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Abstract

Value-based reinforcement learning is the cur-
rent State-Of-The-Art due to high sampling ef-
ficiency. However, our theoretical and empir-
ical studies show evidence that it suffers from
low exploitation in early training period and bias
sensitiveness. To address these issues, we pro-
pose to augment the decision-making process
with hypothesis, a weak form of environment
description. Our approach relies on prompting
the learning agent with accurate hypotheses, and
designing a ready-to-adapt policy through incre-
mental learning. We propose the ALH algorithm,
showing detailed analyses on a typical learning
scheme and a diverse set of Mujoco benchmarks.
Our algorithm produces a significant improve-
ment over value-based learning algorithms and
other strong baselines. Our code is available at
https://github.com/nbtpj/ALH.

1. Introduction
Reinforcement learning (RL) is a branch of artificial in-
telligence that studies how agents can learn to make op-
timal decisions in complex and dynamic environments,
based on their own actions and environment return sig-
nal (Sutton & Barto, 2018). In this study, we consider
RL in a deterministic Markov Decision Process (MDP)
defined by (S,A, T ,R, γ) where S is the state space, A
is the action space, and γ ∈ [0, 1) is the discount factor.
The environment is characterized by 2 attributions: tran-
sition function T : S × A → S; and reward function
R : S × A → R. The output of reinforcement learning
is a policy π : S → A, which maximizes RL objective
J(π) := E[

∑∞
t=0 γ

trt|at = π(st)], where E denotes the
expectation.
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Figure 1. We introduce to augment learners with hypothesis repre-
sentation, and propose two key hypothesis-based solutions: weak-
model-based learning and employing adaptation in rollout.

Among RL approaches, value-based RL shows higher sam-
pling efficiency in comparison with policy-based optimiza-
tion (e.g., Schulman et al. (2017)), and lower computational
complexity than model-based RL (e.g. Janner et al. (2019)).
Value-based RL refers to RL algorithms which mainly rely
on future advantage estimation to optimize the policy. A
typical value-based learning can be defined by the combina-
tion of two optimization processes in Q-learning, whose Q
value is the motivation for a action given a certain state:

θ∗ = argmin
θ

Es,a,s′,r,d||Qθ(s, a)−Qtarget(s, a)||2 (1)

ω∗ = argmax
ω

EsQθ(s, πω(s)) (2)

where Qtarget(s, a) = R(s, a) + γ(1− d)maxa′ Q(s′, a′)
is the Bellman optimal Q value, s, a, s′, r, d are respectively
state, action, next state, immediate reward, is-s-terminal
values in replay buffer; ||.||2 is L2 norm. The target of
the training process includes: attaining high-quality value
estimators, then exploiting these estimators by a policy. Cur-
rently, this approach achieves State-Of-The-Art (SOTA)
results on a large diverse task set, with algorithms such as
DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018).
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In this paper, we identify two weaknesses that contribute
to suboptimal policy performance and substantiate our find-
ings with both theoretical and empirical evidences. Firstly,
we demonstrate that the value estimator (critic) tends to
exploit slowly under Bellman’s principle of optimality.
We empirically validate this phenomenon in our simula-
tor (Section 2.2). Secondly, we highlight sensitivity to critic
bias of the policy (actor). To illustrate this, we exert control
over non-deterministic factors in our simulator, creating a
biased critic (Section 2.3). In both scenarios, our analysis
of TD3, the current leading algorithm in value-based RL,
reveals policies with poor performance.

To address the weaknesses mentioned, we propose enhanc-
ing actor and critic (learners) in value-based RL. We incor-
porate hypothesis representation through two key strategies:
(i) implementing weak-model-based learning to improve
early exploitation and (ii) employing adaptive rollout to
foster adaptability under bias (Section 3). The proposed
solution functions as an augmenting component integrated
into a standard value-based algorithm (Figure 1), ensuring
the preservation of the inherent advantages of value-based
learning. Our approaches effectively tackle the identified
challenges, producing noteworthy results across various Mu-
JoCo continuous control tasks (Todorov et al., 2012).

In this work, we make the following contributions:

1. We identify two weaknesses, namely: slow exploita-
tion under Bellman’s condition of optimality and bias
sensitiveness of value-based learning; then visualize
them empirically. We describe the detailed weakness
analysis in Section 2.

2. We propose Augmenting Learners with Hypothesis
(ALH) algorithm which is the combination of: weak-
model-learning solution and adaptive rollout solution.
Our solutions ensure the exploitation in any estima-
tion, and prevent the bias by a dynamic rollout ability
(Section 3).

3. We conduct experiments to showcase the improvement
in a diverse task set including SOTA benchmarks, and
analyze the contribution of each particular component
via ablation study on our proposed algorithm. Our
algorithm shows a strong improvement in Section 4.

2. Problem Analysis
In this section, we present a comprehensive analysis of two
weaknesses from both theoretical and empirical viewpoints.
We introduce our simulation environment in Section 2.1. On
our simulation environment, corresponding to each weak-
ness, we explore two distinct schemes:

1. Non-bias scheme1: No bias control is implemented.
We emphasize the explicit manifestation of the Slow
Exploitation phenomenon, as detailed in Section 2.2.

2. Bias scheme: We control non-deterministic elements
to create bias. We underscore the distinct manifestation
of Bias Sensitiveness, as expounded in Section 2.3.

2.1. Simulated Environment
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Figure 2. The reward distribution over state space of MultiNor-
mEnv. The red span represents initial state sampling in training is
limited in a non-representative state range, that can bias the value
estimator.

To better monitor the value-based RL agents, we introduce
a simple simulation environment named MultiNormEnv:
S = [0, 600];A = [−6, 6]; T (s, a) = s + a. Given Θ =
{(0,−81), (1,−27), (2, 3), (3,−9), (4, 27), (5,−81)}, the
reward for every tuple of (s, a) relies on the next state
(Figure 2):

n(x, µ, c) =
c

20
√
2π

e−0.5( x−µ∗120
15 )

2

R(s, a) =
∑

(µ,c)∈Θ

n(T (s, a), µ, c)

The episode ends if either s′ is out of range [0; 600] or the
episode length exceeds 100. The optimal policy is expected
to frequently travel either of the maximum-reward points,
regardless of the initial state.

We train TD3 agents, current SOTA of value-based RL, on
two introduced schemes on 10 trials over two million steps.
The detailed experiments and benchmarks are described in
Section 4. To monitor the value of every s′ estimated by
critics in TD3, we adopt the average Q estimation of two
state-action tuples: (s′ − 1, 1), (s′ + 1,−1). Because the
reward only depends on s′, the state value curve is expected
to have the same shape as the immediate reward.

