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Abstract

The goal-reaching tasks with safety constraints
are common control problems in real world, such
as intelligent driving and robot manipulation. The
difficulty of this kind of problem comes from
the exploration termination caused by safety con-
straints and the sparse rewards caused by goals.
The existing safe RL avoids unsafe exploration by
restricting the search space to a feasible region,
the essence of which is the pruning of the search
space. However, there are still many ineffective
explorations in the feasible region because of the
ignorance of the goals. Our approach considers
both safety and goals; the policy space pruning is
achieved by a function called feasible reachable
function, which describes whether there is a pol-
icy to make the agent safely reach the goals in the
finite time domain. This function naturally sat-
isfies the self-consistent condition and the risky
Bellman equation, which can be solved by the
fixed point iteration method. On this basis, we
propose feasible reachable policy iteration (FRPI),
which is divided into three steps: policy evalua-
tion, region expansion, and policy improvement.
In the region expansion step, by using the infor-
mation of agent to reach the goals, the conver-
gence of the feasible region is accelerated, and
simultaneously a smaller feasible reachable re-
gion is identified. The experimental results verify
the effectiveness of the proposed FR function in
both improving the convergence speed of better
or comparable performance without sacrificing
safety and identifying a smaller policy space with
higher sample efficiency.
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1. Introduction
The goal-reaching tasks with safety constraints are a very
common class of control problem in real-world applica-
tions of Reinforcement Learning (RL). (Tessler et al., 2018;
Andrychowicz et al., 2020; Altman, 2021; Duan et al., 2024).
In many safe exploration problems, the existence of safety
leads to the exploration being terminated when the con-
straint is violated, and the existence of goals leads to the
sparsity of rewards, both of which lead to the invalidity
of many exploratory samples. We urgently need an effi-
cient sample solution to solve the exploration difficulties of
constrained goal-reaching problems.

Safe reinforcement learning (Safe RL) is designed to solve
the optimal control problem (OCP) with safety constraint
(Achiam et al., 2017; Tessler et al., 2019; Yang et al., 2023b).
The safe RL expects to find an optimal feasible policy, where
feasibility means the agent will never violate constraint
during the trajectories.

The mainstream safe RL algorithms constrains the policy
optimization process to the feasible region, which solves
the oscillation problem of the Lagrangian method (Liu &
Tomizuka, 2014; Achiam et al., 2017; Li, 2023; Yu et al.,
2022). The essence of a feasible region is pruning the policy
search space. However, it takes quite a long time to iden-
tify the feasible region through fixed point iteration, which
involves feasibility evaluation of the infinite time domain,
resulting in slow convergence. Besides, although all states
in feasible regions meet the safety constraints, a consider-
able part of them cannot reach the goal in the finite time
domain, which causes inefficiency of exploration. This part
of the region can be further pruned to speed up the training
convergence. How to further prune the feasible region and
improve the sample efficiency of safe RL algorithms is still
an open problem.

From the analysis above, only a tiny subset of state space
is valuable to explore, where the target state can be reached
in a finite horizon, and the safety constraints can be persis-
tently satisfied. Based on this idea, the trajectories generated
by policy in state space can be divided into four categories:
1) trajectories that successfully reach the target set without
violating constraints, 2) trajectories that can reach the tar-
get set but violate constraints, 3) trajectories that can never
reach the target set but never violate the constraints, and 4)
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Figure 1. The four categories of trajectories in state space. We
focus on the trajectories belonging to feasible reachable region.

trajectories that neither reach the target nor guarantee per-
sistent constraint satisfaction. We denote the first category
as feasible reachable, the second as infeasible, the third as
unreachable, and the fourth as both infeasible and unreach-
able. As shown in Fig. 1 , only the trajectories belonging
to the feasible reachable region (FR region) are needed. To
this end, we propose a feasible reachable function that iden-
tifies the feasible reachable set of target space and restricts
environmental exploration and policy improvement to this
set. Our main contributions are:

• We propose a novel feasible reachable function (FR
function), which describes whether there is a policy
to safely reach the target set. Our method takes both
feasibility related to safety constraints and reachability
related to goals into account, identifying the FR region
to limit exploration. Our function naturally satisfies
the self-consistent condition and the risky Bellman
equation, which enables it to be solved by the fixed
point iteration method.

• We propose a safe RL algorithm called feasible reach-
able policy iteration (FRPI), which uses the FR func-
tion to restrict policy improvement in the FR region
to avoid inefficient exploration that is neither feasi-
ble nor reachable. The algorithm is divided into three
steps: policy evaluation, region expansion, and policy
improvement. In the region expansion step, the con-
vergence of the feasible region is accelerated by using
goal-reachability information, and simultaneously a
smaller feasible reachable region is identified.

• We test our algorithm on the frozen lake (gym) envi-
ronment, two classical control tasks, and the safety
gym benchmark. The experimental results verify that
our algorithm achieves higher sample efficiency than
baselines while maintaining better or comparable per-
formance without sacrificing safety. Further analysis
shows that the FR function can effectively accelerate
policy space pruning, and identify a smaller FR region
compared with existing methods.

2. Related Work
Safe RL problems have gained growing attention due to the
safety requirements in the practical applications of RL. Safe
RL is usually formulated as a constrained Markov decision
process (Brunke et al., 2022; Ma et al., 2022). Generally,
we divide the safe RL approaches into two categories (Li,
2023), direct and indirect methods. In the first category,
the constrained OCP is viewed as a constrained optimiza-
tion problem, and its optimum must be found by proper
constrained optimization algorithms. In the second cate-
gory, the constrained Bellman equation should be built first,
which is the sufficient and necessary optimality condition,
and its solution is then calculated as the optimal policy.

Direct Methods solve constrained OCPs using constrained
optimization algorithms: penalty function methods (Guan
et al., 2022), Lagrangian methods (Chow et al., 2018a), trust-
region methods (Achiam et al., 2017; Schulman et al., 2015),
other approaches such as conservative updates (Bharadhwaj
et al., 2020) and so on. These algorithms expect discounted
accumulative costs below a hand-crafted threshold but suffer
from unstable training processes and constant constraint vi-
olations. For example, the Lagrangian methods have violent
oscillation because the Lagrange multiplier does not provide
any guarantee on rewards or costs of intermediate policies
(Peng et al., 2022).

Indirect Methods usually explicitly learn a feasible region
(Liu & Tomizuka, 2014; Ames et al., 2019) to identify the
feasibility of policy, which solves the oscillation problem of
the direct method. Feasible region are usually represented
by safety certificates, for example, energy functions such
as control barrier function (CBF) (Luo & Ma, 2021; Ames
et al., 2019; Yang et al., 2023b), Lyapunov functions (Chow
et al., 2018b; Richards et al., 2018; Chang et al., 2019),
safety index (SI) (Liu & Tomizuka, 2014; Ma et al., 2022),
other certificates like Hamilton-Jacobi reachability function
(Chen et al., 2021; Yu et al., 2022; Zheng et al., 2024)
and constraint decay function (CDF) (Yang et al., 2023d;c).
(Yang et al., 2021) introduces the WCSAC and optimizes
policies under the premise that their worst-case performance
satisfies the constraints. (Yang et al., 2023a) introduces the
distributional safety critic module and points out that sample
efficiency is particularly crucial in safety-critical problems,
and off-policy RL is a natural approach to solving safe RL
problems.

