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Abstract
Early time classification algorithms aim to label
a stream of features without processing the full
input stream, while maintaining accuracy com-
parable to that achieved by applying the classi-
fier to the entire input. In this paper, we intro-
duce a statistical framework that can be applied to
any sequential classifier, formulating a calibrated
stopping rule. This data-driven rule attains finite-
sample, distribution-free control of the accuracy
gap between full and early-time classification. We
start by presenting a novel method that builds on
the Learn-then-Test calibration framework to con-
trol this gap marginally, on average over i.i.d. in-
stances. As this algorithm tends to yield an exces-
sively high accuracy gap for early halt times, our
main contribution is the proposal of a framework
that controls a stronger notion of error, where the
accuracy gap is controlled conditionally on the
accumulated halt times. Numerical experiments
demonstrate the effectiveness, applicability, and
usefulness of our method. We show that our pro-
posed early stopping mechanism reduces up to
94% of timesteps used for classification while
achieving rigorous accuracy gap control.

1. Introduction
The goal of early time series classification (ETSC) is to
predict the label of a given input data stream as quickly as
possible. Such methods are especially advantageous in sce-
narios requiring prompt predictive inference. For example,
consider the problem of reading comprehension, illustrated
in Figure 1. Suppose we employ an autoregressive large
language model (LLM) to analyze a given document (con-
text) and select an answer to the provided question. Given
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Question: What was the nationality of Ronald Fisher?
Options: (1) American (2) British (3) Canadian (4) Australian

Context: Sir Ronald Aylmer Fisher FRS (17 February 1890 – 29 July

1962) was a British polymath who was active as a mathematician,

statistician, biologist, geneticist, and academic. For his work in

statistics, he has been described as ”a genius who almost single-

handedly created the foundations for modern statistical science”

and ”the single most important figure in 20th century statistics”.

In genetics, his work used mathematics to combine Mendelian genetics

and natural selection. . .

Answer: (2) British.
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Figure 1. An illustration of a reading comprehension task. An
LLM sequentially processes the given document to find the answer
to the question provided and, ideally, should stop scanning the
document immediately after the required information is found.
The context is taken from Wikipedia.

that the inference time of LLMs increases with the number
of processed tokens (or sentences), we wish to terminate
the processing of the context retrieved from the document
as soon as the necessary information is found, rather than
processing the entire document naively. Other tasks for
which ETSC is highly desired include real-time song iden-
tification (think of the Shazam application) and reducing
radiation exposure in computational tomography (CT) sys-
tems, among many others. In all of these applications, the
objective is to stop the inference process early while preserv-
ing accuracy, as if the predictive model had been applied to
the entire data stream.

Consider labeled pairs of the form (X,Y ) sampled i.i.d.
from PXY , where X = (X1, X2, . . . , Xtmax) ∈ X repre-
sents an observed input sequence with a maximum length
of tmax, e.g. a sequence of tokens representing sentences
in a document and a question. The variable Y ∈ Y =
{1, . . . ,K} is the unknown label we wish to predict, e.g.
the correct answer to the given question. Suppose we are
handed a pre-trained classifier f̂ : X → [0, 1]K that pro-
cesses the input X sequentially and, at each timestep t, maps
X≤t = (X1, . . . , Xt) to an estimated probability distribu-
tion over the labels. We employ a stopping rule function
that, at each timestep t, decides whether to stop the infer-
ence process only based on the data observed up to timestep
t. Denote the stopping time by τ̂(X) ∈ {1, . . . , tmax} and
let Ŷearly(τ̂) and Ŷfull be the predicted labels obtained by
f̂(X≤τ̂(X)) and f̂(X), respectively. With these notations
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in place, we define the accuracy gap as the proportion of
samples for which the classifier’s prediction is correct when
applied to the entire sequence but incorrect when the same
classifier is applied only up to the early timestep τ̂(X).

Let α ∈ (0, 1), e.g., 10%, be the tolerable accuracy gap,
representing the acceptable trade-off for early stopping. De-
note by Dcal = {(Xi, Yi)}ncal

i=1 a holdout calibration set,
with samples drawn i.i.d. from PXY . Our initial objective
is to leverage Dcal to identify an early stopping rule τ̂(X)
that minimizes the halt time while ensuring the accuracy
gap remains below α with a probability of at least 1− δ:

PDcal

(
Rmarginal

gap (τ̂) ≤ α
)
≥ 1− δ, (1)

where

Rmarginal
gap (τ̂) = EPXY

[
Lgap(Y, Ŷ

full, Ŷ early(τ̂))
]
, (2)

and

Lgap(Y, Ŷ
full, Ŷ early(τ̂)) =

(
IY=Ŷ full − IY=Ŷ early(τ̂)

)
+
.

(3)
Notably, the probability in (1) is taken over the randomness
in Dcal, and δ is a user-defined level, e.g., 1%. The operator
(z)+ in (3) returns the value z if z ≥ 0 and zero otherwise,
and the indicator function Ia=b equals 1 when a = b and
zero otherwise. In simpler terms, the expected value of
Lgap(Y, Ŷ

full, Ŷ early(τ̂)) ∈ {0, 1} reflects the proportion of
samples in which the decision to stop early increases the
error rate. We refer to (1) as marginal risk control as it states
that the accuracy gap will not exceed α, on average over
future observations and stopping times. In Section 3, we
present an algorithm that rigorously attains (1), termed the
marginal method.

While the marginal guarantee in (1) provides a controlled
mechanism for early classification, it may not be entirely
satisfying in most practical settings. This is because an
algorithm that controls the accuracy gap over all possible
sequences is permitted to perform poorly on sequences with
early halt times while excelling on sequences with late halt
times. This, in turn, can undermine the reliability of predic-
tions for sequences with early halt times. Recognizing this
limitation, our main contribution is a novel algorithm that
aims to control the accuracy gap conditional on the halt
time being less or equal to t. More formally, let

R≤t
gap(τ̂) = EPXY

[
Lgap(Y, Ŷ

full, Ŷ early(τ̂)) | τ̂(X) ≤ t
]
.

(4)
Our goal is to formulate a stopping rule that achieves

PDcal

(
R≤t

gap(τ̂) ≤ α for all t ≥ t0
)
≥ 1− δ, (5)

where t0 is defined as the first timestep for which P (τ̂(X) ≤
t0) > 0, as otherwise (4) is undefined. In particular, con-
trolling (5) implies that we also control the accuracy gap

marginally, as Rmarginal
gap = R≤tmax

gap . Throughout this work, we
refer to (5) as conditional risk control on the accumulated
halt time, or simply, conditional risk control. In Section 4
we present an algorithm that achieves this goal, which we
refer to as the conditional method.