1While the exploration priority, as discussed in the next section,
can also be considered a form of bias, we label this scheme as “non-
bias” to distinctly delineate between two arguments: weaknesses
in the learning scheme and bias induced by the environment.
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2.2. Slow Exploitation

Thrun & Schwartz (1993) proved the overestimation on
value calculation under Bellman optimization. Following
the proof in Thrun & Schwartz (1993), we pay attention to
the order between exploitation and exploration in Bellman
value-based learning scheme.

Theorem 2.1. The optimistic value estimator gives higher
priority for exploration.

Proof. We denote the training data (replay buffer) asDtrain,
and Dtest is the data on which the agent do rollout. Given
action can be ideally sampled, the contribution of action is
negligible in uncertainty of estimation. Then, a non-negative
u(s) can denote the uncertainty of an estimation on any state
s, and u(s)s∼Dtrain

≤ u(s)s∼Dtest
. Then, the approximate

value made by Q is Q(s, a) = Q∗(s, a) + ϵu(s), where
−u(s) ≤ ϵu(s) ≤ u(s). ϵu(s) can be any noise, Q∗ denotes
the actual value of Q. Given any s ∈ S; we define ai; s′i are
action and next corresponding state that lead to exploration;
aj ; s

′
j are action and next corresponding seen state. We

consider the case that both s′i and s′j can lead to same actual
value, where maxa∈A Q∗(s′i, a) = maxa∈A Q∗(s′j , a) and
R(s, ai) = R(s, aj). Denoting c = γ(1 − d) ≥ 0, as
Equation 1, the difference in value estimation between two
actions is equal to:

Q(s, ai)−Q(s, aj) ≈ c
(
max ϵu(s

′
i)−max ϵu(s

′
j)
)

= c
(
u(s′i)− u(s′j)

)
≥ 0

(3)

Equation 32 shows that optimistic estimator will output
equal or higher value for exploration actions than other ac-
tions though they share the same actual value. The value
estimation is accurate if and only if u(s′i) ∼ u(s′j), or
Dtest ∼ Dtrain. It indicates that if the number of train-
ing steps is not large enough, the output policy is not accu-
rate.

Empirical Analysis We train TD3 agent with initial states
sampled ideally: s0 ∼ Uniform(0, 600). Figure 3 ex-
pressed approximately the value distribution in the final
evaluation. After two million training steps, the non-bias
TD3 critics cannot clearly identify all three maximums,
therefore cannot accurately reflect the expected values(the
green curve). Consequently, TD3 policy is trapped in the
first local maximum in more than 1.6 million steps (yellow
dots in Figure 4).

2.3. Bias Sensitiveness

Remark 2.2. A bias in critic definitely destroys the output
policy. As Equation 2, the performance of the policy is
only decided by the accuracy of the critic.

2We provide the detailed proof in Appendix A.1.
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Figure 3. The TD3 state-value estimation after two million training
steps in bias and non-bias scheme in MultiNormEnv. The reported
values are the average of two Q functions, over 10 trials. Values
are min-max normalized.

Empirical Analysis To create the bias in the critic, we
“pretrained” the critic on biased data and prevent non-
value-based discovery. In detail, we apply the follow-
ing methods on non-deterministic elements. Firstly, as
depicted in Figure 2, we limit the initial state sampling:
s0 ∼ Uniform(200, 260), and sampled action to zero. Sec-
ondly, instead of initializing parameters randomly, we train
them on the biased initial replay buffer. Lastly, we remove
the exploration noise from policy-based data collecting.

Under this bias, the accuracy of critics is extremely low.
As shown in Figure 3, the biased TD3 critics show no
maximum but the margins of state space. As a result, the
policy performance is low. Under the bias, states obtained
by TD3 policy distribute uniformly over the whole space
(red dots in Figure 5), which shows that the policy does not
have any target on the state space.

3. Augment Learners with Hypothesis
A good awareness of environment can be the solution for
both slow exploitation and possible bias: when the envi-
ronment model error reflected by the policy decision is
decreased, according to Janner et al. (2019), the correspond-
ing performance improvement has higher chance in the
true MDP.3 But defining such a high-quality environment
simulator in model-based learning is not always possible.
On the other hand, we exploit the concept of hypothesis
(Section 3.1), which can be incomplete-but-accurate de-
scriptions about environment, then develop related solutions
(Section 3.2 and Section 3.3).

3.1. Hypothesis Definition

We define an observation set as a set of tuples of state, action
and reward: o = {(s1, a1, r1), . . . } ∈ O; hypothesis space

3We provide detailed justification in Appendix A.2.
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H; metric D : O×H → R measures the difference between
a hypothesis and a set of observation o. The hypothesis
supported by o is denoted by M(o) where M : O → H. We
proposed to augment the actor/critic with the environment
description, π : S × H → A represents for the actor;
Q : S ×H×A → R represents for the critic. We especially
pay attention two important characteristics of any hypothesis
h ∈ H, which define how good a hypothesis is:

1. Validity: h ∈ H is valid if it can explain a set of obser-
vation: ∃o ⊂ D|D(o, h) < Eo′D(ϵo, h), where ϵo is
any non-informative noise. Consequently, a hypothesis
can be considered if and only if it is valid.

2. Robustness: hi is more robust than hj if they are both
valid and the supporting set of hj is a subset of hi:
oj ⊂ oi and |oj | < |oi|. Equivalently, the more robust
a hypothesis is, the larger observation set supports this
hypothesis.

The hypothesis validity represents the high exploitation, but
does not depend on the value estimation. Concurrently, the
dynamicity of inputted hypothesis can result in dynamic pol-
icy behavior without changing parameters in model rollout.
In the following sections, we introduce certain methods to
realize these benefits.

3.2. Weak Model-Based Learning

Achieving the balance condition mentioned in Equation 3
from early training steps is harmful for exploration. Al-
ternatively, to secure the exploitation, we ensure that there
exists non-trivial mapping from value estimation and policy
decision to the environment representation. We propose to
use an independent model M to capture accurate environ-
ment description then feed this information to other learners.
Consequently, we can always find the mentioned mappings
by reversing the feed-forward processes. Due to M opti-
mization is detached from actor/critic optimization, M does
not suffer the priority in exploration.

We name this training process as weak-model learning:
M can not give strong prediction of the environment inter-
actions, e.g., predicting next state or reward. To simplify
notation, M also refers to its learnable parameters. Fig-
ure 4 shows that the policies inputted by the hypothesis
(ALH agents) can attain the optimal behavior from very
early training steps, in compare with 1.6 million steps of
TD3.

