc.43” and test on other loca-
tions; In VLCS, we train models on “LabelMe” and test
on other datasets. Since most OoD generalization methods
requires multiple domains for training, in this experiments,
we only compare our method with ERM, SagNet, RSC and
SWAD. We show the detailed results on VLCS and Terra
Incognita in Tab. 3. As observed, DiWA+Ours achieves
the best average accuracy of 39.8% on Terra Incognita and
73.6% on VLCS, outperforming both uniform and greedy
DiWA selection. Compared to prior domain generalization
methods like ERM, SagNet, RSC and SWAD, DiWA+Ours
delivers competitive or superior performance. The consis-
tent gains over alternative selection strategies demonstrate
the benefit of the proposed approach for selecting diverse
ensembles that can generalize from a single training domain.

5.3. Ablation Study

In this section, we conduct ablation studies on the hyper-
parameter λ and the number of models to retain K. Ad-
ditionally, we compare the performance between the SDP-
relaxation with brute force (exhaustive search), and visu-
alize the relation between prediction diversity vs. out-of-
distribution accuracy.
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VLCS Terra Incognita
Method Caltech101 LabelMe SUN09 VOC2007 Avg. Loc.100 Loc.38 Loc.43 Loc.46 Avg.
Knee Point 98.8 64.3 76.5 79.4 79.8 56.9 46.7 60.7 44.3 52.2
λ = 1 99.0 64.6 76.5 79.6 79.9 57.0 46.7 60.7 43.9 52.1

Table 4. Accuracy (%) of Pareto optimization and λ = 1. Results indicate that setting λ = 1 is a simple yet hard-to-beat baseline, despite
the potential benefits of using Pareto optimization for automatic hyperparameter selection.

Figure 3. Ablation study on λ. In Terra Incognita, we found in-
distribution accuracy does not contribute to the improvement. We
suspect the reason is that, when distribution shift is large, the in-
distribution accuracy may not be informative for OoD data. In
VLCS, we found both in-distribution accuracy and OoD diversity
contribute to the improvement.

Hyperparamter λ. λ is used to balance in-distribution accu-
racy and out-of-distribution diversity. We report the results
under different λ on Terra Incognita and VLCS. The results
are shown in Fig. 3. In Terra Incognita, we found large
λ contributes to higher out-of-distribution performance. It
indicates in-distribution accuracy does not contribute to the
improvement. We suspect the reason is that, when distribu-
tion shift is large, the in-distribution accuracy/diversity may
not be informative for out-of-distribution data. In VLCS, we
found both in-distribution accuracy and out-of-distribution
diversity contribute to the improvement. We empirically set
λ = 1 for all experiments. To automatically choose λ, we
explore Pareto optimization (Qian et al., 2015). Pareto opti-
mization is a technique for solving problems with multiple
conflicting objectives, which in our case are maximizing
both the in-distribution accuracy and the out-of-distribution
diversity. By applying Pareto optimization to Eq. 7, we aim
to find a set of optimal solutions, called the Pareto set, that
represents the best trade-offs between these objectives. Each
solution in the Pareto set corresponds to a different value of
λ, allowing us to explore and select suitable values without
manual tuning. Following the approach in (Maltese et al.,
2016), we choose the knee point, which is considered the
most “cost-effective” point, from the Pareto set. To evaluate
the effectiveness of this approach, we compare the perfor-
mance of the knee point with the fixed value of λ = 1. The
results on Terra Incognita and VLCS datasets are shown in
Tab. 4. As observed, the knee point only outperforms λ = 1
on “Loc. 46” while being equal to or inferior to λ = 1 in

(a) Loc.100 (b) Loc.38

Figure 4. Visualization of prediction diversity vs. out-of-
distribution accuracy on Terra Incognita. Each circle denotes
a sub-ensemble with a size of 10 (half the size of the ensemble
pool). The sub-ensemble selected by our method surpassed most
of the selection combinations in terms of both prediction diversity
and OoD accuracy.

all other distributions. These results indicate that setting
λ = 1 is a simple yet hard-to-beat baseline, despite the
potential benefits of using Pareto optimization for automatic
hyperparameter selection.

