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Abstract
Feedback Alignment (FA) methods are biolog-
ically inspired local learning rules for training
neural networks with reduced communication be-
tween layers. While FA has potential applications
in distributed and privacy-aware ML, limitations
in multi-class classification and lack of theoret-
ical understanding of the alignment mechanism
have constrained its impact. This study introduces
a unified framework elucidating the operational
principles behind alignment in FA. Our key con-
tributions include: (1) a novel conservation law
linking changes in synaptic weights to implicit
regularization that maintains alignment with the
gradient, with support from experiments, (2) suffi-
cient conditions for convergence based on the con-
cept of alignment dominance, and (3) empirical
analysis showing better alignment can enhance FA
performance on complex multi-class tasks. Over-
all, these theoretical and practical advancements
improve interpretability of bio-plausible learning
rules and provide groundwork for developing en-
hanced FA algorithms.

1. Introduction
Artificial neural networks (ANNs), inspired by biological
neural networks, have revolutionized machine learning Mc-
Culloch & Pitts (1943). They were further developed in
the connectionist framework, an approach to study cogni-
tion through the use of ANNs (Elman, 1996; Medler, 1998).
This approach continues to demonstrate utility in model-
ing neural processes (Yamins & DiCarlo, 2016; Yildirim
et al., 2019; Richards et al., 2019; Peters & Kriegeskorte,
2021). Despite their effectiveness, many works highlight
the non-local nature of backpropagation, which contradicts
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the local processing observed in biological neurons (Crick,
1989; Lillicrap et al., 2016; Cornford et al., 2021).

A key issue is the weight-transport problem, where forward
synaptic weights must equal feedback propagation weights
during training (Grossberg, 1987; Lillicrap et al., 2016).
Another issue is the contradiction of Dale’s principle which
states neuron synaptic weights tend to stay either positive
or negative (Eccles, 1976; Cornford et al., 2021).

This work focuses on a promising alternative to backprop-
agation, the Feedback Alignment (FA) method, that cir-
cumvents the weight-transport problem by employing fixed,
random feedback weights (Lillicrap et al., 2016). These
methods have offered practical advantages in distributed,
federated, and differentially private machine learning (Lau-
nay et al., 2020; Lee & Kifer, 2020; Jung et al., 2023).
Despite its potential, FA’s performance lags in multi-class
classification tasks, and its alignment mechanism is not
fully understood (Liao et al., 2016; Moskovitz et al., 2018;
Bartunov et al., 2018). In this work we propose a novel
theoretical framework that demystifies the alignment mech-
anism in FA, focusing on how alignment with the gradient
can emerge. This framework not only sheds light on FA’s
operational principles but also accounts for its limitations in
complex classification scenarios, marking a significant step
towards more biologically plausible learning models. Our
specific contributions are:

1. Theoretical Framework: Introduction of a modu-
lar framework formalizing alignment and convergence
properties to demystify the mechanisms behind FA,
bridging gaps in understanding.

2. Implicit Regularization: A conservation law linking
changes in synaptic weights to regularization that in-
herently maintains feedback alignment, explaining the
emergence of effects like Dale’s principle.

3. Enhanced Alignment and Performance: Empiri-
cal analysis showing techniques encouraging greater
alignment, such as proper weight initialization, can
enhance FA performance on complex multi-class tasks
like CIFAR-100 and Tiny-ImageNet.
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We face several technical challenges establishing our results.
A key novelty is that we identify for the first time a gen-
eral implicit regularization of non-gradient based training
methods. Critically, we leverage this finding to directly ad-
dress the weight-transport problem, illustrating that effective
learning can occur without mirrored synaptic weights. This
allows us to identify initialization strategies for the feedback
weights that allow us to connect alignment to convergence.
Overall, addressing these technical challenges offers in-
sights into how neural networks can maintain biological
plausibility while achieving computational efficiency.

The remainder of this paper is organized as follows: Section
2 discusses related work. Section 3 provides a detailed back-
ground on learning models, the bio-plausibility problem,
and other technical aspects we need to develop our results.
Section 4 introduces our theoretical framework and its basic
principles. Section 6 discusses our empirical methodology
and experimental results. Finally, Section 7 concludes the
paper with a summary of our contributions and suggestions
for future research directions.

2. Related Work
Motivating Bio-Plausible Learning: The pursuit of bio-
plausible learning mechanisms extends beyond mere aca-
demic interest, offering practical advantages in distributed,
federated, and differentially private machine learning (Lau-
nay et al., 2020; Lee & Kifer, 2020; Jung et al., 2023).
Launay et al. (2020) show FA methods can scale to modern
deep learning scenarios and argue these methods can reduce
communication overheads. Lee & Kifer (2020) show FA
may be more suitable for differential privacy applications.
Jung et al. (2023) show the usefulness of FA in a federated
and differential private learning setting as well. Overall, this
is similar to applications of approaches like signGD which
also reduce overhead and are useful in distributed training
(Bernstein et al., 2018; Wang & Joshi, 2021). We leave the
exploration of these connections to future work.

Weight-Transport Problem: The weight-transport prob-
lem is the main criticism of backpropagation in neuro-
science, which has an unrealistic requirement neurons re-
ceive downstream synaptic weights to construct a backward
pass (Grossberg, 1987; Crick, 1989). Many approaches have
tried to circumvent this problem by introducing a distinct
set of feedback weights to propagate errors in the backward
pass. Kunin et al. (2020) shows how these approaches can
be organized into two categories: those that use layer-wise
loss functions regularize the information between neighbor-
ing network layers (Bengio, 2014; Lee et al., 2015; Bartunov
et al., 2018) and those that encourage alignment between the
forward and backward weights (Lillicrap et al., 2016; Liao
et al., 2016; Moskovitz et al., 2018; Launay et al., 2020).

The former category is broad and focuses on defining a local
loss for each layer to avoid the weight-transport problem.
One example is the target propagation method which en-
courages backward weights to locally invert forward outputs
(Bengio, 2014; Lee et al., 2015; Meulemans et al., 2020;
Ernoult et al., 2022). These methods work well on smaller
datasets, but have struggled on larger more complicated
tasks (Bartunov et al., 2018; Ernoult et al., 2022).