It is crucial to distinguish (5) from the stronger time- or
instance-conditional guarantee, where the objective is to
control the accuracy gap for a specific timestep t or for a spe-
cific X . Unfortunately, attainment of non-trivial stopping
rules with time- or instance-conditional risk control is in-
feasible without resorting to unrealistic assumptions (Vovk,
2012; Lei & Wasserman, 2014; Foygel Barber et al., 2021),
which we aim to avoid: we pursue distribution-free, finite-
sample guarantees. As a consequence, we posit that the risk
in (5) strikes a reasonable compromise between controlling
the relatively weak marginal risk and the unattainable time-
or instance-conditional risk.

1.1. A Motivating Example: Reading Comprehension

Figure 2. Comparison between the marginal and conditional
methods for the reading comprehension task. Nominal accuracy
gap level is α = 10% and δ = 1%. Left: empirical conditional
accuracy gap, R̂≤t

gap, across 100 trials; each curve corresponds to a
different random split of the calibration and test data. Right: accu-
mulated halt times as a function of t, averaged over 100 random
splits; the shaded area represents a 95% confidence interval.

To emphasize the importance of the transition from the
marginal (1) to the conditional guarantee (5), we now re-
turn to the reading comprehension problem discussed ear-
lier. The QuALITY dataset (Pang et al., 2022) consists of
4609 triplets, containing (i) a question, (ii) multiple choice
answers, and (iii) a long context, with each triplet accompa-
nied by the correct labeled answer. We utilize a pre-trained
autoregressive LLM as the base predictive model. This
classifier sequentially processes the context and selects an
answer from the four possibilities. For the calibration of
the early stopping rule, we employ 3073 labeled samples
to form Dcal while reserving the remaining 1536 samples
for testing. Following this, we compare the performance of
the proposed marginal and conditional calibration methods
presented in Sections 3 and 4, respectively. Specifically,
we report two performance metrics: (i) R̂≤t

gap, defined as the
empirical accuracy gap of samples with a halt time τ̂(X)
equal to or less than t; and (ii) the cumulative number of
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samples on which the model halted until timestep t.

The results are presented in Figure 2. Following the left
panel in that figure, we can see that while the two ap-
proaches control the marginal risk, the conditional accuracy
gap R̂≤t

gap tends to be higher than the desired 10% level for
the marginal method. This implies that the marginal stop-
ping rule tends to halt too early, as evidenced in the right
panel of Figure 2, where we can see the relatively large
number of samples halted at timestep t = 1. In contrast,
the conditional approach maintains the conditional accuracy
gap below α across all timesteps (left panel) while attaining
an effective early stopping mechanism (right panel).

1.2. Preview of our methods

The crux of this work is the formulation of a stopping rule
τ̂(X) that attains valid risk control. Denote by π̂ : X →
[0, 1] a score that heuristically reflects how confident the
classifier is in its prediction based on X≤t. For example,
π̂(X≤t) can be the largest softmax value of a neural net
classifier. With this in place, we can formulate

τ̂(X) = τλ̂(X) = min{t : π̂(X≤t) ≥ λ̂t or t = tmax},
(6)

where λ̂t is a hyperparameter, being the t-th element in a
vector of thresholds λ̂ = (λ̂1, λ̂2, . . . , λ̂tmax

). In plain words,
we choose to halt the inference process for the first time
t that the classifier is “confident enough” in its prediction.
But how can we properly choose the vector of hyperparam-
eters λ̂ that attains a valid risk control? Notably, this task
becomes particularly challenging when dealing with a large
number of hyperparameters that require tuning; in our case,
we have tmax parameters. An improper choice of hyperpa-
rameters can fail to achieve the desired accuracy gap on
future test data, and this problem is especially pronounced
when the accuracy gap is a non-monotone function of the
hyperparameters, which may occur in our setting due to the
complex nature of the pre-trained classifier at hand.

To tackle this challenge, we build on the Learn then Test
(LTT) framework (Angelopoulos et al., 2021) that formu-
lates the problem of finding hyperparameters that yield risk
control as a multiple hypothesis testing problem, where each
hypothesis corresponds to a different choice of hyperparam-
eters. However, in situations with a vast array of parameters
that need to be tuned, this method faces two practical obsta-
cles (Laufer-Goldshtein et al., 2022). First, the sheer volume
of potential configurations, which grows exponentially with
tmax, makes an extensive search of hyperparameters infea-
sible. Second, the LTT method may experience a loss of
power when confronted with such an exponential number
of tests. This drawback can result in our algorithm stopping
too late, potentially missing the opportunity to select a more
refined set of hyperparameters for the downstream task.

To alleviate these limitations, we propose a two-stage cal-
ibration framework that exploits the special structure of
the underlying ETSC problem. In the first stage, we find
a candidate set of hyperparameters using a novel compu-
tationally efficient procedure. Then, we apply a multiple
testing procedure on the candidate set to select a valid set
of hyperparameters that yields risk control. Overall, the
novel algorithm we introduce can efficiently handle long
sequences, while selecting a data-adaptive threshold vector
λ̂ that formulates a statistically valid early stopping rule. In
turn, the contributions of this work are the following:

1. A novel application for LTT: we introduce, for the first
time, methodologies that support ETSC algorithms with
rigorous distribution-free, finite-sample risk-controlling
guarantees.

2. Marginal risk control: we present a flexible framework
that allows predictive models to stop early the inference
process while controlling the average accuracy gap.

3. Conditional risk control: next, we introduce a novel
algorithm for early stopping that controls the accuracy
gap conditional on the accumulated halt times.

4. Theory precisely holds in practice: we illustrate the
effectiveness of our algorithms by applying them to di-
verse tasks. These include standard time series classifica-
tion datasets and a novel application in natural language
processing (NLP). Our methods controls the risk while
saving up to 94% of the timesteps available to make pre-
dictions. A software package implementing the proposed
methods is publicly available at GitHub.1

2. Related Work
There is active research in developing machine learning
models for ETSC with stopping rules that aim to balance ac-
curacy and early termination (Hartvigsen et al., 2019; Gupta
et al., 2020; Ebihara et al., 2020; Miyagawa & Ebihara,
2021; Ghodrati et al., 2021; Sabet et al., 2021; Tang et al.,
2022; Hartvigsen et al., 2022; Chen et al., 2022; Shekhar
et al., 2023; Ebihara et al., 2023). While these tools are
effective in practice, they often lack statistical assurance.
Our proposal enriches this important line of research by
introducing versatile tools, compatible with any state-of-the-
art ETSC model, which rigorously control the accuracy gap,
be it in a marginal or conditional sense.

