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Abstract

The LoRA-finetuning quantization of LLMs has
been extensively studied to obtain accurate yet
compact LLMs for deployment on resource-
constrained hardware. However, existing methods
cause the quantized LLM to severely degrade and
even fail to benefit from the finetuning of LoRA.
This paper proposes a novel IR-QLoRA for push-
ing quantized LLMs with LoRA to be highly accu-
rate through information retention. The proposed
IR-QLoRA mainly relies on two technologies
derived from the perspective of unified informa-
tion: (1) statistics-based Information Calibration
Quantization allows the quantized parameters of
LLM to retain original information accurately; (2)
finetuning-based Information Elastic Connection
makes LoRA utilizes elastic representation trans-
formation with diverse information. Comprehen-
sive experiments show that IR-QLoRA can sig-
nificantly improve accuracy across LLaMA and
LLaMA2 families under 2-4 bit-widths, e.g., 4-
bit LLaMA-7B achieves 1.4% improvement on
MMLU compared with the state-of-the-art meth-
ods. The significant performance gain requires
only a tiny 0.31% additional time consumption,
revealing the satisfactory efficiency of our IR-
QLoRA. We highlight that IR-QLoRA enjoys ex-
cellent versatility, compatible with various frame-
works (e.g., NormalFloat and Integer quantiza-
tion) and brings general accuracy gains. The code
is available at https://github.com/htqin/ir-qlora.

1. Introduction
Large language models (LLMs) have demonstrated strong
performance in natural language understanding (Touvron
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et al., 2023a;b). LLMs can be adapted to various down-
stream real-world applications, paired with large-scale pre-
training and finetuning for downstream tasks (Chang et al.,
2023; Devlin et al., 2018; Zhao et al., 2023a; Huang &
Chang, 2022; Brown et al., 2020). However, because of the
massive parameters and computation, the LLM has high or
even harsh resource requirements for deployment scenar-
ios. The inference of LLMs is expensive and heavily relies
on high-performance devices, such as graphics processing
units (GPUs) (Ganesh et al., 2021; Zhu et al., 2023; Chitty-
Venkata et al., 2023). Therefore, compression approaches of
LLMs are widely studied to allow their deployment on edge
devices. Quantization emerges as a promising approach to
compress LLMs by reducing bit-width but usually results in
significant degeneration in accuracy (Xiao et al., 2023; Lin
et al., 2023). For example, the 4-bit LLaMA-7B quantized
by GPTQ (Frantar et al., 2022) suffers a 1.5% drop of 5-shot
accuracy on MMLU benchmark (Hendrycks et al., 2020)
compared to its original counterpart (Liu et al., 2023a).

LoRA-finetuning quantization has become a popu-
lar paradigm that combines the LLM quantization
with parameter-efficient finetuning of low-rank adaption
(LoRA) (Dettmers et al., 2023; Xu et al., 2023b). Methods
under this paradigm mainly consist of the following two
phases. The first one is the post-training quantization (PTQ)
of the LLM (Dettmers et al., 2021), obtaining quantizers by
resource-saving calibration. The latter one is finetuning the
LoRA (Hu et al., 2021), where the quantized LLM remains
fixed and LoRA is finetuned. LoRA-finetuning quantization
of LLMs is resource and time-saving compared to finetuning
of the whole LLM while pushing the quantized LLM to high
accuracy compared to performing PTQ solely (Dettmers
et al., 2023; Xu et al., 2023b; Liu et al., 2023b).

However, despite several efforts made, existing LoRA fine-
tuning quantization of LLMs is still far from the limits
regarding accuracy. We empirically observe that the preven-
tion of further accurate quantization is mainly because the
information loss caused by LLM quantization is significant
and cannot be recovered effectively by LoRA. Especially
with ultra-low bit-widths (⩽ 3-bit) and large model scales
(⩾ 30B), the former results in the nonlinearly increased level
of information loss for each element, and the latter leads to
a significant increase of the total amount of information loss
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Figure 1: Overview of IR-QLoRA. The framework includes Information Calibration Quantization (ICQ) for quantizing
LLMs and Information Elastic Connection (IEC) for enhancing LoRA

for the whole model. In these cases, the finetuned LoRA
is hard to assist LLMs to achieve high accuracy on down-
stream tasks, e.g., 4-bit LLaMA-30B with finetuned LoRA
even fails to achieve the accuracy of the original counterpart
without finetuning (57.7% vs. 58.2% on MMLU).

In this paper, we present IR-QLoRA to obtain accurate
Quantized LLMs with LoRA via Information Retention
(see the overview in Figure 1). To tackle the information
loss of the quantization of the LLM, we propose a Infor-
mation Calibration Quantization (ICQ) technique. By cali-
bration by entropy maximization, ICQ enables quantizers
for the LLM to retain the original information from the
original parameters to quantized ones. We also propose the
Information Elastic Connection (IEC) to enhance the infor-
mation recovery capability of LoRA. IEC works together
with LoRA, which performs parameter-free elastic transfor-
mations to utilize the information of original features and
diversify the transformation form of LoRA.

Our IR-QLoRA provides strong and generic support to
achieve accurate quantized LLMs with LoRA. Extensive
experiments on the MMLU benchmark show that our IR-
QLoRA outperforms existing methods with convincing mar-
gins on LLaMA and LLaMA2 series models under different
bit-widths, especially at ultra-low bit-widths (2-3 bit). For
example, the average accuracy of 2-bit IR-QLoRA in the
LLaMA family is 0.5% higher than SOTA LoRA-finetuning
quantization methods. For efficiency, the significant perfor-
mance growth brought by our IR-QLoRA requires only a
tiny 0.31% additional time consumption for LLaMA-13B.
Moreover, IR-QLoRA is versatile and can boost existing
LoRA-finetuning LLM quantization frameworks flexibly,
e.g., the integration with QA-LoRA (Xu et al., 2023b) brings
a cost-free 0.5% gain on MMLU to 4-bit LLaMA-7B.

2. Related Work
LLMs have demonstrated remarkable proficiency across
diverse natural language understanding tasks and are estab-
lished as a prominent paradigm in this field (Chang et al.,
2023; Devlin et al., 2018; Zhao et al., 2023a; Huang &
Chang, 2022; Brown et al., 2020; Touvron et al., 2023a;b).
This reality poses substantial challenges to deploying LLMs
in settings with limited resources. Consequently, the re-
search of the compression technologies for LLMs has gained
prominence as a critical area of research. Existing compres-
sion technologies of LLMs include pruning, distillation,
low-rank decomposition, and low-bit quantization (Ganesh
et al., 2021; Zhu et al., 2023; Chitty-Venkata et al., 2023;
Xu et al., 2023a). Among these technologies, quantization
aims to compress the LLMs from 16-bit floating-point to
lower bit-widths to mitigate the storage and computation.

Since compression is from a generic bit-width perspective,
quantization has become a popular method to obtain effi-
cient LLMs (Xiao et al., 2023; Lee et al., 2023; Shao et al.,
2023; Dettmers et al., 2022; Liu et al., 2023b; Kim et al.,
2023). The LoRA-finetuning quantization of LLMs emerges
to achieve a balanced trade-off between computational cost
and accuracy (Dettmers et al., 2023; Li et al., 2023), where
quantized LLMs are finetuned with parameter-efficient Lo-
RAs. However, existing quantized LLMs with LoRA are
still far from ideal in accuracy. More details about related
works are presented in Appendix A.1.

3. The Rise of IR-QLoRA
3.1. Preliminaries

We first present a baseline for LoRA-finetuning quantization
of LLMs following common practice (Dettmers et al., 2023).