The core idea of energy function is that the safe energy of a
dynamical system dissipates when it is approaching the safe
region. The main limitation of exiting energy functions is
that they are too conservative to find the maximum feasible
region. The recent indirect methods try to learn one policy
tackling safety and optimality simultaneously. (Hsu et al.,
2021) introduces the EFPPO to solve the stabilize-avoid
problem. (Yu et al., 2022) introduces the RAC, which re-
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alizes rigorous zero-violations of cost. (So & Fan, 2023)
firstly introduces the reach-avoid Q-learning algorithm to
solve the RA problem. (Yang et al., 2023d) introduces CDF
and find the largest feasible region. Different from the above
work, we focus on getting both the largest feasible region
and best sample efficiency simultaneously by proper prun-
ing of policy space, which makes the policy iteration more
efficient.

3. Preliminary
3.1. Problem formulation

We consider a deterministic Markov decision process (MDP)
specified by a tuple (X ,U , f, r, γ, dinit), where X ⊆ Rn is
the state space, U ⊆ Rm is the action space, f : X×U → X
is the dynamics model, r : X × U → R is the reward
function, 0 < γ < 1 is the discount factor, and dinit is the
initial state distribution. The goal-reaching problems have a
target set, which is a subset of state space, denoted as Xgoal.

Based on the target set, we can give the math formulation
of goal-reaching problem as followed:

max
π

Ex0∼dinit(x)

{ ∞∑
t=0

γtr(xt, ut)

}
,

s.t. h(xt) ≤ 0, t = 0, 1, . . . , T,

g(xT ) = 1,

T < C,

(1)

where C ∈ N+, h : X → R, is the constraint function.
Our aim is to find the optimal feasible reachable policy π :
X → U , which maximizes the expected cumulative rewards.
Reachability is specified through goal identification function
g : X → {0, 1} ,

g(x) =

{
1 x ∈ Xgoal,

0 x /∈ Xgoal.

In safe RL, we focus on the persistent safety (Li, 2023; Yu
et al., 2022; Yang et al., 2023d) instead of the temporary
safety . In this regard, the feasible set is defined as the set of
states which can be safe persistently. The detail is seen in
Appendix A.1. However, only exploring the feasible region
may cause the agent never to reach the target set forever, so
we combine the feasibility and reachability to identify the
feasible reachable region where the sample is efficient for
agent.

4. Feasible Reachable Region
In this section, we discuss the relationship between feasible
regions and reachable regions, as shown in Fig. 2.

State Space

Feasible Region

Reachable Region

Constrained Set

FR 

Region

F(x)>0

Figure 2. The intuitive relationship among the state space. Con-
strained set, feasible region, reachable region, feasible reachable
region (FR Region). X∗

FR ⊆ (X∗
feas ∩X∗

reach).

Definition 4.1 (Reachable Region).

1) A state x is reachable if there exists a policy π and a time
T < C, such that g(xT ) = 1, where the successive state is
sampled by the policy π.

2) A policy is reachable in state x if there exists a time
T < C such that g(xT ) = 1.

3) The reachable region of π, denoted as Xπ
reach, is the set

of all states in which π is reachable. The unreachable region
of π is (Xπ

reach)
c = X \Xπ

reach.

4) The maximum reachable region, denoted as X∗
reach, is

the set of all reachable states. The unreachable region is
(X∗

reach)
c = X \X∗

reach.

Based on this, the definition of feasible reachable region
and feasible reachability identification function are given as
follows.

Definition 4.2 (Feasible Reachable Region).

1) A state is feasible reachable if there exists a policy π
and a time T < C, such that g(xT ) = 1, and h(xt) ≤ 0,
t = 0, 1, . . . , T

2) The feasible reachable region, denoted as Xπ
FR, is the set

of all states in π is feasible reachable. The feasible reachable
region under policy is: Xπ

FR ≜ (Xπ
feas ∩Xπ

reach).

3) The maximum feasible reachable region, denoted as X∗
FR,

is the set of all feasible reachable states, i.e., X∗
FR ≜ ∪

π
Xπ

FR.

We have X∗
FR ⊆ (X∗

feas ∩X∗
reach) hold. (The proof can be

found in Appendix A.2)
Notice: In this paper, we denote X∗

FR as X∗, and denote
Xπ

FR as Xπ for simplicity.
We require that any initial state sampled from dinit is feasible
reachable so that problem (1) has a solution. The maximum
feasible reachable region is the largest area where the policy
can reach the target set without constraint violations in an
infinite horizon.
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Figure 3. The FRPI Algorithm is divided into three steps: policy evaluation, region expansion, and policy improvement. We update
scenery and critic simultaneously in policy evaluation and make the FR region expansion. Finally, we make the region-wise policy
improvement in the FR region.

Directly solving feasibility and reachability problems is still
challenging because it has a great many states in trajectories
to identify. However, the feasible reachable function aggre-
gates the awkwardly many state evaluations into a single
one, making the problem tractable. We define the feasible
reachable function as follows.

Definition 4.3 (Feasible Reachability Identification). A
function Fπ : X → R is a feasible reachability identifi-
cation function of a policy π if ∀x ∈ X ,

Fπ(x) > 0 ⇐⇒ h(xt) ≤ 0, g(xT ) = 1,

where x0 = x and {xt}Tt=1 are sampled by π.

The specific formulation of this concept will be detailed
in the next section. In particular, the concepts of FR ac-
tion and FR policy are important for understanding feasible
reachable, which is defined as follows.

Definition 4.4 (FR Action and FR Policy).

1) Feasible reachable action set under policy
Uπ = {u | f(x, u) ∈ Xπ, x ∈ Xπ}

2) Maximum feasible reachable action set
U∗ ≜ {u | f(x, u) ∈ X∗, x ∈ X∗}

3) Feasible reachable policy set is defined as follows:
Π∗ ≜ {π | u = π(x), u ∈ U∗, x ∈ X∗}

5. Method and Theoretical Analysis
In this section, we propose our feasible reachable policy
iteration (FRPI), a highly sample efficient algorithm. First,
we introduce a feasible reachable function (FR function),
which naturally satisfies the self-consistent condition and
the risky Bellman equation. Then, we detail the region-wise
policy improvement and prove the region expansion. Finally,

we present the FRPI algorithm and prove the convergence
of algorithm. As shown in Fig. 3, our algorithm contains
three modules to train: Actor, Critic, and Scenery. In FRPI,
we train these modules in three phases: policy evaluation,
region identification, and region-wise policy improvement
(region expansion and policy improvement). At the start
of training, we first collect data containing four sorts of
trajectories, in which only the feasible reachable trajectory
is desired. Our algorithm is built in an off-policy context
to obtain higher sample efficiency. From the perspective of
algorithm update, it can be divided into the following steps:

1. Policy Evaluation. We update the critic module, the
Q-function, by the Q self-consistency condition, which can
give the expected return of the current policy.

2. FR Region Identification. We update the scenery mod-
ule, the FR function, by introducing the FR self-consistency
condition, which can identify the feasible reachable region
of the current policy.