Our proposal is closely related to calibrated predictive in-
ference techniques, including conformal prediction, risk-
controlling methods, and selective classification (Vovk et al.,
2005; Papadopoulos & Haralambous, 2011; Lei et al., 2018;
Tibshirani et al., 2019; Romano et al., 2020; Bates et al.,

1https://github.com/liranringel/etc
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2021; Angelopoulos & Bates, 2023; Gibbs & Candes, 2021;
Lin et al., 2022; Angelopoulos et al., 2022; Fisch et al.,
2022; Feldman et al., 2023; Lee et al., 2023b; Cauchois
et al., 2023; Barber et al., 2023). Specifically, we expand
the toolbox of risk-controlling tools, particularly when fac-
ing situations with high dimensional hyperparameter space.
The pioneering LTT work by Angelopoulos et al. (2021)
offers an approach to find a data-driven configuration of
parameters that, for example, can be used to simultane-
ously control multiple risks. However, this approach can
mostly handle low dimensional hyperparameter space and
becomes intractable when the search space is large. Recog-
nizing this limitation, Laufer-Goldshtein et al. (2022; 2023)
utilize Bayesian optimization tools to find Pareto optimal
candidate configurations across various risks, which, in turn,
improve the computational and statistical efficiency of LTT.
This line of work shares similarities with the challenges we
face in this paper; however, instead of utilizing a general
purpose Bayesian optimization tool for parameter tuning, or
using exhaustive search, we design a specialized procedure
that builds upon the structure of the ETSC problem. Our
proposal results in a computationally efficient technique
to identify plausible configurations among the potentially
enormous search space of λ, that controls the accuracy gap
with meaningful statistical power.

Our approach is also aligned with recent efforts to design
calibration methods that aim to reduce the computational
complexity of LLMs (Schuster et al., 2021; 2022). These
methods involve formulating an early exit mechanism with,
for example, marginal accuracy gap control. A key differ-
ence between the above methods and our proposal is that
we apply early exit over the time horizon rather than over
the intermediate transformer layers. Furthermore, a cru-
cial conceptual and technical difference is our transition
from marginal to conditional guarantees, departing from the
contributions mentioned above.

3. Warm-up: Marginal Accuracy Gap Control
To set the stage for our framework for conditional risk con-
trol, we start by presenting a method that achieves the mod-
est marginal guarantee in (1). The development of this
method also exposes the reader to the statistical principles
of LTT. Later, in Section 4, we will build on the founda-
tions of the method presented here and introduce our main
contribution—a methodology that attains the conditional
guarantee of (5). To further simplify the exposition of the
proposed marginal approach, consider tuning a single pa-
rameter λ̂ ∈ [0, 1] ∪ {∞} for all timesteps so that the stop-
ping rule τλ̂(X) = min{t : π̂(X≤t) ≥ λ̂ or t = tmax}
achieves (1).

To start with, suppose we handed a candidate parameter λ,
e.g., λ = 0.7, and we are interested in testing whether it

controls the accuracy gap. Following the LTT (Angelopou-
los et al., 2021) approach, we define the null hypothesis
induced by λ as follows:

H0,λ : Rmarginal
gap (τλ) > α. (7)

That is, if the null is false, our candidate λ controls the
marginal accuracy gap. With this in place, we formulate a
statistical test that utilizes the observed labeled data—the
calibration set—to decide whether we can reject H0,λ and
report that λ is likely to control the risk or accept H0,λ if
there is not enough evidence to reject the null. To formulate
such a test, we compute a p-value pλ, where a valid p-value
satisfies the following property under the null:

PDcal (pλ ≤ u | H0,λ) ≤ u, u ∈ [0, 1]. (8)

In plain words, if H0,λ is true, the p-value is stochastically
greater than or equal to uniform distribution on [0, 1]. Hence,
considering a single hypothesis, when observing pλ ≤ δ
we can safely reject H0,λ, knowing that the probability of
falsely rejecting the null (type I error) is at most δ.

To compute such a p-value, we leverage the fact that the
loss Lgap is binary, and thus we can employ the exact tail
bound from Bates et al. (2021) (Appendix B); see also
Brown et al. (2001). In more detail, denote the cumula-
tive distribution function of the binomial distribution by
CDFbin(k̂;n, α) where k̂ is the number of successes, n is
the number of independent Bernoulli trials, and α is the
probability of success. Thus, in our case, the p-value is
p̂λ = CDFbin

(
nR̂gap(τλ);n, α

)
, where R̂gap(τλ) is the em-

pirical accuracy gap obtained by the stopping rule τλ, evalu-
ated on n = |Dcal| i.i.d. samples. Put simply, this formula
transforms the empirical risk, evaluated on the calibration
set Dcal, into a p-value that satisfies (8).

Thus far we have discussed the problem of testing for a
single hypothesis, i.e., testing whether a specific candi-
date λ does not control the accuracy gap. However, nat-
urally, the task of finding λ̂ that promotes early stopping
while controlling the risk involves testing for multiple hy-
potheses: each hypothesis H0,λi

corresponds to a different
λi ∈ Λ, 1 ≤ i ≤ |Λ|, where Λ = {0,∆, 2∆, . . . , 1} =
{λ1, λ2, . . . , λ|Λ|} is a discretized grid of possible values
and ∆ ∈ (0, 1) defines the resolution of the grid.

The challenge that arises is that we must test all hypotheses
simultaneously. To clarify, a naive rejection rule pλi ≤ δ
can lead to a high probability that some of the true null
hypotheses are rejected by chance alone, and this probabil-
ity increases with the number of true nulls that are tested
(Miller, 2012). To tackle this issue, we follow Angelopou-
los et al. (2021) and formulate a multiple testing procedure
that controls the family-wise error rate (FWER). Formally,
let V be the number of true nulls that are falsely rejected
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by the testing procedure, and define FWER = P (V ≥ 1)
as the probability of falsely rejecting at least one true null
hypothesis. Therefore, to control (1), we should design a
testing procedure that ensures the FWER does not exceed δ.