Before finetuning, the weights of LLMs are to be quantized.
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The quantization function for the weight w ∈ Rh×o is

ŵNFk = NFk
(w
s

)
= NFk

(
w

absmax(w)

)
, (1)

where ŵNFk denotes quantized weight and the quantiza-
tion block size is 64 as default, and s is the scaling factor
calculated by absmax(w). NFk(·) denotes the k-bit Nor-
malFloat quantization (Dettmers et al., 2023), quantizing
the weights of LLMs to 2k values qi as follows:

qi =
1

2

(
Q

(
i

2k + 1

)
+Q

(
i+ 1

2k + 1

))
, (2)

where Q(·) is the quantile function of N (0, 1) distribution.
Then, the computation process (e.g., linear projection) of
the quantized unit of the LLM during inference is

y′ = xŵFP16 = x
(
ŵNFk dequant(sFP8

1 , sFP16
2 )

)
, (3)

where x ∈ Rb×h and y′ ∈ Rb×o denote the input and out-
put of quantized linear projection in LLMs, respectively.
dequant(sFP8

1 , sFP16
2 ) is expected to approximate the origi-

nal scaling factor s. After double-quantization of s, we can
obtain the quantized values sFP8

1 and scaling factors sFP16
2

follow (Dettmers et al., 2023). ŵFP16 denotes the FP16
weights dequantized from ŵNFk.

The LoRA refers to a set of finetunable parameters designed
to enhance the quantized linear projection in LLMs by in-
troducing an extra factorized projection (Hu et al., 2021;
Dettmers et al., 2023). For the quantized linear projection
as Eq. (3), the computation with LoRA can be expressed as:

y = y′ + αxℓ1ℓ2, (4)

where ℓ1 ∈ Rh×r and ℓ2 ∈ Rr×o are the finetunable pa-
rameters, and α is a scalar. Since the parameter efficiency
of LoRA should be kept during inference, its rank r is far
smaller than the input and output dimensions (h and o, re-
spectively), which makes its memory and computational
consumption far smaller than the corresponding linear pro-
jection in LLMs (e.g., r = 64 vs. h = 4096 and o = 4096).
During the backward propagation of the finetuning process,
the gradients are passed through the fixed quantized weights
of LLMs to update the parameters in LoRA.

The quantization process of the LLM and the finetuning
process of the LoRA are decoupled. The PTQ first processes
the LLM to obtain low-bit quantized weights, and then the
LoRA is finetuned for specific downstream tasks.

3.2. Information Calibration Quantization

3.2.1. DEGENERATION OF QUANTIZED LLMS

In the aforementioned baseline, the LLMs are quantized di-
rectly from pre-trained models, where the low-bit discretiza-
tion of the parameters causes the accuracy degradation. Ex-
isting quantization methods attribute the degradation to the
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Figure 2: An illustration of ICQ in IR-QLoRA

numerical quantization error. However, the information loss
caused by quantization is always neglected.

Specifically, the quantized weights of LLMs are expected
to reflect the information carried by original counterparts,
but reduced bit-width severely constrains the representation
capabilities. From the information perspective, the depen-
dence between the weights of quantized and original LLMs
is expressed as the mutual information (Qin et al., 2023):

I(ŵFP16;w) = H(ŵFP16)−H(ŵFP16 | w), (5)

where H(ŵFP16) denotes the entropy of ŵFP16, and
H(ŵFP16 | w) denotes the conditional entropy of ŵFP16

given w. As deterministic quantizers are used in the quan-
tization of LLMs,H(ŵFP16 | w) = 0 and the I(ŵFP16;w)
depends onH(ŵFP16) directly. In the PTQ, since the origi-
nal weights w remain unchanged, maximizing the mutual
information I(ŵFP16;w) in Eq. (5) is equivalent to

argmax
s,sFP8

1 ,sFP16
2

H(ŵFP16; s, sFP8
1 , sFP16

2 ). (6)

Since dequant(sFP8
1 , sFP16

2 ) is a scalar in dequantization and
does not affect information entropy of ŵFP16, the above
objective function can be further simplified as follows:

argmax
s

H(ŵNFk; s) = −
2k−1∑
i=1

P (qi) log2 P (qi), (7)
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where P (qi) is the probability of ŵNFk taking the value qi.

Since the significant reduction of bit-width leads to de-
creased representation capability, the entropy of the quan-
tized weight is far less than that of the original counterpart.
For example, the number of representation candidates for
a 4-bit quantized weight reduces 4096× compared to its
original 16-bit (FP16) counterpart, and the upper bound
of information entropyH(ŵFP16) in Eq. (6) is correspond-
ingly reduced 4× (4 for 4-bit vs. 16 for 16-bit), meaning a
significant degradation of information in the quantity and
quality. Thus, prioritizing information recovery within low-
bit weights is crucial for enhancing quantized LLMs.

3.2.2. INFORMATION CALIBRATION QUANTIZATION
FOR REPRESENTATION RECOVERY

To mitigate the degeneration caused by information loss for
the quantized LLMs, we introduce an Information Calibra-
tion Quantization (ICQ) technique for LLMs (as Figure 2),
which applies the fine-grained information maximization of
quantized weights to improve the accuracy.

We first introduce a calibration constant τ to the quantizer,
liberating its flexibility to retain information fully. The quan-
tization process it engages in can be expressed as follows:

ŵNFk = NFk
(
w − τ

s

)
. (8)

Since the original weight w is fixed, the optimization objec-
tive in Eq. (6) can be expressed as

argmax
τ,s

H
(
ŵNFk; τ, s

)
. (9)

Directly solving the objective in Eq. (9) is significantly
complex and time-consuming. Therefore, we then present
a two-step strategy for calibrating the quantizers of LLMs
blockwisely by the information entropy maximization.

The first step is to process the initialization for the cali-
bration constant τ . Based on the common assumption of a
symmetrical normal distribution for weights of neural net-
works (Dettmers et al., 2023; Baskin et al., 2021), we initial-
ize the constant as the median τ0 = quantile 1

2
(w) for each

quantization block of weights. As the probability density is
higher in regions closer to the symmetry axis in a normal dis-
tribution, this initialization enables the quantizer to utilize
intervals to a greater extent. The position-dependent median
also allows τ0 to alleviate the influence from outliers.

The second step is to optimize the calibration constant
τ and the scaling factors s1 and s2 for quantization and
double quantization of weights, respectively. We apply
information entropy in Eq. (5) as the metric and perform
the search-based optimization to obtain τ∗. We create the
search spaces for τ by linearly dividing [τ0 − λσ, τ0 + λσ]

into 2n candidates, where σ = 1 is the standard deviation
of N (0, 1) and λ is a coefficient. We empirically set λ
and n to 0.1 and 100, respectively, to achieve a trade-off
between accurate and efficient search. For each candidate τ ,
we use it to calibrate weight and calculate the information
entropy of weights quantized by Eq. (8), and then obtain
the optimal calibration constant τ∗ corresponding to the
maximum entropy. The scaling factor s for w − τ∗ is
double-quantized to sFP8

1 and sFP16
2 .

For the optimized calibration constant τ∗, we perform dou-
ble quantization similar to the scale to save memory. The
quantization and dequantization processes of our ICQ can
be summarized as

ŵNFk
ICQ = NFk

(
w − τ∗

absmax(w − τ∗)

)
,

ŵFP16
ICQ = ŵNFk

ICQ dequant(sFP8
1 , sFP16

2 ) + dequant(τFP8
1 , τFP16

2 ).
(10)

where τFP8
1 and τFP16

2 are the quantized calibration constant
and its scaling factor for double quantization, respectively.
The inference of LLMs with our ICQ can be expressed as

y′
ICQ = xŵFP16

ICQ . (11)

Our ICQ technique maximizes the information entropy of
quantized weight to alleviate its immense information degra-
dation and revive the representation capability. As Figure 2
shows, the quantized weights calibrated by ICQ derive in-
creased information and recover the original distribution
more accurately following the dequantization.