Given observation set space O and dH ∈ N∗, M : O →
RdH is a mapping from observation set to the hypothesis
embedding h. In this work, we adopt the Euclidean dis-
tance between observation and best recovered output from
hypothesis as D:

D(o, h) = E(s,a,r)∈o∥[s, a, r]− ϕ(h, [s, a, r] +N )∥2 (4)

Figure 4. State distributions over time of rollouting TD3, ALH-g
and ALH-a policies in evaluation under non-bias scheme. Fre-
quency values are exponentially scaled for visual clarity.

where ϕ is learnable module outputting the denoised obser-
vation from hypothesis and noisy observation; N is Gaus-
sian noise; [.] denotes the concatenate operation. Both M, ϕ
are optimized by:

(M∗, ϕ∗) = argmin
M,ϕ

Eo,h=M(o)(D(o, h)− σ ∗ ∥h− h0∥2)
(5)

where o ⊂ Dtrain is an observation set; σ is a positive
hyper-parameter; h0 is the global hypothesis expected to
explain every observation in Dtrain. By adding the diver-
sity coefficient σ, all “local” hypothesis representations are
prevented to collapse to a single h0 = M(Dtrain).

If only one hypothesis h0 is used for training actor and
critic, overtime, they possibly become overfit. Together
with diversity penalty in training M, we propose to con-
struct hypothesis locally for every actor/critic training step:
Given o where |o| = B is an observation set for each train-
ing step, we sub-sample {o1, . . . oB} observation sets, each
oi ⊂ o containing at least one corresponding (si, ai, ri) ob-
servation, and |oi| = Bmini < B. Consequently, we can
maximize the diversity of the seen hypothesis set based on
Dtrain.

3.3. Adaptive Rollout

Our empirical scheme in Section 2.3 shows that hypothesis
is possibly optimized under biased training data. Conse-
quently, the policy will suffer the error from hypothesis
representation. As assumption on the robustness in Sec-
tion 3.1, we suggest to align the hypothesis with latest
interactions, namely adaptive rollout method. Because
Dtest is unpredictable, the target of this method is to cal-
culate M(Dtrain ∪ Dtest) without overhead optimization.
Figure 5 expresses that under bias, the latest-hypothesis-
based policies of ALH can attain locally or globally optimal
behaviors, even if the critic estimations are not accurate
(Figure 6-left).
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Figure 5. State distributions over time of rollouting TD3, ALH-g
and ALH-a policies in evaluation under bias scheme. Frequency
values are exponentially scaled for visual clarity.

We employ an incremental learning scheme. For simplifica-
tion, in this work, we using the add norm function:

M(o1 ∪ o2) = norm(M(o1) +M(o2)) (6)

where norm is the Euclidean normalization operation. Map-
ping to model rollout, o1 isDtrain, and o2 isDtest (or otest).
Due to Dtrain is given, we can optimize h0 as a parameter
directly via Equation 4. During model rollout, each deci-
sion is made with consideration of the latest hypothesis, as
described in Algorithm 1.

Algorithm 1 Adaptive rollout

Input: Policy π; Global hypothesis h0; M is optimized
with incremental scheme in 6.
h′
0 ← h0

for each rollout step do
Run inference with a ∼ π(s, h′

0)
otest ← {(stest, atest, rtest)}
h′
0 ← norm(h′

0 +M(otest))
end for

We combine two solutions in Augmenting Learners with
Hypothesis (ALH) algorithm, presented in Algorithm 2.
We build ALH on TD3 (Fujimoto et al., 2018)4. To simplify
the implementation, we attach each ALH training step with
a learning agent training step, with a fixed delay of δmem

steps. We consider two discovery methods to collectDtrain:
ALH-g in which the policy adopts the most recent global
h0 to collect data; ALH-a in which the policy adopts the
adaptive h′

0 hypothesis to collect data, as Algorithm 1.

4. Experiments and Results
In the following sections, we present a set of three experi-
ments and corresponding results. Firstly, in our case study

4As described in Appendix B, ALH can be used as a plug-in
with other learning agents.

Algorithm 2 Empirical ALH algorithm

Input: Diversity coefficient σ; Batch size B; Mini batch
size Bmini < B; Replay buffer Dtrain; δmem, δpolicy.
Initialize critics Qθ1 , Qθ2

Initialize actor πω

Initialize targets θ0,1 ← θ1, θ0,2 ← θ2, ω0 ← ω
Initialize parameters M, ϕ, h0, h

′
0 ← h0

for t = 1 to T do
ϵ ∼ clip(N (0, σ̃),−e, e)
Select action a ∼ πω(s, h

′
0) + ϵ, observe reward r and

new state s′

if is ALH-a then
otest ← {(s, a, r)}
h′
0 ← M(h′

0, otest)
if is done then

h′
0 ← h0

end if
end if
Add tuple (s, a, r, s′) to Dtrain

Sample a batch of B transitions o = (s, a, r, s′) from
Dtrain

if t mod δmem = 0 then
Sample (o1, o2) ⊂ o|o1 ∩ o2 = ∅
h1 ← M(o1)
h2 ← norm(h1 +M(o2))
Update M, ϕ networks using (o1, h1, o2, h2, σ) on
Equation 5
Update h0 ← argminh0 D(o, h0)

end if
Sample (o1, . . . , oB) from o as Section 3.2
h′ ← [M(o1), . . . ,M(oB)] (batched)
ϵ ∼ clip(N (0, σ̃),−c, c)
ãi ← πω0

(s′i, h
′) + ϵ

y ← r + γmini=1,2 Qθ0,i(s
′, ã, h′)

Update critics: θi ← argminθi E(y −Qθi(s, a, h
′))2

if t mod δpolicy = 0 then
Update actor ω ← argmaxω E(Qθ1(s, a, h

′))
Update target networks:
θ0,i ← τθi + (1− τ)θ0,i|i ∈ {1, 2}
ω0 ← τω + (1− τ)ω0

end if
end for

(Section 4.2), we compare our ALH agents against TD3s on
MultiNormEnv to monitor the critic and actor performance
when applying our solutions. To visualize the capabilities of
ALH on standard tasks, in the next Section 4.3, we compare
our ALH against SOTA approaches on a set of eight Mu-
joco tasks: Halfcheetah, Hopper, Walker2D, Ant, Humanoid,
Reacher, InvertedDoublePendulum, and InvertedPendulum.
Lastly, we conduct ablation study on the task Halfcheetah
in Section 4.4 in order to monitor the contribution of each
component.
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Figure 6. The value estimation of the last training step in bias
scheme (left) and non-bias scheme (right). Values are min-max
normalized.