To rigorously control the FWER, we adopt the fixed se-
quence testing procedure (Bauer, 1991) used in LTT, as
follows. First, we order the hypotheses from most plau-
sible to least without looking at the calibration data. In
our context, higher thresholds are more likely to control
the risk in (1), and therefore we order the hypotheses from
the largest λ|Λ| to the smallest λ1. Then, we arrange the p-
values according to this ordering and sequentially compare
each p-value to the desired level δ. This sequential testing
procedure terminates the first time j that pλj

> δ, result-
ing in a set of valid thresholds R = {λi : i > j} ∪ {∞}.
Importantly, any threshold in the set R is guaranteed to
control (1), including the trivial choice for which λ = ∞.
(When λ = ∞ the model will never stop early and thus
trivially achieves zero accuracy gap.) Since our goal is to
formulate a rule that stops as early as possible, we set the
final λ̂ to be the smallest λ among the rejected ones, i.e.,
λ̂ = λj+1, or λ̂ = ∞ if pλ|Λ| > δ. For ease of reference,
this procedure is summarized in Algorithm A.3, presented
in Appendix A, and its validity is a direct consequence of
using fixed sequence testing to control the FWER at level δ.

Proposition 1. Assuming the calibration and test samples
are i.i.d., with λ̂ selected as outlined in Algorithm A.3, the
stopping rule τλ̂(X) satisfies (1).

All proofs are presented in Appendix B. In plain words, the
above proposition implies that Algorithm A.3 formulates a
stopping rule that achieves marginal accuracy gap control
given a finite calibration set, no matter what the data dis-
tribution is, and regardless of the choice of the “black-box”
classifier. While Proposition 1 is appealing, the usefulness
of the marginal guarantee in real-world scenarios may be
limited, as discussed and demonstrated in Section 1.1. This
limitation prompts our exploration in the next section.

4. Conditional Accuracy Gap Control
We now turn to present the focal point of this work: a frame-
work designed to control the conditional accuracy gap (5).
Beyond the transition from marginal to conditional guaran-
tee, in this section we utilize a more general formulation
of the stopping rule, in which τ̂(X) = τλ̂(X) = min{t :
π̂(X≤t) ≥ λ̂t} with λ̂ = (λ̂1, λ̂2, . . . , λ̂tmax

). This choice
adds additional flexibility to the proposed framework com-
pared to tuning a single parameter (as in Section 3), allowing
us to formulate more effective early stopping rules.

Analogously to Section 3, we will adopt the fixed sequence
testing procedure to construct a rejection setR that contains
the configurations of λ that control the conditional risk. In

the view of multiple testing, now each null hypotheses is
formulated as

H0,λ : R≤t
gap(τλ) > α for at least one t ≥ t0, (9)

where t0 is the first timestep at which the probability for an
early stopping event is not zero, i.e., P (τλ(X) ≤ t0) > 0.

In striking contrast to Section 3, the formulation of a FWER-
controlling procedure in this case is far more challenging
due to the following.

1. There are (|Λ|+ 1)tmax possible configurations for λ and
thus it is infeasible to sweep over this exponential num-
ber of hypotheses. Given this sheer volume, computing
a p-value for each hypothesis exceeds reasonable com-
putational limits.

2. To achieve good statistical power with fixed sequence
testing, careful ordering of hypotheses is essential: in-
adequate ordering may lead to a rejection set R that
includes less effective threshold vectors. As discussed in
Section 3, there is a natural ordering of the hypotheses
when considering the tuning of a single threshold; we
can simply order the hypotheses from the largest λ to
the smallest one. However, it is unclear how to order the
hypotheses when working with a vector λ.

3. When faced with a small sample size, the p-value may
be too high even if the risk is lower than α. This is at-
tributed to the fact that the p-value produced by CDFbin
takes into account the number of samples used to cal-
culate the empirical risk. Importantly, this is not an
abstract concern; in practice, as we strive for conditional
risk control, situations with a small sample size become
prevalent, particularly for the very early timesteps.

In what follows, we present a method that alleviates these
issues, taking inspiration from the principle of split fixed
sequence testing proposed in LTT. In this approach, we first
split the calibration set Dcal into two disjoint sets: Dcal-1
and Dcal-2. Then, we proceed with a two-stage algorithm,
described below at a high level.
Stage 1: Candidate Screening: Use Dcal-1 to heuristically
find a data-adaptive threshold vector η̂, with an eye towards
early stopping with conditional risk control.
Stage 2: Testing: Apply fixed sequence testing to configura-
tions derived from η̂. Here, we use the independent holdout
set Dcal-2 to ensure the validity of the test.

4.1. Stage 1: Candidate Screening

We present a greedy algorithm that takes as input a pre-
dictive model and calibration data Dcal-1 and returns a can-
didate threshold vector η̂. This procedure, summarized
in Algorithm 1, sequentially updates the elements in the
vector η̂ as follows. It starts by updating the first ele-
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Algorithm 1 Candidate Screening (Stage 1)

1: Input: Calibration set Dcal-1 = {(Xi, Yi)}ncal-1
i=1 , tolera-

ble accuracy gap α, grid resolution ∆.
2: η̂ ← {∞, . . . ,∞}
3: // Find η̂

t
greedily during the t-th iteration.

4: for t = 1, . . . , tmax do
5: η ← η̂

6: // Find the lowest η
t
∈ Λ s.t. R̂≤t

gap ≤ α.
7: for ξ = 0,∆, 2∆, . . . , 1 do
8: η

t
← ξ

9: // Find samples with a halt time ≤ t.
10: I ← {i : τη(Xi) ≤ t}
11: if I = ∅ then
12: // Cannot calculate the empirical risk.
13: Break inner loop and set η̂

t
=∞

14: end if
15: // Calculate the empirical risk.
16: R̂≤t

gap ← 1
|I|

∑
i∈I Lgap(Yi, Ŷi

full
, Ŷi

early
(τη))

17: if R̂≤t
gap ≤ α then

18: // Found the lowest η
t

s.t. R̂≤t
gap ≤ α.

19: Break inner loop and set η̂
t
← ξ

20: end if
21: end for
22: end for
23: Output: η̂

ment η̂
1

that corresponds to the timestep t = 1, then pro-
ceeds to η̂

2
for t = 2, and continues until reaching η̂

max
at

t = tmax. Specifically, at timestep t, we are handed the vec-
tor η̂ = (η̂

1
, . . . , η̂

t−1
,∞, . . . ,∞), and set its t-th element

η̂
t

to be the smallest η
t

such that R̂≤t
gap(τη̂) ≤ α, or keep

η̂
t
=∞ if there is no η

t
that satisfies this constraint. Above,

R̂≤t
gap(τη̂) is the empirical accuracy gap of the samples with

halt time that is less than or equal to t (see line 16).