3. FR Region Expansion and Policy Improvement. We
update the actor module by region-wise policy improve-
ment. For the state outside the FR region, we maximize the
scenery function to get a more feasible policy with a greater
feasible reachable region; for the state inside the region, we
maximize the value function to get a higher return policy.

Convergence of FRPI requires convergence of both regions
and policies. The core step is the learning process of re-
gion, which contains both region identification and region
expansion. In the FR region identification, we fix the policy
function and update the FR function by feasible reachable
self-consistent condition. In the FR region expansion, we
fixed the scenery function to find a better policy by pro-
moting feasible reachability outside the region. Once the
FR region is given, we can efficiently improve the return
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within the region to find the optimal policy that satisfies the
feasible reachability constraint.

5.1. Feasible Reachable Function

Definition 5.1 (FR Function). For any policy, we can define
its FR function, which is specifically crafted to determine
its feasible reachable region.

Fπ(x) =


γNg Ng < Nc,

−γNc Nc < Ng,

0 Nc =∞, Ng =∞,

(2)

where Ng is the step to reach the goal, Nc is the step to
violate the constraints. The expansion of the above equation
is as follows:

Fπ(x0) = g(x0) + c(x0)+

T∑
m=1

m−1∏
n=0

(1 + c(xn))(1− g(xn))γ
n(g(xm) + c(xm)),

where we define g(x) = 1xgoal
(x), indicating whether the

target set is reached, c(x) = −1x̄cstr
(x), indicating whether

a state constraint is violated.

Only if the policy reaches the goal without violating any
constraints from the initial state in a finite number of steps
will the value of Fπ(x) be positive, thereby satisfying the
definition of feasible reachable. Besides, Ng represents the
distance from the current state to the target state. If the
policy reaches the goal in less time, the value of Fπ(x) will
be higher. To justify the choice of FR function to represent
the feasible reachable region, we first prove that it is a
feasibility reachable function.

Proposition 5.1 The FR function is a feasible reachability
identification function. Additionally, the zero-superlevel
set is feasible reachable region, i.e., {x ∈ X |Fπ(x) >
0} = Xπ, and the zero-level set is feasible region, i.e.,
{x ∈ X |Fπ(x) = 0} = Xπ

feas.
Proof. See Appendix B.1.
The following proposition tells us that the optimal FR func-
tion represents the maximum feasible region.
Definition 5.2 (Optimal FR Function). The optimal feasible
reachable function F ∗ : X → R is defined as

F ∗(x) = max
π

Fπ(x). (3)

Proposition 5.2. The zero-superlevel set of the optimal
FR function is the maximum feasible reachable region, i.e.,
{x ∈ X | F ∗(x) > 0} = X∗.
Proof. See Appendix B.2.

As shown in Fig. 4, we can solve the goal-reaching problem
with safety constraints by feasible reachable policy tree
identified by the FR function.

Figure 4. Forward Feasible Reachable Policy Tree by FR Function
Identification. The green zone represents the feasible policy, while
the red zone represents the FR policy. For a given state, actions
are constrained to the feasible reachable action set.

Theorem 5.3 (Self-Consistency Condition of FR Function).
The FR function satisfies the self-consistency condition for
all x in X

Fπ(x) = g(x)+c(x)+(1−g(x))(1+c(x))γFπ(x′). (4)

Proof. See Appendix B.3.

The right-hand side of (4) can be viewed as an operator
mapping from a function to another, and Fπ is a fixed point
of this mapping. The following theorem shows that this
mapping is a contraction mapping on a complete metric
space, therefore there is a unique fixed point.

Theorem 5.4 (The Unique Fixed Point).

Define the feasible reachable identification operator Dπ as

Dπ(F (x)) = g(x) + c(x) + (1− g(x))(1 + c(x))γF (x′).

We can show the operator Dπ has a unique fixed point Fπ .

Proof. See Appendix B.4.

The fixed point Fπ can be found by iteratively applying
Dπ starting from an arbitrary F , which is shown in feasible
reachable region identification algorithm as follows. Ac-
cording to Banach’s fixed-point theorem, Fk converges to
Fπ , i.e., limk→∞ Fk = Fπ .

Algorithm 1 Feasible Reachable Region Identification
Input: initial FR function F0, policy π.
for each iteration k do

for each state x ∈ X do
Fk+1(x) = g(x) + c(x) + (1 − g(x))((1 +
c(x))γFk(x

′))
end

end

5.2. Region-wise Policy Improvement

Our proposed algorithm, feasible reachable policy iteration
(FRPI), involves alternating three steps: policy evaluation,
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feasible reachable region identification, and region-wise pol-
icy improvement. Region-wise policy improvement is the
core step of FRPI, where we expand the feasible reachable
region and increase the state-value function to the greatest
extent in each policy update.

Inside the feasible reachable region of πk, we solve a con-
strained optimization problem, i.e., ∀x ∈ Xπk ,

πk+1(x) = argmax
u

r(x, u) + γV πk(x′),

s.t. Fπk(x′) > 0.
(5)

The constraint in (5) requires that the next state is still in
Xπk .
Outside the feasible reachable region of πk, we maximize
the FR function of the next step without constraints, i.e.,
∀x ∈ Xπk ,

πk+1(x) = argmax
u

Fπk(x′). (6)

Next, we prove that the above update rule results in a larger
feasible reachable region and a greater state-value function.

Theorem 5.5 (FR Region Expansion). In a deterministic
MDP, the FR region of πk+1, denoted as Xπk+1 , is greater
than or equal to the FR region of πk, denoted as Xπk .

Proof. See Appendix B.5.

From the proof of Theorem 5.5, we can see that both (5) and
(6) play important roles in ensuring the monotonicity of the
FR region expansion. Equation (6) takes a maximization so
that the FR function increases outside the feasible region.
Equation (5) constraints the FR region at the value of zero-
superlevel set of FR function.

Theorem 5.6 (FR Region Expansion). In a deterministic
MDP, the FR region of πk+1, denoted as Xπk+1 , is greater
than or equal to the FR region of πk, denoted as Xπk .

Proof. See Appendix B.6.

5.3. Feasible Reachable Policy Iteration

In this subsection, we prove FRPI converges to a policy with
the optimal FR function and the optimal state-value function,
which represents the maximum feasible reachable region.
First of all, we consider the optimal state-value function in
feasible reachable region, which is defined as follows.

Definition 5.7 (Optimal State-Value Function). The optimal
state-value function V ∗ : X∗ → R is defined as

V ∗(x) = max
π∈Π∗

V π(x). (7)

The optimal state-value function satisfies a recursive re-
lationship called the feasible reachable Bellman equation,
which is also a necessary and sufficient condition of the
optimal state-value function.

Theorem 5.8 (Feasible Reachable Bellman Equation). The
state-value function V : X∗ → R is optimal if and only if it
satisfies the feasible reachable Bellman equation for all x
in X∗

V (x) = max
u∈U∗(x)

r(x, u) + γV (x′). (8)

The feasible reachable Bellman equation also represents the
convergence of V , which means lim

k→∞
V πk = V ∗, where V ∗

is the optimal state-value function. Secondly, we introduce
a recursive relationship of the optimal FR function called
the risky Bellman equation, which is also a necessary and
sufficient condition of the optimal FR function.

Proof. See Appendix B.7.