Feedback alignment approaches address weight transport
by showing backward weights don’t have to equal the corre-
sponding forward weights for effective learning (Lillicrap
et al., 2016; Liao et al., 2016; Moskovitz et al., 2018; Lau-
nay et al., 2020). Lillicrap et al. (2016) introduce the first
feedback alignment algorithm by fixing feedback weights
to random values at initialization. Surprisingly, experiments
show that forward weights tend to align with their feedback
weights during training (Liao et al., 2016; Song et al., 2021).
Follow-up work improved upon this algorithm by allowing
feedback weights to match the sign of the forward weights
(Liao et al., 2016; Moskovitz et al., 2018) which we refer
to as sign feedback alignment (sign-FA). Other work has
focused on eliminating the backward pass entirely using
skip-connections (Nøkland, 2016; Launay et al., 2020; Re-
finetti et al., 2021) using a method called direct feedback
alignment (DFA).

Feedback Alignment Theory: Removing the need for a bi-
ological mechanism to continuously track backward weights
is an important advance towards biological plausibility. Sev-
eral works have focused on trying to improve our theoretical
understanding of why FA methods work (Lillicrap et al.,
2016; Lechner, 2020; Refinetti et al., 2021; Song et al.,
2021; Boopathy & Fiete, 2022). In particular, some works
have explored feedback alignment in linear and wide-width
settings (Song et al., 2021; Boopathy & Fiete, 2022). There
have also been works suggesting that feedback alignment
feature special dynamics that encourage learning (Lillicrap
et al., 2016; Refinetti et al., 2021). There is also some work
analyzing a variant of feedback alignment applied to finite
and non-linear nets that they show aligns with the sign of the
gradient (Lechner, 2020). In comparison, our work establish
similar results for (sign) FA algorithms plus convergence
guarantees.

Deep Learning Theory: Our conservation law is deeply
connected to the implicit regularization phenomena ob-
served in deep learning (Du et al., 2018; Phuong & Lampert,
2020; Ji & Telgarsky, 2020; Lyu et al., 2021). Du et al.
(2018) observes that the layer norms of deep ReLU net-
works are automatically balanced i.e increase at the same
rates. Ji & Telgarsky (2020) and Lyu et al. (2021) establish
a result showing that deep homogeneous neural networks
have weights that converge in the direction of KKT point
of a margin maximization problem. Follow-up work shows
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that this implies generalization in certain linearly separable
settings (Phuong & Lampert, 2020; Frei et al., 2022; Bour-
sier et al., 2022). This complements prior work observing
benign-overfitting in deep learning models using data as-
sumptions (Phuong & Lampert, 2020; Frei & Gu, 2021).
Phuong & Lampert (2020) assumes data satisfies a prop-
erty called orthogonal separability and Frei & Gu (2021)
assumes data is high-dimensional. More recently, the con-
cept of gradient dominance, or the Polyak-Łojasiewicz (PL)
inequality, offers a framework for analyzing neural networks
trained by gradient descent. Frei & Gu (2021) argue that
these concepts can be applied to understand the performance
landscape of deep learning models.

We extend this literature in a few ways. First, we adapt
and extend the work of Du et al. (2018) by deriving the im-
plicit regularization of (sign) FA methods and then applying
them to explain phenomena such as alignment and Dale’s
principle relevant to the bio-plausible learning community.
Second, we make use of the simplifying data assumptions
that have been useful for theoretical study (Phuong & Lam-
pert, 2020; Frei & Gu, 2021). Lastly, we develop an anal-
ogous criteria to gradient dominance and show how this
concretely relates the alignment condition to convergence
of the training objective.

3. Preliminaries
In this section, we overview the basic notation, setting, back-
ground, and definitions used. Discussion of our framework
and results are presented in the next section.

Notation: We denote scalar and vector quantities by lower-
case script (e.g. x, y, z) and matrices by uppercase letters
(e.g. A,B,C). When a matrix W represents weights in a
neural network layer we have Wi+1[j, :] to indicate outgoing
connections from the jth neuron in the ith layer. Similarly,
Wi[:, j] indicates incoming connections. For a vector x
we denote by ∥x∥ the Euclidean norm. We use ∥ · ∥F and
⟨·, ·⟩ to denote the Frobenius norm and inner-product, re-
spectively. The expression A ◦B represents the Hadamard
(element-wise) product of two matrices or vectors of the
same dimensions. We denote the trace of a square matrix A
by Tr(A). We use the convention sign(x) = 1 for z > 0 and
sign(x) = −1 otherwise. For any natural number n ≥ 1 we
define [n] := {1, . . . , n}. Given a differentiable function f
we use ḟ for time derivatives and f ′ otherwise.

Neural Networks: In this work, a neural network is a
function f : Rd → R which consists of L layers where the
ith layer has width mi and operates on the input by applying
a linear transformation followed by an activation function
ϕ : R → R. So we write f(x; θ) to denote the output of
the neural network given an input x with weights defined
as θ := (W1, . . . ,WL) ∈ Ω. We can express the layer

pre-activation and output recursively as follows:

hi = ai−1Wi, ai = ϕ(hi)

where hi is the pre-activation and ai is the output for the ith

layer. By convention we take a0 = x.

Gradients and Bio-Plausible Optimization:

In this study we focus on training neural networks for binary
classification tasks. Let S := {(xi, yi)}ni=1 ⊆ Rd × {±1}
be a binary-classification dataset. Recall that f(·; θ) : Rd →
R is a neural network parameterized by θ := (W1, . . . ,WL).
For a loss function ℓ : R → R we define the empirical risk
as follows:

L(f(x; θ)) = L(θ) := 1

n

∑
i∈[n]

ℓ(f(x; θ), y).

We define L∗ := infθ L(θ) as the optimal objective value.

Backpropagation allows us to compute the contribution δi
of each layer to the final error recursively:

δi = (δi+1Wi+1) ◦ ϕ′(hi), δL = ∇fL(f).

We refer to the stacked vectors of contributions δ :=
(δi, . . . , δL)

T as the backward pass. The final gradient is
then given by:

∇Wi
L(θ) = δia

T
i−1.

Feedback alignment approximates the backward pass by re-
placing the exact transpose with feedback matrices. For each
layer i ∈ [L] we add a feedback matrix Bi ∈ Rmi×mi+1

which is randomly sampled at initialization when training
with FA. We then modify the calculation of the backward
pass as follows:

δ̃i = (δi+1 ·Bi+1) ◦ ϕ′(hi), δ̃L = ∇fL(f)

∇̃Wi
L(fW ) = δ̃ia

T
i−1

where we have decorated quantities that differ from standard
backpropagation. For sign-FA we set the feedback matrix
equal to sign(Wi) when training with sign-FA. When we
set the forward and feedback matrices equal at initialization
we will refer to this setup as adaFA following (Boopathy &
Fiete, 2022).