Before moving to the next stage, we pause to discuss the
properties of this greedy method. First, the computational
complexity of the proposed algorithm is O(tmax · |Λ| ·
|Dcal-1|), which is attributed to the fact that we choose to
sequentially update the vector η̂. Second, by design, the
choice of η̂

t′
for t′ > t does not affect R̂≤t′

gap for t′ ≤ t.
Third, this greedy method seeks a vector η̂ that yields a
stopping rule whose empirical conditional risk is tightly reg-
ulated around α, but not exceeded. This property is crucial
to attaining an effective early stopping rule. In principle,
instead of determining η̂

t
solely based on empirical risk, we

could choose the smallest η
t

whose p-value falls below δ, an
approach that is akin to the split fixed sequence testing idea
of Angelopoulos et al. (2021). However, we decided to work
directly with the empirical risk, as it is arguably straight-
forward to implement, and we found these two approaches

Algorithm 2 Testing (Stage 2)

1: Input: Calibration set Dcal-2 = {(Xi, Yi)}ncal-2
i=1 , candi-

date thresholds η̂, tolerable accuracy gap α, significance
level δ, grid resolution ∆.

2: // Start with the most conservative stopping rule.
3: λ̂← {∞, . . . ,∞}
4: // Gradually reveal another η̂

t
from the end and test it.

5: for t = tmax, . . . , 1 do
6: λ← λ̂
7: λt ← η̂

t
// Set λ to λt.

8: // Test Ht′

0,λt for all t′ ≥ t.
9: for t′ = t, . . . , tmax do

10: // Find samples with a halt time ≤ t′.
11: I ← {i : τλ(Xi) ≤ t′}
12: if I = ∅ then
13: // No evidence to reject the null, stop testing.
14: Break both loops
15: end if
16: // Calculate the empirical risk.
17: R̂≤t′

gap ← 1
|I|

∑
i∈I Lgap(Yi, Ŷi

full
, Ŷi

early
(τλ))

18: // Compute a p-value.
19: p̂t

′

λt ← CDFbin

(
R̂≤t′

gap · |I|; |I|, α
)

20: if p̂t
′

λt > δ then
21: // Failed to reject the null, stop testing.
22: Break both loops
23: end if
24: end for
25: λ̂← λ // H0,λt was rejected, update the chosen λ̂.
26: end for
27: Output: λ̂

to have similar halt times. In any case, while sensible, the
process of finding the vector η̂ is heuristic in the sense that
it is not guaranteed to control the conditional risk for future
test points. This issue naturally leads us to the next stage.

4.2. Stage 2: Testing

In this testing stage, we build on the candidate vector η̂ to
form a statistically valid stopping rule that attains (5). A
naive and optimistic approach would be to test for a single
null H0,λ defined in (9) for the choice λ = η̂. Rejection of
this null hypothesis with a significance level of δ implies
that η̂ attains (5), achieving a powerful stopping rule due to
the design of η̂. However, if we fail to reject this null, our
fallback is the trivial configuration λ̂ = (∞, . . . ,∞) that
results in a conditional accuracy gap of zero. However, in
this case, the stopping rule we form is the most conservative
one, as the model will never stop early.

To alleviate this, we employ fixed sequence testing, de-
signed to yield an effective stopping rule with FWER-

6
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control, even in cases where the null hypothesis H0,λ with
the “optimistic” configuration λ = η̂ would not be re-
jected. Recall the underlying principle of fixed sequence
testing: order the hypotheses from the most plausible to the
least, without looking at the holdout data Dcal-2. Build-
ing on the structure of the ETSC problem, we define
the sequence of configurations λtmax = (∞, . . . ,∞, η̂tmax),
λtmax−1 = (∞, . . . ,∞, η̂tmax−1, η̂tmax), all the way to λ1 =
(η̂1, η̂2, . . . η̂tmax). That is, the t′-th element in the vector λt

is λt
t′ = η̂t′ if t′ ≥ t, and λt

t′ =∞ otherwise. Importantly,
the stopping rule τλt does not allow stopping the classifica-
tion process at timesteps smaller than t. With this construc-
tion in place, we suggest applying the fixed sequence testing
procedure to the hypotheses ordered from the one induced
by λtmax , i.e., H0,λtmax down to the one corresponding to λ1,
i.e., H0,λ1 . Note that this ordering is particularly powerful
when the accuracy gap of the model tends to decrease with
the number of timesteps observed—a sensible characteristic
in ETSC. Additionally, the suggested ordering enables us to
postpone the testing of hypotheses involving limited sample
sizes to later stages of the procedure, which is attractive as
it is more likely that we will fail to reject those nulls.

Having defined the ordering of the hypotheses, we turn
to describe how to compute a valid p-value for each of
the individual hypotheses, using the holdout data Dcal-2.
Consider the hypothesis H0,λ in (9) for the choice λ = λt,
and define its finer null hypotheses as follows:

Ht′

0,λt : R≤t′

gap (τλt) > α for t′ = t, . . . , tmax. (10)

Observe that H0,λt in (9) is true if and only if there exists
t′ ≥ t such that Ht′

0,λt is true. Observe also that, by con-
struction, τλt cannot stop at timesteps smaller than t, and
thus t0 in (9) satisfies t0 ≥ t. Importantly, the formulation
of the finer nulls in (10) paves the way to test the individual
hypothesis H0,λt . Specifically, it implies that we can reject
the individual hypothesis H0,λt if all the finer hypotheses
Ht′

0,λt , t′ ≥ t are rejected. This amounts to computing a

p-value p̂t
′

λt for each finer hypothesis Ht′

0,λt and rejecting

H0,λt if p̂t
′

λt ≤ δ for all t′ ≥ t. Put simply, we reject H0,λt

if p̂λt = max{p̂t′λt : t′ ≥ t} ≤ δ.

Algorithm 2 summarizes the proposed testing procedure.
The outer loop in this algorithm sequentially iterates over
the hypotheses H0,λt from λtmax to λ1. The inner loop tests
the null H0,λt under study by breaking it into the finer
hypotheses Ht′

0,λt , t′ ≥ t. This algorithm returns the con-

figuration λ̂ = λt corresponding to the smallest t in which
H0,λt was rejected. The complexity of Algorithm (2) is
O(t2max · |Dcal-2|), and the validity of the resulting stopping
rule τλ̂ is as follows.