Secondly, we introduce a recursive relationship of the opti-
mal FR function called the risky Bellman equation, which
is also a necessary and sufficient condition of the optimal
FR function.
Theorem 5.9 (Risky Bellman Equation). The FR function
F : X → R is the optimal FR function if and only if it
satisfies the risky Bellman equation for all x in X

F (x) = c(x) + g(x) + (1 + c(x))(1− g(x))γmax
u

F (x′).

(9)
Combined with Definition 5.5, the risky Bellman equation
also represents the convergence of F in region expansion,
i.e., lim

k→∞
Fπk = F ∗, where F ∗ represent the maximum

feasible reachable region.

Proof. See Appendix B.8.

Algorithm 2 Feasible Reachable Policy Iteration (FRPI)
Input: initial policy π0.
for each iteration k do

Compute Fπk using FR region identification;
Compute V πk using policy evaluation;
for each state x /∈ Xπk do

πk+1(x)← argmaxu F
πk(x′)

end
for each state x ∈ Xπk do

πk+1(x)← argmaxu{r(x, u) + γV πk(x′)}
subject to Fπk(x′) > 0

end
end

Finally, we prove the convergence of FRPI by proving that
the FR function and the state-value function converge to the
solutions of their corresponding Bellman equations.
Theorem 5.10 (Convergence of FRPI). Suppose that at the
k-th iteration, for all x in X , Fπk+1(x) = Fπk(x), and
for all x in X∗, V πk+1(x) = V πk(x). Then, it follows that
Fπk = F ∗ and V πk = V ∗. Moreover, convergence can be
achieved within a finite number of iterations in finite state
and action spaces.
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Proof. See Appendix B.9.

6. Experiments
We seek to answer the following questions through our
experiments:
1. Can FR function enable an efficient policy space pruning
to achieve faster convergence than other algorithms?
2. Can FRPI-SAC speed up feasible region expansion, and
simultaneously identify a smaller FR region?
3. Do FRPI-SAC achieve a comparable performance faster
than other algorithms without sacrificing safety?

6.1. Practical Implementation

We give the implementation of FR function and integrate it
with SAC, the details is seen in Appendix C.

6.2. Baselines

For comparison, we adopt SAC-Lag(Ha et al., 2021) or
penalty function methods as baseline of direct method. In
particular, we adopt the FPI (Yang et al., 2023d) as the latest
baseline of indirect method.

We also adopt the SAC (Haarnoja et al., 2018) as a
constraint-free baseline for providing a performance upper
bound, to verify the comparable performance of FRPI.

6.3. Policy Space Prunning

Frozen lake involves crossing an iced lake from start to goal
without falling into any holes. The player may not always
move in the intended direction due to the slippery nature of
the frozen lake. The reward in the frozen lake environment
is very sparse. We compared penalty function method, FPI,
and FRPI in this environment. As shown in Fig. 5, the
results show that our pruning of the policy space is the most
efficient, and an accurate Q is learned through the FR region
identified by the FR function.

6.4. FR Region Expansion

With regard to the question (2), we test our proposed method
on two classical control tasks where the dynamics are sim-
ple and known accurately, and thus we can get the visible
maximum FR regions.

(1) Adaptive Cruise Control (ACC) The goal of ACC is to
control a following vehicle to converge to a fixed distance
with respect to a leading vehicle, as illustrated in Fig. 6(a).
The settings of the system is seen in Appendix D.1.

(2) Quadrotor Trajectory Tracking Different from the
previous stabilization task, the Quadrotor is a trajectory
tracking task that comes from safe-control-gym (Yuan et al.,
2022), where a 2D quadrotor is required to follow a circular
trajectory in the vertical plane while keeping the vertical
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Figure 5. The policy convergence by Q-learning(Penalty) and
FRPI. FRPI pruned the policy space significantly, achieving better
experimental results regardless of the environmental dimension.

(a) ACC (b) Quadrotor

Figure 6. Classical Environment

position in a particular range. Fig. 6(b) gives a schematic
of this environment. The settings of the system are seen in
Appendix D.2.
The result shows that FRPI has a more efficient region expan-
sion speed than FPI. In particular, different color contours
indicate that smaller FR regions can be identified, which
enable further pruning of state space. Besides, FPI and
FRPI achieve the optimal performance in cost and return,
while the latter has a faster convergence speed, as shown in
Fig. 7(c) and Fig. 8(c).

6.5. Safety Gym Experiment

To answer question (3), we compare the algorithms on four
high-dimensional robot navigation tasks in Safety Gym (Ray
et al., 2019), which are much more complicated and chal-
lenging. PointGoal and CarGoal are two robot navigation
tasks, the aims of which are to control the robot (in red) to
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Figure 7. The region-expansion of ACC.
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Figure 8. The region-expansion of Quadrotor.

reach a goal (in green) while avoiding hazards (in blue), as
shown in Fig. 9(a) and Fig. 9(c).

PointPush and CarPush except that the robots are trying to
push a box (in yellow) to the goal, as shown in Fig. 9(b) and
Fig. 9(d). Details of settings can be seen in Appendix D.3.

PointPush and CarPush except that the robots are trying to
push a box (in yellow) to the goal, as shown in Fig. 9(b) and
Fig. 9(d). Details of settings can be seen in Appendix D.3.

(a) PointGoal (b) PointPush (c) CarGoal (d) CarPush

Figure 9. Snapshots of four Safety Gym tasks
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Figure 10. Optimization results for safety-gym.
As shown in Fig. 10, FRPI-SAC achieves near-zero con-
straint violations on all tasks, demonstrating low and stable
episode cost curves. In comparison, the curves of SAC and
SAC-Lag failed to converge to zero or have severe fluctua-
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tions. Moreover, our proposed algorithm also exhibits out-
standing returns on all the tasks, both in convergence speed,
stable training processing, and final performance. Although
some non-constraint algorithms like SAC achieve close re-
turns, it comes with sacrificing safety. Appendix Table. 3
shows excellent performance of convergence speed, and
Fig. 10 also shows that our method gets much better perfor-
mance than others with limited data (200k-300k iterations).
The time consumption experiment showed that no additional
computational burden was added, which is because only one
more scenery module, a simple and computationally effi-
cient MLP module, was added to the FRPI framework. As
shown in Appendix Table. 1 and Appendix Table. 2, the
computational cost of the scenery module update is sim-
ilar to that of the critic module. Furthermore, benefiting
from the further policy space pruning, we achieved better or
comparable convergence computer time consumption than
SAC.

7. Conlusion
We propose the FRPI for safe RL, where the feasible reach-
able function can simultaneously identify the reachability
and feasibility to achieve efficient policy space pruning.
This function naturally satisfies the self-consistent condition
and the risky Bellman equation, which can be solved by
the fixed point iteration method. On this basis, we propose
the feasible reachable policy iteration (FRPI) divided into
three steps: policy evaluation, region expansion, and policy
improvement. In the region expansion step, the convergence
of the feasible region is accelerated, and simultaneously a
smaller FR region is identified. The experiment shows the
proposed method can identify the feasible region at the start
of the training and converge to the maximum feasible reach-
able region quickly, which is more than three to five times
faster than other safe RL approaches on average. Besides,
FRPI achieves better performance compared with constraint-
free algorithms like SAC with limited data without safety
sacrifice, which is significant to real-world application.