4.1. Experiment Setup

Implementation: We utilize the author implementation of
TD35, MBPO6 for the performance comparisons. We adopt
the DDPG implementation of Fujimoto et al. (2018), and
pytorch-based implementation of PPO in Barhate (2021). In
all our reported experiments, we use δmem = 10, dH = 64,
Bmini =

B
2 , σ = 1. We adopt B = 256 in Mujoco tasks7,

and B = 512 for a quick coverage in MultiNormEnv. For
a fair comparison to the learning agent TD3, noise factors
σ̃, e, c, hyper-parameters δpolicy, τ are adopted from TD3
author implementation. With regard to the model size, our
implementation utilizes the nearly exact ones in TD3. We
run our experiments on Linux environment with 56 CPUs,
8 Nvidia RTX2080Ti.

Time Step Normalization: TD3, DDPG and our work share
the same policy update frequency per training step. With
regard to policy update frequency, the concept of training
step between TD3, PPO and MBPO implementation are not
computationally equivalent. To make them comparable, our
reported step bases on the policy update frequency8. In a
more detail, our reported one million steps is equivalent to
three million steps reported in Schulman et al. (2017), and
about first tens thousand steps (depending on particular task)
reported in Janner et al. (2019).

Evaluation: There is no data or parameter from evaluation
that is reused in training. Each evaluation step contains 10
different episodes. We report the average and the standard
deviation across 10 trials, same practice as Fujimoto et al.
(2018) and Schulman et al. (2017). We evaluate the policy
every 5000 training steps.

5https://github.com/sfujim/TD3
6https://github.com/jannerm/mbpo
7We provide additional results in offline setting in Appendix C.
8Each training step of MBPO contains significantly high num-

ber of policy update steps (up to 40). This number of TD3, DDPG
and our work is 0.5. To make the comparison fair, we use the
policy update step as training step in MBPO.
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Figure 7. The performance of policies under bias (left) and non-
bias (right) in MultiNormEnv. The shaded region represents half a
standard deviation of the average evaluation over 10 trials. Curves
are smoothed uniformly for visual clarity.

4.2. Case Study

We compare our approach, represented by ALH agents, with
SOTA value-based approach TD3, under the same condi-
tions mentioned in Section 2. The experimental results
show the significant improvement over TD3. Under no
bias: Figure 6 (right) expresses that ALH agents can high-
light minima accurately, and the relative difference between
maxima is also closer to the expected than TD3. As a result,
ALH’s policies can prioritize all maximums as in Figure 4.
Under bias: In Figure 6 (left), though critics of ALH-a
can identify the first two maximums, and critics of ALH-g
can uncover the two last, the relative shape differences be-
tween them and TD3 critics are unclear. However, Figure 5
and Figure 7 express that ALH policies outperform TD3
policies.

In short, our proposed approach can address the weaknesses
of slow exploitation and bias sensitiveness of value-based
learning scheme. The result shows that ALH can achieve
early exploitation, and ALH is less sensitive to the bias
than TD3. The improvement is significant in both critic
performance and policy performance.

4.3. Mujoco Benchmark

We compare our algorithm against TD3 (Fujimoto et al.,
2018); DDPG (Lillicrap et al., 2015) as well as the state of
art policy gradient algorithms: PPO (Schulman et al., 2017),
and the SOTA of the model-based approach MBPO (Janner
et al., 2019) on a set of eight MuJoCo continuous control
tasks (Todorov et al., 2012).

In Figure 8, our proposed ALH algorithms consistently
outperform all baselines across different tasks, showcas-
ing significant improvements over TD3 in terms of over-
all performance and stability. Value-based learning agents
(TD3 and DDPG) exhibit slower discovery speeds in tasks
like Halfcheetah, Hopper, Ant, and InvertedDoublePendu-

6
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Figure 8. Learning curves for the gym Mujoco continuous control tasks. The shaded region represents half a standard deviation of the
average evaluation over 10 trials. Curves are smoothed uniformly for visual clarity.

Environment ALH-a (our) ALH-g (our) TD3 MBPO DDPG PPO
HalfCheetah-v3 7924.09±636.61 8508.09±610.20 7563.45±996.14 6942.36±1108.77 6564.98±517.34 412.87±131.65
Hopper-v3 3431.29±162.91 3439.50±145.63 3273.77±285.26 2951.81±734.71 2657.49±685.31 2463.91±741.83
Walker2d-v3 4072.41±827.26 4225.65±382.86 3612.88±860.95 1774.64±1117.82 2698.40±680.68 888.80±237.93
Ant-v3 5395.55±353.28 5179.31±606.92 4884.83±675.88 1962.42±797.76 1248.39±631.99 22.49±40.47
Humanoid-v3 5086.73±212.45 5036.58±253.53 5031.64±182.01 475.70±156.08 352.75±95.58 424.07±14.09
Reacher-v2 -5.94±0.53 -5.79±0.76 -6.06±0.63 -27.51±24.71 -8.55±0.68 -5.17±0.37
InvertedDoublePendulum-v2 9358.61±2.57 9359.61±0.19 7492.54±3732.47 9359.84±0.14 9358.38±1.87 9094.67±402.77
InvertedPendulum-v2 1000.00±0.00 1000.00±0.00 1000.00±0.00 1000.00±0.00 1000.00±0.00 1000.00±0.00
Avg (normalized) 85.46 86.50 67.27 36.99 44.70 23.40

Table 1. Average return of the best performed policy. Maximum values of each row are bolded. ± corresponds to a single standard
deviation over trials. Normalized score for each policy on a task is 100-scaled min-max normalization across the listed policies.

lum. In other tasks, our method achieves comparable per-
formance, indicating no accuracy trade-off when applying
our solutions on value-based learning agent. Moreover, our
proposed algorithms consistently achieve the best results,
producing the highest average normalized score across all
tasks (Table 1). In more detail, the two ALH agents achieve
the top position in 6/8 tasks, while taking the runner-ups
in the remaining 2/8 tasks. When compared to TD3, the
original learning agent upon which ALH is built, our two
algorithms consistently demonstrate remarkable advance-
ment. Additionally, our approach outperforms Model-Based
Policy Optimization, while the overhead complexity on the
environment model is significantly lower.

To summarize, in all benchmarks, the two ALH agents, con-
sistently outperforms all other baselines. Value-based learn-
ing agents (TD3, DDPG) exhibit slower discovery speeds
compared to ours. Furthermore, our proposed approach
outperforms SOTA of model-based learning (MBPO), and

policy-based optimization (PPO).

