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Abstract

There is increasing interest in using LLMs as
decision-making “agents.” Doing so includes
many degrees of freedom: which model should
be used; how should it be prompted; should it be
asked to introspect, conduct chain-of-thought rea-
soning, etc? Settling these questions—and more
broadly, determining whether an LLM agent is
reliable enough to be trusted—requires a method-
ology for assessing such an agent’s economic
rationality. In this paper, we provide one. We
begin by surveying the economic literature on ra-
tional decision making, taxonomizing a large set
of fine-grained “elements” that an agent should
exhibit, along with dependencies between them.
We then propose a benchmark distribution called
STEER (Systematic and Tuneable Evaluation of
Economic Rationality) that quantitatively scores
an LLMs performance on these elements and,
combined with a user-provided rubric, produces
a “STEER report card.” Finally, we describe the
results of a large-scale empirical experiment with
14 different LLMs, characterizing the both cur-
rent state of the art and the impact of different
model sizes on models’ ability to exhibit rational
behavior.

1. Introduction
Recently, much research has worked to leverage Large Lan-
guage Models (LLMs) to create decision-making engines,
configuring them either to act directly as economic agents
(Cai et al., 2023; Horton, 2023; Wang et al., 2023a) or to
serve as key elements of broader systems that do so (Zhuge
et al., 2023; Wang et al., 2023b; Shen et al., 2023). LLM-
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based agents are already showing strength in planning (e.g.,
for personal finance (Reworkd, 2023)), solving complex
problems (e.g., medical diagnostics; McDuff et al., 2023),
leveraging tools (e.g., Schick et al., 2023) and playing games
(e.g., chess; Nakajima, 2023). Better decision-making ca-
pabilities will be critical for advancing the use of Rein-
forcement Learning from AI Feedback (RLAIF) to fine-tune
chatbots, such as constitution-based approaches (Bai et al.,
2022; Hong et al., 2023). LLMs may soon take the place of
humans in some social science experiments (Horton, 2023;
Aher et al., 2023; Park et al., 2023). Eventually, this research
agenda offers the promise of realizing the longstanding AI
dream of personalized economic agents.

How can we best configure LLMs to maximize their per-
formance on decision-making tasks (e.g., via prompting to
perform chain-of-thought reasoning; fine-tuning; or more
complex architectures that make repeated calls to a model)?
After we have done so, how well do LLM-based agents per-
form? Recent research has begun to develop testing regimes
that can address these questions in various restricted do-
mains. These include various narrowly defined tasks (Liu
et al., 2023; Qin et al., 2023; Zhou et al., 2023; Yao et al.,
2023); limited economic settings (Shah et al., 2022; Chen
et al., 2021; Sinha and Khandait, 2020; Araci, 2019; Akata
et al., 2023); and open-world video games (Wang et al.,
2023a; Zhu et al., 2023). Going beyond such problem-
specific approaches to assessing decision making more
broadly requires a holistic approach to describing good deci-
sion making and explaining how it can be decomposed into
different, individually testable components. One approach
is to divide decision making into distinct, ad hoc tasks, em-
phasizing those that have been clasically studied in NLP
(Liang et al., 2022; Gehrmann et al., 2021).

We advocate a different approach: enumerating first prin-
ciples that describe how agents should make decisions,
and then evaluating an agent’s degree of adherence with
these principles. Answering the normative question of how
decision-makers should act has been the focus of more than
a century of research in economics, cognitive psychology,
computer science, and philosophy. The resulting literature
provides a mature mathematical foundation for so-called
economic rationality. The grounding principle is that agents
should (implicitly or explicitly) quantify their preferences
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according to a utility function and make decisions to maxi-
mize their own expected utility. The literature further char-
acterizes elements of economic settings that fundamentally
impact rational behavior: e.g., stochasticity is different from
determinism; multi-agent environments are different from
single-agent environments; reasoning about how best to
make decisions for groups of agents is different from rea-
soning about how to act as an individual. In some cases,
the theory is prescriptive: e.g., it’s better to maximize util-
ity than to accept lower-utility alternatives. In other cases,
things become more complicated: e.g., in multi-agent envi-
ronments, determining the best choice depends on beliefs
about how other agents will act. In still others, impossibility
results rule out all desirable options, e.g., when deciding
how to aggregate multiple agents’ preferences. Finally, in
some cases human decision-makers exhibit cognitive biases
that deviate from rational behavior, even when the theory
makes a firmly prescriptive recommendation.

How can we hope to assess rationality when the landscape
is so complex? Our approach is to identify tests for which
the “rational” answer is well defined. In cases where the
prescriptive recommendation is clear, assessment is unprob-
lematic. More ambiguous settings can be tested by explicitly
asking for a desired behavior (e.g., eliciting a Nash equilib-
rium strategy). Such settings also often admit prescriptive
special cases: e.g., even in multi-agent environments, it is
never a good idea to play a dominated strategy. Axiomatic
theories naturally give rise to meaningful tests, which can be
applied from the simplest settings (e.g., the von Neumann–
Morgenstern axioms for utility maximization) to the most
complex (Arrow’s axioms for social choice functions). Fa-
mous human subject experiments that illustrate cognitive
biases also naturally give rise to tests, which human decision-
makers often fail. In the end, we obtain a STEER Report
Card (SRC). We leave it to the end user to determine the
scoring rubric: e.g., should the agent receive good grades
for doing well only in a subset of simple settings; for being
as rational as possible across the board; or for behaving as
humanly as possible, including replicating biases?

More specifically, our work begins by identifying a rich and
hierarchical taxonomy of 64 “elements of rationality” for
which some notion of a “right answer” is well defined (Sec-
tion 4). We define each element, giving an example of each
in an appendix. We then move on (in Section 2) to describe
how we used this taxonomy to derive a fine-grained bench-
mark distribution that serves as the basis for STEER report
cards. Our benchmark allows each element of rationality to
be instantiated in multiple “grade levels” of difficulty and in
multiple domains (e.g., asking questions about finance vs.
medicine). For 49 elements, we have written LLM prompts
to synthetically generate 24,500 multiple-choice questions
and manually validated 2,450 generations in total. We also
discuss how SRCs can be graded. We built a web interface

for generating benchmark questions, validating them, and
visualizing experimental results; it allows elements to be
filtered by position in the taxonomy, by logical dependence
(e.g., the “maximize utility” element depends on the “transi-
tivity” element), by domain, and by grade level. To demon-
strate the utility of our system, we generated full SRCs
for 14 language models, ranging from Llama 7B to GPT-4
Turbo, evaluated on 134,750 test questions. This experimen-
tal setup is described in Section 3. We spent $4,800 making
calls to OpenAI’s API and devoted 13,240 GPU hours of
compute to evaluating open models. Section 5 describes our
results; here are some highlights. Across our benchmark, we
found that model size correlated heavily with performance:
models smaller than 40 billion parameters were not reliably
able to outperform random guessing. Model performance
consistently decreased with grade level. GPT-4 Turbo was
consistently the best model across all of our metrics and
elements; its performance was excellent up to grade 5 (Dom-
inant Strategies), decent up to grade 7 (Avoidance of the
Endowment Effect), and fell to random guessing from grade
9 (Best Response) and above. Self-explanation and few-shot
prompting were consistently able to help. Self-explanation
generally enhanced performance, albeit offering the most
gains on lower-grade-level questions. Few-shot prompting
enhanced model performance when we offered up to three
examples, but decreased performance beyond that point.
We release all model outputs to support evaluation research
and contributions, and provide a public website with all
results (https://steer-benchmark.cs.ubc.ca),
underlying model predictions details, alongside an exten-
sible codebase to support the community in taking SRCs
further.

2. STEER: Systematic and Tuneable
Evaluation of Economic Rationality

We followed the standard practice of encoding our bench-
mark in Multi-Choice Question Answer (MCQA) format
(e.g., Hendrycks et al., 2021; Suzgun et al., 2022; Zellers
et al., 2019). More specifically, each question in a test is
a description of a decision-making scenario and a set of
candidate choices, exactly one of which is correct. All of
the generated questions are organized hierarchically in a
web application according to our taxonomy. The remainder
of this section describes the methodology we employed in
generating and validating these questions and different ways
users can leverage them to construct STEER Report Cards
(SRCs).

2.1. Generating and Validating Questions

It would be impractical to hand-construct enough questions
to assess an agent’s behavior with statistical significance.
Instead, we leverage a state-of-the-art LLM to generate a
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1.1 Arithmetic

1. Foundations
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1.2 Optimization

1.3 Probability

1.5 Theory of Mind

Elements

Elements

Elements

1.4 Logic

Elements

2. Decisions In Single-Agent 
Environments

2.1 Axioms of Utility in 
Deterministic Environments

2.3 Axioms of Utility in 
Stochastic Environments

2.2 Cognitive Biases in 
Deterministic Environments

2.4 Risk Neutral 
Expected Utility

Elements

Elements

Elements

Elements

2.5 Cognitive Biases in 
Stochastic Environments

Elements

3. Decisions in Multi-Agent 
Environments

3.1 Normal Form 
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3.2 Extensive Form 
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Elements

3.3 Incomplete 
Information Games

Elements

Elements

3.4 Infinitely 
Repeated Games

Elements

3.5 Bayesian 
Games

Elements

4. Decisions on Behalf of 
Other Agents

4.2 Social Choice 

4.4 Mechanism 
Design

Elements

4.1 Axioms of Social 
Choice 

4.3 Properties in 
Mechanism Design

Elements

Elements Elements

Figure 1: High-level diagram of the taxonomy of elements of rationality. At the top level, we divide the space of decision
making into settings: FOUNDATIONS, DECISIONS IN SINGLE-AGENT ENVIRONMENTS, DECISIONS IN MULTI-AGENT
ENVIRONMENTS, DECISIONS ON BEHALF OF OTHER AGENTS; we further subdivide settings into modules (e.g., Cognitive
Biases in Deterministic Environments) that capture conceptually similar behaviors.

diverse and substantial set of questions, based on a hand-
constructed inputs. More specifically, we go from an el-
ement to a concrete question as follows. First, we write
detailed text describing what makes a good question, such
as that each outcome should have an associated probabil-
ity or that each action pair should have payoffs. These
instructions also describe formatting issues, such as how
numerical values should be represented. We also provide a
gold-standard example for each question. Together, we call
these two text strings a template. Along with the template
we append a static system prompt (illustrated in Figure 2)
and then repeatedly give the resulting prompt to GPT-4
Turbo to generate many questions from the template.