The performance of algorithm is best for tasks with nat-
urally clear goal information, like Car Goal or Car Push,
etc. However, we should manually build a goal function
for some regulating tasks like ACC to guide the agent to
approach the target space. The performance of algorithm
will depend on the effectiveness of the goal function design.
In future work, we will provide an extended definition of
feasible reachability to enhance its generalization.
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A. Feasibility and Reachability
A.1. Feasibility

Definition A.1 (Constrained Set). Let h : X → R be a state constraint function. We say that Xcstr ≜ {x | h(x) ≤ 0} is a
constrained set.

Definition A.2 (Feasible State). A state x is feasible in T steps if there exists a policy π, such that all successive states under
π satisfy the state constraints, i.e., ∃π, s.t. xt ∈ Xcstr, t = 0, 1, . . . , T , where x0 = x.

Definition A.3 (Feasible Policy). A policy π is feasible in a state x in T steps if all the successive states under π satisfy the
state constraint, i.e., xt ∈ Xcstr, t = 0, 1, 2, . . . , T, where x0 = x.

Definition A.4 (Feasible Region). The feasible region of π, denoted as Xπ
feas is the set of all states in which π is feasible.

The infeasible region of π is (Xπ
feas)

c = X \Xπ
feas.

Definition A.5 (Maximum Feasible Region). The maximum feasible region, denoted as X∗
feas, is the set of all feasible states.

The infeasible region is (X∗
feas)

c = X \X∗
feas.

A.2. FR Region Relationship

It can be established that X∗
FR is a subset of the intersection of X∗

feas and X∗
reach, denoted as X∗

FR ⊆ (X∗
feas ∩X∗

reach). This
follows from the existence of policies π1 and π2 such that a state x belongs to Xπ1

feas under policy π1 and to Xπ2

reach under
policy π2. However, it is possible that π1 and π2 are distinct, implying that the state x might not simultaneously satisfy the
criteria for being a feasible reachable state under a single policy.

B. Proof
B.1. FR Function

Proof. For all x in X ,

Fπ(x) > 0

⇐⇒ Nπ
g (x) < C ∈ N+, Nπ

g (x) < Nπ
c (x)

⇐⇒ h(xt) ≤ 0, t = 0, 1, . . . , T, g(xT ) = 1,

where x0 = x and {xt}Tt=1 are sampled by π. Therefore, the zero-superlevel set of the FR function is the feasible reachable
region of the corresponding policy. Thus, {x ∈ X |Fπ(x) > 0} = Xπ . On the other hand,

Fπ(x) = 0

⇐⇒ Nπ
g (x) = Nπ

c (x) =∞
⇐⇒ h(xt) ≤ 0, t = 0, 1, . . . ,∞,

where x0 = x and {xt}∞t=1 are sampled by π. The analysis indicates that the feasible region can be denoted as {x ∈
X |Fπ(x) = 0} = Xπ

feas.

B.2. Maximum Feasible Reachable Region

Proof. For all x in X ,
F ∗(x) > 0

⇐⇒ ∃π, s.t. Fπ(x) > 0

⇐⇒ h(xt) ≤ 0, t = 0, 1, . . . , T, g(xT ) = 1

⇐⇒ x is feasible reachable,

where x0 = x and {xt}Tt=1 are sampled by π.
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B.3. Self-Consistency Condition

Proof. As shown in Fig. 2, we divide the state space into four sets: XFR, X̄π
feas ∩ Xcstr, X̄π ∩ Xfeas and Xcstr. They do not

overlap with each other and their union is X . We prove self-consistency condition (4) separately in these four sets.

• ∀x ∈ X̄cstr, the constraint is already violated, and thus c(x) = −1 and Nπ
c (x) = 0. We have Fπ(x) = −γ0 = −1 =

c(x), so (4) holds.

• ∀x ∈ X̄π
feas ∩Xcstr, the constraint is not violated, i.e., c(x) = 0, but will be violated in a finite number of steps, which

satisfies Nπ
c (x) = Nπ

c (x
′) + 1. We have Fπ(x) = −γNπ

c (x) = −γ · γNπ
c (x′) = −γFπ(x′), and thus (4) holds.

• ∀x ∈ Xπ, the constraint is not violated and will reach the target in the finite horizon, which means c(x) = 0 and
Nπ

g (x) = T . The next state x′ is still in X π, so Nπ
g (x

′) = T − 1. We have Fπ(x) = γT = γγT−1 = γFπ(x′), and
thus (4) holds.

• ∀x ∈ X̄π∩Xfeas, the goal is not will be reached and constraint will never be violated in the infinite horizon, which means
g(x) = 0 and Nπ

g (x) =∞. The next state x′ is still in the set, so Nπ
g (x

′) =∞. We have Fπ(x) = γ∞ = 0 = Fπ(x′),
and thus (4) holds. In conclusion, ∀x ∈ X, (4) holds.

B.4. Unique Fixed Point

Proof. Consider the metric space (M,d∞) with M = {F | F : X → [0, 1]} and d∞ being the uniform metric. First, we
prove that (M,d∞) is complete. Let {Fn} be any Cauchy sequence in M , then

∀ε > 0,∃N ≥ 1, s.t. m, k ≥ N, d∞(Fm, Fk) < ε,

which means
|Fm(x)− Fk(x)| ≤ ∥Fm − Fk∥∥x∥ < ε, ∀x ∈ X . (∗)

Hence, for all x ∈ X , {Fn(x)} is a Cauchy sequence in ([0, 1], d∞), which is a complete space (since [0, 1] is a closed
subset of R). It follows that {Fn(x)} is a convergent sequence for all x ∈ X . Let Fn(x) → F (x) ∈ [0, 1]. Apparently,
F ∈M . Hold m and let k →∞ in (∗), then we have

|Fm(x)− F (x)| < ε,∀x ∈ X,

which is equivalent to
d∞(Fm, F ) < ε.

Thus we have Fn → F ∈M , so (M,d∞) is complete.

Then, we prove that Dπ is a contraction mapping on (M,d∞). For all x in X

|DπF1(x)−DπF2(x)|
= g(x) + c(x) + (1− g(x))((1 + c(x))

γ(F1(x
′)− F2(x

′))

≤ γ|F1(x
′)− F2(x

′)|
≤ γd∞(F1, F2).

Hence,

d∞(DπF1, D
πF2) = sup

x
|DπF1(x)−DπF2(x)|

≤ γd∞(F1, F2).

Since γ ∈ (0, 1), Dπ is a contraction mapping. Acoording to Banach’s fixed-point theroem, Dπ has a unique fixed point.
Note that Fπ is a fixed point of Dπ , the unique fixed point is Fπ .
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B.5. FR Region Expansion

We assume that the FR function and the state-value function can be accurately approximated and study the relationship of
FRPI in two adjacent iterations.
Proof. According to (5), for all x in Xπk , the condition Fπk(x′) > 0 implies x′ ∈ Xπk , where x′ = f(x, πk+1(x)). This
implication confirms that the set Xπk is forward invariant. Consequently, it follows that for every x in Xπk , the sequence
x, x′, x′′, . . . remains within Xπk . This ensures that for x ∈ X∗, we have x′ ∈ X∗, x′′ ∈ X∗, . . .. Therefore, the control
u = πk+1(x) belongs to the control set Uπk , which is a subset of U∗, leading to the conclusion that πk+1 is an optimal
policy belonging to Π∗.