Proposition 2. Assuming the calibration and test samples
are i.i.d., with λ̂ selected as outlined in Algorithm 2, the

stopping rule τλ̂(X) satisfies (5).

Similarly to Proposition 1, the above result states that Al-
gorithm (2) achieves a finite-sample, distribution-free risk
control. But, in contrast with Proposition 1, here we control
a stronger notion of error—the conditional accuracy gap.

5. Experiments
In this section, we evaluate the proposed methods both
on structured time series datasets that are widely used in
the ETSC literature and on the multiple-choice answering
task, which was introduced in Section 1.1. The perfor-
mance metrics include the conditional R≤t

gap(τ̂) and marginal
Rmarginal

gap (τ̂) = R≤tmax
gap (τ̂) accuracy gap, evaluated on un-

seen test data Dtest. We also report the gain in early
stopping, defined as the average normalized halt time:
Tavg = 1

|Dtest|
∑

Xi∈Dtest

τ̂(Xi)
tmax

. In all experiments, we set
the target accuracy gap level to α = 10%, with δ = 1% and
∆ = 0.01. Throughout this section, the marginal method
can be thought of as a baseline, as it closely resembles the
calibration procedure suggested by Schuster et al. (2022) to
control the accuracy gap for early exit in transformers.

5.1. Application to Structured Data

In this subsection, we test the applicability of our
methods on five datasets: Tiselac (Ienco, 2017),
ElectricDevices (Chen et al., 2015), PenDigits
(Alpaydin & Alimoglu, 1998), Crop (Tan et al., 2017), and
WalkingSittingStanding (Reyes-Ortiz et al., 2012).
These datasets are publicly available via the aeon toolkit.
We refer to these as structured datasets as X ∈ Rtmax×d and
Xt ∈ Rd. See Table C.2 in Appendix C.1 for more details.

To implement and evaluate our methods, we partition each
dataset into four distinct sets: 80% of the samples are al-
located for model fitting, while the remaining samples are
equally divided to form Dcal-1, Dcal-2, and Dtest. For the
marginal method, we set Dcal = Dcal-1 ∪Dcal-2. In all exper-
iments, we employ an LSTM model (Hochreiter & Schmid-
huber, 1997) as the base sequential classifier. A detailed
description of the model architecture and training strategy
is provided in Appendix C.2.

The results obtained by the marginal and conditional meth-
ods are summarized in Table 1; see Appendix C.3 for more
detailed results for each dataset. Following this table, the
two methods control the marginal accuracy gap, supporting
our theory. However, the marginal method fails to control
the conditional risk for sequences with early halt times, in
contrast with the conditional approach that attains valid risk
control over the accumulated halt times—as guaranteed by
our theory. The statistical efficiency of both methods is com-
parable, as evidenced by the average normalized halt time

7

https://www.aeon-toolkit.org/


Early Time Classification with Accumulated Accuracy Gap Control

Table 1. Summary of performance metrics for the proposed marginal and conditional methods across all structured datasets.
Results are presented for a nominal accuracy gap of α = 10% and δ = 1%. The table provides the accumulated accuracy gap over the
20% and 50% earliest stopping times determined by τ̂ for each method, along with the marginal accuracy gap. The rightmost column
presents the average normalized stopping time. All performance metrics are averaged over 100 random calibration/test splits. All standard
errors are less than 0.008 and thus omitted.

Dataset Late Acc. Method Early Acc. Acc. Gap for Earliest τ̂(X)
Tavg20% earliest 50% earliest Marginal

Marginal 0.757 0.081 0.084 0.093 0.209
Conditional 0.771 0.064 0.065 0.085 0.215Tiselac 0.816

Marginal 0.809 0.117 0.108 0.079 0.471
Conditional 0.825 0.030 0.031 0.075 0.552ElectricDevices 0.873

Marginal 0.912 0.086 0.090 0.080 0.446
Conditional 0.940 0.049 0.050 0.051 0.567PenDigits 0.989

Marginal 0.608 0.171 0.135 0.086 0.580
Conditional 0.642 0.057 0.063 0.079 0.450Crop 0.673

Marginal 0.884 0.004 0.054 0.079 0.125
Conditional 0.901 0.033 0.039 0.067 0.061WalkingSittingStanding 0.962

Tavg performance metric. In fact, although the conditional
method controls a stronger notion of error, it resulted in a
smaller average normalized stopping time Tavg in 2 out of 5
datasets. We attribute this gain to our decision to employ a
vector of thresholds to form the conditional stopping rule, as
opposed to the single threshold used in the baseline marginal
approach. Lastly, Figure C.4 in Appendix C.3 illustrates
the trade-off between the tolerable accuracy gap α and the
average stopping time for the Tiselac dataset. There,
one can see that the conditional method allows for earlier
stopping times when a higher accuracy gap is permitted.

5.2. An NLP Application

We now revisit the reading comprehension task introduced
in Section 1.1, where the goal is to select the correct answer
from a set of four options based on a given context. To al-
low the sequential processing of the data, we first divide the
context of each question into sentences. These sentences are
then grouped into tmax = 10 sets. When the total number of
sentences cannot be grouped into 10 equally sized sets, we
include the remaining sentences in the last set. To formulate
the input sequence X≤t, we construct a prompt that includes
the context sentences up to timestep t, along with the ques-
tion and its four options, labeled ‘A’, ‘B’, ‘C’, and ‘D’. The
prompt concludes with “The answer is:\n\n”, which
is then fed to the Vicuna-13B model (Zheng et al., 2023) to
make a prediction; the model is accessible via HuggingFace.
We employ the vLLM framework (Kwon et al., 2023) to
compute the probability assigned to each of the four options,
resulting in f̂(X≤t) ∈ [0, 1]4. Lastly, we define the func-
tion π̂(X≤t) = max{f̂k(X≤t) : k = 1, . . . , 4}, which is
utilized to formulate the stopping rule τ̂ .

The results obtained by the marginal and conditional meth-
ods are presented in Figure 2. As portrayed in the left panel,
the conditional approach rigorously controls the conditional

accuracy gap on the accumulated halt times, in contrast with
the marginal method that merely controls the marginal risk.
The right panel in Figure 2 shows that the marginal method
tends to stop earlier. This is also indicated by its lower aver-
age normalized halt time of 0.483 compared to 0.831 for the
conditional method. However, this gain is not necessarily
desired, as the marginal approach tends to make errors in
the early halt times.