Throughout this work we will assume the network parame-
ters are updated according to a flow – infinitesimally small
increments. We focus on (leaky) ReLU networks which are
piece-wise linear as a function of their input and differen-
tiable almost everywhere. For the dynamics, the parameter
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Figure 1. Implicit Regularization of Alignment. We show an
idealization of a neuron. The solid arrows indicate synaptic con-
nections. In matrix form, Wi[k, j] indicates a connection between
the kth neuron in the ith layer to the j th neuron in the next layer.
The matrix Bi+1 indicates a feedback connection. We establish a
hard equality constraint that relates the alignment between incom-
ing, outgoing, and feedback weights. See Theorem 5.2 for more
details.

trajectory for the feedback alignment flow is assumed to be
a continuous curve {θ(t)|t ≥ 0} satisfying the following
differential equation for almost all t ≥ 0:

θ̇(t) := −∇̃L(θ(t)).

The dynamics will not be fully specified by this equation due
to non-differentiability on the boundary of linear regions,
but we can still bound the rate of decrease.

4. Proposed Framework
In this section our goal is to develop a framework that high-
lights the underlying mechanisms behind feedback align-
ment. We propose a natural yet powerful idea – factoring the
decrease in the training objective into alignment and norma-
tive terms that model the relative ”size” of the gradient and
FA updating rules. This approach is supported empirically,
it has been observed that feed-forward weights tend to align
themselves with their respective feedback weights over the
course of training (Lillicrap et al., 2016).

We consider a binary classification dataset trained on with a
neural neural network. The training dynamics under FA are
the following:

θ̇ = −∇̃L(θ), ∂(L ◦ θ)′(t) = ⟨∇L(θ), θ̇⟩

⇒ ∂tL(θ) = −⟨∇L(θ), ∇̃L(θ)⟩

Our proposed framework is to factor the dynamics of the

loss function into three key components that drive learning:

∂tL(θ) = − cos(ω)︸ ︷︷ ︸
angle

· ∥∇L∥F︸ ︷︷ ︸
gradient

· ∥∇̃L∥F︸ ︷︷ ︸
FA

(1)

where ω is the angle between the gradient and FA update
rules. This decomposition offers modularity which allows
us to work towards a better understanding of bio-plausible
learning rules by analyzing simpler components. In par-
ticular, positive alignment and lower-bounds on the norm
terms would imply that the loss is driven down as training
progresses. We show how to establish some results using
the framework in Section 5.

There are two natural definitions that help support this fram-
ing. First, we state a notion of weight alignment seen in
previous work on feedback alignment and then propose a
novel concept of alignment dominance which we will use
later to analyze convergence.

Definition 4.1. We say a network’s forward weights Wi

align with their backward weights Bi during training if
there exists a constant c > 0 and time Tc such that

⟨Wi, Bi⟩
∥Wi∥F · ∥Bi∥F

≥ c for all t > Tc.

This is a natural definition. Similar definitions appear in
(Song et al., 2021; Lillicrap et al., 2016).

Definition 4.2. We say a learning rule ∇̃L(θ(t)) satisfies
(α, β)-alignment dominance with parameter α, β > 0 if for
all θ ∈ {θ(t)}t≥0 in the trajectory:

⟨∇L(θ), ∇̃L(θ)⟩ ≥ α · (L(θ)− L∗)β .

Our condition is a natural extension of gradient dominance
or the PL-inequality which has recently been proposed a uni-
fying theme for studying neural network optimization (Frei
& Gu, 2021). Intuitively, if an update rule aligns well with
the gradient then it will enjoy similar convergence proper-
ties. The criterion we introduce is stating that the reduction
in loss using the feedback alignment, up to some constant,
dominates sub-optimality gap of the network which ensures
we only stop updating near a global optimum of the prob-
lem.

In summary, we presented our framework for analyzing FA
which offers insight into the auto-aligning property of FA.
Additionally, the modular perspective provides a foundation
for future work to integrate insights across components.

5. Theoretical Results
In this section, we present our main theoretical contributions
around the Feedback Alignment (FA) method. We focus on
three central themes: the relationship between alignment
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dominance and convergence, conservation of alignment,
and auto-alignment by proper initialization. In particular,
conservation of alignment is our main technical contribu-
tion and a key tool for establishing alignment dominance.
Specifically, we apply this result to analyze the convergence
properties of FA methods and to illustrate an application to
show two-layer networks trained with (sign) FA converge.

5.1. Feedback Alignment During Training

If alignment dominance for a learning rule can hold through-
out training it is intuitive to think the method converges.
The following result confirms this.
Theorem 5.1 (Convergence under Alignment Dominance).
For any neural network with a.e. differentiable activation,
trained on a fixed dataset, and using training loss L with
L∗ = 0 such that training satisfies (α, β)-alignmant dom-
inance we have the following guarantee on the training
objective:

L(θ(t)) ≤ L(θ(0)) · e−α·t, β = 1

L(θ(t)) ≤

(
β − 1

α · t+ β−1
L(θ(0))

) 1

β − 1
, β > 1.

We defer the proof to the appendix. While our further re-
sults specifically target FA it is worth emphasizing that this
condition could potentially be applied to other bio-plausible
learning rules. It is known that in the kernel regime FA stays
close to the gradient throughout training (Boopathy & Fiete,
2022). It is also known that in the kernel regime we have gra-
dient dominance (Frei & Gu, 2021). Therefore, alignment
dominance will also be satisfied in the kernel-regime. How-
ever, we do not develop any finite-width approximations
here since our purpose is to introduce the basic tools that are
useful for working in the proposed framework. However,
we consider the (shallow) finite-width case in Proposition
5.7 to demonstrate how these tools can be used together.

To establish alignment dominance, it is useful to character-
ize a general regularization behavior of individual neurons
in the network. We formalize this in the following theorem:
Theorem 5.2. Suppose that we apply (sign) feedback align-
ment to a vector-output (leaky) ReLU network trained with
any differentiable loss. Then the flow of the layer weights
under feedback alignment for a.e. t ∈ R≥0 maintains,

⟨W (t)
i+1[j, :], B

(t)
i+1[j, :]⟩ − ⟨W (0)

i+1[j, :], B
(0)
i+1[j, :]⟩

=
1

2
∥W (t)

i [:, j]∥2F − 1

2
∥W (0)

i [:, j]∥2F .
(2)

The proof of Theorem 5.2 is available in Appendix C. Figure
3 is useful to ground the result. It implies that the angle be-
tween forward and backward weights in the output layer is

never obtuse with suitable initialization, highlighting an in-
herent regularization of FA towards maintaining alignment.
It is also worth emphasizing that FA and sign-FA share the
same conservation law.