Furthermore, the inequality

r(x, πk+1(x)) + γV πk(f(x, πk+1(x))) ≥ r(x, πk(x)) + γV πk(f(x, πk(x)))

holds true, which is equal to

V πk(x) ≤ r0 + γV πk(x1)

≤ r0 + γr1 + γ2V πk(x2)

...

≤ r0 + γr1 + γ2r2 + . . .

=

T∑
t=0

γtrt

= V πk+1(x).

We assume that Nπk
g ≥ N

πk+1
g when policy is improved in goal-reaching problem, which is equal to γN

πk
g ≤ γN

πk+1
g ,

so Fπk+1(x) ≥ Fπk(x) > 0 is satisfied. Hence, we deduce that x ∈ Xπk+1 must be true. According to (6), for all x in
(Xπk)c,

Fπk(f(x, πk+1(x))

= max
u

Fπk(f(x, u))

≥ Fπk(f(x, πk(x)).

Thus, we have

Fπk(x)

= gx + cx + (1− gx)(1 + cx)γF
πk(f(x, πk(x))

≤ gx + cx + (1− gx)(1 + cx)γF
πk(f(x, πk+1(x)).

Let {xt}∞t=0 be the state sequence in a trajectory under πk+1, where x0 = x. We denote c(xt) as ct for simplicity. We have

Fπk(x)

≤ g0 + c0 + (1− g0)(1 + c0)γF
πk(x1)

≤ g0 + c0 + (1− g0)(1 + c0)γ

(g1 + c1 + (1− g1)(1 + c1)γF
πk(x2))

≤ g0 + c0 + γ(1− g0)(1 + c0)(g1 + c1)

+ γ2(1− g0)(1 + c0)(1− g1)(1 + c1)(g2 + c2)

...

=

T∑
t=0

γt
t−1∏
s=0

(1− gs)(1 + cs)(gt + ct)

= γNπk+1 (x)(gT + cT )

= Fπk+1(x),
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which shows the region expansion tendency of FRPI out of the region. We will prove the convergence of expansion in the
next section.

B.6. Region-wise Policy Improvement

Proof. For all x in Xπk , we have πk(x) ∈ Uπk(x). According to (5), we have πk+1(x) ∈ Uπk(x) and

V πk(x) = r(x, πk(x)) + γV πk(f(x, πk(x)))

≤ max
u∈Uπk (x)

r(x, u) + γV πk(f(x, u))

= r(x, πk+1(x)) + γV πk(f(x, πk+1(x))).

Let {xt}∞t=0 be the state sequence in a trajectory under πk+1, where x0 = x. We denote r(xt, πk+1(xt)) as rt for simplicity.

V πk(x) ≤ r0 + γV πk(x1)

≤ r0 + γr1 + γ2V πk(x2)

...

≤ r0 + γr1 + γ2r2 + . . .

=

∞∑
t=0

γtrt

= V πk+1(x).

B.7. Feasible Reachable Bellman Equation

The state-value function V : X⋆ → R is the optimal state-value function V ∗ if and only if it satisfies the feasible Bellman
equation for all x in X∗

V (x) = max
u∈U∗(x)

r(x, u) + γV (x′), (10)

First, we prove that the optimal state-value function satisfies the feasible Bellman equation. For all x ∈ X ∗,

V ∗(x) = max
π∈Π∗

V π(x)

= max
u∈U∗

{
T∑

t=0

γtr(xt, ut)

}

= max
u∈U∗

{
r(x, u) + max

u∈U∗

{
T∑

t=1

γtr(xt, ut)

}}
= max

u∈U∗
{r(x, u)}+ γ max

π∈Π∗
V π(x′)

= max
u∈U∗

{r(x, u)}+ γV ∗(x′).

Then, we prove that the feasible Bellman operator B∗, which is defined as

(B∗V )(x) = max
u∈U∗

{r(x, u) + γV (x′)},

has a unique fixed point. Consider a metric space (M,d∞) with M = {V |V : X ∗ → R}. The proof of its completeness is
similar to that of {F|F : X → [0, 1]}, d∞ and hence omitted here. We only prove that B∗ is a contraction mapping on it.
For V1, V2 ∈M and x ∈ X ∗, define

u1 = arg max
u∈U∗

{r(x, u) + γV1(x
′)},
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u2 = arg max
u∈U∗

{r(x, u) + γV2(x
′)},

and let r1 = r(x, u1), r2 = r(x, u2), x′
1 = f(x, u1), x′

2 = f(x, u2). Then, it follows that

B∗V1(x)−B∗V2(x) = r1 + γV1(x
′
1)− (r2 + γV2(x

′
2))

≤ r1 + γV1(x
′
1)− (r1 + γV2(x

′
1))

= γ(V1(x
′
1)− V2(x

′
1)).

Similarly, we have
B∗V2(x)−B∗V1(x) ≤ γ(V2(x

′
2)− V1(x

′
2)).

Define
z(x) = max{|γ(V1(x

′
1)− V2(x

′
1))|, |γ(V2(x

′
2)− V1(x

′
2))|}.

We have
|B∗V1(x)−B∗V2(x)| ≤ z(x).

Since
z(x) ≤ γmax{|V1(x

′
1)− V2(x

′
1)|, |V2(x

′
2)− V1(x

′
2)|}

≤ γd∞(V1, V2),

we have
|B∗V1(x)−B∗V2(x)| ≤ γd∞(V1, V2),

and
d∞(B∗V1(x), B

∗V2(x)) ≤ γd∞(V1, V2).

Thus, B∗ is a contraction mapping on (M,d∞). According to Banach’s fixed-point theorem, B∗ has a unique fixed point,
which is V ∗. Therefore, V ∗ is the unique solution to the feasible Bellman equation. Thus, the feasible Bellman equation is a
necessary and sufficient condition of the optimal state-value function.

B.8. Risky Bellman equation

The FR function F : X → R is the optimal FR function if and only if it satisfies the risky Bellman equation for all x in X

F (x) = c(x) + g(x) + (1− g(x))(1− c(x))γmax
u

F (x′).

Proof. First, we prove that the optimal FR satisfies the risky Bellman equation. We divide the state space into four sets:
XFR, X̄π

feas ∩Xcstr, X̄π ∩Xfeas and Xcstr. They do not overlap with each other and their union is X.

• ∀x ∈ X̄cstr, the constraint is already violated, and thus c(x) = −1 and Nπ
c (x) = 0. We have F ∗(x) = −γ0 = −1 =

c(x), so (9) holds.

• ∀x ∈ (X̄π
feas ∩ Xcstr), the constraint is not violated currently, i.e., c(x) = 0 and ∃π, s.t. Fπ(x) = F ∗(x). Then,

max
u

F ∗(x′) = max
u

Fπ(x′) = Fπ(f(x, π(x))), since Fπ(x) = γFπ(f(x, π(x))), we have F ∗(x) = γmax
u

F ∗(x′) ,
thus (9) holds.