Figure E.6 in the Appendix presents an ablation study, un-
derscoring the importance of the testing phase (Stage 2)
of the conditional method. As illustrated, the candidate
configuration η̂ obtained by the greedy candidate screening
algorithm (Stage 1) does not provide rigorous control of the
conditional accuracy gap in the sense of (5). This stands
in contrast with the conditional method that includes the
testing stage. Nevertheless, the candidate η̂ provides a rea-
sonable initial set of configurations for the hyperparameters
to be tested, as it yields a stopping rule that roughly centers
around the nominal accuracy gap level α.

In Appendix F we provide additional results with the QuAIL
dataset (Rogers et al., 2020) and a predictive model that is
based on Llama 2 70B (Touvron et al., 2023; Lee et al.,
2023a), accessible via HuggingFace. This demonstrates the
flexibility of our method.

6. Conclusion
In this paper, we presented a novel statistical framework
that rigorously controls the accuracy gap conditional on the
accumulated halt times. Additionally, we performed a series
of numerical experiments that highlight the significance
of transitioning from marginal to conditional guarantees,
which validates our theory and underscores the practical
implications of our proposal.
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Our work opens several future research directions. To start
with, it would be intriguing to design more effective stop-
ping rules at the cost of increasing the computational com-
plexity of the proposed two-stage calibration procedure.
Another direction is to address the limitation of our work—
the reliance on the i.i.d. assumption, which may be violated
in practice. It would be illuminating to extend the tools we
presented and relax this assumption, possibly by relying on
the foundations of Barber et al. (2023). It would also be in-
teresting to explore relaxations of the simultaneous accuracy
gap guarantee as a way to obtain earlier halt times, e.g., by
designing methods with a pointwise accuracy gap guarantee.
Another natural progression is to extend the tools we devel-
oped to regression problems (Ye et al., 2023). The challenge
here is that the loss Lgap might not be binary, and thus the
exact p-value we used in this paper would not be applica-
ble. More broadly, while this paper focuses on the accuracy
and earliness trade-off, our approach can also be used to
further control the accuracy and computational complexity
trade-off. In this scenario, an early exit mechanism could
be applied not only across the time horizon but also across
the transformer layers (Schuster et al., 2022). Consequently,
determining the threshold parameters would involve con-
sidering these two dimensions (time and network depth),
calling for the design of an algorithm that optimizes them
concurrently, followed by a specialized statistical procedure
that tests hypotheses in a strategic order. Pressing this point,
given the potential for computational savings along two
axes, this novel setup requires assessing, at each test step,
which of the two axes yields greater computational benefits.
We intend to explore this interplay in future research.

Impact Statement
The methods developed in this paper focus on applications
demanding early predictions given sequential data. The pro-
posed methods aim to enhance the reliability of machine
learning algorithms in this context, by supporting their pre-
dictions with rigorous risk-controlling guarantees. While
such guarantees are desired in high-stakes applications, it
is crucial to emphasize that the validity of the methods we
offer holds under the i.i.d. assumption, which may not be
satisfied in practice. Therefore, it is crucial to treat the data
and problem at hand with care, especially if it may have
social or ethical implications. More generally, the goal of
our work is to advance the field of reliable machine learning.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.
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A. Marginal Risk Control Algorithm
Algorithm A.3 presents the marginal method described in Section 3.

Algorithm A.3 Fixed sequence testing for marginal risk control

1: Input: Calibration set Dcal = {(Xi, Yi)}ncal
i=1, tolerable accuracy gap α, significance level δ, grid resolution ∆.

2: λ̂←∞ // Use∞ as a fallback if the first null is not rejected.
3: λ← 1 // Start testing with the largest λ ∈ Λ.
4: while λ ≥ 0 do
5: R̂gap ← 1

ncal

∑ncal
i=1 Lgap(Yi, Ŷ

full
i , Ŷ early

i (τλ)) // Compute the empircal risk.

6: p̂← CDFbin

(
R̂gap · ncal;ncal, α

)
// Compute a p-value.

7: if p̂ > δ then
8: break // Failed to reject the null, stop testing.
9: end if

10: λ̂← λ // H0,λ was rejected, update the chosen λ̂.
11: λ← λ−∆ // Next test will test a lower threshold.
12: end while
13: Output: λ̂

Marginal risk control with adaptive thresholds We remark that it is possible to combine the candidate screening
algorithm (stage 1) of the conditional method with Algorithm A.3 to obtain better thresholds. One way to implement such
a method is to run stage 1 to find η̂ and then construct a sequence of increasingly aggressive stoppers, defined as η̂ + ci,
where ci is a decreasing sequence of constants. This approach can result in more powerful stopping rules and we leave
this exploration for future work. However, it is crucial to emphasize that this approach is merely supported by a marginal
guarantee, in striking contrast to our conditional testing approach.

B. Proofs
Proof of Proposition 1. The validity of the proposition is a direct consequence of using fixed sequence testing. For
completeness, we add a proof that fixed sequence testing controls the FWER at level δ. Denote by H0,j the j-th ordered
hypothesis. If all the hypotheses are false, we trivially get that P(V ≥ 1) = 0. Next, denote the index of the first true null by
j0, i.e., H0,j0 is true and the preceding H0,j′ , j

′ < j0 are false. By the construction of the fixed sequence testing procedure,
we may encounter this first true null only at step j0 of the procedure. Now, observe that P(V ≥ 1) = 1 − P(V = 0) =
1− P(p̂λj0

> δ) = P(p̂λj0
≤ δ) ≤ δ. Above, the second equality holds since the testing procedure stops the first time that

any p-value exceeds δ, and thus we get V = 0 if and only if p̂λj0
> δ; under this event, the procedure would terminate

without rejecting H0,λj0
and H0,λj′ , j

′ > j0. The last inequality follows from the validity of the p-value under the null (8).

Proof of Proposition 2. To prove the result, it suffices to show that Algorithm 2 controls the FWER at level δ. First, observe
that the outer loop in Algorithm 2 tests the hypotheses H0,λt sequentially, starting from λtmax down to λ1. As such, it follows
the protocol of fixed sequence testing for FWER control. Second, each of the p-values p̂t

′

λt , corresponding to the finer null
hypotheses (10), are valid since they are calculated using i.i.d. samples from the distribution PXY |τ̂(X)≤t′ . Third, the max
p-value p̂λt = max{p̂t′λt : t′ ≥ t} used to test each of H0,λt satisfies P

(
p̂λt ≤ δ | H0,λt

)
≤ δ (Angelopoulos et al., 2021,

Proposition 6). Combining these three arguments completes the proof.