Since the result is proven at the neuron-level there are many
possible variations. For example, summing over the neurons
yields a layer-wise alignment condition. It is also straight-
forward to extend the result to handle weight-sharing, such
as in convolution layers. In general, the theorem can be
interpreted as hard-constraint on the dynamics of individual
neuron weights implying that the weight trajectory lies on a
lower-dimensional manifold than otherwise expected.

For comparison to related work, Lillicrap et al. (2016) con-
structs a matrix-valued invariant for feedback alignment, but
this only applies to linear settings. Also, Du et al. (2018)
establishes a related result that applies to gradient flow.
Namely, layers are ”balanced” during training meaning the
square of the norms change at the same rates.

The main practical application of this result is that we can
give a guarantee alignment of FA during training of a scalar
output network with proper initialization. It will be instruc-
tive to consider the situation with sign-FA before stating our
result.

Proposition 5.3. Suppose that we train a vector-output
neural network with sign-FA then for any n parameter layer
i ∈ [L] and a.e. t ∈ R≥0 we have:

⟨W (t)
i , B

(t)
i ⟩

∥W (t)
i ∥F · ∥B(t)

i ∥
≥

1
√
n
.

Proof. Recall that in sign-FA the feedback weights evolve
according to B

(t)
i := sign(W (t)

i ). It is possible to get a
direct bound in this setting using the equivalence of norms
which states:

∥Wi∥F ≤ ∥Wi∥1 = ⟨Wi, Bi⟩ ≤
√
n∥Wi∥F .

We can manipulate this expression directly to obtain the
desired result:

⇒
∥Wi∥F

∥Wi∥F
√
n
≤

⟨Wi, Bi⟩
∥Wi∥F

√
n
≤

√
n∥Wi∥F

∥Wi∥F
√
n

⇒
1
√
n
≤

⟨Wi, Bi⟩
∥Wi∥F

√
n
≤ 1.

We emphasize the argument holds for multi-output networks
when considering sign-FA. We have a similar result for the
output feedback weights for a scalar output network trained
with FA.
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Lemma 5.4. Suppose that we initialize a scalar output
network with w

(0)
L [j] = bL[j] = 1 such that ∥w(0)

L−1[j]∥ <
√
2 · ∥w(0)

L [j]∥ then for a.e. t ∈ R≥0 we have w(t)
L > 0 and

the following bound:

⟨w(t)
L , b

(t)
L ⟩

∥w(t)
L ∥F · ∥b(t)L ∥

≥
1
√
n
.

Proof. By assumption, we initialize w
(0)
L [j] = bL[j] such

that ∥w(0)
L−1[j]∥ <

√
2 · ∥w(0)

L [j]∥ and so Theorem 5.2 im-
plies the following:

⟨w(t)
L [j], bL[j]⟩

=
1

2
∥w(t)

L−1[j]∥
2
F + (⟨w(0)

L [j], bL⟩ −
1

2
∥w(0)

L−1[j]∥
2
F )

=
1

2
∥w(t)

L−1[j]∥
2
F + (∥w(0)

L [j]∥2F − 1

2
∥w(0)

L−1[j]∥
2
F )

≥ 1

2
∥w(t)

i [j]∥2F > 0.

In the last step we applied our norm assumption. This means
forward weights match the sign of their feedback weights in
the output layer so we are done after applying equivalence
of norms as in Lemma 5.3.

The corollary shows that certain initializations can inher-
ently regularize the network towards maintaining alignment
between forward and backward weights during training.
This could be compared with (Song et al., 2021) who show
a matching upper-bound on alignment in linear settings. To-
gether, these results help better characterize alignment as a
function of network width. We also want to emphasize that
this result implies that two-layer neural networks trained
with FA can have output neurons with constant sign. This
mirrors Dale’s principle in neuroscience states that neurons
tend to have synaptic connections that are either positive
or negative (Eccles, 1976; Cornford et al., 2021). Lechner
(2020) studies a variant of FA that is monotone which means
it satisfies this principle. Here we show how the principle
can emerge naturally.

5.2. Connecting Alignment to Convergence

In the previous sections, we presented a framework and
foundational tools that help explain alignment and conver-
gence in Feedback Alignment. This section aims to focus on
the direct influence of alignment on convergence guarantees,
offering a more granular understanding of how our frame-
work can be used to analyze FA. We consider the following
types of datasets, as defined below.

Figure 2. Conservation of Alignment. We measure the ”potential”
⟨W (t)

2 , B2⟩− 1
2
∥W1(t)∥2F during training on MNIST with varying

width. We normalize by the value at initialization and so Theorem
5.2 predicts this measure to be constant and equal to one. For
gradient descent there is a similar result; change of each layer’s
squared norm is equal (Du et al., 2018). See Section 6 for more
details.

Definition 5.5. We say that a dataset S := {(xi, yi)}i∈[n]

is γ-orthogonal separable whenever ⟨xiyi, xjyj⟩ ≥ γ for
some constant γ > 0.

Definition 5.6. We say that a dataset S := {(xi, yi)}i∈[n] is
(γ, ϵ)-nearly orthogonal whenever mini ∥xi∥22 ≥ n · (γ + ϵ)
where γ := maxi ̸=j |⟨xi, xj⟩| > 0 and ϵ > 0.

These types of datasets have previously appeared recently
in the deep learning literature to investigate implicit regu-
larization towards benign overfitting (Phuong & Lampert,
2020; Frei et al., 2022). In particular, any dataset S satisfy-
ing either orthogonality property is linearly separable with
large margin. We leverage these assumptions to establish
our convergence guarantees for (sign) FA:

Proposition 5.7. For any two-layer network parameter-
ized by θ := (W1, w2) with leaky ReLU activation ϕ(z) =
max(c′ · z, z) where c′ > 0, exponential loss L, and dataset
S that is γ-orthogonal separable or γ-nearly orthogonal
then we have the following:

1. If the initialization satisfies ∥W1[:, j]
(0)∥ ≤

√
2 ·

∥w2[j]
(0)∥ then training with sign feedback alignment

satisfies alignment dominance.
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Figure 3. Alignment During Training: We plot the cosine of the angle between forward (W (t)
2 ) and feedback (B2) weights during

training on Noisy MNIST with 20% label noise across varying network widths. See Section 6 for more details.