3.3. Information Elastic Connection

3.3.1. LIMITATION OF FINETUNABLE LORA

In addition to the quantized LLM in the baseline, the limited
representation capability of the finetuneable LoRA also hin-
ders information recovery. LoRA mitigates the performance
degradation caused by weight quantization in LLM by fine-
tuning additional adapters for downstream tasks, sometimes
even yielding notable performance enhancements. The fine-
tuning of LoRA can be roughly considered as finetuning a
subset of weights in LLM, where low-rank parameters facil-
itate an efficient finetuning process, avoiding the expensive
computation and storage of finetuning the LLM directly.

However, through LoRA processes parameter-efficient fine-
tuning for quantized LLMs, its information representation
still exhibits significant limitations, impeding the accurate
quantized LLM with LoRA. Firstly, compared to the cor-
responding linear projection in LLM, the parameter trans-
formation by LoRA can still be considered homogenized,
albeit with a noticeably lower rank. On the other hand,
the information utilization of LoRA remains limited, as the
latter low-rank matrix ℓ2 in Eq. (3) can only exploit the
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Figure 3: An illustration of IEC in IR-QLoRA

transformed representation matrix ℓ1 from the preceding
transformation, thereby losing accessibility to the original
representation information. Therefore, liberating LoRA
from its constraints in representation capacity is expected to
enhance the accuracy of quantized LLM further.

3.3.2. INFORMATION ELASTIC CONNECTION FOR
INFORMATION ENHANCEMENT

To bolster the representation capacity of LoRA, aiding in re-
covering information of quantized LLMs while maintaining
its lightweight nature, we introduce an effective Information
Elastic Connection (IEC). As Figure 3 shows, IEC con-
structs a parameter-free connection for LoRA, facilitating
information utilization derived from quantized LLM and
diversifying the information transformation.

As shown in Eq. (4), the input of one LoRA unit is gen-
erated by the previous quantized LLM and LoRA units.
The h-dimensional input x is transformed to low-rank r-

dimensional intermediate features through the ℓ1 matrix and
then restored to the o-dimensional output through the ℓ2
matrix. Since usually r ≪ min{h, o}, we construct flexi-
ble parameter-free connections for LoRA matrix pairs so
that each LoRA matrix can fully utilize the original input
representation x. Specifically, we group and average the
original feature according to the greatest common divisor
of the input and intermediate dimensions and add it to the
output computed by the ℓ1 matrix. The first sub-unit U1 of
LoRA with our IEC can be expressed as

U1(x) = xℓ1+

β1

r
gcd (h,r)∏ gcd (h, r)

h

gcd (h,r)∑
i=1

x[(i−1) h
gcd (h,r)

:i h
gcd (h,r)

−1]

 ,

(12)
where x[m:n] denotes taking the m to n dimension of x,
gcd (h, r) denotes the greatest common divisor of h and
r, and β denotes a layerwise learnable scalar;

∑
denotes

the summation of all divided features and
∏

denotes the
r

gcd (h,r) -time repeated concatenation; The dimension of
the latter term in Eq. (12) is r. Through the above opera-
tions, we transform the representation to low-rank through
parameter-free operation to retain the original information.

The latter matrix of LoRA transforms the low-rank inter-
mediate representation up to the higher dimension. It thus
accompanies a parameter-free repeated concatenation for
x′ = U1(x) and composes the second sub-unit U2 in IEC,
where the computation process can be expressed as

U2(x
′) = x′ℓ2+

β2

o
gcd(o,r)∏ gcd(o, r)

r

gcd(o,r)∑
i=1

x′[(i−1) r
gcd(o,r)

:i r
gcd(o,r)

−1]

 ,

(13)
where x′ is first aligned to the gcd(o, r)-dimension and con-
catenated o

gcd(o,r) times repeatedly, and is then connected
to the calculation result of ℓ2 matrix.

Note that in the LoRA unit, the input dimension h and
output dimension o are usually multiples of low-rank r,
and gcd(h, r) and gcd(o, r) are thus equal to r. In these
cases, Eq. (12) and Eq. (13) for our IEC can be simplified
as follows:

U1(x) = xℓ1 + β1
r

h

r∑
i=1

x[(i−1)h
r :ih

r −1],

U2(x
′) = x′ℓ2 + β2

o
r∏
x′.

(14)

With our IEC, the computation process of the quantized
LLM projection and LoRA can be expressed as

y = y′
ICQ + αUIEC(x) = y′

ICQ + αU2 ◦ U1(x). (15)
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Appendix A.2 discusses the efficiency of IEC, which can be
merged into LoRA to avoid additional inference costs.

The IEC propagates the input with elasticity dimension
changing, thus allowing the matrix in LoRA to directly ac-
cess and utilize the original information extracted by the
quantized LLM projection. Moreover, the parameter-free
IEC can seem diversified compared with the parametric
matrix multiplication of LoRA, further enhancing the infor-
mation representation of quantized LLMs.

4. Experiment
We extensively evaluate the accuracy and efficiency
of our proposed IR-QLoRA. Our IR-QLoRA is estab-
lished upon the LLaMA (Touvron et al., 2023a) and
LLaMA2 (Touvron et al., 2023b) families (7B, 13B, 30B,
and 65B), and constructs parameter-efficient finetuning on
Alpaca (Taori et al., 2023) and Flan v2 (Longpre et al.,
2023) datasets. The Massively Multitask Language Under-
standing (MMLU) (Hendrycks et al., 2020) and Common-
senseQA benchmarks(e.g.HellaSwag (Zellers et al., 2019),
PIQA (Bisk et al., 2020)) are applied for evaluation. For
experiment settings (Dettmers et al., 2023; Xu et al., 2023b;
Kim et al., 2023; Frantar et al., 2022), we follow the set-
tings of comparison methods reported in their publications
or official code for fair comparison. All our experiments are
conducted on Nvidia Tesla A100 GPUs. Detailed experi-
ment settings and results are presented in Appendix B and
Appendix C, respectively.

4.1. Main Results

To evaluate the performance of IR-QLoRA, we conducted
comprehensive experiments and compared our IR-QLoRA
with the state-of-the-art (SOTA) LoRA-finetuning quanti-
zation methods, i.e., QLoRA (Dettmers et al., 2023) and
QA-LoRA (Xu et al., 2023b). We also compare with
PEQA (Kim et al., 2023) without LoRA follow (Xu et al.,
2023b). Table 1 and Table 2 present the 5-shot accuracy
results on the MMLU benchmark finetuned on the Al-
paca (Taori et al., 2023) and Flan v2 (Longpre et al., 2023)
datasets, respectively.

Comprehensive results indicate that across various sizes
of LLaMA models, IR-QLoRA consistently outperforms
all comparative quantization methods by a convincing mar-
gin. Compared to the baseline method QLoRA, our IR-
QLoRA achieves a significant improvement in accuracy on
the MMLU benchmark under the same finetuning pipeline.
Specifically, as shown in Table 1, the 4-bit LLaMA-7B
model finetuned with IR-QLoRA on the Alpaca dataset
achieves an accuracy of 40.8%, significantly surpassing the
model obtained with QLoRA at 38.4%. This outstanding
trend continues in larger LLaMA-13B and LLaMA-30B

Table 1: Accuracy (%) comparison of LLaMA on the
MMLU finetuned on the Alpaca dataset

Method #Bit MMLU

Hums. STEM Social Other Avg.