We create several templates for each element, which differ
in two key ways. First, we vary the subject matter of the
question, which we call the domain, in order to enable as-
sessments of LLM robustness across topics. This approach
not only tests an LLM’s capability within each domain but
also enables assessment of an LLM’s proficiency, or lack
thereof, in specific potential areas of application. Some
of our templates concern financial decision making, others
focus on medicine and health care, still others ask about
technology and innovation. Second, most of our templates
also vary in their difficulty levels. We assign every template
a grade level ranging from 1–13 to help the user understand
its relative difficulty. For example, questions about arith-
metic could vary from Grade 1 to Grade 2 depending on the
number of digits, whereas questions about Nash equilibrium
could vary between Grade 8 and Grade 11. Our specific
choices of grade levels are obviously somewhat arbitrary,
but we aimed as much as possible to maintain a similar
difficulty level across templates in the same grade. Overall,
templates at lower grade levels involve basic understanding
or application of principles while templates at higher grade
levels challenge models with complex problem-solving, crit-
ical thinking, and synthesis of concepts.

We refer to a set of questions for a given element restricted
to a particular domain and grade level as a test. For each
test, we implemented 5 templates, totaling between 10–40
templates per element. Figure 3 provides two example ques-
tions testing the ability to Maximize Expected Utility that
vary in both domains and grade levels. The user can explore
our full set of templates through our web application, select-
ing elements and viewing questions across both domains
and grade levels.

While GPT-4 Turbo was very good at generating questions,
it was not perfect. We thus performed a validation step.
First, we programmatically removed questions that were
formatted incorrectly. For each element, domain, and grade
level triple we then randomly spot-checked 100 samples
(i.e., 10% of all generated questions) from what remained.
We developed our web application to facilitate such vali-
dation, displaying the information needed to ensure that a
given generation not only adheres to the intended style and
complexity but also properly captures the corresponding
element of rationality. We illustrate this interface in the ap-
pendix. In total, 98.54% of all spot-checked samples were
deemed valid by 2 validators, with the lowest validation rate
being 97% (Avoidance of the Endowment Effect).

2.2. STEER Report Card

SRCs function much like an academic report card, providing
a structured and tuneable evaluation of an LLM’s perfor-
mance. Users can subset questions in whichever way best
suits their needs or use cases. Figure 4 gives an example of
such a subset based on a grade range. We also include vari-
ous default subsets for different settings (e.g., single-agent
decision making; multi-agent decision making), different
models (e.g., matching human performance on cognitive
biases), and different use cases (e.g., single-agent decision
making in medical domains). These default subsets are
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Certainly, here is another example in the format you requested:

Imagine that you have developed a new software projected to bring in 
revenue of {projected_old} million dollars. You have already invested 
{spent} million dollars in its development. As you near completion, a 
competitor releases a product that makes your software less competitive, 
and your revised revenue projection drops to {projected_new} million 
dollars. Now, would you rather:
A. Invest an additional {remainder} million dollars to finish development 
and release the product.
B. Cut your losses and abandon the software project.

Output
Model used: gpt-4

Here is an example question, please generate one more and keep the 
story brief. Please follow the formatting: instead of numbers write curly 
braces with the corresponding text. 

Example:
Imagine that you are the manager of a factory projected to yield 
{projected_old} million dollars in value and {spent} million dollars has 
already been spent on it. Unfortunately, there was a change in the market 
and now the value projection of the factory falls to {projected_new} million 
dollars. Would you rather:
A. Spend an additional {remainder} million dollars to complete it.
B. Abandon the project. 

User Prompt

You are an expert 
economics researcher.

System Prompt
Model: gpt-4Domain: 

Element:

Created a Project

Grade Level: 5

Avoidance of Sunk Cost Fallacy

Figure 2: Example generation of a question in Avoidance
of Sunk Cost Fallacy. The generation has two parts: (1) a
user prompt containing a template question and instructions
to follow the formatting and style of the template; and (2) a
static system prompt. The template question in this example
is in domain created a project and at grade level 5.

accessible via our web application.

2.2.1. SCORING AN LLM’S PERFORMANCE

There are multiple ways in which users may want to evaluate
an agent’s economic rationality. We thus offer two different
families of scoring metrics.

2.2.2. ACCURACY

Exact-match accuracy. This is the fraction of questions
answered correctly.

Normalized accuracy. Exact-match accuracy scores can
be hard to interpret since tests differ in their number of mul-
tiple choice options, meaning that the exact-match accuracy
of random guessing varies. We can compensate for this by
reporting the gap between the model’s exact-match accuracy
and random guessing. We compute normalized accuracy
for a given element by subtracting the accuracy achieved
by random guessing from exact-match accuracy and then
dividing by the accuracy of random guessing. Observe that

Created a Project Job Medicine Auctions

E
le

m
en

ts

Maximize Expected Utility

Sunk Cost

Dominant Strategies In Simultaneous Games

Nash Equilibrium in Simultaneous Games

Text

Element: Maximize Expected Utility

You have two job offers. Job P offers 
a salary of $82,500 per year with no 
chance of a bonus. Job Q offers a 
salary of $75,000 per year but with a 
50% chance of a $20,000 bonus. 
Which job should you choose to 
maximize your expected salary?

A. Job P

B. Job Q

Text

Your company is deciding between 
two drugs. Drug X has a 35% chance 
of saving 1500 patients, and a 65% 
chance of worsening 500 patients' 
health. Drug Y has a 50% chance of 
worsening 1000 patients' health, and 
a 50% chance of saving 1000 
patients. Based solely on this 
information, what should you do?

A. Proceed with Drug X
B. Proceed with Drug Y

Domain: Job Offers

Grade Level: 3

Element: Maximize Expected Utility

Domain: Medical Devices

Grade Level: 4

Question:
Question:

Figure 3: Example domain categorization of questions
within elements of rationality and an example of two ques-
tions in different tests for the element Maximize Expected
Utility. Top: We instantiate questions into as many domains
as makes sense for the element of rationality. This figure
depicts the domain span of questions for four different ele-
ments. Bottom: Two questions in two domains: job offers
and medical devices, and two grade levels. Here, a higher
grade level means more outcomes in the options. On the
right (Grade Level 4), we see two options each with two
outcomes, whereas the one on the left (Grade Level 3) has
one option with two outcomes and the other with one.

the normalized accuracy of a model falls between -1 and 1.

Calibration. It is often important that an LLM be able to
express the uncertainty of its recommendation. To quantify
such uncertainty, we follow Liang et al. (2022) and compute
the expected calibration error (ECE; Naeini et al., 2015; Guo
et al., 2017). ECE measures how closely the probability an
LLM assigns to its top answer matches the actual probability
of the correct answer, which in our case is 1. It is defined as∑N

i bi||(pi − ci)||, where pi is the exact-match accuracy in
bin i, ci is the average probability assigned to top answers
in bin i, and bi is the fraction of data points in bin i. We
allow users to choose the number of bins, however, we used
10 uniformly spaced over the interval [0, 1] as is standard.

2.2.3. ROBUSTNESS

We can also assess how robustly a model performs, both
across domains and across simpler elements that are con-
ceptual subproblems of a given element.
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Parameters

GPT-3.5 Turbo

Overall Performance

Module-Level Performance 
(Decisions in Multi-Agent Environments)

Grade Range

Domains

Perfomance 
metric

2?8

All

Normalized
Accuracy

Setting-Level Performance

Foundations

Decisions in Single-Agent Environments

Decisions in Multi-Agent Environments

Decisions on the Behalf of Others

Rationality Report Card
GPT-3.5 Turbo overall performance: 

Normal Form Games

Extensive Form Games

- Nash Equilibria in 2 Round Games
- Nash Equilibria in 3 Round Games
- Backward Induction in 2 Round 
Games

- Backward Induction in 3 Round 
Games

0.429-1.0 1.0

Figure 4: Example SRC for GPT-3.5 Turbo. On the left
are the components necessary for measuring performance:
a grade range, a set of domains, a performance metric and a
model. The rest of the report card summarizes performance
over the entire dataset, grouped by settings and modules in
which there are questions in the grade range. In this example,
GPT-3.5 Turbo was evaluated on all domains in grades 2–
8 and given a single example as part of the prompt of a
task. The right-most pane drills into DECISIONS IN MULTI-
AGENT ENVIRONMENTS; crossed out text illustrates tasks
omitted due to our grade level filter.

Domain robustness. One way to assess robustness is to
measure, for each element, a model’s worst-case perfor-
mance across all domains. We compute the domain robust-
ness on each element by taking the minimum exact-match
accuracy over all domains.

Dependency robustness. There is a hierarchical structure
to our elements of rationality: reasoning about more ad-
vanced elements (e.g., the ability to play a best response)
depends conceptually on simper elements (e.g., the ability to
maximize utility), which of course can depend in turn on yet
simpler ones (e.g., the abilities to maximize a function and
compute an expectation). We express all such conceptual
relationships between elements in a dependency graph. Fig-
ure 5 depicts a concrete example of a dependency subgraph
for the element Iterated Removal of Dominated Strategies
instantiated at Grade Level 7, where there are two agents
each with two actions. The full graph which covers all
elements in our taxonomy is accessible in our webapp.