2. If additionally, we have w2[j] = b2[j] = 1 then feed-
back alignment satisfies alignment dominance.

This proposition combined with Theorem C.2 implies that
two-layer networks indeed converge.

Proof Sketch. We consider a two-layer network with param-
eters θ = (W1, w2), and the learning objective defined by
the exponential margin-loss. The goal is to establish (γ, 2)-
alignment dominance. This involves showing a strong cor-
relation between the gradient and the feedback alignment
for the first layer. To analyze correlation we derive expres-
sions for the updates under the feedback alignment flow.
This factors into an alignment component ⟨w2, T b2⟩ modu-
lated by a diagonal matrix and a data correlation component∑

ij⟨yixi, yjxj⟩. We use Lemma 5.4 to analyze the align-
ment component. For the data correlation we show that for
orthogonally separable or nearly orthogonal datasets, this
component satisfies a lower bound.

Comparisons and Limitations: Compared with previous
work on feedback alignment we are the first to study (sign)
FA in non-linear settings distinct from previous work fo-
cused on settings in the kernel regime (Song et al., 2021;
Boopathy & Fiete, 2022). Additionally, our result on align-
ment conservation stated in Theorem C.1 is general, it holds
for all (leaku) ReLU networks trained with (sign) FA.

Our analysis, while informative, does have limitations.
While Theorem 5.1 implies convergence generally, estab-
lishing it in particular settings requires careful analysis. In
particular, Proposition 5.7 requires that the activation be

(leaky) ReLU and the training data be linearly separable.
On the other hand, extending convergence results to deep
networks requires sophisticated analysis which is an active
area of study in deep learning (Ji & Telgarsky, 2020; Lyu
et al., 2021). In general, we expect (α, β)-alignment is sat-
isfied in many settings, such as the kernel regime (Jacot
et al., 2018), which we do not explore in this work. Explor-
ing these settings is an important direction for future study.
Finally, our theory only bounds alignment and does not
directly explain why the alignment can increase over time.
We think this is a challenging direction. Our experiments in
the next section show alignment can exhibit non-monotonic
behavior and switch from non-aligned to aligned.

6. Empirical Analysis of Alignment and
Multi-Class Performance

In this section we empirically evaluate feedback alignment
(FA) mechanisms in neural networks and their performance
in multi-class classification tasks. We test two hypotheses:

1. The conservation of learning dynamics as per Theorem
5.2, Lemma 5.4, and Lemma 5.3 hold under practical
training conditions.

2. Alignment with the true gradient enhances multi-class
classification performance.

Our theory makes direct contact with experiments, con-
firming key quantitative predictions and consistency with
previous results. We also analyze datasets exhibiting be-
nign overfitting, where our theory suggests FA methods
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may have similar implicit regularization. Our experiments
provide initial evidence for this unexplained phenomena
in FA. These results explain alignment and discover poten-
tial benign overfitting in FA, inspiring future work on the
underlying mechanisms.

We assess the first hypothesis by measuring the deviation
from the conservation law (2). The second hypothesis is
evaluated using classification accuracy on validation sets.
Our experiments involve widely-used datasets – MNIST,
CIFAR-100, TinyImageNet (LeCun, 1998; Krizhevsky et al.,
2009; Le & Yang, 2015). We use a pre-existing python
package for FA implementations (Sanfiz & Akrout, 2021).
We compare full-batch gradient descent, signFA, FA, and
adaFA. Training is conducted on two A100 GPUs. Refer to
Appendix A for detailed experimental settings.

6.1. Two-Layer Fully-Connected Network

We investigate two-layer leaky ReLU networks with widths
ranging from 15 to 200, trained on a noisy MNIST subset
with 20% training label noise. The test set is clean. Our pro-
tocol involves a 6,000-epoch training schedule with adaptive
learning rates. Experimental iterations are repeated multi-
ple times so results are reported with standard error bars.
Further experimental details are in Appendix A.

Conservation: The experimental results, as displayed in
Figure 2 are consistent with the predicted conservation law
(Theorem 5.2), with larger deviations occurring in smaller
width networks and for FA. This suggests initialization’s
has an impact on learning dynamics. See Appendix B for a
numerical analysis of the deviations.

Alignment Dynamics: Figure 3 shows consistent improve-
ment in alignment over epochs, with adaFA maintaining
higher alignment than FA, indicating the significant role of
initialization. Sign-FA exhibits complex, non-monotonic
alignment behavior, yet it consistently exceeds our theoreti-
cal lower bounds, affirming Lemma 5.3.

Generalization: Training and test losses are reported in
Figure 4. Across methods and network widths, higher
parameterization and overfitting does not necessarily im-
pair generalization, highlighting FA’s implicit regularization
properties.

6.2. Deep Convolutional Networks

We extend our analysis to deeper networks – LeNet on
CIFAR-100 and ResNet-18 on Tiny-ImageNet (LeCun et al.,
1998; He et al., 2016). We randomly sub-sample n-class
subsets from these datasets for n ∈ [10, 25, 50] to explore
the effect of classification difficulty on performance. For
each dataset, we tune hyper-parameters on a random 10-
class and report results on a fresh sample. The test set for
Tiny-ImageNet is unlabeled so we use the validation set as

Figure 4. Benign Overfitting: We plot the test-loss curve as a
function of width for networks trained on noisy MNIST with
20% label noise. Despite fitting the noise all methods are able to
generalize.

Table 1. Test-Accuracy on n-class Subsets of CIFAR-100

METHOD 10 CLASSES 25 CLASSES 50 CLASSES
FA 55.2% ± 3.8% 39.7% ± 0.5% 32.6% ± 0.6%
ADAFA 61.6% ± 0.4% 42.9% ± 1.2% 34.1% ± 0.5%
SIGNFA 74.1% ± 0.1% 58.9% ± 1.2% 48.9% ± 0.3%
GD 75.8% ± 0.2% 60.1% ± 1.2% 50.6% ± 0.4%

the test set. For more discussion of implementation details,
see Appendix A.