4.4. Ablation Study

We conduct ablation studies on HalfCheetah-v3 environ-
ment on three variant implementations. In the first variant,
namely no detach, we update M with the Q and policy
objective’s gradient. Secondly, in the no localization im-
plementation, we use only one hypothesis constructed from
current batch9 for following optimization in a step. Lastly,
we disable adaptive rollout by simply not updating the h′

0

during evaluation (no adaptation).

Table 2 describes the aggregated returns over one million
steps and 10 trials of each mentioned implementations. All
proposed methods show significant contribution to the per-
formance improvement, at least four percent and 15 percent

9If h0 is directly utilized, it will encourage learners to ignore
never-seen h once h0 is covered.
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Figure 9. Learning curves for the continuous control HalfCheetah-
v3 task. The shaded region represents half a standard deviation
of the average evaluation over 10 trials. Curves are smoothed
uniformly for visual clarity.

Aggregate type Ablation Setting ALH-g ALH-a

Max

our 100% 100%
no detach 88.94% 95.49%
no localization 85.00% 96.10%
no adaptation 85.42% 87.67%

Average

our 100% 100%
no detach 91.71% 95.26%
no localization 88.51% 95.53%
no adaptation 88.49% 88.43%

Table 2. Ablation study

at most. Adaptive rollout always shows the highest contribu-
tion. Figure 9 expresses that without detaching hypothesis
representation, the performance of our proposed ALH-g is
approximately equal to TD3, and adaptive rollout shows a
significant contribution in the later training steps.

5. Related Work
Generally, there are three main approaches for a RL prob-
lem: value-based RL, policy-based RL and model-based RL.
In policy-based RL, (Mnih et al., 2016) directly optimizes
the policy, while Schulman et al. (2015; 2017) indirectly
optimizes the target policy with black-box advantage estima-
tion. In contrast, value-based RL relies on white-box value
estimators, enabling the policy to follow its gradient. This
is highlighted by works such as Lillicrap et al. (2015); Fuji-
moto et al. (2018); Haarnoja et al. (2018). Model-based RL
generates “imagination experience” to enhance sampling
efficiency. Feinberg et al. (2018) partially learns the model
by approximating the transition function to improve the
value estimator. Meanwhile, Janner et al. (2019) simulates
the entire environment, demonstrating that improvements
in high-quality imagination experience also translate to the
actual environment. To the best of our knowledge, Huang

et al. (2022) is the sole work utilizing a “weak-model based”
scheme in RL, though the representation of this model lacks
clarity without defined criteria.

Adaptation Learning Methods Research in adaptation
learning primarily addresses Partial Observable Markov
Decision Processes (POMDPs) and offline reinforcement
learning tasks, focusing on swift adjustment to changes by
leveraging in-context information. Noteworthy works in-
clude Chen et al. (2021); Janner et al. (2021) and Ghosh et al.
(2022). For POMDPs, Icarte et al. (2020); Demir (2023)
equip agents with external memory and control. In a related
approach, Jiang et al. (2015) explores “Abstraction Selec-
tion” in model-based reinforcement learning. In meta RL,
capturing “meta” information (Schmidhuber, 1987), Fakoor
et al. (2019); Li et al. (2020) use embedding representations
for multiple-task objectives. Additionally, Rakelly et al.
(2019) disentangles task inference and control through an
additional optimization scheme.

Comparison with Prior Works Weak-model-learning
is completely different from model-based reinforcement
learning (Janner et al. (2019)), since it does not produce
“imagination” experiences. With regard to in-context learn-
ing Chen et al. (2021); Janner et al. (2021), the decision
in adaptive rollouts relies on a significant wider informa-
tion. In compare with memory-based methods (Chen et al.
(2021); Janner et al. (2021)), hypothesis is independent from
policy/critic optimization. In terms of meta-RL, though the
design of augmentor M in Figure 1 is represented simi-
larly as a meta-RL scheme (depicted in Li et al. (2020)),
the way we optimize M is completely different. Instead of
exploiting the latent useful differences between contexts,
we try to incrementally present a large number of observa-
tions in training within a task. Consequently, our augmentor
is motivated to be a good dynamic observer rather than a
crossing-task embedder.

6. Conclusion
In this work, we provide evidence that value-based RL suf-
fers from slow exploitation and bias sensitiveness, from
both theoretical and empirical analysis. Based on the idea
of model-based RL and adaptation learning, we introduce
the Augmenting Learners with Hypothesis solution, to han-
dle the addressed issues. Our approach expresses a out-
standing improvement over TD3 algorithm, current SOTA
value-based RL algorithm, and also achieves comparative
performance with other current SOTAs on a diverse set of
benchmarks. As future work, we aim to comprehensively
analyze the behavior of ALH on a wider range of different
RL algorithms in addition TD3.
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A. Justification
A.1. Exploration Bias

In this section, we provide the detailed justification for our statements in Section 2.2 about value estimation priority for
exploration under Bellman optimality.
Assumption A.1. When action can be easily discovered, e.g. by sampling, once the diversity of action is efficiently high
enough to make the action-based estimation confident, we assume the contribution of action is negligible in uncertainty
estimation.
Theorem A.2. The optimistic value estimator gives higher priority for exploration.

Proof. A typical value-based learning can be defined by the combination of two equations in Q-learning:

θ∗ = argmin
θ

Es,a,s′,r,d||Qθ(s, a)−Qtarget(s, a)||2 (7)

ω∗ = argmax
ω

EsQ(s, πω(s)) (8)

where Qtarget(s, a) = R(s, a) + γ(1− d)maxa′ Q(s′, a′), s, a, s′, r, d are respectively state, action, next state, immediate
reward, is-s-terminal values in replay buffer; ||.||2 denotes L2 norm. We denote V (s) = maxa∈A Q(s, a).

We denote the uncertainty of an estimation on a certain state-action tuple (s, a) by a non-negative u(s, a). As Assumption A.1,
u(s, a) ∼ u(s)∀a ∈ A, and ϵu(s, a) ∼ ϵu(s). To formally define the difference between known data and new data with
regard to the Q function, u(s)s∼Dtrain

≤ u(s)s∼Dtest
(∼ means either belonging or having some “close” features, e.g.

negligible L2 distance with a particular record, with the set). The final approximate value made by Q is Q(s, a) =
Q∗(s, a) + ϵu(s), where −u(s) ≤ ϵu(s) ≤ u(s) can be any noise having zero mean, Q∗, V ∗ denotes the actual value of
Q,V respectively.