It is quite possible for an LLM to be proficient at advanced
tasks without proficiency at more basic tasks that make
them up. But such behavior is probably not desirable; it
offers evidence that if the advanced task were discussed
in different terms (e.g., in ways that invoke the conceptu-
ally simpler subtasks) model performance could fall. Con-
versely, if a model fails at an advanced task, it can be in-
formative to trace performance backwards in the depen-
dency graph to understand the model’s performance on the
task’s building blocks. We call the quantification of this
idea dependency robustness. For an element s we define it

Figure 5: Dependency subgraph for iterated removal of
dominated strategies in two-agent games with two actions
for each agent. This node requires the ability to interpret the
format of a game matrix (both normal and bimatrix form),
correctly answer first-order false belief tasks (have knowl-
edge of others’ beliefs), best respond (choose the best action
given a fixed action for the opponent), and find dominated
strategies. Being able to find dominated strategies requires
the ability to have orderings over payoffs which is tested
via transitivity and ignoring irrelevant alternatives. The
remaining nodes can similarly be broken down.

as
∑

x∈X |random_gap(s)− random_gap(x)|, where
X = {x|random_gap(x) < random_gap(s)}x∈Gs

and Gs is the dependency subgraph for some element s.

3. Applying our Benchmark: Setup
Table 1 lists the 14 different LLMs we evaluated, varying
in parameter size. We ran GPT 3.5 Turbo and 4 Turbo
using OpenAI’s API (OpenAI, 2020) and AzureOpenAI.
We obtained 12 open-source models from the HuggingFace
Hub (Wolf et al., 2019) and ran them on an A100 GPU on
Compute Canada. We decoded from all LLMs by sampling
with temperature 0.

As is standard in model evaluation work (c.f., Liang et al.,
2022) we treat LLMs as black boxes that take input strings
and output completion strings along with log probabilities,
when available. That means we do not assume access to the
internal activations nor a model’s training data. However,
we can employ various widely used techniques to tailor an
LLM to a desired question. Two common alternatives are
self-explanation and prompting.

Self-Explanation. Much work has shown that question
answering performance can be improved by asking a model
to explain its reasoning (Wei et al., 2022; Yoran et al., 2023;
Huang et al., 2023). We take two approaches to implement

5



STEER: Assessing the Economic Rationality of Large Language Models

Name Origin

GPT-4 Turbo (1106-preview) OpenAI (2023)
GPT-3.5 Turbo (0613) ×
Llama-2 {7b, 13b, 70b} Touvron et al. (2023b)
Llama-2 Chat {70b} Touvron et al. (2023b)
Llama {7b, 13b, 65b} Touvron et al. (2023a)
Alpaca {13b} Taori et al. (2023)
Vicuna {13b} Chiang et al. (2023)
Falcon {7b, 40b} Almazrouei et al. (2023)
Falcon-Instruct {7b, 40b} Almazrouei et al. (2023)

Table 1: The 14 LLMs evaluated in Section 5 and their
numbers of parameters.

this idea, which we dub separate and together. In separate,
we call the model twice, first providing the question text
and candidate options and asking the model to explain its
reasoning, and then providing only the candidate options
and asking the model to select the correct answer. In to-
gether, we only call the model once, giving the model the
question text and candidate options, asking it both to explain
its reasoning and to select the correct answer. For each ap-
proach, we test the effect that it has on model performance
measured both on the accuracy and the confidence (i.e., log
probabilities) a model places on its answer.

Few-Shot Prompting. Model performance can also be
improved by prepending a set of examples to the prompt.
For each question, we select n ∈ {0, 1, 2, 4, 5} examples
(within the corresponding domain and grade level) to test the
effect of prompting on a model’s performance. Similarly, we
measure the effect by computing the difference on accuracy
and confidence for each element.

4. Elements of Economic Rationality
Building a structured assessment of LLMs’ economic ra-
tionality requires first deciding on a way of structuring the
space of economic behavior. Fundamentally, economics
is concerned with decision making, and an economically
rational agent is one that makes good decisions given its
own interests and its knowledge about the environment in
which it acts. Different economic environments can give
rise to very different decision-making problems. We thus
divide our space into increasingly rich settings. We begin
with DECISIONS IN SINGLE-AGENT ENVIRONMENTS, ex-
ploring preference formation and decision making when
an agent has a set of alternative choices, each of which
leads either to a single, deterministic outcome or to a draw
from a probability distribution over outcomes. DECISIONS
IN MULTI-AGENT ENVIRONMENTS enriches this setting,
requiring the agent to make decisions when the outcomes
depend on interactions with other economic agents with
their own preferences and beliefs. DECISIONS ON BEHALF

OF OTHER AGENTS asks the agent to aggregate the pref-
erences of other agents to achieve good outcomes for all.
Lastly, FOUNDATIONS are core mathematical and cognitive
skills that underlie economic reasoning: arithmetic, opti-
mization, probability, logic, and theory of mind. (We will
hereafter list FOUNDATIONS first, since it is the simplest
of all.) Each setting is partitioned into multiple distinct
modules, and each module consists of multiple elements of
rationality: measurable capabilities that an economically ra-
tional agent is able to exhibit. We give a graphical overview
of the taxonomy in Figure 1. Because it is very long, we
leave the element-by-element description of our taxonomy—
including an example for each element—to Appendix A.

Even given our restriction to representative, testable ele-
ments of rationality rather than all of decision making, it
is an under-specified task to determine what we should de-
mand of an economically rational agent. We, therefore,
always align these canonical “right answers” with the von
Neumann-Morgenstern (vNM) utility axioms, which imply
freedom from cognitive biases, hence e.g. time consistency
and reference independence. In some cases, the vNM ax-
ioms are not sufficiently constraining; thus, e.g., we align
our canonical answers with a linear utility for money (and
thus risk neutrality). We set up our taxonomy and SRCs in
this way not because we believe that our canonical answer
is the right one for every circumstance, but instead because
we found it simplest to present both elements of rationality
and experimental results in terms of an easily understood
reference point.

5. STEER Report Card
This section assesses models’ relative performance, their
robustness, and the extent to which they were improved
by adaptation strategies. We report results using multiple
different SRCs to highlight different aspects of model perfor-
mance and to give more examples of how SRCs can be used.
Our system’s web interface can be used to drill more deeply
into model performance, the underlying model outputs, and
the precise inputs and prompts that generated those outputs.
As space permits, we also showcase some of those features
here.

Whole-Benchmark SRC. Our first SRC aggregates perfor-
mance across our whole benchmark, using both normalized
accuracy and exact-match accuracy. Table 2 shows the re-
sults, sorting models in descending order by exact-match
accuracy. Performance closely followed models’ numbers of
parameters regardless of which measure we used. For mod-
els that consistently performed better than random guessing
(i.e., those with positive normalized accuracy), normalized
accuracy and exact-match accuracy orderings were very sim-
ilar. The same pattern held in our other experiments; thus,
for space reasons, we hereafter focus mainly on normalized
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Model Normalized Exact-Match

GPT-4 Turbo 0.3302 63.61%
GPT-3.5 Turbo 0.3071 61.69%
Llama-2 70b 0.2897 41.73%
Llama 65b 0.2849 39.67%
Falcon 40b Instruct 0.1320 35.73%
Falcon 40b 0.0765 34.55%
Llama 13b -0.2655 20.54%
Llama-2 13b -0.3013 16.39%
Alpaca Native -0.3044 22.19%
Falcon 7b Instruct -0.3146 23.50%
Falcon 7b -0.3709 21.39%
Llama 7b -0.3768 14.16%
Llama-2 7b -0.4344 9.06%

Table 2: Average accuracy. We report the average score
each model had on our benchmark via normalized accuracy
and exact-match; higher numbers are better. Scores are
averaged without model adaptations.

accuracy.

We also made a head-to-head comparison between each pair
of models. GPT-4 Turbo was the most accurate model by
a large margin, winning in nearly all matchups. However,
it still left a lot to be desired, closing only a third of the
gap between random guessing and perfect answers. Of the
remaining models, GPT-3.5 Turbo was the second most
accurate, followed by Llama-2 70b. Performance again cor-
related strongly with model size. We did observe that Llama
13b performed better than Llama-2 13b in both accuracy
measures but that their ECEs were similar.

Grade-Specific SRCs. The previous analysis shows that
overall performance was relatively weak for even the best
LLMs and terrible for smaller models. However, problems
in our benchmark vary tremendously in difficulty. We thus
constructed separate SRCs for each grade level, which we
expected would impact model performance. The results are
illustrated in Figure 6. The red line indicates the perfor-
mance level of random guessing. Among models exceeding
that threshold, performance degraded quite consistently as
grade level increased. GPT-4 Turbo closed three quarters of
the gap between guessing and perfect answers on Grade 0
(FOUNDATIONS) questions, which are the easiest and have
also received the most previous study in the NLP commu-
nity. Performance fell fast, with only about half the gap
closed in Grades 3–4 and performance roughly the same
as random guessing from Grade 9 onwards. Many tests in
this grade require reasoning about strategic and bimatrix
representation of games. For instance, on Best Response
(an element testing the ability to select the action with the
highest payoff given a fixed opponent action) both GPT-4

Turbo (−0.121) and GPT-3.5 Turbo (−0.214) performed
worse than random guessing; on Iterated Removal of Domi-
nated Strategies (an element testing the ability to iteratively
remove both the agent’s and their opponent’s actions that are
never best responses) both models performed slightly better:
GPT-4 Turbo achieved 0.067 on normalized accuracy and
−0.073 for GPT-3.5 Turbo. The two outlying points for
GPT-4 Turbo in Grades 3 and 6 are due to strong perfor-
mance on Avoidance of the Gambler’s Fallacy (an element
testing understanding of independent probability draws)
and Level-k Reasoning (an element that tests the ability to
reason about others’ actions in canonical game theoretic
scenarios), respectively. GPT-3.5 Turbo—the second-best
model—performed consistently worse, never closing more
than about half the gap and falling to random guessing from
Grade 7 onwards.
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Figure 6: Top: Performance by grade level for each LLM.
Bottom: worst-case normalized accuracy over all domains
vs. avg normalized accuracy for each element–model pair.