Effect of Alignment Strategies: We report mean test ac-
curacy with standard errors in Tables 1 and 2. The choice
of FA method plays an important role in network perfor-
mance. Initialization impacts performance, particularly in
simpler classification tasks. This is evident from the results
on CIFAR-100. However, as class complexity increases, the
relative advantage of sophisticated initialization strategies
appears to diminish. While performance generally declines
with an increasing number of classes, sign-FA demonstrates
more robust performance than adaFA, maintaining compet-
itiveness with traditional backpropagation. This suggests
alignment is more important than initialization for effective
multi-class performance. Further analysis, of layer-wise
alignment for the LeNet trained on CIFAR-100 is available
in Appendix B.2.
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Table 2. Test-Accuracy on n-class Subsets of Tiny-ImageNet

METHOD 10 CLASSES 25 CLASSES 50 CLASSES
FA 49.6% ± 1.7% 40.1% ± 1.6% 30.9% ± 0.8%
ADAFA 51.6% ± 2.2% 35.3% ± 1.0% 31.0% ± 0.9%
SIGNFA 64.9% ± 4.8% 53.0% ± 2.6% 47.7% ± 0.6%
GD 67.5% ± 0.7% 55.9% ± 0.6% 53.4% ± 2.3%

7. Conclusion and Future Work
In this work, we introduced a novel theoretical framework
to analyze Feedback Alignment (FA) methods, offering a
deeper understanding that we applied to explain the success
of aligned FA methods such as adaFA and sign-FA. Our
exploration revealed a conservation law that shows an in-
herent regularization in FA towards maintaining alignment
between forward and backward weights. Looking ahead,
this research paves the way for several key areas of ex-
ploration. Assessing FA’s robustness to distribution-shift
could be a valuable direction for future work. Perhaps, the
feedback weights can be interpreted as a prior affording
better generalization than under gradient descent. Addition-
ally, the integration of FA with diverse learning paradigms
could unveil more efficient and powerful algorithms. The
sign-FA method could be seen as a one-bit approximation
of the weights for the backward pass which may indicate
applications to differential-privacy. In summary, there is a
compelling opportunity for interdisciplinary collaboration
with neuroscientists to explore its relevance in understand-
ing biological neural networks.

Impact Statement
This paper presents work with the goal to advance the field
of bio-plausible learning. There are many potential societal
consequences of more efficient deep learning, none that
need to be specifically highlighted here.
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A. Implementation Details
All experiments are run on two A100 GPUs. We run all experiments multiple times. We compare the following methods:
FA, adaFA, signFA, and GD.

Noisy MNIST Experiments: The dataset for each training run consists of a random 4k subset of the MNIST dataset, with
20% label noise. We train two-layer neural network architectures with leaky-ReLU activation. Hyper-parameter settings
are the same for all methods and tuned to minimize the training loss while keeping low momentum to observe benign over
fitting. Networks are trained on cross-entropy loss. These networks have their weights initialized to [−1/

√
m, 1/

√
m]

where m is the width of the network. We use full-batch training and train for 6k epochs. We have the initial learning rate set
to 0.05, no weight decay, and a momentum of 0.05. The learning rate was scheduled to decrease by a factor of ten every
1,000 epochs. We track the following variables every 5 epochs: train loss, test loss, train accuracy, test accuracy, layer
norms, and the dot-product between forward and feedback weights. We varied the number of hidden units across the range
[15, 30, 45, 60, 75, 100, 125, 150, 175, 200]. This procedure is repeated 6 times for each width setting and then we report the
mean and standard error of the final train and test accuracy.

CIFAR-100 Experiments: We train LeNet architectures on randomly selected n-class subsets of CIFAR-100 where
n ∈ [10, 25, 50]. We normalize the mean and std of the data before it is feed into the network. Hyper-parameter settings
are the same for all methods and tuned from the default settings of biotorch on a random 10-class subset. We lowered the
learning rate, increased the batch-size, and compensate by training for more epochs. Networks are trained on cross-entropy
loss. Xavier initialization is used for the network. We use a batch size of 1024, and train for 500 epochs. The initial learning
rate is 0.01, weight decay is 0.0001, and momentum is 0.9. The learning rate was scheduled to decrease by half at the
100th and 250th epochs. We track the following variables every epoch: train loss, test loss, train accuracy, test accuracy,
layer norms, and the dot-product between forward and feedback weights in each layer. This procedure is repeated six times
for each method over the range n ∈ [10, 25, 50] and then we report the mean and standard error of the final train and test
accuracy.

Tiny-ImageNet Experiments: We train ResNet-18 architectures on randomly selected n-class subsets of Tiny-ImageNet
where n ∈ [10, 25, 50]. We normalize the mean and std of the data before it is feed into the network. Hyper-parameter
settings are the same for all methods and tuned from the default settings of biotorch on a random 10-class subset. We lowered
the learning rate and decreased the number of epochs. Networks are trained on cross-entropy loss. Xavier initialization is
used for the network. We use a batch size of 512, and train for 50 epochs. The initial learning rate is 0.01, weight decay is
0.0001, and momentum is 0.9. The learning rate was scheduled to decrease by half at the 20th and 40th epochs. We track
the following variables every epoch: train loss, test loss, train accuracy, test accuracy. This procedure is repeated four times
for each method over the range n ∈ [10, 25, 50] and then we report the mean and standard error of the final train and test
accuracy.
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Table 3. Absolute Mean Deviation from Conservation Law ± SE by Width and Method

WIDTH FA ADAFA USF GD
15 1.5± 0.6 1.0± 0.2 0.4± 0.1 22.3± 3.2
30 0.5± 0.2 0.1± 0.02 0.07± 0.02 4.8± 0.3
45 0.2± 0.1 0.03± 0.01 0.02± 0.005 2.6± 0.1
60 0.2± 0.1 0.01± 0.002 0.02± 0.003 1.4± 0.03
75 0.2± 0.2 0.01± 0.002 0.009± 0.003 1.0± 0.09
100 0.07± 0.05 0.006± 0.002 0.01± 0.002 0.6± 0.04
125 0.01± 0.002 0.006± 0.001 0.005± 0.001 0.4± 0.04
150 0.008± 0.002 0.004± 0.001 0.004± 0.0004 0.4± 0.01
175 0.007± 0.002 0.005± 0.0004 0.003± 0.0006 0.3± 0.008
200 0.01± 0.002 0.004± 0.0004 0.003± 0.0002 0.2± 0.004

B. Further Experiment Details and Results
B.1. Testing Conservation of Alignment

Theorem 5.2 predicts the following quantity is equal to one throughout training:

⟨W (t)
i+1[j, :], B

(t)
i+1[j, :]⟩ − 1

2∥W
(t)
i [:, j]∥2F

⟨W (0)
i+1[j, :], B

(0)
i+1[j, :]⟩ − 1

2∥W
(0)
i [:, j]∥2F

= 1.