Number of models to retain K. In Fig. 5, we show the
OoD accuracy on Terra Incognita (Beery et al., 2018) with
the different numbers of models to retain (K). In locations
other than “Loc.43”, the accuracy increases first and then
decreases when we increase K. However, in “Loc.43”, the
best performance is achieved at K = N = 20. In this
case, the results indicate that there is no redundancy in the
ensemble pool and each model is necessary for the ensemble.
Note that the accuracy on Loc.43 is the highest among all the
locations. This indicates the distribution shift (between the
source and target) is not as prominent as other locations. The
results indicate our method yields better performance when
the distribution shifts are relatively significant. Following
(He et al., 2024), we set K = ⌊N/2⌋ for all experiments.

SDP-relaxation vs. Brute force. Since Eq. 6 is NP-hard,
we quantitatively compare the performance between the
SDP-relaxation (Eq. 7) with brute force (exhaustive search).
The results on Terra and VLCS datasets are shown in Tab. 5.
As seen, the SDP-relaxation yields almost the same OoD
accuracy as brute force, indicating the relaxation provides a
tight approximation to the original combinatorial problem.

Prediction diversity vs. OoD accuracy. We investigate the
relation between prediction diversity vs. out-of-distribution
accuracy on Terra Incognita. Given the ensemble pool with
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VLCS Terra Incognita
Method Caltech101 LabelMe SUN09 VOC2007 Avg. Loc.100 Loc.38 Loc.43 Loc.46 Avg.
Brute Force 99.0 64.7 76.7 79.6 80.0 57.0 46.7 60.7 44.0 52.1
SDP-relaxation 99.0 64.6 76.5 79.6 79.9 57.0 46.7 60.7 43.9 52.1

Table 5. Accuracy (%) of SDP-relaxation and brute force. The SDP-relaxation yields almost the same OoD accuracy as brute force,
indicating the relaxation provides a tight approximation to the original combinatorial problem.

(a) Loc.100 (b) Loc.38 (c) Loc.43 (d) Loc.46

Figure 5. Ablation Study of K (Number of Models to Retain) on Terra Incognita Dataset. In locations other than “Loc.43”, the accuracy
increases first and then decreases when we increase the number of models to keep (K). However, in “Loc.43”, the best performance is
achieved at K = N = 20. In this case, the results indicate that there is no redundancy in the ensemble pool and each model is necessary
for the ensemble. Note that the accuracy on Loc.43 is the highest among all the locations. This indicates the distribution shift (between the
source and target) is not as prominent as other locations. The results indicate our method yields better performance when the distribution
shifts are relatively significant.

the size of 20, we calculate the prediction diversity and out-
of-distribution accuracy of each sub-ensemble with the size
of 10 (K = 10). Following (Rame et al., 2022; Ramé et al.,
2023), we use ratio-error (Aksela, 2003) as the diversity
metric. It calculates the ratio of error diversity measured
between a pair of classifiers. A higher value means that
the base classifiers are less likely to make the same errors.
Ratio-error is defined as N01+N10

N00 , where N ij is the number
of times that the first classifier is (correct if i = 1 or wrong if
i = 0) and the second classifier is (correct if j = 1 or wrong
if j = 0). We calculate the mean of all pairwise ratio-error
within each sub-ensemble. The visualization is shown in
Fig. 4. We empirically found that diversity and accuracy
are linearly correlated. The sub-ensemble selected by our
method outperforms the vast majority of the remaining ones,
indicating the effectiveness of our method in encouraging
predictive diversity for improved OoD performance.

6. Related Work
OoD Generalization and Ensemble learning. The goal of
OoD generalization is to generalize the model from source
distributions to unseen target distributions. Existing meth-
ods can be classified into two categories: invariant learn-
ing (Arjovsky et al., 2019; Yang et al., 2023; Li et al., 2023)
and robust optimization (Sagawa et al., 2019; Qiao & Peng,
2023; Ma et al., 2024). However, recent studies (Wiles
et al., 2021; Gulrajani & Lopez-Paz, 2020; Koh et al., 2021)
have demonstrated that no single model can consistently

achieve superior performance across all OoD scenarios. A
series of methods based on ensemble learning (Pagliardini
et al., 2023; Lee et al., 2023; Rame et al., 2022; Wortsman
et al., 2022) have been proposed to consistently improve
the OoD performance. Diversity plays a key role in ensem-
ble learning as the error decreases with the covariance of
ensemble members (Ueda & Nakano, 1996). (Pagliardini
et al., 2023) and (Lee et al., 2023) are proposed to explicitly
improve the prediction diversity on target data during train-
ing. However, target data are typically unavailable during
training. To address this limitation, (Rame et al., 2022) and
(Wortsman et al., 2022) are proposed to learn a collection of
diverse models by varying their learning procedures such as
hyperparameters and data augmentations. However, these
methods would inevitably produce redundant models, and
uniformly ensembling all the models will hurt predictive
diversity, leading to compromised performance.