Cognitive Bias SRC. It is interesting to ask whether models
deviate from economically rational behavior in the same
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ways as humans. To find out, we constructed an SRC fo-
cused only on elements measuring such tendencies: those
from deterministic environments and stochastic environ-
ments. Focusing on the GPT models, we observed relatively
more rational (vs. human-like) performance in deterministic
environments (GPT-4 Turbo: 0.575; GPT-3.5 Turbo: 0.307)
than in stochastic environments (GPT-4 Turbo: 0.377; GPT-
3.5 Turbo: 0.173). In the latter case, both GPT models
were susceptible to framing effects. Performance on the
Avoidance of the Certainty Effect (an element testing for
consistency in risk preferences when the payoffs are posi-
tive) was far worse than on the Avoidance of the Reflection
Effect (an element testing for consistency in risk preferences
when the payoffs are negative).

Domain Robustness SRC. Figure 6 shows one point for
each element–model pair representing worst-case vs. aver-
age normalized accuracy across different domains. It shows
high variation in performance even when models achieved
high average accuracy. We saw the largest variation in per-
formance in questions testing for Avoidance of Sunk Cost
Fallacy, which tests whether an LLM exhibits a human cog-
nitive bias; in particular, GPT-3.5 Turbo exhibited the most
such bias in a domain concerned with investing in medical
projects. We also saw large performance variation in GPT-4
Turbo when testing for Maximize Expected Utility (an ele-
ment testing the ability to select the option with the highest
expected utility computed with respect to a linear utility
function), where the worst performance was in a domain
contrasting different medical treatment options. We did not
observe that GPT-4 Turbo had any consistent preference
towards risk-seeking or risk-averse behavior; rather its per-
formance simply became noisier in the medical treatment
domain. We conjecture that this could be due to model align-
ment (RLHF) having treated medical domains as sensitive.

Dependency Robustness SRC. Performance in higher-
order elements was almost always worse than in their pre-
requisites. A notable exception was Pure Nash Equilibrium
and its immediate ancestor Iterated Removal of Dominated
Strategies (IRDS): across the board, LLMs performed worse
on IRDS. This is an especially difficult task for LLMs as it
requires iteratively simplifying the bimatrix game represen-
tation. This demonstrates a weakness in our test for Pure
Nash Equilibrium (and highlights the value of dependency
robustness analysis); evidently, that test does not adequately
represent dominance-solvable games.

Self-Explanation. All models showed overall performance
improvement when asked to explain their reasoning (in both
separate and together versions). However, performance
gains were not uniform across modules, with the biggest
gains coming in low-grade-level questions and cognitive
biases in stochastic environments. GPT-4 Turbo’s perfor-
mance increased dramatically on Avoidance of the Certainty

Effect (0.079 → 0.508) and Avoidance of the Reflection
Effect (0.390 → 0.865) under this adaptation. Performance
on the Avoidance of the Reflection Effect continued to dom-
inate Avoidance of the Certainty Effect.

Few-Shot Prompting.

We investigated how the number of examples provided in
model context influenced performance, varying the maxi-
mum number of examples across n ∈ {0, 1, 2, 4, 5}, and
rounding down when necessary to fit into the context win-
dow. We observed that all models clearly improved from
n = 0 to n = 3, including many which had exhibited
lower-than-random-guessing accuracy in the zero-shot set-
ting. GPT-4 Turbo’s performance plateaued at 3 examples;
at 4 examples and above, we observed deteriorating perfor-
mance for all models.

6. Discussion and Conclusions
Our work presents a novel benchmark for assessing LLM’s
ability to exhibit economically rational behavior, which re-
quires a complex mix of logic, probability, optimization,
reasoning about other humans, economic principles, and
contextual judgment. Our benchmark can be used to high-
light both the strengths and limitations of existing models
and adaptation strategies, helping users to determine both
where models can be relied upon and where they need more
work. In the latter case, our benchmark can be directly
useful, offering opportunities for fine-tuning, curating new
datasets, and aiding in the development of specialized ar-
chitectures. The results could impact a wide variety of
economic tasks, such as market analysis, policy simulation,
and understanding consumer behavior. We also foresee con-
tinued progress towards LLMs that mimic human reasoning,
whether rational or not. Once they reach a sufficiently high
quality threshold, LLMs will also be able to act as prox-
ies in economic studies, facilitating cheaper, bigger, better
controlled, and more replicable experiments.

In future work we intend to further expand our benchmark
to draw further elements of rationality from the economic
literature and expand on the elements we have currently.
We welcome community feedback about elements that we
should add! We also plan to conduct more experiments (on
these new elements and also on additional LLMs, adapta-
tion strategies, and prompts) and to analyze them in more
detail than space has allowed here. In particular, we note
that it may (or may not) be possible to achieve much better
performance on our tests via different prompting and adap-
tation strategies; our experimental results should thus be
understood as lower bounds on the performance each model
can achieve. Finally, it would be very useful to determine
how humans score on our tests to yield a baseline against
which LLMs can be evaluated.
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Impact Statement
The use of LLMs to act as agents would have many social
consequences. Existing systems that act as agents would
be superseded once their performance is exceeded, yield-
ing better outcomes. A possible drawback here is that the
validation of an LLM-based system is much more difficult
than that of an explicitly programmed system, so occasional
errors could cause significant harm even if overall perfor-
mance were better. Some tasks would be delegated from
people to AI, lowering the cost of performing those tasks,
helping to achieve better outcomes and freeing people from
tedious work. Such delegation would also displace paid
human labor, potentially disadvantaging workers. Unreli-
able agent behavior has the potential to cause significant
harm of various kinds, ranging from economic losses to the
inadvertent perpetuation of biases.

The use of LLMs as substitutes for people in “human subject”
experiments would offer many benefits: such experiments
could be performed more often, to a higher degree of sta-
tistical significance, and without the risk of causing harms
to the human subjects. It also poses risks: biases from
LLMs could be replicated in research findings, and more
broadly if a study’s conclusions are unreliable, the applica-
tion of research findings could cause social harm. We thus
advocate for the use of LLMs only to conduct exploratory
analyses, with subsequent validation performed using real
human subjects.

In all of these cases just described, harms are magnified
when an LLM-based agent behaves unpredictably, unreli-
ably, or inconsistently. Good technologies for validating
the reliability of such systems are therefore critical. Our
own work is only a first step in this direction, but we hope
that it will help developers to understand the quality and
robustness of agent architectures and thus to make informed
decisions about whether a given system is safe and reliable

enough to deploy.
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A. Taxonomizing and Illustrating Elements
A.1. SETTING 1: FOUNDATIONS

The economic model of rational decision making is highly
mathematical. An agent therefore needs to be fluent in a va-
riety of mathematical basics to be able to compute the value
of outcomes, reason about their likelihoods, and choose the

best one. In multiagent settings it is also necessary to rea-
son about other agents’ beliefs. This setting lays out these
core skills, dividing them into five modules: Arithmetic;
Optimization; Probability; Logic; and Theory of Mind. A
key difference between this setting and all of the others
that we propose is that most of its elements have already
been the subject of rich study by the NLP community. We
nevertheless include these elements here both to standardize
them within our framework, given their importance to eco-
nomic rationality, and to integrate foundations within our
dependency graph (discussed further in Section 2.2.3).

A.1.1. MODULE 1.1: ARITHMETIC

Economic reasoning is fundamentally quantitative, so arith-
metic operations are a bedrock foundation for much of what
is to come.

Element 1.1.a (Addition and Subtraction) The ability to
add or subtract.

Illustration 1.1.a What is 10 + 5?

Element 1.1.b (Multiplication and Division) The ability
to multiply or divide.

Illustration 1.1.b The past five weeks you and your friend
have gone out for dinner and they have picked up the tab. If
the cost of dinner was $30 each time, how much do you owe
your friend in total?

Element 1.1.c (Compute Expectation) The ability to com-
pute expected value given probabilities and outcomes.

Illustration 1.1.c Your weather app indicates that there
will be a 20% chance of 0.5 inches of rain tomorrow. What
is the expected value of the number of inches of rainfall
tomorrow?

A.1.2. MODULE 1.2: OPTIMIZATION

Much economic reasoning depends on the primitive opera-
tion of identifying the best choice among a set of alternatives,
sometimes given constraints.

Element 1.2.a (Optimize Over a Discrete Set) The ability
to identify the biggest or smallest among a set of explicitly
given alternatives.

Illustration 1.2.a Which is bigger: $10 or $50?

Element 1.2.b (Optimize a Continuous Function) The
ability to identify a maximum or minimum value given a
specification of a continuous relationship between indepen-
dent and dependent variables.
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Illustration 1.2.b A box without a top is to be made from a
square piece of cardboard by cutting squares of side x from
each corner and folding up the sides. If the original piece
of cardboard is 15 inches on each side, what value of x will
maximize the volume of the box?

Element 1.2.c (Constrained Optimization) The ability
to find the maximum or minimum of a function subject to
constraints.

Illustration 1.2.c A factory produces two types of widgets,
A and B. Each unit of A yields a profit of $10 and B yields
$20. To manufacture, A requires 5 hours and B requires
10 hours of labor. The total available labor is 15 hours.
The factory aims to maximize profit. Determine the optimal
production mix.

A.1.3. MODULE 1.3: PROBABILITY

Reasoning under uncertainty is a critical framework for
rational decision making.

Element 1.3.a (Compute Probabilities of Outcomes) The
ability to compute probabilities of individual outcomes given
a natural language description of a probability distribution.

Illustration 1.3.a A jar contains 5 red marbles, 3 blue mar-
bles, and 2 green marbles. If a single marble is drawn at
random from the jar, what is the probability of drawing a
red marble?

Element 1.3.b (Complement Rule) The ability to compute
the complement probability of an event (i.e., the probability
that it does not occur).

Illustration 1.3.b You are fishing and there are two fish in
the pond: carp and trout. With probability 0.85 you will
catch a trout or nothing at all. How likely are you to catch
a carp?.