We provide a numerical breakdown of the mean absolute deviations from one in Figure 2 as a table. See Section 6.1 for
more details. Values are reported to the first significant decimal with standard errors over the four runs for each width.

B.2. Analysis of Alignment in LeNet

A LeNet architecture consists of fully-connected and convolutional layers interleaved with max pooling operations. We
analyze the alignment between the forward weights in trainable layers and their feedback weights. The ordering of trainable
layers is as follows:

C1 → C2 → C3 → F1 → F2

where C1, C2, C3 are the convolutional layers and F1, F2 are the fully-connected layers.

We train the LeNet on n-class subsets of CIFAR-100 and display the alignment of each layer with it’s corresponding
feedback weights during training. For more implementation details see Appendix A.

Figure 5. 10-Class Alignment: We plot the cosine of the angle between forward and backward weights during training on 10-class subsets
of CIFAR-100.
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Figure 6. 25-Class Alignment: We plot the cosine of the angle between forward and backward weights during training on 25-class subsets
of CIFAR-100.

Figure 7. 50-Class Alignment: We plot the cosine of the angle between forward and backward weights during training on 50-class subsets
of CIFAR-100.

These figures show consistent improvement in alignment over epochs for FA, particularly the output layer. Moreover, adaFA
maintains higher alignment than FA, indicating the significant role of initialization. Overall, these results are similar to our
analysis with MNIST. We also find that alignment tends to degrade as the number of classes is increased. This effect is more
pronounced for FA, but is also visible for adaFA and to a lesser extend sign-FA.
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C. Omitted Proofs
C.1. Proof of theorem 5.2

Theorem 5.2. Suppose that we apply (sign) feedback alignment to a vector-output (leaky) ReLU network trained with any
differentiable loss. Then the flow of the layer weights under feedback alignment for a.e. t ∈ R≥0 maintains,

⟨W (t)
i+1[j, :], B

(t)
i+1[j, :]⟩ − ⟨W (0)

i+1[j, :], B
(0)
i+1[j, :]⟩

=
1

2
∥W (t)

i [:, j]∥2F − 1

2
∥W (0)

i [:, j]∥2F .
(2)

Proof. For the moment assume that we want the dynamics on the interior of a differentiable region. We drop time indexing
unless needed. We consider a differentiable loss such as ℓk : Rm × Rm → R where we take δL(k) := ∇f ℓ(f, yk) as the
gradient with respect to the output. In Section 3 we review further notation.

Let Ai be a diagonal matrix with activations of the i-th output layer on the diagonal,

Ai = diag ◦ σ′ ◦Wi ◦ σ ◦ . . . ◦ σ ◦W1(x)

This matrix indicates if an output at the i-th layer is non-zero. Supressing composition we have,

fW (x) = xW1A1 . . . AL−1WL

First we calculate the gradient and then compare with the feedback alignment update rule.

⇒ ∇Wi
fW (x) = (xW1A1 . . .Wi−1Ai−1)

T (AiWi+1 . . . AL−1WL)
T

Feedback aligment simplifies the backward pass by replacing terms with random feedback matrices. We have the following
for the dynamics under feedback alignment:

Ẇi = −η · Ek

[
(xkW1A1 . . .Wi−1Ai−1)

T δL(k)
T (AiBi+1 . . . AL−1BL)

T
]
.

We let Wi[:, j] equal Wi on the jth row and zero otherwise. This forms weights that activate neuron j in layer i+ 1. So we
have,

⟨Ẇi[:, j],Wi[:, j]⟩ = ⟨Ẇi,Wi[j, :]⟩ = Tr(ẆT
i Wi[j, :])

= −η · Ek [Tr((AiBi+1 . . . AL−1BL)δL(k)(xkW1A1 . . .Wi−1Ai−1)Wi[:, j])]

= −η · Ek [Tr(xkW1A1 . . .Wi[:, j]AiBi+1 . . . BLδL(k))]

We are making use of the trace representation for the inner-product and the cyclic property of the trace map. Similarly, for
the next layer we obtain,

⟨Ẇi+1, Bi+1[j, :]⟩ = Tr(ẆT
i+1Bi+1[j, :])

= −η · Ek [Tr((Ai+1Bi+2 . . . AL−1BL)δL(k)(xkW1A1 . . .WiAi)Bi+1[j, :])]

= −η · Ek [Tr(xkW1A1 . . .WiAiBi+1[j, :] . . . BLδL(k))]

Now we show that Wi[:, j]AiBi+1 = WiAiBi+1[j, :]. For the left-side notice that only neuron j will be the only non-zero
activated. Additionally, neuron j will be activated and equal as though we didn’t mask. Now consider the right side. We
only consider the output from neuron j which we just showed is the same as considering the left-side so we have equality.
The major implication is that,

⟨Ẇi[:, j],Wi[:, j]⟩ = ⟨Ẇi+1[j, :], Bi+1[j, :]⟩.

The trace map is linear so after an integration by parts we have that,

⇒
∫ t

0

Tr(Ẇ (s)
i [:, j](W

(s)
i [:, j])T )ds = Tr

[∫ t

0

Ẇ
(s)
i [:, j](W

(s)
i [:, j])T

]
ds =

1

2
∥W (t)

i [:, j]∥2F − 1

2
∥W (0)

i [:, j]∥2F
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Finally, ∫ t

0

Tr(Ẇ (s)
i+1[j, :]B

(s)
i+1[j, :]

T )ds = Tr
[∫ t

0

Ẇ
(s)
i+1[j, :]B

(s)
i+1[j, :]

T ds

]
= ⟨W (t)

i+1[j, :], B
(t)
i+1[j, :]⟩ − ⟨W (t)

i+1[j, :], B
(t)
i+1[j, :]⟩ −

∑
s∈I

⟨W (t)
i+1[j, :],∆

(s)[j, :]⟩

= ⟨W (t)
i+1[j, :], B

(t)
i+1[j, :]⟩ − ⟨W (0)

i+1[j, :], B
(0)
i+1[j, :]⟩+ 0

where ∆(s) indicates entries of W (s)
i+1 that are equal to zero and I is the set of times this occurs. However, by definition, the

corresponding inner-product is zero and the result follows. Note this sub-argument is uneeded for FA so we are done.