Given a certain s ∈ S; we define ai;S ′i = {s′i|s′i = T (s, ai)}|S ′i ∼ Dtest are any action and corresponding next state set
that lead to exploration; aj ;S ′j = {s′j |s′j = T (s, aj)}|S ′j ∼ Dtrain are any action and corresponding next state set that
lead to examples “similar to” seen data. We consider the case that both S ′i and S ′j can lead to same actual value. Given
c = γ(1− d) ≥ 0, the priority for exploration can be represented as:

Q(s, ai)−Q(s, aj) = (R(s, ai) + ϵu(s)−R(s, aj)− ϵu(s)) + c

(
max
a′
i∈A

Q(s′i, a
′
i)− max

a′
j∈A

Q(s′j , a
′
j)

)

= (R(s, ai)−R(s, aj)) + c

(
max
a′
i∈A

(Q∗(s′i, a
′
i) + ϵu(s

′
i))− max

a′
j∈A

(
Q∗(s′j , a

′
j) + ϵu(s

′
j)
)) (9)

Because we are considering the case that both S ′i and S ′j can lead to same actual value, where EaiV
∗(s′i)−EajV

∗(s′j) = 0,
and Eai

R(s, ai)− Eaj
R(s, aj) = 0, then:

Q(s, ai)−Q(s, aj) = c

(
max
a′
i∈A

(Q∗(s′i, a
′
i) + ϵu(s

′
i))− max

a′
j∈A

(
Q∗(s′j , a

′
j) + ϵu(s

′
j)
))

≈ c

(
max
a′
i∈A

Q∗(s′i, a
′
i)− max

a′
j∈A

Q∗(s′j , a
′
j)

)
+ c

(
max ϵu(s

′
i)−max ϵu(s

′
j)
)

= c

(
max
a′
i∈A

Q∗(s′i, a
′
i)− max

a′
j∈A

Q∗(s′j , a
′
j)

)
+ c

(
u(s′i)− u(s′j)

)
= c

(
V ∗(s′i)− V ∗(s′j)

)
+ c

(
max ϵu(s

′
i)−max ϵu(s

′
j)
)

= c
(
u(s′i)− u(s′j)

)

(10)

By the definition of uncertainty u, c
(
u(s′i)− u(s′j)

)
≥ 0. This inequality shows with the same actual value, optimistic

value estimator will give higher estimation for exploration. If and only if u(s′i) ∼ u(s′j), which means s′i should be in
Dtrain, the estimator outputs accurately. It indicates that if the number of training steps is not large enough, the output
policy is not accurate. We already expressed the empirical evidence on the non-bias scenario of the prior case study.
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In combination scheme of exploring and exploiting, if we directly limit the value of the unseen data by the value of seen
data to secure the exploitation, the learning agent is possibly trapped in a local maximum. This is why, as mentioned, our
work does not try to achieve. Then, we do not change the objective functions of actor and critic.

In typical online setting, action sampling enables that in any tuple (s, a), the action a is unlikely to be “unseen”. Action
sampling can be the result of random initial moves in the replay buffer, or added noise factor in exploration. Building on this
insight, we make the assumption that the contribution of the action is negligible in the best uncertainty estimation, leading to
u(s, a) ∼ u(s) for all a ∈ A. Then, our proof demonstrates that exploration priority consistently emerges.

Bellman optimality is necessary In combination scheme of exploring and exploiting, if we directly limit the value of the
unseen data by the value of seen data to secure the exploitation, the learning agent is possibly always trapped in a local
maximum. This is why our work does not try to achieve such balance. Then, we do not change the objective functions of
actor and critic.

When Assumption A.1 is broken? However, this assumption is possibly violated in specific problem classes such as
shown our biased scenario and offline settings. In this situation, the theoretical behavior becomes highly unpredictable
because both current estimation and future Qs depend on high action-based uncertainty. We consider these situations as bias,
but they are not caused by the learning agent’s exploration during training. Under a scheme of monotonic dependency on
the critic of value-based learning scheme (as Equation 2) then static rollout (the decision only bases on learned parameters
and input state), the bias in training is intricately reflected. Motivated by minimizing these effects, we propose the second
solution, namely adaptive rollout. We empirically demonstrate this improvement in both our case study in Section 2.3 and
in offline RL of Appendix C.

A.2. Justification for ALH

In this section, we give detailed justification for our method. We begin with relaxing the concept of environment model error
from the context of model-based learning by the introduction of the “average reconstruct method” ρ−1. Then, we utilize ρ−1

for analyzing the behaviour of plain Bellman learning agents. Lastly, we explain the two ideas behind weak-model learning
and adaptive rollout respectively. During our explanation, we also explain terms mentioned in the main pages.

Assumption A.3. In continuous domain, the probability of a prediction is proportional to the inverse of L2 distance between
the prediction and the true observation.

Assumption A.4. A non-trivial reconstruct method is defined as a generator outputting the data/pattern used to train a
certain approximator; and the probability of this data/pattern must be non-zero. The goodness of an approximator can be
measured by the probability of the average reconstructed pattern from this approximator. To avoid the distribution
definition10, we adopt the average method, whose goodness is the expectation of all non-trivial reconstruct methods.

Derive policy improvement in simulation setting As presented in Theorem 4.1. of MBPO paper (Janner et al., 2019),
when the returns under the model: η̂[π] (≡ J(π) on artificial environment) by more than C(ϵm, ϵπ), the improvement is
guaranteed in the actual environment. Here, ϵm is the environment simulation error, ϵπ is the distribution shift between
behavior policy and our evaluated policy. Since C ∝ ϵm, on the same other conditions, π having lower value ϵm is expected
to perform better on actual environment, or ϵm[π1] > ϵm[π2] ⇐⇒ J(π1) > J(π2).

Since ϵm in MBPO paper is limited by the context of simulation setting, we derive it to the general context by analysing
the output of optimized learners. Denoting ρ is the optimizer, a denotes an optimized learner: a = ρ(f), where f is a
dynamic11. On the reverted side, ∃ ρ−1 : {a} 7→ {f̂} where f̂ is the reconstructed dynamic from a (domf̂ = domf )12.
As Assumption A.4, simulation accuracy can be presented by the probability P (ρ−1(a) ≡ f) ≤ P (f ≡ f) = 1. As
Assumption A.3, P (ρ−1(π) ≡M) ∝ 1

ϵm[π] . In plain Bellman optimization, Q is the only instruction of π: ∃ρ, ρ1, ρ2 such
that π = ρ1(Q) where Q = ρ2(M), or π = ρ(M) = ρ1(ρ2(M)). Equivalently, the model error of π is cumulative error

10We can adopt the definition of a distribution of all reconstruct methods (stochastically), and the goodness based on KL divergence
instead of the deterministic prediction probability; which also brings the same result, but a bit more complicated. In future work, we will
develop a comprehensive theory.