LLaMA-7B 16 33.3 29.8 37.8 38.0 34.6
PEQA 4 34.9 28.9 37.5 40.1 34.8
NormalFloat 4 33.1 30.6 38.8 38.8 35.1
QLoRA w/ GPTQ 4 33.8 31.3 37.4 42.2 36.0
QLoRA 4 36.1 31.9 42.0 44.5 38.4
QA-LoRA 4 36.6 32.4 44.8 44.9 39.4
IR-QLoRA 4 38.6 34.6 45.2 45.5 40.8

LLaMA-13B 16 40.6 36.7 48.9 48.0 43.3
NormalFloat 4 43.0 34.5 51.8 51.4 45.0
PEQA 4 43.0 37.7 53.6 49.0 45.0
QLoRA 4 45.4 37.4 55.7 54.3 48.0
QLoRA w/ GPTQ 4 48.4 38.3 54.9 55.2 49.2
QA-LoRA 4 48.4 38.3 54.9 55.2 49.2
IR-QLoRA 4 47.2 39.0 56.5 55.0 49.3

LLaMA-30B 16 56.2 45.9 67.1 63.9 58.2
NormalFloat 4 55.3 44.7 66.2 63.3 57.3
QLoRA 4 55.4 46.0 66.4 63.6 57.7
QLoRA w/ GPTQ 4 55.8 46.4 67.0 64.0 58.1
QA-LoRA 4 55.8 46.4 67.0 64.0 58.1
IR-QLoRA 4 56.7 46.7 66.5 63.2 58.2

LLaMA-65B 16 61.4 51.9 73.6 67.6 63.4
QA-LoRA 4 60.8 50.5 72.5 66.7 62.5
NormalFloat 4 60.7 52.3 72.6 67.3 63.0
QLoRA w/ GPTQ 4 60.4 52.5 73.0 67.2 63.0
QLoRA 4 60.3 52.7 72.9 67.4 63.1
IR-QLoRA 4 60.1 50.1 74.4 68.7 63.1

models, where IR-QLoRA exceeds the baseline by 1.3%,
0.5%, respectively. Compared to QLoRA with GPTQ and
SOTA QA-LoRA using integer quantization, our method
consistently performs better across various settings, with
a notable advantage of 1.4% even on LLaMA-7B. We fur-
ther provide results for variants of the IR-QLoRA integer
quantizer in Section 4.3 below to demonstrate the robust im-
provement of our techniques in IR-QLoRA across different
quantizers.

Table 2 presents the results obtained using Flan v2 (Longpre
et al., 2023) as the finetuning dataset. Similar to the results
on the Alpaca dataset, IR-QLoRA consistently achieves
optimal results and outperforms SOTA methods across var-
ious settings, and even improves performance after fine-
tuning with this dataset. For instance, the comparison of
IR-QLoRA results on LLaMA-7B is Alpaca 47.4% vs. Flan
v2 40.8%, and the average improvement of IR-QLoRA over
QLoRA across various sizes of LLaMA is 1.25%. This indi-
cates that IR-QLoRA consistently provides stable benefits
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Table 2: Accuracy (%) comparison of LLaMA on the
MMLU finetuned on the Flan v2 dataset

Method #Bit MMLU

Hums. STEM Social Other Avg.

LLaMA-7B 16 33.3 29.8 37.8 38.0 34.6
NormalFloat 4 33.1 30.6 38.8 38.8 35.1
QLoRA w/ GPTQ 4 33.8 31.3 37.4 42.2 36.0
QLoRA 4 41.4 35.0 49.8 52.0 44.3
QA-LoRA 4 43.9 38.0 54.3 53.0 47.0
IR-QLoRA 4 44.2 39.3 54.5 52.9 47.4

LLaMA-13B 16 40.6 36.7 48.9 48.0 43.3
NormalFloat 4 43.0 34.5 51.8 51.4 45.0
QLoRA w/ GPTQ 4 48.4 38.3 54.9 55.2 49.2
QLoRA 4 49.9 40.1 60.2 57.9 51.9
QA-LoRA 4 50.0 41.5 60.5 58.4 52.4
IR-QLoRA 4 49.2 41.2 62.1 59.2 52.6

LLaMA-30B 16 56.2 45.9 67.1 63.9 58.2
NormalFloat 4 55.3 44.7 66.2 63.3 57.3
QLoRA w/ GPTQ 4 55.8 46.4 67.0 64.0 58.1
QLoRA 4 57.2 48.6 69.8 65.2 60.0
QA-LoRA 4 57.9 48.8 71.0 65.5 60.6
IR-QLoRA 4 58.1 49.4 70.7 65.8 60.8

LLaMA-65B 16 61.4 51.9 73.6 67.6 63.4
NormalFloat 4 60.7 52.3 72.6 67.3 63.0
QLoRA w/ GPTQ 4 60.4 52.5 73.0 67.2 63.0
QLoRA 4 59.8 52.9 75.0 69.6 63.9
QA-LoRA 4 57.6 51.1 73.9 67.4 62.1
IR-QLoRA 4 61.6 52.0 75.6 68.9 64.3

when using different finetuning datasets.

In addition, we conduct the accuracy comparison on the
recently proposed LLaMA2, demonstrating the generaliza-
tion performance of the proposed IR-QLoRA across LLM
families. Specifically, we applied IR-QLoRA to the 7B and
13B models of LLaMA2 and compared their evaluation re-
sults on the MMLU benchmark with the QA-LoRA method,
which currently holds SOTA performance. The results in
Table 3 show that our method not only achieved 2.7% per-
formance improvement but also demonstrated advantages in
almost every individual metric on LLaMA2-7B. These re-
sults indicate that IR-QLoRA exhibits strong generalization
across different LLM families.

4.2. Ablation Study

To reveal the effectiveness of techniques in the proposed IR-
QLoRA on accuracy and efficiency, we conduct extensive
ablation studies for 4-bit LLaMA-7B on MMLU.

Accuracy Ablation. Figure 4 illustrates the entropy of quan-
tized weights with ICQ is constantly higher than the vanilla

Table 3: Accuracy (%) comparison of LLaMA2 on MMLU

Method Dataset#Bit MMLU

Hums.STEMSocialOtherAvg.

LLaMA2-7B - 16 43.0 36.4 51.4 52.2 45.5
NormalFloat - 4 42.0 35.9 51.0 51.4 44.8
QA-LoRA Alpaca 4 42.1 34.4 49.1 50.3 43.9
IR-QLoRA Alpaca 4 43.4 36.8 51.9 53.6 46.2
QA-LoRA Flan v2 4 48.4 41.4 59.4 58.6 51.7
IR-QLoRA Flan v2 4 49.2 41.6 60.2 58.0 52.0

LLaMA2-13B - 16 53.3 44.1 63.3 61.0 55.3
NormalFloat - 4 52.2 44.1 62.3 60.8 54.7
QA-LoRA Alpaca 4 48.0 43.0 59.7 57.4 51.7
IR-QLoRA Alpaca 4 51.9 43.9 61.9 60.4 54.4
QA-LoRA Flan v2 4 52.9 44.8 65.9 64.0 56.6
IR-QLoRA Flan v2 4 53.1 45.6 64.9 63.8 56.5

Figure 4: Entropy of linear projections in LLaMA-7B

QLoRA across different layers. This indicates that ICQ
effectively enhances the mutual information between quan-
tized weights of LLMs and original counterparts, thereby
reducing information loss and producing a 1.9% accuracy
gain, as Table 4 shows. We also conducted different con-
trolled experiments to illustrate the effectiveness of the IEC.
Firstly, we apply the IEC directly to Vanilla, resulting in
1.8% enhancements, as indicated by the results in Table 4.
Then we conduct in-depth observations, applying IEC on
the first and latter sub-units respectively, both of which
lead to improvements, (IEC (U1) 1.0% vs. IEC (U2) 1.3%).
Moreover, when ICQ and IEC are combined, their syner-
gistic effect surpasses individual contributions, pushing the
quantized model to achieve up to 40.8% accuracy.