C. Further Details on Experiments with Structured Datasets
In Section 5.1 of the main manuscript, we introduce the structured datasets on which we applied our methods. Here, we
provide more details on each dataset, elaborate on the model architecture and training strategy, and present additional results.
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C.1. Datasets

Table C.2 provides more details on each dataset.

Table C.2. Summary of structured datasets.

Dataset #Samples #Timesteps #Features #Classes Type

Tiselac 99687 23 10 9 Image
ElectricDevices 16637 96 1 7 Device
PenDigits 10992 8 2 10 Motion
Crop 24000 46 1 24 Image
WalkingSittingStanding 10299 206 3 6 Motion

C.2. Model Architecture and Training Strategy

We used a standard LSTM for feature extraction with one recurrent layer with a hidden size of 32, except for
WalkingSittingStanding where we used 2 recurrent layers, each with a hidden size of 256. The output of the
last recurrent layer is plugged to two fully connected classification heads, one for classifying the label f̂(X≤t) ∈ [0, 1]K

and the other for estimating the confidence in the classification π̂(X≤t) ∈ [0, 1]. The loss Lf̂
CE for updating f̂ is the

cross-entropy, and the loss Lπ̂
BCE for updating π̂ is the binary cross-entropy. The whole network is trained to minimize

Lf̂
CE(f̂(X

≤t), Y ) + γ · Lπ̂
BCE(π̂(X

≤t), B(X≤t)), where the function B ∈ {0, 1} returns the value 1 if f̂(X≤t) correctly
predicts the label Y and zero otherwise. We set the hyperparameter γ to 0.2 in all experiments. We augment the data by
fitting the model on all possible prefixes X≤t, t = 1, . . . , tmax. The optimizer used to minimize the objective function
is Adam (Kingma & Ba, 2014), with a learning rate of 0.001, and a batch size of 64. We allocate 1/8 of the training
samples to a validation set and optimize the model on the remaining 7/8 of the samples. Training continues until there is no
improvement in the loss on the validation set for 30 epochs. The model with the best validation set loss is then saved.

C.3. Additional Results

Table 1 from the main manuscript summarizes the performance of the marginal and conditional methods on the structured
datasets for α = 10%.

In addition, Figure C.3 presents more detailed results, illustrating the accumulated accuracy gap and accumulated stopping
times as a function of t obtained by the marginal and conditional methods.

Figure C.4 shows how different error levels α affect the average halt times with the conditional method. As expected, when
allowing for a higher level of risk, the calibration manages to identify thresholds that result in shorter halt times. To further
illustrate this trade-off, in Table C.3 we also report the results for α = 5% of all structured datasets.

Table C.3. Summary of performance metrics for the proposed marginal and conditional methods across all structured datasets for
α = 5%. Other details are as in Table 1.

Dataset Late Acc. Method Early Acc. Acc. Gap for Earliest τ̂(X)
Tavg20% earliest 50% earliest Marginal

Marginal 0.793 0.041 0.051 0.044 0.390
Conditional 0.806 0.026 0.031 0.042 0.435Tiselac 0.816

Marginal 0.844 0.074 0.066 0.036 0.594
Conditional 0.862 0.013 0.014 0.031 0.771ElectricDevices 0.873

Marginal 0.957 0.049 0.044 0.034 0.555
Conditional 0.968 0.023 0.024 0.024 0.690PenDigits 0.989

Marginal 0.646 0.123 0.077 0.038 0.708
Conditional 0.680 0.025 0.030 0.035 0.709Crop 0.673

Marginal 0.930 0.000 0.029 0.032 0.217
Conditional 0.939 0.023 0.022 0.028 0.121WalkingSittingStanding 0.962
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(a) Tiselac (b) ElectricDevices

(c) PenDigits (d) Crop

(e) WalkingSittingStanding

Figure C.3. Comparison between the marginal and conditional methods for the structured datasets. The other details are as in
Figure 2.

D. The Trend of the Confidence Thresholds Over Time
We found empirically that the confidence thresholds exhibit a decreasing pattern, although it is frequently non-monotonic
and varies across different datasets. Figure D.5 presents a series of graphs that illustrate the value of λ̂t as a function of t for
all the datasets we studied.

E. Ablation Study on the NLP Application: QuALITY Dataset
In this section, we present an ablation study to assess the significance of the second stage in the conditional method: the
testing phase. Figure E.6 summarizes the results discussed in Section 5.2 of the main manuscript.

F. Additional NLP Experiments: QuAIL Dataset
We present the results of an additional multiple-choice question answering dataset—QuAIL (Rogers et al., 2020). We used a
different predictive model that is based on Llama 2 70B (Touvron et al., 2023; Lee et al., 2023a), accessible via HuggingFace.
Since the contexts in this dataset are relatively short, we split the sentences into 3 timesteps. We use a total of 10000 data
points, where 2/3 are used for calibration and the rest for testing. The left panel in Figure F.7 illustrates the empirical
conditional accuracy gap as a function of t = 1, 2, 3. As depicted in the figure, the accuracy gap of the marginal approach is
larger than α = 10% for the early timesteps, in contrast with the conditional method that controls the accumulated accuracy
gap across all three timesteps. Additionally, the right panel of the same figure demonstrates that both the marginal and
conditional methods attain meaningful halt times.
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Figure C.4. Normalized halt time Tavg vs. tolerable accuracy gap α. The results are averaged over 100 random splits of the Tiselac
dataset, with (tiny) standard error bars.

15



Early Time Classification with Accumulated Accuracy Gap Control

(a) Tiselac (b) ElectricDevices

(c) PenDigits (d) Crop

(e) WalkingSittingStanding (f) QuALITY

(g) QuAIL

Figure D.5. The trend of the confidence threshold λ̂t as a function of the timestep t. Each panel in the figure corresponds to a different
dataset. The threshold values presented are averaged over 100 random splits, where the shaded area represents a 95% confidence interval.
Infinite thresholds are not included in the calculation of the average value.
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Figure E.6. The importance of the testing procedure—Stage 2. Comparison of conditional accuracy gap obtained by candidate
screening (Stage 1, black curves) and by the full conditional method (Stage 1+2, orange curves). The results are presented for 100 random
calibration/test splits of the QuALITY dataset, with each curve corresponding to a different split.

Figure F.7. Comparison between the marginal and conditional methods for the QuAIL dataset. The other details are as in Figure 2.
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