11Equivalently the complete training data distribution.
12In MBPO (Janner et al., 2019), ρ−1 is the learnable simulation dynamic.
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made by simulating modelM by Q and/then simulating Q by π. Assume that ρ1, ρ2 are independent:

P (ρ−1(π) ≡M) = P (ρ−1
2 (ρ−1

1 (π)) ≡M) = P (ρ−1
1 (π) ≡ Q) ∗ P (ρ−1

2 (Q) ≡M)

⇒ P ((ρ−1(π)) ≡M) ≤ P (ρ−1
2 (Q) ≡M)

⇒ ϵm[π] ≥ ϵm[Q]

However, as we proved, early Bellman Qs are likely overestimated. Q optimization is also empirically proved to heavily
suffer bias effect. Both situations end up with high value of ϵm[Q]. To sum up, policy is early poor performed due to the
misalignment with the environment model, as a result of plain Bellman optimization and single dependency on Q
instructions.

Alternative instruction As discussed, we can expect the high performance of π when its ϵm[π] is the lowest, or:

ϵm[π] = min
a

ϵm[a]

⇒ ∃ρ−1
3 , ρ−1

4 , h = argmin
a

ϵm[a] | ρ−1
3 (π) ≡ ρ−1

4 (h)

⇒ ∃f2| π = f2(h)

where f2 is any non-trivial mapping. In another word, when π is constrained by the term h (π = f2(h)); its performance
improvement is guaranteed regardless of Q accuracy. To compare with plain Bellman optimization, the improvement is
visible when ϵm[h] < ϵm[Q]. Such f2 is the mentioned awareness of environment in Section 3. We find that f2 will be
automatically guaranteed to be non-trivial in h-augmented setting (π ≡ π(.|h)): since any optimizer maximizing J(π)13

needs to keep ϵm[π(.|h)] ≈ ϵm[h]; the contribution of h in π(.|h) must not be trivial. Consequently, this non-trivial
contribution is namely f2.

Adaptability is necessary However, such mapping also have a problem: optimal h is available if and only if we have
complete knowledge of dynamicM. Consequently, our h is always an approximation, thus possibly trapped in a local
optimal due to the training distribution. 1) In terms of optimization problem, the policy performance is possibly trapped
when only one “global” h is adopted. 2) With regard to inference improvement direction, denoting rollouting data by
Dtest; the corresponding ϵm[hroll] of Dtrain ∪ Dtest ⊂ ρ−1(hroll) must be at least equal or smaller than ϵm[htrain] of
Dtrain ⊂ ρ−1(htrain), since Dtest ∼ M and |Dtrain ∪ Dtest| ≥ |Dtrain|. Equivalently, policy of hypothesis hroll has
higher probability to perform good then this of htrain, which is optimized on available Dtrain. To sum up, a diverse set of
hypothesis is necessary for policy optimization, and adaptive inference using Dtest helps to increase the probability
of good policy performance.

Hypothesis definition To describe h conceptually, we introduce the definition of hypothesis, where a single hypothesis
represent for a certain environment “possibility”. Particularly, we define an observation set as a set of tuples of state, action
and reward: o = {(s1, a1, r1), . . . } ∈ O (We discuss the reason for this incomplete definition in Appendix A.3); hypothesis
spaceH; metric D : O ×H → R measures the difference between a hypothesis and a set of observation o. The hypothesis
supported by o is denoted by M(o) where M : O → H. We proposed to augment the actor/critic with the environment
description, π : S ×H → A represents for the actor; Q : S ×H ×A → R represents for the critic. Recall the mentioned
criteria for goodness in Section 3, the higher validity is equivalent to lower visible part of ϵm[h] 14; while the higher
robustness implies the lower invisible part of ϵm[h].

A.3. Incomplete Observation Definition

We define an incomplete observation of (s, a, r) in Section A.2, instead of the complete tuple of (s, a, r, s′, d). Additionally,
we also adopt a very high noise scale in denosing task (the noise scale is 20 percent in each input dimension); use very
sparse update frequency of weak-model objective (Algorithm 2) and adopt two-layer M,D networks. The motivation for
the definition and configurations is to prevent the weak-model from becoming too strong. As we argued in Section A.2,
h only need to be ϵm[h] < ϵm[Q] then the improvement on the policy is visible. By analysing the Bellman error in early

13Recall our argument why Bellman optimization is important in previous section, beside the automatic uncertainty-based exploration,
Bellman optimization also aims to maximizing J(π).

14Being visible here means we can only validate ϵm[h] partly on known observation record.
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training state and also the empirical results, our argument is proved. In the future work, we aim to comprehend the analysis
of these factors.

A.4. Toy Environment Design

We introduced environment MultiNormEnv for the purpose of visualizing learning agent in continuous state/action setting.
There are some motivations for such design:

1. Domain As we limit the scope of our work is continuous space; state and action spaces are continuous range.

2. Visualization We opt for single-dimension state/action for visualization clarity purpose. To avoid the complex correct
V ∗(s) = maxa Q

∗(s, a), we design the reward only rely on the value of next state. As a result, value function must be
proportional to the shape of reward function.

3. Non-trivial We utilize a particular value set of Θ to create different local optimums. As our design, a biased observation
set can not generalize the whole environment distribution.

B. ALH as a Plug-in
The introduced ALH in Algorithm 2 is equivalent to an implementation on top of TD3 algorithm with two discovery
strategies. TD3 is currently the SOTA algorithm for a large continuous environment benchmark set, we reported the ALH
built on TD3 for close comparisons and clean presentation. Our ALH algorithm can be separated from the learning agent as
an independent module. As our definition, ALH solutions have no dependency on the learning agent. To show this argument,
we present the theoretical version of ALH by Algorithm 3, in which our solutions are free from the detail implementation
of learning agent L.

Algorithm 3 Theoretic ALH

Input: Learning Agent L; Diversity coefficient σ; Batch size B; Mini batch size Bmini < B; Replay buffer Dtrain

{Optimize weak model}
Initialize parameters M, ϕ, h0

for each ALH train step do
Sample (o1, o2) ⊂ Dtrain

h1 ← M(o1); h2 ← norm(h1 +M(o2))
Update M, ϕ networks using (o1, h1, o2, h2, σ) on Equation 5
Update h0 ← argminh0

D(o1 ∪ o2, h0)
end for
{Localize hypothesis construction for training L}
for each L train step do

Sample (o1, . . . , oB) as Section 3.2
(h1, . . . , hB)← (M(o1), . . . ,M(oB))
Optimize L w.r.t (h1, . . . , hB)

end for
{Adaptive rollout}
h′
0 ← h0

for each rollout step do
Run inference L with h′

0

otest ← {(stest, atest, rtest)}
h′
0 ← norm(h′

0 +M(otest))
end for

To show our argument about a plug-in implementation and also as a stronger evidence that the two addressed problems are
not specific for TD3, we conduct experiment on DDPG algorithm. Since the Q feedback is the only instruction for the policy,
DDPG also relies on plain Bellman optimization to update the policy. We conduct our experiment on 8 introduced Mujoco
environments on 10 trials, under the same hyper-parameters setting and running conditions. Figure 10 compares learning
curves of our ALHs with DDPG. ALH also shows significant improvements over DDPG: the improvement is witnessed in
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Figure 10. Learning curves for the gym Mujoco continuous control tasks. Our ALHs are implemented on the top of DDPG. The shaded
region represents half a standard deviation of the average evaluation over 10 trials. Curves are smoothed uniformly for visual clarity.