We also present the performances of the quantized LLMs
solely with our proposed ICQ in IR-QLoRA without LoRA
and fine-tuning, including the detailed accuracy in the
MMLU benchmark and the average information entropy
of quantized LLMs. As Table 5 shows, ICQ can solely
improve the entropy of quantized weight in LLMs even
without finetuning while contributing significantly to the
experiment results compared to NormalFloat quantization
(average accuracy increases by 0.5%). We also compare the
average information entropy between quantized LLM with
and without our ICQ. With the proposed ICQ of IR-QLoRA,
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Table 4: Accuracy (%) ablation on MMLU

Method #Bit MMLU

Hums. STEM Social Other Avg.

LLaMA-7B 16 33.3 29.8 37.8 38.0 34.6
Vanilla 4 36.1 31.9 42.0 44.5 38.4
ICQ 4 37.9 33.6 43.9 46.7 40.3
IEC (U1) 4 37.9 31.9 43.4 44.8 39.4
IEC (U2) 4 38.0 32.3 43.6 45.1 39.7
IEC 4 38.3 33.0 44.5 45.7 40.2
IR-QLoRA 4 38.6 34.6 45.2 45.5 40.8

1 ICQ and IEC denote the vanilla QLoRA with ICQ and IEC,
and IR-QLoRA uses both of them. IEC (U1) and IEC (U2)
denote the further ablation for IEC in the first or latter LoRA
sub-units

Table 5: Accuracy (%) ablation on MMLU for ICQ without
LoRA and fine-tuning

Method #Bit Hums. STEM Social Other Avg. Ent.

LLaMA-7B 16 33.3 29.8 37.8 38.0 34.6 /
NormalFloat 4 33.1 30.6 38.8 38.8 35.1 3.67
ICQ 4 33.6 31.7 39.6 38.2 35.6 3.74

the average entropy increases by 0.07, which means a signifi-
cant improvement of the information retention for quantized
weights in LLMs, proving the accuracy improvement of
ICQ comes from its motivation of information retention.

Efficiency Ablation. Table 6 demonstrates that the pro-
posed ICQ and IEC techniques impose little additional stor-
age and training overhead. For ICQ, the added parameters
are only equivalent to the quantized scaling factor, and dou-
ble quantization is applied to reduce storage further. There-
fore, the additional storage introduced by ICQ is minor,
increasing only by 2.04% on the 4-bit LLaMA-7B. The op-
timization process for τ also adds only a negligible amount
of training time (e.g.0.46% for LLamA-7B and 0.31% for
LLaMA-13B). Furthermore, this additional time is exclu-
sively required for the initial optimization during training
and does not result in increased inference time. IEC just
introduces 2 additional parameters per layer, which can be
negligible in the whole model. In the case of IR-QLoRA,
our ICQ and IEC significantly enhance the accuracy per-
formance of quantized LLMs with little additional storage
increase. The ablation studies present the effectiveness and
efficiency of ICQ and IEC, showcasing their strong capabil-
ities in constructing accurate and efficient LLMs.

As for the fine-tuning efficiency, the additional time incurred
by IEC can be considered negligible theoretically, whereas
the increased fine-tuning time due to ICQ depends on the
range set during the search process. The larger the range and
the finer the granularity, the longer the search process will

Table 6: Efficiency ablation on the different sizes of LLaMA

Method #Bit #Params(GB) Time(h)

7B 13B 7B 13B

LLaMA 16 12.55 24.24 - -
Vanilla 4 2.34 4.13 15.33 26.18
ICQ 4 2.39 4.22 15.40 26.26
IEC 4 2.34 4.13 15.33 26.18
IR-QLoRA 4 2.39 4.22 15.40 26.26

take. We represented the additional fine-tuning time using
the default setting (λ = 0.1, n = 100) in Table 7, where the
original fine-tuning time is the time used for baseline fine-
tuning, and the additional fine-tuning time is the additional
time used by IR-QLoRA fine-tuning. Compared with the
original fine-tuning time, the additional fine-tuning time
is only up to 0.84%, which is extremely low additional
overhead.

4.3. Analysis and Discussion

IR-QLoRA on More Evaluation Benchmark. We present
the 0-shot results of the CommonsenseQA benchmark in Ta-
ble 8. Similar to the phenomenon on the MMLU benchmark,
our IR-QLoRA consistently maintains the best average ac-
curacy for LLaMA-7B on the CommonsenseQA benchmark
compared to SOTA methods, and also significantly improves
the effectiveness in the majority of sub-items. More evalua-
tion results are presented in Appendix C.3.

IR-QLoRA under Ultra-low Bit-width. We have evalu-
ated and compared the proposed IR-QLoRA under ultra-low
bit-width. Specifically, we employed the quantization meth-
ods from QLoRA (Dettmers et al., 2023) and LoftQ (Li
et al., 2023), following the percentile quantization approach
to construct NF2 and NF3 quantization. Additionally, we ad-
hered to the 2-bit and 3-bit integer quantization results from
QA-LoRA and QLoRA with GPTQ as presented in (Xu
et al., 2023b). Table 9 demonstrates that as the quantization
bit-width decreases, the performance of the baseline QLoRA
sharply declines, to the extent that its performance in the 2-
bit scenario is similar to random. In contrast, our IR-QLoRA
exhibits superior performance, with only a 0.9% accuracy
difference compared to the 16-bit counterpart when fine-
tuning a 2-bit model on the Flan v2 dataset. These results
strongly indicate the competitiveness of our IR-QLoRA in
the realm of ultra-low bit-width. The quantization values
for NF quantization are presented in Appendix B.2.

IR-QLoRA with Integer Quantizer. We demonstrate the
strong generality of the technology in IR-QLoRA across dif-
ferent quantization frameworks and present variants based
on QA-LoRA as the baseline. In this variant, ICQ performs
searching for the zero point and determines it along with the

8
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Table 7: Additional fine-tuning time (h) for different sizes of LLaMA

Model LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B

Original Training Time (h) 15.40 26.26 43.07 119.38
Additional Training Time (h) 0.07 0.08 0.36 0.41

Table 8: Accuracy (%) comparison on the Commonsense QA datasets

Method #Bit CommonsenseQA

HellaSwag PIQA WinoGrande ARC-e ARC-c BoolQ OBQA Avg.

LLaMA-7B 16 56.3 78.2 67.1 67.3 38.2 72.9 28.4 58.3
NormalFloat 4 56.7 78.7 70.6 75.7 41.6 74.7 33.2 61.6
QLoRA w/ GPTQ 4 57.4 77.6 66.2 70.9 41.8 73.5 31.2 59.8
QLoRA 4 61.8 78.1 68.4 75.8 43.6 73.7 32.8 62.0
QA-LoRA 4 58.6 78.0 66.9 71.2 43.9 79.9 34.0 61.8
IR-QLoRA 4 54.7 78.8 72.6 76.6 45.1 80.6 37.2 63.7

Table 9: Accuracy (%) comparison under 2-3 bits on MMLU

Method Data #Bit MMLU

Hums.STEMSocialOtherAvg.