Ensemble pruning. Ensemble pruning, also known as en-
semble selection or ensemble thinning, offers a valuable
solution to address the limitations of ensemble methods,
which often demand extensive memory and processing re-
sources due to the number of individual learners in the
ensemble (Liu et al., 2014; Kokkinos & Margaritis, 2015;
Zhang et al., 2017). The goal of ensemble pruning is to
enhance ensemble generalization performance while re-
ducing its size (Margineantu & Dietterich, 1997). How-
ever, selecting the optimal sub-ensemble with superior gen-
eralization capabilities is non-trivial, often involving ex-
ponential computational complexity (Martinez-Munoz &
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Suárez, 2007). Existing ensemble pruning methods can be
broadly categorized into three primary families: ranking-
based, clustering-based, and optimization-based approaches.
Ranking-based pruning methods involve sorting the ensem-
ble learners based on various evaluation criteria and select-
ing the top performers (Zhang et al., 2019; Ahmed et al.,
2017). Clustering-based pruning methods identify groups
of learners that make similar predictions and prune these
groups individually (Tsoumakas et al., 2004; Cavalcanti
et al., 2016). Optimization-based pruning methods leverage
various objectives to optimize and identify subsets expected
to exhibit satisfactory generalization performance (Zhou
& Tang, 2003; Partalas et al., 2012), necessitating the use
of optimization algorithms to manage the computational
complexity associated with exhaustive searches (Zeng et al.,
2014). Despite the effectiveness of these ensemble pruning
strategies in in-distribution scenarios, their adaptation to
prune models for OoD generalization remains a challenging
and open research question.

7. Conclusion
We proposed a novel ensemble pruning framework to im-
prove out-of-distribution generalization. The key insight
is to construct an ensemble topology graph that captures
predictive relationships between models. This topology is
incorporated into a combinatorial optimization problem to
jointly optimize for diversity on test data and accuracy on
validation data. Through extensive experiments on com-
mon benchmarks, the method demonstrates consistent gains
over baseline ensembling techniques as well as state-of-the-
art domain generalization algorithms. Experimental results
showcase significant advancements on challenging multi-
source and single-source generalization tasks. A limitation
of our approach is the empirical selection of ensemble size
rather than a principled theoretical guideline. Future direc-
tions include further analysis to automatically determine the
optimal number of models for retention.
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A. Proofs
We prove the step-by-step proof for Lem. 4.1 (Diversity Promotion) and Thm. 4.4 (Generalization Error of the Pruned
Ensemble) in the main paper.

Lemma 4.1 (Diversity Promotion). Let S ⊆ V be the pruned ensemble with the size of K, obtained by solving the
optimization problem in Eq. 6. Define the average pairwise similarity among all models in V as:

WV =
2

N(N − 1)

∑
i<j

Wij , (14)

and the average pairwise similarity among models in the pruned ensemble S as:

WS =
2

K(K − 1)

∑
i<j

Wijzizj . (15)

Then, the following statement holds:
1−WS ≥ 1−WV . (16)

Proof. Let z∗ = [z∗1 , z
∗
2 , . . . , z

∗
N ] be the optimal solution obtained by solving the optimization problem in Eq. 7. The

objective function value of the optimal solution is:

J(S∗) =
∑
i<j

(1−Wij)z
∗
i z

∗
j

=

N∑
i=1

N∑
j=i+1

(1−Wij)z
∗
i z

∗
j

=
K(K − 1)

2
(1−WS). (using Eq. 15 and the constraint

N∑
i=1

z∗i = K)

Similarly, the objective function value of selecting all models in V is:

J(V ) =
∑
i<j

(1−Wij)

=

N∑
i=1

N∑
j=i+1

(1−Wij)

=
N(N − 1)

2
(1−WV ). (using Eq. 14)

Since S∗ is the optimal solution, J(S∗) ≥ J(S) for any S ⊆ V with |S| = K. In particular, let S′ be a random subset of V
with size K. Then, we have:

E[J(S′)] ≤ J(S∗)

⇒ K(K − 1)

2
E[1−WS′ ] ≤ K(K − 1)

2
(1−WS)

⇒ 1−WS ≥ E[1−WS′ ].

Note that E[WS′ ] = WV since S′ is a random subset of V . Therefore, we have:

1−WS ≥ 1−WV .