• ∀x ∈ Xπ, the constraint is not violated and will reach the target in the finite horizon, which means c(x) = 0 ,
Nπ

g (x) = T , and ∃π, s.t. Fπ(x) = F ∗(x). Then, max
u

F ∗(x′) = max
u

Fπ(x′) = Fπ(f(x, π(x))), since Fπ(x) =

γFπ(f(x, π(x))), we have F ∗(x) = γmax
u

F ∗(x′) , thus (9) holds.

• ∀x ∈ (X̄π ∩Xfeas), the goal is not will be reached and constraint will never be violated in the infinite horizon, which
means g(x) = 0 and Nπ

g (x) =∞. The next state x′ is still in the set, so Nπ
g (x

′) =∞. We have Fπ(x) = γ∞ = 0 =
Fπ(x′), F ∗(x) = max

u
F ∗(x′) = 0 and thus (9) holds. In conclusion, ∀x ∈ X, (9) holds.
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Then, we prove that the right-hand side of (9) is a contraction mapping under the uniform metric. Define the risky Bellman
operator D∗ as

(D∗F )(x) = c(x) + g(x) + (1− g(x))(1 + c(x))γmax
u

F (x′).

Proof. For all FR functions F1, F2 and for all state x in X , let u1 = argmax
u

F1(x
′), u2 = argmax

u
F2(x

′), and

x′
1 = f(x, u1), x

′
2 = f(x, u2), then

D∗F1(x)−D∗F2(x)

= (1 + c(x))(1− g(x))γ(F1(x
′
1)− F2(x

′
2))

≤ (1 + c(x))(1− g(x))γ(F1(x
′
2)− F2(x

′
2)).

Similarly, we have
D∗F2(x)−D∗F1(x) ≤ (1− gx)(1 + cx)γ(F2(x

′
1)− F1(x

′
1)).

Define
z(x) = max {|(1 + cx)(1− gx)γ(F1(x

′
1)− F2(x

′
1))| , |(1 + cx)(1− gx)γ(F2(x

′
2)− F1(x

′
2))|} .

We have
|D∗F1(x)−D∗F2(x)| ≤ z(x).

Since
z(x) ≤ γmax{|F1(x

′
1)− F2(x

′
1)|, |F2(x

′
2)− F1(x

′
2)|}

≤ γd∞(F1, F2),

we have
|D∗F1(x)−D∗F2(x)| ≤ γd∞(F1, F2),

and
d∞(D∗F1(x), D

∗F2(x)) ≤ γd∞(F1, F2).

Thus, D∗ is a contraction mapping. Together with the completeness of (F | F : X → [−1, 1]}, d∞) proved before,
according to Banach’s fixed-point theorem, D∗ has a unique fixed point, which is F ∗. Therefore, F ∗ is the unique solution
to the risky Bellman equation. Thus, the risky Bellman equation is a necessary and sufficient condition of the optimal FR
function.

B.9. Convergence of FRPI

Suppose at the k-th iteration, for all x in X , Fπk+1(x) = Fπk(x), and for all x in X∗, V πk+1(x) = V πk(x). In the proof,
we denote g(x) as gx, c(x) as cx for simplicity.

Proof. First, we prove that Fπk is the solution to the risky Bellman equation. According to (5), for all x in Xπk ,

Fπk(f(x, πk+1(x))) ≥ 0.

According to (6), for all x in (Xπk)c,

Fπk(f(x, πk+1(x))) = max
u

Fπk(f(x, u)).

We have

Fπk+1(x)

= cx + gx + (1− gx)(1 + cx)γF
πk+1(f(x, πk+1(x)))

= cx + gx + (1− gx)(1 + cx)γF
πk(f(x, πk+1(x)))

= cx + gx + (1− gx)(1 + cx)γmax
u

Fπk(f(x, u))

= cx + gx + (1− gx)(1 + cx)γmax
u

Fπk+1(f(x, u)).
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Thus, Fπk+1 is the solution to the risky Bellman equation. Since Fπk = Fπk+1 , Fπk is also the solution to the risky Bellman
equation.

Next, we prove that V πk is the solution to the feasible Bellman equation. Since Fπk = F ∗, Uπk(x) = {u ∈ U |x′ ∈ X∗} =
U∗(x). We have

V πk+1(x) = r(x, πk+1(x)) + γV πk+1(f(x, πk+1(x)))

= r(x, πk+1(x)) + γV πk(f(x, πk+1(x)))

= max
u∈Uπk (x)

r(x, u) + γV πk(x′)

= max
u∈U∗(x)

r(x, u) + γV πk+1(x′).

Thus, V πk+1 is the solution to the feasible Bellman equation. Since V πk = V πk+1 , V πk is also the solution to the feasible
Bellman equation.

Thus, both Fπk and V πk are optimal, i.e., Fπk = F ∗ and V πk = V ∗. Because in finite state and action spaces, the number
of policies is finite, this process converges to the maximum feasible region and the optimal state-value function in a finite
number of iterations.

C. Practical Implementation
In this subsection, we introduce some practical implementations of feasible reachable policy iteration (FRPI). We first
discuss some techniques when approximating the FR function with a neural network in infinite state spaces. We then show
how to combine FRPI with a mainstream RL algorithm, soft actor-critic (SAC) (Haarnoja et al., 2018) , to yield a practical
safe RL algorithm.

C.1. Approximation of FR function

To deal with infinite state spaces, we use a neural network with a tanh output activation function to approximate the FR
function, which incorporate the knowledge that the value of FR function is between -1 and 1 into the training process. In
feasible region identification, we optimize the FR network to approximate the FR function of the current policy. Therefore,
we use the right-hand side of the self-consistency condition (4) as the training label, i.e.

LF (ϕ) = −E {yF logFϕ(x) + (1− yF ) log(1− Fϕ(x))} , (11)

where
yF = c(x) + g(x) + (1 + c(x))(1− g(x))γFϕ(x

′).

C.2. Integration with SAC

We combine FRPI with soft actor-critic (SAC) (Haarnoja et al., 2018) and denote the resulting algorithm as FRPI-SAC. It
learns an action FR function network Gϕ, two Q networks Qω1

, Qω2
, and a policy network πθ. The action FR function

network G takes the current state and action as input and outputs the FR function value of the next state, i.e., G(x, u) =
F (f(x, u)). Its loss function is

LG(ϕ) = −E(x,u)∼D {yG logGϕ(x, u) + (1− yG) log(1−Gϕ(x, u))} , (12)

where
yG = c(x) + g(x) + (1− g(x))(1 + c(x))γGϕ(x

′, u′),

and ϕ is the parameters of the target action FR function network, which is updated slower than the action FR function
network for stabilizing the training process.

The loss functions of the Q networks are,

LQ(ωi) = E(x,u,r,x′)∼D

{
(yQ −Qωi(x, u))

2
}
, (13)

where

yQ = r + γ

(
min

j∈{1,2}
Qωj (x

′, u′)− α log πθ(u
′ | x′)

)
, (14)
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where i ∈ {1, 2}, ωj are the parameters of the target Q networks, and α is the temperature.

The policy loss in a feasible state is

lf (x) = lr(x)−
1

t
· log(Gϕ(x, u)), (15)

lr(x) = α log πθ(u | x)− min
i∈{1,2}

Qωi
(x, u), (16)

where u ∼ πθ(· | x).