LLaMA-7B - 16 33.3 29.8 37.8 38.0 34.6

NormalFloat - 3 30.5 29.9 34.8 34.9 32.3
QLoRA w/ GPTQ Alpaca 3 31.6 30.1 35.6 39.8 34.0
QLoRA Alpaca 3 35.8 32.1 40.7 43.1 37.8
QA-LoRA Alpaca 3 35.6 30.5 41.5 42.7 37.4
IR-QLoRA Alpaca 3 36.0 33.9 42.2 42.7 38.4
QLoRA w/ GPTQFlan v2 3 32.2 31.7 42.7 42.8 36.9
QLoRA Flan v2 3 41.3 37.1 50.9 49.8 44.5
QA-LoRA Flan v2 3 41.3 36.0 52.8 50.2 44.7
IR-QLoRA Flan v2 3 43.0 37.7 52.3 51.7 45.9

NormalFloat - 2 24.2 28.9 31.1 25.0 26.9
QLoRA w/ GPTQ Alpaca 2 23.4 26.2 26.4 28.4 25.8
QLoRA Alpaca 2 24.0 27.0 27.5 26.7 26.2
QA-LoRA Alpaca 2 27.3 26.1 26.1 30.3 27.5
IR-QLoRA Alpaca 2 26.0 27.8 30.2 28.3 27.8
QLoRA w/ GPTQFlan v2 2 23.9 25.3 26.2 25.3 25.0
QLoRA Flan v2 2 31.8 28.7 36.7 37.7 33.5
QA-LoRA Flan v2 2 31.8 28.1 34.5 38.5 33.2
IR-QLoRA Flan v2 2 31.7 29.4 37.8 36.5 33.7

scaling factor for integer quantizers, while the universality
of IEC for LoRA allows direct application for the QA-LoRA
baseline. As shown in Table 10, experiments reveal a sig-
nificant improvement in accuracy for IR-QLoRA under the
same quantizer form and neural architecture. Furthermore,
we emphasize that due to the zero point carried by inte-
ger quantizers themselves, where the calibration constant
τICQ in our ICQ can be merged, the improvements brought
about by our techniques come at almost zero cost. These
experiments indicate that the techniques in our QA-LoRA
can be effectively integrated into various LoRA-finetuning

Table 10: Comparsion of IR-QLoRA variants on MMLU

Method #Bit MMLU

Hums.STEMSocialOtherAvg.

LLaMA-7B 16 33.3 29.8 37.8 38.0 34.6
QA-LoRA 4 36.6 32.4 44.8 44.9 39.4
IR-QLoRA (QA-LoRA) 4 37.3 32.8 43.8 46.7 39.9

quantization methods for LLMs and bring general benefits.

5. Conclusion
This paper introduces the IR-QLoRA, designed to accu-
rately quantize LLMs with LoRA-finetuning via informa-
tion retention. This framework leverages two key tech-
nologies: statistics-based Information Calibration Quan-
tization, which ensures that the quantized parameters of
the LLM accurately retain the original information; and
finetuning-based Information Elastic Connection, enabling
LoRA to employ elastic representation transformation with
diverse information. Extensive experiments validate that IR-
QLoRA delivers convincing accuracy improvements across
the LLaMA and LLaMA2 families, even with 2-4 bit-widths,
accompanied by a minimal 0.45% increase in time con-
sumption. Remarkably versatile, IR-QLoRA seamlessly
integrates with various quantization frameworks. In a nut-
shell, our IR-QLoRA significantly advances the accuracy of
LoRA-finetuning quantization for LLMs, facilitating practi-
cal deployment in resource-constrained scenarios.
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A. Details about IR-QLoRA
A.1. Details about Related Works

Large Language Models. With the significant development of deep learning (Tao et al., 2021; Wang et al., 2021; Zhao et al.,
2023c; Wu et al., 2024; Tao et al., 2022; Zhao et al., 2024; Tao et al., 2022; Wang et al., 2024; Zhao et al., 2022; Wei et al.,
2020; Zhao et al., 2023b; Wang et al., 2022a; Zhao et al., 2023d), LLMs have demonstrated remarkable proficiency across
diverse natural language understanding tasks and are established as a prominent paradigm in this field (Chang et al., 2023;
Devlin et al., 2018; Zhao et al., 2023a; Huang & Chang, 2022). Recent noteworthy instances of LLMs encompass OpenAI’s
GPT family (Brown et al., 2020) and Meta’s LLaMA and LLaMA2 families (Touvron et al., 2023a;b). Nonetheless, the
exceptional performance of these LLMs is contingent upon extensive parameters and computational resources. Notably,
the PaLM-540B model boasts an impressive 540 billion parameters (Chowdhery et al., 2023), underscoring the substantial
computational demands. This reality poses substantial challenges to deploying LLMs in settings with limited resources.
Consequently, the research of the compression technologies for LLMs has gained prominence as a critical area of research.

Compression of LLMs. Existing compression technologies of LLMs include pruning, distillation, low-rank decomposition,
and low-bit quantization (Ganesh et al., 2021; Zhu et al., 2023; Chitty-Venkata et al., 2023). Pruning removes redundant
parameters in LLMs structurally or unstructuredly (Frantar & Alistarh, 2023; Zhang et al., 2023; Sun et al., 2023). Distillation
enables the compressed student LLMs to learn from intermediate features or predictions of a larger teacher model (Gu et al.,
2023; Huang et al., 2022; Agarwal et al., 2023; Li et al., 2022; Jiang et al., 2023). Low-rank decomposition saves computation
by decomposing the weight of LLMs into smaller matrices with significantly reduced dimensions (Xu et al., 2023a). Different
from the above technologies that mainly reduce the number of parameters (weights and/or activations), quantization aims to
compress the LLMs from 16-bit floating-point to lower bit-widths to mitigate the storage and computation.

Quantization of LLMs. Since compression is from a generic bit-width perspective, quantization has become a popular
method to obtain efficient LLMs (Frantar et al., 2022; Xiao et al., 2023). The most common practice is directly performing
post-training quantization on pre-trained LLMs and optimizing quantizers through calibration (Lin et al., 2023; Lee et al.,
2023; Shao et al., 2023; Dettmers et al., 2022), which usually results in non-negligible degradation. Some quantization-aware
training methods finetune the parameters of quantized LLMs to improve accuracy (Liu et al., 2023b; Kim et al., 2023),
while the computational burden brought is significantly expensive. The LoRA-finetuning quantization of LLMs emerges to
achieve a balanced trade-off between computational cost and accuracy (Dettmers et al., 2023; Xu et al., 2023b; Li et al.,
2023), where LLMs are first quantized and then finetuned with a parameter-efficient LoRA. However, existing quantized
LLMs with LoRA are still far from ideal in accuracy.

A.2. Details about Pipeline

In this section, we demonstrate the application of Information Calibration Quantization (ICQ) and Information Elastic
Connection (IEC) in our IR-QLoRA in detail when we quantizing the LLMs.

Algorithm 1 The weight search process within each block in IR-QLoRA

Input: Block Weight w, hypermeters λ, σ, n
Output: Calibration constant τFP8

1 , τFP16
2

Initialize τ0 = quantile 1
2
(w) ,H∗ = 0

for τ in Linspace(τ0 − λσ, τ0 + λσ, λσ
n ) do

w = w − τ
ŵ = NFk(w/ absmax(w))
Calculate the probability P (qi) of the ŵ taking the value qi

H =
∑2k−1

i=0 P (qi) log2 P (qi)
ifH > H∗ then

Update τ∗ andH∗

end if
end for
τFP8
1 = FP8(τ∗/τFP16

2 ) = FP8(τ∗/ absmax(τ∗))

Pipeline of ICQ. The targets of ICQ are all weights that need to be quantized. In the initial phase, these weights are
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partitioned into distinct blocks according to blocksize B. Thereafter, an optimization process is engaged, aiming to
identify a calibration constant that is optimal for maximizing the entropy of the quantized weights within each block. The
implementation details of the above functions are listed in Algorithm 1.

Note that the quantization of τ is a discretionary choice, contingent upon the preference for either elevated accuracy or
diminished storage requirements. By default, we elect to implement the quantization of τ as a standard protocol.

Besides, in integer quantization like GPTQ (Frantar et al., 2022), the ICQ strategy remains applicable for refining the entropy
profile of quantized weights. This is actualized by the integration of the weights’ entropy into the loss function during the
calibration phase, thereby facilitating precision calibration.