4/8 environments, while performance is closed to DDPG in the remaining. Especially, in Humanoid and Reacher, ALH
agents show very different performance pattern with DDPG: it is not trapped or decreasing.

C. Promising in Offline Setting
Offline setting is a typical case of bias, due to no exploration is available. In this setting, we compare our proposed
implementations against TD3+BC15 and Behavior Cloning16 (BC), two strong baseline in offline RL, together with reported
results of CQL (Kumar et al., 2020), DT (Chen et al., 2021) and APV-E (Ghosh et al., 2022) for their original papers on
continuous control datasets from the D4RL benchmark (Fu et al., 2020). We observe that no much different between trials,
so we report our proposed, TD3+BC and BC on only one trial, but use a total of 50 episodes on 5 different seeds for each
evaluation step, over one million training steps. Specifically, we conducted experiments on two ALH variants:

• ALH: We normalize the observations while only removing the discovery part of the online setting from Algorithm 2.

• ALH+BC: Following Fujimoto & Gu (2021), we add a behavior cloning penalty to the policy objective function with
the same coefficient to the former implementation.

Table 3 reports the best performed policies on halfcheetah, hopper, walker2d D4RL environment with five increasing quality
data versions: random, medium, medium-replay, medium-expert, expert. Reported score in offline setting is normalized as
same as Fu et al. (2020). Our original ALH algorithm outperforms in random-collected datasets but witness a significant
drop in higher-quality datasets. On the other hand, our proposed ALH+BC always defeats the performance of behavior
cloning baseline, and can improve or match the performance of the SOTA TD3+BC in a high probability: 9/15 datasets
witness the improvement; and two datasets witness the approximate performance (total 11 over 15). In compare with other
baselines, our proposal often outperforms CQL and APE-V; and can approximately meet the performance of reported results
of DT.

Table 4 describes the aggregated average returns on mentioned runs of each our proposed algorithms in offline setting. The
reported results of online setting is on one million train steps, on five D4RL “halfcheetah” datasets. Generally, all solutions

15https://github.com/sfujim/TD3_BC
16We simplify remove the critic-based optimization from the implementation of TD3+BC.

15

https://github.com/sfujim/TD3_BC


Augmenting Decision with Hypothesis in Reinforcement Learning

Environment ALH+BC (our) ALH (our) TD3+BC BC DT APE-V
halfcheetah-random-v2 17.30±0.07 35.85±0.14 14.88±0.02 2.26±0.00 - 29.9
hopper-random-v2 9.88±0.02 34.51±0.14 32.30±0.00 8.05±0.45 - 31.3
walker2d-random-v2 7.40±0.16 20.27±0.11 21.95±0.00 5.75±0.39 - 15.5
halfcheetah-medium-v2 49.96±0.47 47.91±2.30 48.81±0.30 43.09±0.26 42.6 69.1
hopper-medium-v2 66.88±1.41 1.78±0.00 74.77±4.09 63.58±2.25 67.6 -
walker2d-medium-v2 86.84±0.34 1.55±0.24 85.68±0.95 77.80±1.27 74.0 90.3
halfcheetah-expert-v2 98.90±0.34 3.75±0.15 97.81±0.36 93.81±0.24 - -
hopper-expert-v2 112.95±0.37 1.59±0.00 112.46±0.04 112.61±0.18 - -
walker2d-expert-v2 111.21±0.09 1.87±0.28 110.99±0.05 109.36±0.10 - -
halfcheetah-medium-expert-v2 96.12±0.27 10.53±1.19 96.55±0.40 74.53±4.47 86.8 101.4
hopper-medium-expert-v2 112.74±0.18 1.68±0.00 112.26±0.23 89.40±8.10 107.6 105.72
walker2d-medium-expert-v2 111.29±0.07 0.21±0.00 111.32±0.13 109.45±0.16 108.1 110.0
halfcheetah-medium-replay-v2 46.55±0.23 49.55±3.56 45.46±0.42 38.51±0.81 36.6 64.6
hopper-medium-replay-v2 100.78±2.08 99.90±0.15 99.12±1.00 78.88±6.56 82.7 98.5
walker2d-medium-replay-v2 90.64±1.05 76.26±3.89 87.60±0.50 54.77±3.14 66.6 82.9
Avg All 74.63 25.81 76.80 64.12 - -
Avg Reported 74.63 25.81 76.80 64.12 74.73 72.66

Table 3. Average return of the best performed policy. Maximal values of each row are bolded. ± corresponds to a single standard deviation
over evaluation seeds.

show contribution in enhancement, and detaching hypothesis optimization hold the most important role. Meanwhile,
localization and adaptation possibly have negative contribution in performance.

Aggregate type Ablation Setting ALH+BC ALH

Max

our 100% 100%
no detach 36.92% 2.56%
no localization 99.43% 114.78%
no adaptation 101.43% 100.63%

Average

our 100% 100%
no detach 30.98% -5.92%
no localization 99.70% 88.31%
no adaptation 97.98% 98.62%

Table 4. Ablation study on offline setting

To explain the observation on original ALH: having promising performance on random data but poor performance on
higher-quality data, using a policy to collect data should be categorized as a strong bias. This scenario limits the hypothesis
diversity, therefore M is overfitted. It worth noting that we still use Bellman optimization, in combination with inability
to describe the environment, policy is encouraged to do out-of-history exploration. Though adding BC has promising
performance on high-quality data, it depends on altering the policy (and indirectly the critic), which also relies on the
behavior policy quality. In our future work, we aim to comprehensively address this problem.
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Figure 11. Offline learning curves. The shaded region represents half a standard deviation of the average evaluation over 5 evaluation
seeds. Curves are uniformly smoothed for visual clarity.
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Figure 12. Offline ablation learning curves. The shaded region represents half a standard deviation of the average evaluation over 5
evaluation seeds. Curves are uniformly smoothed for visual clarity.
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