Element 1.3.c (Bayes’ Rule) The ability to update
probabilistic beliefs according to Bayes’ Rule: Let A
and B be events and P (B) ̸= 0, then P (A|B) =
P (B|A)P (A)/P (B).

Illustration 1.3.c In rugby, Tom has a 55% chance of scor-
ing a try. In 79% of games when he is playing against
teams ranked lower than his team, he scores a try. He
plays against lower-ranked teams 27% of the time. Tom just
scored a try, what is the probability he was playing against
a lower-ranked team?

A.1.4. MODULE 1.4: LOGIC

Logical reasoning forms a basis for much rational reason-
ing, and so constitutes another category of mathematical
foundations.

Element 1.4.a (Categorical Syllogism) The ability to de-
duce if the conclusion logically follows from two assertions
(e.g., “A is in C and B is in A, is B in C?”).

Illustration 1.4.a All dolphins are mammals. All mammals
give live birth. Solely from the information provided, is the
following also true: All dolphins give live birth.

Element 1.4.b (Conditional Syllogism) The ability to de-
duce if the conclusion logically follows from two conditional
statements (e.g., “If A then B and if B then C, if A then C?”).

Illustration 1.4.b If Karen is smart, then she will get good
grades. If Karen gets good grades then she will get into col-
lege. Solely from the information provided, is the following
also true: If Karen is smart, then she will get into a good
college.

Element 1.4.c (Logical Equivalence of Contrapositive)
The ability to deduce that logical statements and their

contrapositives are logically equivalent (e.g., “If A, then B”
is equivalent to “if not B, then not A”).

Illustration 1.4.c John believes that if he contributes to his
retirement fund regularly, he will accumulate retirement
savings. Which of the following statements is logically
equivalent?

A.1.5. MODULE 1.5: THEORY OF MIND

Theory of mind is the understanding that others have beliefs,
desires, intentions, and perspectives that are different from
one’s own. This is crucial for predicting and interpreting
the actions of others, especially in competitive contexts or
when there is incomplete information about others’ actions
or intentions.

Element 1.5.a (First-Order False Belief) The ability to
identify the beliefs that an agent has that are different from
the actual truth or the agent’s own belief.

Illustration 1.5.a Sam leaves his red ball in his basket and
goes out to play. While he is away, Anne moves the red ball
to her own box. Where will Sam look for his red ball when
he comes back?

Element 1.5.b (Second-Order False Belief) The ability
to identify the beliefs that an agent has about what another
agent believes that are different from the actual truth or the
agent’s own belief.

Illustration 1.5.b Julia parks her bike at the end of the
driveway before going inside her house. After she enters,
her friend moves the bike to the garage to protect it from
the rain. When Julia looks to go out again, where will her
friend think she will first look for her bike?
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A.2. SETTING 2: DECISIONS IN SINGLE-AGENT
ENVIRONMENTS

We now turn to explicitly assessing economic rational-
ity. Throughout this paper we leverage the von Neumann–
Morgenstern expected utility model (vNM; von Neumann
and Morgenstern, 1944), which provides a comprehensive
framework establishing ideal norms for how a decision-
maker should act (Harsanyi, 1955). This normative aspect
is critical for us, as it allows us to identify testable elements
of rationality. The dominance of the vNM approach in eco-
nomic analysis can be attributed to two key characteristics.
First, it makes predictions based on a sparse description of
the choice problem: the only components that need to be
specified are the agent’s objectives and constraints. Second,
it applies to an extremely wide range of choices, extending
beyond traditional economic matters like consumption and
savings to personal decisions regarding education, career,
and healthcare, and business decisions about production
levels, technological investments, workforce management,
and market entry and exit strategies.

There exist various scenarios in which the vNM model’s
qualitative predictions are robustly violated in human sub-
ject studies. While individual human decision-makers are
not typically able to articulate general decision rules that
explain their own behavior, a descriptive literature in behav-
ioral economics has attempted to identify such rules as a
way of capturing consistent ways in which human choice be-
havior deviates from the rational ideal (notably, c.f. (Savage,
1954; Kahneman and Tversky, 1979); for a recent survey,
see (Erev et al., 2017)). These are of particular interest both
because they are likely to be exhibited by humans and may
also be exhibited by LLMs trained on examples of human
reasoning.

We follow (Kochenderfer, 2015) in organizing the modules
in this setting by the normative axioms in deterministic and
stochastic environments as well as deviations from these
axioms drawn from the descriptive literature.

A.2.1. MODULE 2.1: AXIOMS OF UTILITY IN
DETERMINISTIC ENVIRONMENTS

The vNM utility theory rests on a set of axioms, which are
easy to interpret as elements of rationality. We begin with
the simplest description of these axioms, in which the agent
confronts choices in deterministic environments.

Element 2.1.a (Completeness) The ability to determine a
preference between two options A and B. E.g., prefer A
over B, B over A, or indifference.

Illustration 2.1.a You are a medical professional faced
with recommending a treatment plan for a patient with a
chronic condition. There are two treatment options avail-

able: Treatment A: Guarantees a moderate improvement in
the patient’s condition (utility: 50) but includes a mild, man-
ageable side effect (utility: −10). Treatment B: Provides
significant improvement in the patient’s condition (utility:
100) but comes with a risk of a severe, albeit rare, side effect
(utility: −50). Which treatment would you be more inclined
to recommend, considering the risk-benefit balance?

Element 2.1.b (Transitivity) The ability to be consistent
in preferences over options. E.g., if A is preferred over B,
and B over C, then A should be preferred over C.

Illustration 2.1.b Imagine you are deciding on an activity
for tomorrow and you would rather play tennis than go on
a run but would rather run than go for a swim. Would you
rather play tennis or go for a swim?

Element 2.1.c (Independence) The ability to remain con-
sistent in preferences between pairs of options regardless
of the presence of other alternatives. E.g., if A is preferred
to B, introducing a third option C should not change this
preference.

Illustration 2.1.c You need a new phone and there are two
options at your local store. Phone A with quality level 90
which costs $1000 and Phone B with quality level 100 which
costs $1250. Which would you choose? Suppose the person
helping you tells you there is another phone, Phone C, in
the back with quality level 80 and costs $1100. Which of the
three phones would you choose now?

A.2.2. MODULE 2.2: AVOIDANCE OF COGNITIVE
BIASES IN DETERMINISTIC ENVIRONMENTS

A wide range of cognitive biases have been identified by the
descriptive economic literature. We identify their opposites
as elements of rationality.

Element 2.2.a (Avoidance of Sunk Cost Fallacy) The abil-
ity to walk away from an investment at any point where its
future costs exceed its expected future benefits, disregarding
prior investments. (Parayre, 1995)

Illustration 2.2.a Imagine you are managing a project for
your company. The project has already cost $500,000,
but recent analysis suggests that it is not going to deliver
the expected benefits and the revised revenue projection is
$700,000. At this point, you can either continue investing
$800,000 more in the hope of making the project moderately
successful or abandon it. What should you do?

Element 2.2.b (Avoidance of Endowment Effect) The
agent’s maximum willingness to pay to acquire an object
should be the same as the price they are willing to accept
to sell that same object when they own it. (Morewedge and
Giblin, 2015)
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Illustration 2.2.b You were at a gift exchange with your
friends and received a wallet. Another friend of yours re-
ceived a hat. This friend asked if you would like to trade,
and you politely declined. However, you have since lost that
wallet. You are now in a similar situation and receive a hat.
Another friend of yours received a wallet. This friend asks
you if you would like to trade. Do you accept their offer?

Element 2.2.c (Avoidance of Time Inconsistency) The
ability to be consistent in preferences across time; e.g., not
preferring immediate rewards to larger future rewards when
waiting would lead to greater overall utility. (Loewenstein
and Prelec, 1992)

Illustration 2.2.c Suppose you were asked and had made a
choice to receive $10 dollars today rather than $20 dollars
tomorrow. You are asked to make a similar choice between
getting $10 after 15 days or $20 after 16 days, which would
you choose?

A.2.3. MODULE 2.3: AXIOMS OF UTILITY IN
STOCHASTIC ENVIRONMENTS

We now elaborate our economic environment to include a
stochastic relationship between an agent’s choices and the
resulting economic outcomes. Here, vNM adapts the utility
theory axioms to guide rational decision making by defining
“lotteries”: probabilistic combinations of outcomes.

Element 2.3.a (Completeness over Lotteries) The ability
to determine a preference between two lotteries A and B.
E.g., prefer A over B, B over A, or indifference.

Illustration 2.3.a Consider a scenario where you have to
choose between two job offers. Job A offers a static income
of $70,000 per year with a low chance (20%) of a large
bonus ($5,000), while Job B offers a static income with an
static income of $70,500 per year but with a high chance
(90%) of a small bonus ($1,000). Assuming no other differ-
ences between the jobs, which option would you prefer?

Element 2.3.b (Transitivity over Lotteries) The ability to
select among lotteries in a consistent manner. E.g., if A is
preferred over B, and B over C, then A should be preferred
over C.

Illustration 2.3.b You have the following preferences over
food: Preference X: A 62% chance of eating Italian cuisine
is preferred over a 69% chance of eating Mexican cuisine.
Preference Y: A 69% chance of eating Mexican cuisine is
preferred over a 11% chance of eating Japanese cuisine.
Which of the following is a consistent preference?

Element 2.3.c (Independence over Lotteries) The ability
to remain consistent in preferences between pairs of lotteries
regardless of the presence of other alternatives. E.g., if A

is preferred to B, introducing a third lottery C should not
change this preference.

Illustration 2.3.c You have two travel options: Option A:
80% chance of sunny weather at a beach destination and
rainy otherwise. Option B: 45% chance of good snow con-
ditions at a ski resort, 55% chance of poor snow conditions.
Which travel option will you choose? You are now informed
of a third option: Option C: 67% chance of sunny weather
at a beach destination and rainy otherwise. Now which
travel option will you choose?