Algorithm 2 The inference process of the linear layer in IR-QLoRA

Input: Input tensor x ∈ Rb×h, original weights w ∈ Ro×h, low-rank paramaters ℓ1 ∈ Rh×r, ℓ2 ∈ Rr×o, parameters
α, β1, β2

Output: Output tensor y ∈ Rb×o

ŵNFk
ICQ , sFP8

1 , sFP16
2 , τFP8

1 , τFP16
2 ← search process for w

ŵFP16
ICQ = ŵNFk

ICQ dequant(sFP8
1 , sFP16

2 ) + dequant(τFP8
1 , τFP16

2 )

y′
ICQ = xŵFP16

ICQ

x′ = U1(x) = xℓ1 + β1
r
h

r∑
i=1

x[(i−1)h
r :ih

r −1]

UIEC(x) = U2(x
′) = x′ℓ2 + β2

r∏
x′[0:r−1]

y = y′
ICQ + αUIEC(x)

Pipeline of IEC. The targets of IEC are specifically focused on the low-rank adaptations added in linear layers. We modified
the forward function of LoRA, and the current implementation of the forward function is shown in Algorithm 2.

The parameters β1 and β2 introduced by the IEC can be integrated into the learned LoRA adapters to avoid additional
inference costs. Specificly, by defining the matrix ℓ̃1 ∈ Rh×r and ℓ̃2 ∈ Rr×o as Eq. (16):

ℓ̃1{i,j} =

{
ℓ1{i,j} + β1

gcd(h,r)
h if ⌊i/ h

gcd(h,r)⌋ = ⌊j/
r

gcd(h,r)⌋,
ℓ1{i,j} otherwise,

ℓ̃2{i,j} =

{
ℓ2{i,j} + β2

gcd(o,r)
r if ⌊i/ r

gcd(o,r)⌋ = ⌊j/
o

gcd(o,r)⌋,
ℓ2{i,j} otherwise,

(16)

where {i, j} is the index of the matrix, and ⌊·⌋ denotes the floor operation.

The function U1(x) and U2(x) can be further redefined, as Eq. (17):

U1(x) = xℓ̃1 = xℓ1 + β1

r
gcd (h,r)∏ gcd (h, r)

h

gcd (h,r)∑
i=1

x[(i−1) h
gcd (h,r)

:i h
gcd (h,r)

−1]

 ,

U2(x) = xℓ̃2 = xℓ2 + β2

o
gcd (o,r)∏ gcd (o, r)

r

gcd (o,r)∑
i=1

x[(i−1) r
gcd(o,r)

:i r
gcd(o,r)

−1]

 .

(17)

To summarize, ICQ and IEC within IR-QLoRA exhibit remarkable generality and both can be seamlessly integrated into any
methods for LoRA-finetuning quantization of LLMs (e.g.QLoRA (Dettmers et al., 2023), QA-LoRA (Xu et al., 2023b)).
Moreover, their implementation incurs minimal overhead.
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B. Experiment Settings
B.1. Models and Datasets

For models, we establish IR-QLoRA upon the LLaMA (Touvron et al., 2023a) and LLaMA2 (Touvron et al., 2023b) families.
Specifically, we finetune the 7B, 13B, 30B, and 65B models of LLaMA and the 7B and 13B models of LLaMA2.

For datasets, we choose Alpaca (Taori et al., 2023) and FLAN v2 (Longpre et al., 2023) as our finetuning datasets. Alpaca
contains 52K instruction-following data generated from text-davinci-003 (GPT 3.5) (Wang et al., 2022b). Flan v2 is a
collection of 1,836 tasks combining the mixture with CoT, Muffin, T0-SF, and NIV2.

B.2. NormalFloat Quantization

Quantile Quantization (Dettmers et al., 2021) is an information-theoretically optimal data type that ensures each quantization
bin has an equal number of values from the input tensor. Essentially, it distributes the data evenly across the available
quantization levels, leading to efficient and balanced utilization of the quantized representation.

Building on Quantile Quantization, NormalFloat (NF) Quantization (Dettmers et al., 2023) introduces the quantization
principle that the weights conform to a zero-centered normal distribution. By converting all weights into a fixed distribution,
their distribution is fully adapted to the range of the specified data type. Then the quantile constant can be calculated.
Following the processing steps in QLoRA (Dettmers et al., 2023), we can get different quantized points according to different
quantized bit widths. Table 11-13 shows the NF quantization for 2-4 bits, respectively. Note that we use symmetrical settings
in NF2 to prevent excessive deviation of information.

Table 11: The exact values of the NormalFloat 2-bit (NF2) data type

Index Value Index Value

0 -1.0 2 0.2525685131549835
1 -0.25256848335266113 3 1.0

Table 12: The exact values of the NormalFloat 3-bit (NF3) data type

Index Value Index Value

0 -1.0 4 0.16093020141124725
1 -0.4786292016506195 5 0.33791524171829224
2 -0.217141792178154 6 0.5626170039176941
3 0.0 7 1.0

Table 13: The exact values of the NormalFloat 4-bit (NF4) data type

Index Value Index Value

0 -1.0 8 0.07958029955625534
1 -0.6961928009986877 9 0.16093020141124725
2 -0.5250730514526367 10 0.24611230194568634
3 -0.39491748809814453 11 0.33791524171829224
4 -0.28444138169288635 12 0.44070982933044434
5 -0.18477343022823334 13 0.5626170039176941
6 -0.09105003625154495 14 0.7229568362236023
7 0.0 15 1.0
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Table 14: Examples for each the evaluation datasets

Dataset Question Answer

MMLU
Which of the following factors is associated with a decreased risk of Alzheimer’s?

B(A) Being African or Hispanic American (B) Eating fish
(C) A lower level of education (D) Being married

HellaSwag
A man is sitting on a roof. he

D(A) is using wrap to wrap a pair of skis. (B) is ripping level tiles off.
(C) is holding a rubik’s cube. (D) starts pulling up roofing on a roof.

PIQA

How do I ready a guinea pig cage for it’s new occupants?

A
(A) Provide the guinea pig with a cage full of a few inches of bedding made of ripped
paper strips, you will also need to supply it with a water bottle and a food dish.
(B) Provide the guinea pig with a cage full of a few inches of bedding made of ripped
jeans material, you will also need to supply it with a water bottle and a food dish.

WinoGrande John moved the couch from the garage to the backyard to create space. The is small. A
(A) garage (B) backyard

ARC-Easy

Which factor will most likely cause a person to develop a fever?
B

(A) a leg muscle relaxing after exercise (B) a bacterial population in the
bloodstream

(C) several viral particles on the skin (D) carbohydrates being digested in the
stomach

ARC-Challenge

George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat? A(A) dry palms (B) wet palms
(C) palms covered with oil (D) palms covered with lotion

BoolQ

Phantom pain sensations are described as perceptions that an individual experiences
relating to a limb or an organ that is not physically part of the body. Limb loss is a
result of either removal by amputation or congenital limb deficiency. However,
phantom limb sensations can also occur following nerve avulsion or spinal cord injury.
Is pain experienced in a missing body part or paralyzed area?

B

(A) True (B) False

OpenBookQA
A magnet will stick to

A(A) a belt buckle (B) a wooden table,
(C) a plastic cup (D) a paper plate

B.3. Evaluation Metrics

Following QLoRA (Dettmers et al., 2023) and QA-LoRA (Xu et al., 2023b), we evaluate language understanding capa-
bilities of the LLMs on Massively Multitask Language Understanding (MMLU) benchmark (Hendrycks et al., 2020) and
commonsense reasoning ability on several Common Sense QA datasets.

MMLU includes 57 language tasks, including humanities (Hums.), STEM, social science, etc. We utilize the MMLU evalua-
tion script and prompts as outlined in (Hendrycks et al., 2021). Common Sense QA datasets includes HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), ARC (Clark et al., 2018), BoolQ (Clark et al.,
2019), and OpenBookQA (Mihaylov et al., 2018). We adopt lm-evalharness (Gao et al., 2023) to produce the Common
Sense QA results. Table 14 provides examples of each evaluation dataset. Given the multiple-choice (MC) nature of these
tasks, accuracy is selected as the primary metric for evaluation.