This completes the proof. □
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Proposition A.1 (Generalised Ambiguity Decomposition, Adapted from (Wood et al., 2023)). Assuming loss ℓ admits a

bias-variance decomposition then, for an ensemble
{
Ŷi

}K

i=1
, the ambiguity decomposition is formulated as:

ℓ(Y , Y )︸ ︷︷ ︸
Ensemble loss

=
1

K

K∑
i=1

ℓ
(
Ŷi, Y

)
︸ ︷︷ ︸

Average loss

− 1

K

K∑
i=1

ℓ
(
Ŷi, Y

)
︸ ︷︷ ︸

Ambiguity

. (17)

Theorem 4.4 (Generalization Error of the Pruned Ensemble. Adapted from (Wood et al., 2023)). Given a set of model
predictions {Ŷi}Ki=1 and a loss function ℓ, assuming a bias-variance decomposition holds in Def. 4.2, the following
decomposition also holds:

ED[EX,Y [ℓ(Y , Y )]]︸ ︷︷ ︸
Expected ensemble risk

= EX [EY |X [ℓ(Y ∗, Y )]︸ ︷︷ ︸
Noise

+
1

K

K∑
i=1

ℓ(Ỹi, Y
∗)︸ ︷︷ ︸

Average bias

+
1

K

K∑
i=1

ED[ℓ(Ŷi, Ỹi)]︸ ︷︷ ︸
Average variance

−ED[
1

K

K∑
i=1

ℓ(Ŷi, Y )]︸ ︷︷ ︸
Diversity

], (18)

where Ỹi
def
= argminY ∈Y ED[ℓ(Ŷi, Y )]. Eq. 18 decomposes the expected ensemble risk into the noise, the average bias, the

average variance, and the diversity.

Proof. After taking the expected risk of Y and applying Prop. A.1, we can obtain:

ED

[
EX,Y [ℓ(Y , Y )]

]
= ED

[
EX,Y

[
1

K

K∑
i=1

ℓ
(
Ŷi, Y

)]]
− ED

[
EX,Y

[
1

K

K∑
i=1

ℓ
(
Ŷi, Y

)]]
. (19)

Then we apply Def. 4.2 to the first term on the right hand side of Eq. 19:
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[
1

K
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(
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∗
)
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1

K
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[
ℓ
(
Ŷi, Ỹi

)]]
.

(20)

We can complete the proof by plugging Eq. 20 into Eq. 19. □

B. Additional Results

TerraIncognita51.0
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Figure 6. Accuracy (%) of alternative distance metrics for model topology construction. We compare with several common distance
metrics including ℓ2, Earth Mover’s Distance (EMD), and Maximum Mean Discrepancy (MMD). Results show Fisher is only slightly
worse than EMD on VLCS and outperforms all the other metrics on other datasets. We attribute the effectiveness to Fisher’s sensitivity in
capturing the parameter-output relationships (Matena & Raffel, 2022).

Alternative distance metrics for ensemble topology construction. We compare with several common distance metrics
including ℓ2, Earth Mover’s Distance (EMD), and Maximum Mean Discrepancy (MMD). The results are shown in Fig. 6.

13



Ensemble Pruning for Out-of-distribution Generalization

Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z 0.37 1.27e-21 0.50 1.48e-21 1.00 1.00 1.00 1.00 6.15e-22 0.68 1.00 0.89e-3 1.00 1.00 1.44e-21 0.44 1.26e-21 1.00 2.45e-22 1.39e-21

Table 6. Values of z obtained by solving the problem in Eq. 7. The values of almost half of the models are smaller than 1e-3. Consequently,
utilizing these values for a weighted ensemble may not be informative, as the contributions of these models would be negligible.

Results show Fisher is only slightly worse than EMD on VLCS and outperforms all the other metrics on other datasets. We
attribute the effectiveness to Fisher’s sensitivity in capturing the parameter-output relationships (Matena & Raffel, 2022).

Weighted ensemble (soft version) vs. Pruning. We show the values of z obtained by solving the problem in Eq. 7. The
results on the Terra Incognita dataset are shown in Tab. 6. The table reveals that the values of almost half of the models are
smaller than 1e-3. Consequently, utilizing these values for a weighted ensemble may not be informative, as the contributions
of these models would be negligible. In this case, removing these models can significantly improve inference efficiency
while maintaining or even improving OoD generalization performance. Binary selection allows us to directly control the
size of the pruned ensemble, which is crucial for computational efficiency.
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