A.2.4. MODULE 2.4: RISK NEUTRAL EXPECTED
UTILITY COMPUTATIONS

This module includes elements evaluating adherence to a
linear utility function when computing expected utilities,
delving into the behavioral patterns exhibited by individuals
and institutions in their approach to risk.

Element 2.4.a (Compute Expected Utility) The ability to
correctly compute the sum of the products of each outcome’s
utility and its probability.

Illustration 2.4.a A patient has a 40% chance of recovery
with Treatment A. The utility of recovery is 50, while the
utility of not recovering is 15. Calculate the expected utility
for Treatment A.

Element 2.4.b (Maximize Expected Utility) The ability to
select the prospect with the highest expected utility.

Illustration 2.4.b You currently have two job offers. Job
P offers a salary of $75,972 per year with no chance of a
bonus. Job Q offers a salary of $69,183 per year but with a
55.34% chance of a $15,882 bonus. Which job should you
choose to maximize your expected salary?

Element 2.4.c (Avoidance of Risk-Averse Behavior) The
ability to make decisions based on an objective evaluation
of all potential outcomes without over-valuing more certain
payoffs.

Illustration 2.4.c Imagine you are considering two invest-
ment options: Investment A guarantees a return of $10,000.
Investment B offers a 50% chance of a $25,000 return and
a 50% chance of no return. Which investment should you
choose?

Element 2.4.d (Avoidance of Risk-Seeking Behavior) The
ability to make decisions based on an objective evaluation
of all potential outcomes without over-valuing rare high-
reward outcomes.

Illustration 2.4.d As a doctor, you need to choose a
treatment plan for a patient with a serious but non-life-
threatening condition. There are two treatment options:
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Treatment A has an 80% chance of moderately improving
the patient’s condition with minimal side effects (utility: 56)
but a 20% chance of having no effect (utility: 0). Treatment
B has a 30% chance of completely curing the patient (utility:
124) but a 70% chance of causing significant side effects
without improving the condition (utility: −18).

Element 2.4.e (Avoidance of Loss Averse Behavior) The
ability to make decisions based on an objective evaluation
of all potential outcomes without disproportionately valuing
potential losses. (Kahneman and Tversky, 1984)

Illustration 2.4.e There are two card games you can join.
Game ALPHA charges $5 for entrance and has a 50%
chance of winning $10 and a 50% of losing $5. Game
BETA charges $10 for entrance and has a 40% chance of
winning $15 and a 60% chance of winning $3. Which game
should you play to maximize your expected utility?

A.2.5. MODULE 2.5: AVOIDANCE OF COGNITIVE
BIASES IN STOCHASTIC ENVIRONMENTS

Here, we include elements testing the agent’s ability to avoid
making contradictory or inconsistent behaviors, emphasiz-
ing how framing effects play in shaping risk-taking attitudes.
As we already did in MODULE 2.3: AVOIDANCE OF COG-
NITIVE BIASES IN DETERMINISTIC ENVIRONMENTS, we
state the opposite of each such behavior as an element of
rationality.

Element 2.5.a (Avoidance of Gambler’s Fallacy) The
ability to avoid the incorrect belief that an outcome’s proba-
bility (when drawn independently) in the future is reduced if
it has occurred atypically often in the past.

Illustration 2.5.a Suppose you are given a fair coin and
after flipping it 5 times it has come up heads every time. On
the next flip, is it more likely to flip tails?

Element 2.5.b (Avoidance of the Certainty Effect) The
ability to be consistent across preferences towards risk when
the payoffs are positive. (Kahneman and Tversky, 1984)

Illustration 2.5.b Consider two options. Option A guaran-
tees receiving $30, while Option B offers an 80% chance
of receiving $45 and a 20% chance of receiving nothing.
Which option would you choose? Now consider two more
options: Option C: 25% chance to win $30 and 75% chance
to win nothing and Option D: 20% chance to win $45 and
80% chance to win nothing. In this scenario which option
would you choose?

Element 2.5.c (Avoidance of the Reflection Effect) The
ability to be consistent across preferences towards risk when
the payoffs are negative. (Kahneman and Tversky, 1984)

Illustration 2.5.c Imagine you are given the opportunity
to receive a sure gain of $50 (Option A) or a 50% chance
to gain $100 and $0 otherwise (Option B). Which would
you choose? Suppose you were given another choice: you
face a sure loss of $50 (Option C) versus a 50% chance to
lose $100 and $0 otherwise (Option D). Which would you
choose?

Element 2.5.d (Avoidance of Ambiguity Aversion) The
ability to be consistent across preferences towards known
and unknown risks (ambiguity) under differing framing.
(Ellsberg, 1961)

Illustration 2.5.d Consider an urn with 90 balls, 30 of
which are red, and the remaining 60 are either black or
yellow in an unknown proportion. Gamble A offers a re-
ward for drawing a red ball, and Gamble B offers a reward
for drawing a black ball. Simultaneously, Gamble C offers
a reward for not drawing a red ball, and Gamble D offers
a reward for not drawing a black ball. Many people would
choose Gamble A over B (implying a belief that there are
fewer than 30 black balls) and simultaneously choose Gam-
ble D over C (implying a belief that there are more than
30 black balls). This inconsistency showcases ambiguity
aversion.

A.3. SETTING 3: DECISIONS IN MULTI-AGENT
ENVIRONMENTS

Economic reasoning changes when the environment con-
tains other agents, falling under the umbrella of game theory
(c.f., Fudenberg and Tirole, 1991). The crucial difference is
that other agents cannot simply be modeled as behaving ran-
domly: they act to maximize their own utilities in response
to their own beliefs, which include beliefs about the agent’s
behavior. Decision making in multi-agent environments
thus builds on the elements of rationality already defined,
but adds new ingredients.

To capture these dynamics, we subdivide the analysis into
different representations of strategic interaction as is com-
mon in many game theory textbooks (Osborne et al., 2004;
Fudenberg and Tirole, 1991; Shoham and Leyton-Brown,
2008). These representations help in understanding strate-
gic interactions under different conditions in multi-agent
decision making scenarios.

A.3.1. MODULE 3.1: NORMAL FORM GAMES

Traditionally in game theory textbooks, a game is described
by a matrix which shows the agents, strategies, and pay-
offs. This form is most commonly used for games where
decisions are made simultaneously but can represent any
game-theoretic interaction between agents. In this module,
we consider games in which agents interact only once se-
lecting strategies without knowledge of the other agents’
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choices.

Recognizing that LLMs can struggle with tabular data, we
begin by assessing the ability to interpret games in both
natural language and with a payoff matrix. As we see, as
games increase in complexity, it becomes more reasonable
to describe the game using a payoff matrix.

Element 3.1.a (Interpret Games) The ability to select
the correct payoff given a set of actions in strategic form
games: a matrix of payoffs for a single agent indexed by
combinations of strategies by the agents and in bimatrix
form games: the matrix includes sets of payoffs, one for
each agent.

Illustration 3.1.a You are about to play a game with your
friend that can be described by the payoff matrix below. You
are the row player so the first number in the cell is your
payoff, what is your payoff if you play Odds and your friend
plays Evens?

Odds Evens
Odds (12.132,−1931.435) (10.032,−432.938)
Evens (842.313,−74.257) (−3.049, 43.982)

Element 3.1.b (Best Response) The ability to compute
and select the strategy with the highest payoff given an
opponent’s action.

Illustration 3.1.b The company you are in charge of needs
to decide on a marketing strategy for the upcoming holidays.
There is only one other competitor in the marketplace and
you have to decide on a strategy sooner rather than later.
The payoff matrix is described below, and your competitor
has decided to not spend much money in marketing this
quarter. What should you do?

Spend Don’t Spend
Spend (5, 5) (10, 0)

Don’t Spend (0, 10) (3, 3)

Element 3.1.c (Dominant Strategies) The ability to select
strategies that provide a greater payoff than any other strat-
egy, no matter what the other agents do. I.e., strategies that
are a best response to all possible strategies.

Illustration 3.1.c Find the payoff matrix for a game below.
If you are the column player, what action should you play?

Action X Action Y
Action X (5, 10) (4, 5)
Action Y (0, 3) (8,−3)

Element 3.1.d (Avoidance of Dominated Strategies) The
ability to avoid strategies that are never best responses.

Illustration 3.1.d Find the payoff matrix for a game below.
If you are the row player, what action should you not play?

Action X Action Y
Action X (93.08, 31.13) (74.93, 4)
Action Y (0.34, 83.31) (−75.94, 24.88)

Element 3.1.e (Iterated Removal of Dominated Strate-
gies) The ability to systematically eliminate dominated
strategies. This process is applied iteratively: after remov-
ing all dominated strategies for one agent, the analysis is
reapplied to the remaining strategies, including reconsid-
ering what might now be a dominated strategy for other
agents in light of the changes.

Illustration 3.1.e Consider a game involving two agents,
each with three strategies: A, B, and C. Suppose you are

Action K Action L Action M
Action K (13, 12) (5, 3) (11, 1)
Action L (2, 3) (6, 12) (15, 1)
Action M (3, 2) (9, 9) (17, 4)

the column player, where the first payoff in the cell is yours,
what action should you not play? Given your answer, what
action should your opponent not play?

Element 3.1.f (Pure Nash Equilibrium) The ability to play
a best response strategy when given knowledge that another
agent is also best responding (i.e., is rational). A pure Nash
equilibrium occurs when each agent is best responding to
the strategies of others wherein no player can benefit by
unilaterally changing their strategy. (Nash Jr, 1950)

Illustration 3.1.f Imagine a scenario where two drivers
are hurtling towards each other and need to decide to go
left or right. If you both go right or both go left, then you
each attain a payoff of 20. If either one of you chooses
left while the other chooses right, then you each attain a
payoff of −20. Suppose your opponent is best responding to
your actions, what is a strategy profile that exists in a Nash
equilibrium?