B.4. Implementation Details

All experiments are conducted on Tesla A100 GPUs. Following (Dettmers et al., 2023), we apply the double quantization
mechanism, and set the block size is 64 for quantization and 256 for double quantization. Regarding LoRA parameters, we
set r = 64, α = 16, and LoRA dropout of 0.1 for models up to 13B and 0.05 for 33B and 65B models. We employ the
paged AdamW optimizer with a beta2 value of 0.999, and a learning rate of 2e-4 for models up to 13B and 1e-4 for 33B and
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(a) Query Linear Projection (b) Value Linear Projection

(c) Output Linear Projection (d) MLP Up Linear Projection

(e) MLP Down Linear Projection (f) MLP Gate Linear Projection

Figure 5: Entropy comparison of linear projections in 4-bit LLaMA-7B

65B models., limiting the maximum gradient norm to 0.3 and adopting a constant learning rate strategy. Fine-tuning was
executed for 10,000 and 20,000 steps on the Alpaca and FLAN v2 datasets, respectively, utilizing a batch size 16.

C. Experiment Results
C.1. Weight Visualization

In addition to the linear projection for Key mentioned earlier, we also compute the entropy of quantized weights in various
other types of layers, as illustrated in Figure 5. This observation confirms that ICQ effectively boosts the information
entropy of weights and augments the mutual information between the weights of quantized and original LLMs, consequently
alleviating the constraints on representational capacity imposed by quantization.

C.2. Efficiency Ablation

We counted the number of parameters and training time for different sizes of LLaMA, as shown in Table 15. It is evident
that IEC introduces a minimal number of additional parameters and does not increase the training time. In the case of ICQ, a
small number of extra parameters are introduced, and the increase in training time is only incurred once, as the results can
be efficiently cached after ICQ is applied. Thus, IR-QLoRA maintains nearly the same efficiency as Vanilla.

C.3. Case Study

This section offers a qualitative analysis that contrasts the performance of our IR-QLoRA model with that of QLoRA within
the domain of LLM quantization. Utilizing prompts from the Stanford Alpaca dataset (Taori et al., 2023) for text generation,
we indicate definitive answers in blue and unexpected responses in red for clarity. Our qualitative assessment accentuates the
enhanced capabilities of IR-QLoRA in intricate understanding and text generation quality, compared to the QLoRA baseline.
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Table 15: Efficiency ablation on the different sizes of LLaMA

Method #Bit #Params(GB) Time(h)

7B 13B 30B 65B 7B 13B 30B 65B

LLaMA 16 12.55 24.24 60.59 121.60 - - - -
Vanilla 4 2.34 4.13 9.41 18.02 15.33 26.18 42.71 118.97
ICQ 4 2.39 4.22 9.65 18.50 15.40 26.26 43.07 119.38
IEC 4 2.34 4.13 9.41 18.02 15.33 26.18 42.71 118.97
IR-QLoRA 4 2.39 4.22 9.65 18.50 15.40 26.26 43.07 119.38

Cognitive Reasoning. The cognitive reasoning aptitude of IR-QLoRA has shown notable advancement. When tasked with
challenges that require logical deduction and computational acumen, such as those presented in arithmetic case studies and
family relationship inference, as illustrated in Table 16, IR-QLoRA demonstrates a commendable level of proficiency. These
results underscore its inherent reasoning capabilities and shed light on the potential for cognitive reasoning in quantized,
smaller-scale models like QLoRA-7B. Both IR-QLoRA-7B and IR-QLoRA-13B provided correct answers and demonstrated
a capacity to explain their reasoning to a certain degree. In contrast, QLoRA-7B failed to answer correctly.

Text Generation Quality. IR-QLoRA demonstrates substantial improvements in the coherence and fluency of generated
text. When tasked with composing narratives for various scenarios, from mundane daily activities to complex extraterrestrial
interactions, as cataloged in Table 16, IR-QLoRA invariably outshines QLoRA. Both IR-QLoRA-7B and IR-QLoRA-13B
demonstrate a remarkable ability to generate narratives with consistent themes and create more comprehensive stories. In
contrast, QLoRA-7B often falters by misinterpreting the subject matter or producing narratives that lack completeness.
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Table 16: Case study for text generation outputs

[1] Input: Alice has 15 apples. She buys 10 more from the market and then gives 7 apples to her friend. How many
apples does Alice have now?
Answer: Alice have 18 apples now.

Model Output
QLoRA-7B 22
IR-QLoRA-7B (ours) Alice now has 18 apples.

QLoRA-13B Alice had 15 apples. Alice buys 10 more apples. Alice has 15 + 10 = 25 apples. Alice gives 7
apples to her friend. Alice has 25 - 7 = 18 apples.

IR-QLoRA-13B (ours)

Alice started with 15 apples and then bought 10 apples from the market, so her total apples
inventory is now 25 apples (15 + 10 = 25). Then she gave 7 apples to her friend, so her total
apples inventory is now 18 apples (25 - 7 = 18). Alice now has 18 apples.

[2] Input: If Thomas is Joseph’s son, what is Thomas to Joseph’s father?
Answer: Thomas is Joseph’s father’s grandson

Model Output
QLoRA-7B nephew
IR-QLoRA-7B (ours) Thomas is grandson of Joseph’s father.
QLoRA-13B grandson
IR-QLoRA-13B (ours) grandson
[3] Input: Imagine you are a historian living in ancient Rome, describe a day in your life.

Model Output

QLoRA-7B
I wake up in my bed and eat breakfast. I put on my clothes and walk to school. I take my
lunch and sit in my desk. We have a history lesson and a math lesson. I walk home and play
with my friends.

IR-QLoRA-7B (ours)

My day begins with waking up early to tend to my animals. I then head to the forum to listen
to the debates between my fellow Romans. Afterwards, I might head to the library to
research some more, before I finally return home to my family in the evening.

QLoRA-13B

You wake up in your apartment in the center of the city. You roll out of your bed and stretch
your arms and legs. You yawn and open your eyes. You sit up and put your feet on the floor.
You get up and walk to the bathroom. You wash your face, your hands and your body. You
then brush your teeth. You return to your bedroom and get dressed in your clothes. You then
put on your shoes and walk out of your apartment.

IR-QLoRA-13B (ours)

As a historian living in ancient Rome, I would wake up in the morning when my slave would
bring me coffee. Then I would go to the library and read ancient texts to see how Rome
developed over time. Later, I would visit a slave market where I would buy my slaves. Then,
I went to bed.

[4] Input: Tell a story set on an alien planet, featuring an Earth astronaut and a representative of an alien civilization.
Model Output

QLoRA-7B This is an alien planet that has been invaded by an alien civilization.

IR-QLoRA-7B (ours)

Earth astronaut John Smith landed on the alien planet of Tarsis. The planet Tarsis was
inhabited by an alien civilization called the Ranax, who greeted Smith in a traditional
Ranaxian ceremony. Smith and his Ranaxian counterpart, Kxat, bonded over their shared
love of exploring space. Together, they set off on an adventure to uncover the mysteries of
Tarsis, learning more about each other’s cultures and planet along the way.

QLoRA-13B As the spacecraft came to a stop on a distant planet, the astronauts got out and began to
explore.

IR-QLoRA-13B (ours)

Earth astronaut Tom Jones landed on Mars and saw a Martian spaceship landing in front of
him. Tom Jones approached the Martian spaceship and stepped inside. Tom Jones met a
Martian representative named Martian Smith. Tom Jones asked Martian Smith ”Are there
any intelligent life forms on Mars?” Martian Smith replied ”Yes, there are intelligent life
forms on Mars.” Tom Jones asked Martian Smith ”How intelligent are these life forms?”
Martian Smith replied ”These life forms are very intelligent, they are more intelligent than
any life form on Earth.”
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