The policy loss in an state out of feasible reachable region is

lo(x) = Gϕ(x, u). (17)

The total policy loss is
Lπ(θ) = Ex∼D {m(x)lf (x) + (1−m(x))lo(x)} , (18)

where m(x) = 1 if Gϕ(x, u) > 0.

The loss function of the temperature is

L(α) = Ex∼D {−α log πθ(u | x)− αH} , (19)

whereH is the target entropy.

D. Environment
D.1. ACC

Both following and leading vehicles are modeled as point masses moving in a straight line.[
ẋ1

ẋ2

]
=

[
x2

0

]
+

[
0
−1

]
u, (20)

where x =
[
x1 x2

]T
≜

[
∆s ∆v

]T
, with ∆s = s−s0 standing for the difference between actual distance s and expected

distance s0 between the two vehicles and ∆v standing for the relative velocity. The action u ≜
[
a
]

is the acceleration of the
following vehicle.

The reward function is defined as
r(x,u) = −0.001∆s2 − 0.01∆v2 − a2, (21)

and r = 1 if the (|x1| ≤ 0.1) and (|x2| ≤ 0.1)
and the constraint function is

h(x) = |∆s| −∆smax, (22)

which, since a large acceleration is penalized in (21), will be violated by a performance-only policy.

The ACC task is a regulating task, not a typical goal-reaching task. The quality of the construction of the goal function
affects the stability of its return. In this problem, we construct a goal function based on the region around the regulating
point, and the quality of the region design affects the variance of its return. Since the return function of ACC depends on the
distance from the regulating point, which is limited by the design of the goal function, the return will have a relatively large
variance in the early stage of learning. At the same time, it can be seen that the variance of return will decrease significantly
after its policy is improved when the agent can steadily approach the regulating point.

D.2. Quadrotor

x ≜
[
x z ẋ ż θ θ̇

]T
,

where (x, z) is the position of the quadrotor on xz-plane, and θ is the pitch angle. The action of the system is

u ≜
[
T1 T2

]T
,
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including the thrusts generated by two pairs of motors.

The goal is to minimize the tracking error with minimal efforts:

r(x,u) = −
∥∥[x− xrefz − zref

]∥∥2 − 0.1θ̇2 − θ2 − 0.1(T1 − T0)
2 − 0.1(T2 − T0)

2, (23)

and r = 1 if
∥∥[x− xref z − zref

]∥∥2 ≤ 0.001
where (xref, zref) is the reference position the quadrotor is supposed to be at, and T0 is the thrust needed for balancing the
gravity. The reference position moves along a circle x2 + z2 = 0.52 with a constant angular velocity, but the constraint
function is

h(x) =

 |z| − zmax
|θ| − θmax∥∥[x− xref z − zref

]∥∥− errmax

 ≤ 0, (24)

restricting the quadrotor to stay in a rectangular area.

D.3. Safety Gym

PointGoal and CarGoal are two robot navigation tasks, the aims of which are to control the robot (in red) to reach a goal
(in green) while avoiding hazards (in blue), as shown in 9 (a) and 9 (C). There are eight hazards with a radius of 0.2 and a
goal with a radius of 0.3. The state includes the robot’s velocity, the goal’s position, and LiDAR point clouds of the hazards.
The control inputs of the robots are the torques of their motors, controlling the motion of moving forward and turning for a
Point robot, and the left and right wheels for a Car robot.
PointPush and CarPush except that the robots are trying to push a box (in yellow) to the goal, as shown in Fig. 9 (b) and
Fig. 9 (d). There are four hazards with a radius of 0.1 and a goal with a radius of 0.3. The state further includes the position
of the box.Details of settings followed the (Yang et al., 2023d).
We conducted training on an NVIDIA GPU 3090 using JAX, setting XLA PYTHON CLIENT MEM FRACTION to 0.1,
which allocates 2720 MB of GPU memory. The inference times for various algorithms on Safety Gym are shown in Table 1.
FRPI-SAC and FPI-SAC demonstrate similar inference times, with FRPI-SAC at 1.576 ms and FPI-SAC at 1.573 ms. RAC
shows an inference time of 1.589 ms, while SAC-Lag and SAC exhibit longer times of 1.742 ms and 0.983 ms, respectively.
Table 2 presents the convergence speeds on Safety Gym across different tasks measured in million iterations.

Table 1. The Inference Time on Safety Gym (ms)

Algorithm FRPI-SAC FPI-SAC RAC SAC-Lag SAC

Inference Time (ms) 1.576 1.573 1.589 1.742 0.983

Table 2. The Convergence Speed on Safety Gym (million iterations)

Convergence time(s) PointGoal PointPush CarGoal CarPush

FRPI-SAC 2.0K 4.5k 2.2K 8.6k
SAC 2.5K 4.6k 2.3K 9.3k
SAC-Lag 7.3K 15.2k 5.5K 30.0k
FPI-SAC 6.2K 12.3k 5.3K 20.7k
RAC 4.8K 8.3k 5.6K 14.2k

Note:Training on an NVIDIA GPU 3090 using JAX.
Note:XLA PYTHON CLIENT MEM FRACTION=0.1 (2720MB GPU).

We added the safe certificate of the HJ method, RAC[2], which integrates the SAC and RCRL, as a supplement to the
baseline. The result showed that RAC realizes zero constraint violation as other safe RL baselines, but the sample efficiency
still needs to be improved. Reachability analysis emphasizes the absolute guarantee of safety. However, the inaccuracy of
early safety certificates in the early stage also leads to excessive pruning of state space, which indirectly leads to low sample
efficiency in the early optimization process.
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Table 3. Performance Comparison of Algorithms

Algorithm PointGoal PointPush CarGoal CarPush

FRPI-SAC 1.10 ± 0.05 1.20 ± 0.10 0.50 ± 0.05 0.65 ± 0.06
SAC 1.50 ± 0.08 2.20 ± 0.10 0.80 ± 0.05 0.90 ± 0.10
SAC-Lag 2.20 ± 0.20 2.80 ± 0.30 1.00 ± 0.15 2.00 ± 0.16
FPI-SAC 3.20 ± 0.10 4.00 ± 0.20 1.60 ± 0.08 1.80 ± 0.05
RAC 3.00 ± 0.10 2.30 ± 0.10 1.00 ± 0.10 1.95 ± 0.15

D.4. Hyperparameters

The hyperparameters used in the experiments are listed in Tab. 4.

Table 4. Hyperparameters of the algorithms
Hyperparameter Classic | Safety Gym
Shared
Discount factor 0.99
Number of hidden layers 2
Number of hidden neurons 256
Optimizer(Adam) (β1 = 0.99, β2 = 0.999)
SAC-related
Activation function ReLU
Target entropy −dim(U)
Initial temperature 1.0
Target smoothing coefficient 0.005
Learning rate 1e-4
Batch size 256 | 1024
Replay buffer size 2× 106 | 4× 106

Lagrange-related
Initial Lagrange multiplier 1.0
Multiplier learning rate 1e-4
Multiplier delay 10
FPI-related
Feasibility threshold (ρ) ≤ 0.05
Initial t 1.0
t increase factor 1.1
t update delay 10000
FRPI-related (ours)
Feasible reachable threshold (ρ) > 0
Initial t 1.0
t increase factor 1.1
t update delay 10000
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