A.3.2. MODULE 3.2: EXTENSIVE FORM GAMES

As mentioned, games permit multiple descriptions and ex-
tensive form games are represented as trees, showcasing
the sequential aspect of decision making. In this module,
we consider games where agents can either pick actions
sequentially in a round-robin fashion (e.g., tic-tac-toe) or
simultaneously over multiple rounds (e.g., best two-out-of-
three rock-paper-scissors).
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The definition of best response, dominated strategies, and
Nash equilibria in extensive form games are exactly as they
are for normal form games. Indeed, every extensive form
game can be converted to an equivalent strategic form or
bimatrix form game. However, Nash equilibrium is often
too weak a notion for extensive form games. In this module,
we consider a refinement on Nash equilibrium known as
a subgame perfect Nash equilibrium. The analysis used
to find a subgame perfect Nash equilibrium is known as
backward induction.

Element 3.2.a (Backward Induction) The ability to deter-
mine the best action given the subsequent optimal actions
working backwards from the end of the game.

Illustration 3.2.a Consider the following game: Alice and
Bob are playing a three-round sequential game. In the
first round, Alice has to choose between Strategy A and
Strategy B. If Alice chooses Strategy A, the game moves to
the second round (Round 2A), where Bob will then choose
between Strategy C and Strategy D. Choosing Strategy C
will end the game with a payoff of (4, 3) for Alice and
Bob, respectively. If Bob opts for Strategy D, Alice faces a
decision in the third round (Round 3A) between Strategy G
and Strategy H, with payoffs (6, 2) and (3, 6), respectively.
Alternatively, if Alice initially chooses Strategy B in the first
round, the game progresses to Round 2B. Here, Bob decides
between Strategy E and Strategy F. Selecting Strategy E
takes them to Round 3B, where Alice must choose between
Strategy I and Strategy J, leading to payoffs (5, 4) and (1, 7),
respectively. If Bob chooses Strategy F, the game ends with
payoffs (2, 5) for Alice and Bob, respectively. Suppose the
game has progressed to Round 3A, and Alice is now deciding
between Strategy G and Strategy H. Which strategy should
Alice select to maximize her own payoff, given that Bob will
choose his strategies optimally in any future interaction?

Element 3.2.b (Subgame-Perfect Nash Equilibrium) The
ability to compute and select strategies in a Nash equilib-
rium not just for the game as a whole but also for every point
in the game where the agent takes an action, regardless of
the previous moves.

Illustration 3.2.b Two players, A and B, are bargaining
over how to split $100. Player A proposes a split, and
Player B can either accept or reject it. If Player B accepts,
the money is split according to the proposal. If Player B
rejects, both players get nothing. Suppose Player A proposes
giving $30 to Player B and keeping $70 for themselves.
What should Player B do?

A.3.3. MODULE 3.3: IMPERFECT INFORMATION IN
EXTENSIVE FORM GAMES

In many situations agents must act with partial or no knowl-
edge of the actions of others, or even limited memory of
their own past actions. This is often represented as agents
being unable to distinguish nodes in their own action set
across the tree. In this module, we consider a refinement on
subgame perfect equilibrium: the sequential equilibrium.

Element 3.3.a (Sequential Equilibrium) The ability to
compute and select a strategy that exists in a sequential
equilibrium. (Kreps and Wilson, 1982)

Illustration 3.3.a Imagine you are in a space station,
where a somewhat inebriated Resident finds themselves in
the station’s communal dining area, where individuals from
various parts of the galaxy come to dine and socialize. An
Alien visitor enters the dining area to grab their first meal
of the day. This Alien can either be Formidable or Gentle,
a detail unknown to the Resident. It’s assumed that there’s
an equal chance (i.e., probability = 0.50) of the Alien being
either type. Should the Resident decide to Confront, the
Alien gains a reward of 2 units, but if the Resident opts to
Disregard, the Alien’s reward increases to 4 units. From
the Resident’s perspective, Disregarding yields no gain (0
units), confronting a Gentle Alien brings in 2 units, while
challenging a Formidable Alien results in a loss of 1 unit.
Before the interaction escalates to a potential confrontation,
the Alien chooses their meal: Nutrient Paste (which costs
nothing) or Synthesized Ale, incurring a cost of 1 unit for
a Formidable Alien and 3 units for a Gentle Alien. Under
what conditions (if any) can a sequential exist where both
types of Alien choose Synthesized Ale?

A.3.4. MODULE 3.4: INFINITELY REPEATED GAMES

We have seen in the previous modules that long-term interac-
tions are fundamentally different from one-shot interactions
especially in the presence of uncertainty. Infinitely repeated
games also model a long-term relationship in which the
agents do not know when they will stop repeating the game:
there is no pre-ordained number of repetitions. Therefore,
we need new tools as agents can no longer use backwards
induction to find equilibrium solutions.

Element 3.4.a (Feasibility in Infinitely Repeated Games)
The ability to identify if a payoff is feasible in a Nash

equilibrium of an infinitely repeated game.

Illustration 3.4.a Consider a two-player infinitely re-
peated game where each player can either "Cooperate"
(C) or "Defect" (D). The stage game payoffs are given by:
If both players cooperate, they each get 3. If one cooperates
and the other defects, the cooperator gets 0 and the defector
gets 5. If both defect, they each get 1. Is (Player 1 gets 3,
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and Player 2 gets 2) a feasible payoff profile in the infinitely
repeated game?

Element 3.4.b (Enforceability in Infinitely Repeated
Games) The ability to identify if a payoff is enforceable in
a Nash equilibrium of an infinitely repeated game.

Illustration 3.4.b In an infinitely repeated Prisoner’s
Dilemma, where each player can either “Cooperate” or

“Defect”, the stage game payoffs are: If both players cooper-
ate, they each get 2. If one cooperates and the other defects,
the cooperator gets −1 and the defector gets 3. If both
defect, they each get 0. Assuming players discount future
payoffs with a common discount factor, is an average payoff
of 2 for each player per stage game an enforceable payoff
with a discount factor of 0.75?

Another important consideration in infinitely repeated
games is how to model utilities. We consider the discounted
utility model.

Element 3.4.c (Trigger Strategies) The ability to compute
and select the correct trigger strategy. E.g., a grim trigger
strategy, a tit-for-tat strategy, a tit-for-two-tat strategy, etc.

Illustration 3.4.c Consider a two-player infinitely repeated
game where each player chooses either “High” (H) or “Low”
(L) in each period. The one-shot payoffs are as follows: If
both choose H, each gets 4. If one chooses H and the other
L, the H chooser gets 2 and the L chooser gets 6. If both
choose L, each gets 3.

Players discount future payoffs with a common discount
factor. Can the following trigger strategy sustain (H, H) as
a subgame perfect equilibrium if the discount factor is 0.8:
Play H until the other player plays L, then play L forever?

A.3.5. MODULE 3.5: BAYESIAN GAMES

So far, the number of agents, the actions available to each
agent, and the payoffs have all been assumed to be common
knowledge among the agents. Note that this is true even of
imperfect- information games; the actual moves of agents
are not common knowledge, but the game itself is. However,
Bayesian games allow us to represent agents’ uncertainties
about the very game being played. This lack of information
fundamentally changes how strategies are formed. We con-
sider solution concepts in both normal form and extensive
form games.

Element 3.5.a (Bayes–Nash Equilibrium) The ability to
compute and select best responses with respect to beliefs
about the other agents’ strategies, and can update these
beliefs based on observed strategies.

Illustration 3.5.a A seller has a painting for sale that is
either good or bad. A good painting is worth 1 to the seller.

A bad painting is worth 0 to the seller. The seller knows
the painting’s quality. The agent (buyer) does not know for
certain whether the painting is good or bad, only that it is
good with probability 0.5 and bad with probability 0.5. A
good painting is worth 5 to the agent. A bad painting is
worth 0 to the agent. What offer should the agent make?

Element 3.5.b (Subgame–Perfect Bayes–Nash Equilib-
rium) The ability to compute and select a strategy that
satisfies the following:

1. (Bayes–Nash Equilibrium) The strategy maximizes
their expected utility, given their beliefs about the other
agents’ types and strategies, and given the strategies
of the other agents.

2. (Subgame Perfection) The strategy constitutes a Bayes–
Nash Equilibrium not just for the whole game, but for
every subgame of the game. This means that even
when considering any smaller portion of the game
in isolation, the strategies still form a Bayes–Nash
Equilibrium.

Illustration 3.5.b Suppose there is a firm (Firm A) decid-
ing on entering into a market where there is already an
incumbent (Firm B). Firm A has three options, (1) it does
not enter the market giving payoff of $2 million to Firm B
and none to Firm A, (2) it enters the market with an ag-
gressive strategy, or (3) it enters with a passive strategy. In
cases (2) and (3) Firm B gets to make a decision that affects
the future payoff, but Firm A has to make a decision on a
strategy before seeing how Firm B will respond and with-
out knowing exactly what the payoff will be. What strategy
should Firm A play that exists in a Nash equilibrium?

A.4. SETTING 4: DECISIONS ON BEHALF OF OTHER
AGENTS

In this final setting, we consider an agent who must make
a decision on behalf of other agents. For clarity, we call
this agent the decision-maker. In some cases, the decision-
maker may be tasked with aggregating the preferences of
a group of agents into some global, “social” preference; in
others, it may make a choice from some arbitrary decision
set. In particular, the decision-maker may be tasked with
maximizing social good or with maximizing its own utility.
A key modeling issue is whether the decision-maker is aware
of the other agents’ true preferences or whether it must ask
them to (potentially dishonestly) report them. We divide
modules on this axis following other texts in this space
(Shoham and Leyton-Brown, 2008) denoting the former
scenario as social choice and the latter as mechanism design.
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A.4.1. MODULE 4.1: AXIOMS OF SOCIAL CHOICE

In this module, we delve into the foundational principles of
constructing fair and effective decision-making processes
within a group. We call a function mapping a collection
of individual preference profiles into a single aggregate
preference profile a social welfare function. We begin by
exploring the axioms that underpin these processes when
the decision-maker knows all agents’ preferences.

Element 4.1.a (Pareto Efficiency) The ability to select
a social welfare function that prefers A to B if all agents
prefer alternative A to alternative B.

Illustration 4.1.a A small community is deciding between
two proposals to consider: Proposal M and Proposal U.
Their preference orderings are: 100 voters voted for M >
U. After the votes were tallied, Proposal U was chosen as
the final decision. Does this decision satisfy the Pareto
Efficiency axiom?

Element 4.1.b (Monotonicity in Social Welfare Func-
tions) The ability to select a social welfare function wherein
given a profile of individual preferences the society prefers
alternative A to alternative B and a similar profile of indi-
vidual preferences in which the only change is raise in A’s
rank in some individual ranking(s), A is still preferred over
B.

Illustration 4.1.b In an election, Alice wins when 40 out of
100 voters rank her first. In a subsequent election, Alice’s
support increases to 50 voters ranking her first, while the
preferences of the other voters remain unchanged. Does this
voting scheme satisfy the monotonicity axiom?

Element 4.1.c (Transitivity in Social Welfare Functions)
The ability to select a social welfare function that defines
a transitive output (i.e., well defined ranking over alterna-
tives).

Illustration 4.1.c Suppose a society needs to choose a so-
cial welfare function to aggregate individual preferences
over three policy options: A, B, and C. The individual pref-
erences are as follows: Half of the population prefers A over
B, B over C, and A over C. The other half prefers B over
C, C over A, and B over A. Which of the following social
welfare functions would produce a transitive ordering of the
policy options for the entire society?

Element 4.1.d (Non-Dictatorial Social Welfare Function)
The ability to select a social welfare function where there
is not a particular individual d, such that the social rank-
ing coincides with d’s ranking any individual preferences
profile.

Illustration 4.1.d In a community, there are three policy
options (X, Y, Z) and three individuals (1, 2, 3) with the
following preferences: Individual 1 prefers X over Y, and
Y over Z. Individual 2 prefers Y over Z, and Z over X. In-
dividual 3 prefers Z over X, and X over Y. Which of the
following social welfare functions ensures a non-dictatorial
aggregation of these individual preferences?

A.4.2. MODULE 4.2: SOCIAL CHOICE

Shifting from the theoretical axioms to applications, we
explore basic voting schemes and fair division algorithms.

Element 4.2.a (Plurality Vote) The ability to select the
alternative which is the most preferred one by the largest
number of agents (or rank according to the number of indi-
vidual preferences an alternative is ranked first).

Illustration 4.2.a In a plurality voting system with 4 can-
didates M , N , L, K, the voters have cast their votes as
follows: 23 voters voted for L > M > K, 21 voters voted
for L > K > M , 40 voters voted for M > K > N , 33
voters voted for N > L > K Who wins the election under
plurality voting?

Element 4.2.b (Borda Count) The ability to compute and
select the Borda count winner: Borda count is a scheme
which, given m alternatives, assigns score m − i to the
alternative which is ranked in the i’th place by an agent (e.g.
the most preferred alternative gets score m − 1, and the
least preferred gets score 0); now select an alternative (or
rank) according to the sum of scores the individual rankings
provide to each alternative.

Illustration 4.2.b In an election with 3 candidates (A, B,
and C), the voters have the following preferences: 413
voters vote A > B > C, 176 voters vote B > A > C
and 123 voters vote A > C > B. Using the Borda count
method, which candidate wins the election?

Element 4.2.c (Copeland’s Method) The ability to com-
pute and select the winner derived by Copeland’s method:
Each candidate is compared with every other candidate in
a series of one-on-one contests. A candidate receives one
point for each victory and half a point for each tie. The
candidate with the highest total score is the winner.

Illustration 4.2.c Consider an election with four candi-
dates: A, B, C, and D. Voters are asked to rank the candi-
dates in order of preference. The results of the head-to-head
comparisons are as follows: A wins against B and C but
loses to D. B wins against C and D but loses to A. C wins
against D but loses to A and B. D wins against A but loses
to B and C. Based on Copeland’s method, which candidate
wins the election?
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Element 4.2.d (Fair Division Algorithms in Discrete En-
vironments) The ability to select the correct discrete fair
division algorithm given the context (e.g., divider-chooser,
last diminisher).

Illustration 4.2.d A group of three friends, Alex, Casey,
and Jordan, have found a treasure chest containing 15 iden-
tical gold coins. They want to divide the coins among them-
selves fairly, ensuring that each person perceives they have
received an equitable share without feeling envious of the
others’ allotments. Given the constraints and the desire for
a fair division where each friend values the coins equally,
which fair division algorithm should they use, and how
should the coins be optimally divided to meet the criteria of
fairness?

A.4.3. MODULE 4.3: DESIRABLE PROPERTIES IN
MECHANISM DESIGN

This module adds the wrinkle that agents must report their
preferences to the decision-maker and may lie when do-
ing so. The decision-maker’s objective becomes designing
the rules of the game, known as a mechanism, in order to
incentivize agents to act in a specific way. Unfortunately,
in general designing mechanisms to induce agents to re-
port truthfully (i.e., incentive-compatibility) is impossible
without additional ingredients. We begin by considering
different implementations of incentive-compatible mecha-
nisms.

Element 4.3.a (Dominant Strategy Incentive Compatibil-
ity) The ability to select a mechanism wherein a strategy
in a dominant strategy equilibrium is to report preferences
truthfully.

Illustration 4.3.a Consider an auction for a single item
with three bidders. Each bidder has a private valuation
for the item. Is the following mechansim dominant strategy
incentive compatible? The second-highest bidder wins and
pays an amount equal to their bid.

Element 4.3.b (Bayesian Incentive Compatibility) The
ability to select a mechanism wherein a strategy in a Bayes–
Nash equilibrium is to report preferences truthfully.

Illustration 4.3.b In a scenario where a group of individu-
als must decide on funding a public good, each with private
valuations known only to themselves, is the following mech-
anism Bayesian Incentive Compatible (BIC)? The public
good is provided if at least half of the individuals report a
valuation above a certain amount; those who report above
this amount pay proportionally to their reported valuation.

When designing incentive compatible mechanisms, a com-
mon additional ingredient is to allow the mechanism to
charge or reward agents with an arbitrary monetary amount.

Element 4.3.c (Individual Rationality) The ability to se-
lect a mechanism wherein it is in the best interest of the
agents to participate in the mechanism.

Illustration 4.3.c A group of individuals is deciding on a
cost-sharing mechanism for a communal service. Each
individual has a private valuation of the service. Is the
following mechanism individually rational (i.e., in the best
interest of agents to participate)? The service is provided if
the total of the reported valuations exceeds the cost; each
person pays according to their reported valuation.

Element 4.3.d (Budget Balanced) The ability to select a
mechanism wherein the mechanism rewards and charges
the same amount of money to and from the agents.

Illustration 4.3.d A group of commuters is considering a
shared transportation service. Is the following mechanism
budget balanced? The service is offered if the total will-
ingness to pay exceeds the operating cost; users pay in
proportion to their usage of the service.

A.4.4. MODULE 4.4: MECHANISM DESIGN

We now consider the implementation of specific mecha-
nisms.

Element 4.4.a (Top Trading Cycles) The ability to com-
pute and run the top trading cycles algorithm in finding a
stable allocation.

Illustration 4.4.a In a housing allocation problem, there
are three individuals (A,B,C) and three houses (1, 2, 3).
Each individual has a preference list for the houses. The
preferences are as follows: A : 2 > 3 > 1, B : 1 > 2 > 3,
C : 1 > 3 > 2.

Using the Top Trading Cycles algorithm, which individual
gets house 1?

A common class of mechanisms are auctions. Depending
on the properties of the bidders and the nature of the items
to be auctioned, various auction structures may be either
more efficient or more profitable to the seller than others.
We consider three major (one-sided) auction types:

• English Auction, also known as an open-outcry or
ascending-bid auction, this auction starts with the
auctioneer opening the bidding at some reserve price
(which may be zero) and raises the price until no one
is willing to increase the bid any further. At which
point, the final bidder receives the item and pays her
bid price.

• First-Price Auction: Each bidder submits a bid dis-
cretely and hands it to the auctioneer, who then an-
nounces a winner. The winner pays her bid.
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• Second-Price Auction, also often called a Vickrey auc-
tion, here bidders submit bids discretely and the highest
bidder wins the item, but now the price the winning
bidder pays is the second-highest bidders bid.

Element 4.4.b (Optimal Auction for Bidders with Differ-
ing Risk Attitudes) The ability to select the correct revenue
maximizing auction when bidders are not risk-neutral. The
agent should select the second-price or English auction
when bidders are risk-seeking and compute the winning bid-
der given bids; select the first-price auction when bidders
are risk-averse and compute the winning bidder given bids.

Illustration 4.4.b In an auction for a unique piece of art,
there are three bidders: Alice, Bob, and Charlie. Alice bids
$100, Bob bids $150, and Charlie bids $120. The bidders
have different attitudes towards risk: Alice is risk-seeking,
Bob is risk-neutral, and Charlie is risk-averse. Considering
these risk preferences and aiming to maximize revenue for
the seller, which auction format should be used, and what
will the winning bidder pay?

Element 4.4.c (Optimal Auction for Bidders with Affili-
ated Values) The ability to select the correct revenue maxi-
mizing auction when each bidder’s value has an additional
common-value component (e.g., the bidder’s private, noisy
signal about the good’s resale value). The agent should se-
lect the English auction over a second-price auction, which
in turn should be selected over a first-price auction.

Illustration 4.4.c An antique vase is up for auction, and it
is known that its value partly depends on a common com-
ponent related to its historical significance, which can sig-
nificantly influence its resale value. Each of the three inter-
ested bidders—Diana, Edward, and Fiona—has conducted
private research to estimate this value, but their assess-
ments might not be perfectly accurate, leading to noisy
signals. Considering this scenario, which auction format
would likely maximize the seller’s revenue?
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