C.2. Proof of theorem 5.1

Theorem 5.1 (Convergence under Alignment Dominance). For any neural network with a.e. differentiable activation,
trained on a fixed dataset, and using training loss L with L∗ = 0 such that training satisfies (α, β)-alignmant dominance
we have the following guarantee on the training objective:

L(θ(t)) ≤ L(θ(0)) · e−α·t, β = 1

L(θ(t)) ≤

(
β − 1

α · t+ β−1
L(θ(0))

) 1

β − 1
, β > 1.

Proof. We handle each case separately.

Case β = 1: With (α, β)-alignment we can proceed directly and integrate the bound directly:

dL(θ(t))
dt

≤ −α · L(θ(t))

⇒
∫

dL
L

≤ −
∫ t

0

α · ds

⇒ log(L(θ(t)))− log(L(θ(0))) ≤ −α · t.

Isolating the terms we obtain our result:
L(θ(t)) ≤ L(θ(0)) · e−α·t.

Case β > 1: With (α, β)-alignment we can proceed directly and integrate the bound directly:

dL(θ(t))
dt

≤ −α · L(θ(t))β

⇒
∫

dL
Lβ

≤ −
∫ t

0

α · ds

⇒ −
β − 1

L(θ(t))β−1
+

β − 1

L(θ(0))β−1
≤ −α · t.

Isolating the loss in the equality above we obtain our result:

−
β − 1

L(θ(t))β−1
≤ −α · t−

β − 1

L(θ(0))β−1

β − 1

αt+
β − 1

L(θ(0))β−1

≥ L(θ(t))

16
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⇒ L(θ(t)) ≤

 β − 1

α · t+
β − 1

L(θ(0))


1

β − 1

C.3. Proof of Theorem 5.7

Proposition 5.7. For any two-layer network parameterized by θ := (W1, w2) with leaky ReLU activation ϕ(z) =
max(c′ · z, z) where c′ > 0, exponential loss L, and dataset S that is γ-orthogonal separable or γ-nearly orthogonal then
we have the following:

1. If the initialization satisfies ∥W1[:, j]
(0)∥ ≤

√
2 · ∥w2[j]

(0)∥ then training with sign feedback alignment satisfies
alignment dominance.

2. If additionally, we have w2[j] = b2[j] = 1 then feedback alignment satisfies alignment dominance.

Proof. Let’s first recall the basic setting under consideration. Here are our data assumptions for convenience.

Definition 5.5. We say that a dataset S := {(xi, yi)}i∈[n] is γ-orthogonal separable whenever ⟨xiyi, xjyj⟩ ≥ γ for some
constant γ > 0.

Definition 5.6. We say that a dataset S := {(xi, yi)}i∈[n] is (γ, ϵ)-nearly orthogonal whenever mini ∥xi∥22 ≥ n · (γ + ϵ)
where γ := maxi ̸=j |⟨xi, xj⟩| > 0 and ϵ > 0.

We consider the following network parameterized by θ = (W,w2) with an exponential margin-loss for the training objective:

f(x; θ) = wT
2 ϕ(xW1), L(θ) := E(x,y)∼P [ℓ(f(x; θ), y)].

We consider a leaky ReLU activation ϕ(z) = max(c′, z) where we suppose c′ > 0. Under the feedback alignment flow
which we have the following for the trajectory of the model parameters wherever the following are defined:

∇̃W1
L(θ) = Ek[ykℓ

′
kx

T
k b

T
2 diag[ϕ′(xkW1)]], ∇̃w2

L(θ) = E[ykℓ′kdiag[ϕ′(xkW1)]W
T
1 xT

k ].

In particular, the feedback weights b2 replace w2 which in general makes the trajectory distinct from the gradient flow.

Our goal is to establish alignment dominance. Actually, since we already know the update rule for w2 under feedback
alignment equals the gradient we will just bound the first-term because:

⟨∇L(θ), ∇̃L(θ)⟩ = ⟨∇W1
L(θ), ∇̃W1

L⟩+ ∥∇w2
L(θ)∥22 ≥ ⟨∇W1

L(θ), ∇̃W1
L(θ)⟩.

Once we establish (α, β)-alignment dominance we will be able to guarantee that the evolution of θ(t) = −L(θ(t)) decreases
the loss. There is a minor regularity concern because (leaky) ReLU networks may not be differentiable everywhere. However,
at these non-differentiable points we may take whatever directional derivative yeilds the worst bound. Formally, we have the
following:

max
{
∂̃(L ◦ θ)′(t)

}
= −min

{
lim
i→∞

⟨∇L(θi), ∇̃L(θi)⟩ : L differentiable at θi ∧ lim
i→∞

θi → θ
}

≥ −min
{
lim
i→∞

α · (L(θi)− L∗)β : L differentiable at θi ∧ lim
i→∞

θi → θ
}
≥ α · (L(θ)− L∗)β

where the last-step follows from the continuity of L(θ). The proof can be formalized further to indicate the derivative may
be ”set-valued” e.g. Clarke differential. This is not central to the argument, however.

With the approach outlined we can proceed directly to the main proof.
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Part 1 and 2: So we have:

⟨∇W1L(θ), ∇̃W1L(θ)⟩ = Ei,j [⟨yiℓ′ixT
i w

T
2 diag[ϕ′(xiW1)], yjℓ

′
jx

T
j b

T
2 diag[ϕ′(xjW1)]⟩]

= Ei,j [Tr(yiℓ′ix
T
i wT

2 diag[ϕ′(xiW1)]diag[ϕ′(xjW1)]b2︸ ︷︷ ︸
wT

2 Tijb2

xjℓ
′
jyj)].

Our goal is to lower-bound the whole expression. Notice that the inner-term is a scalar so we will lower-bound wT
2 Tijb2 > c

for some constant c > 0 and then extract it from the expectation. For (sign) feedback alignment we know b2 = sign(w2)
from Lemmas 5.4 and 5.3. Additionally, each entry of T is lower-bounded by the leaky factor of the leaky ReLU activation
ϕ(z) = max(c′ · z, z) which we suppose is c′ > 0. So we obtain:

wT
2 Tijb2 =

∑
k

w2[k] · b2[k] · Tkk ≥ ⟨w2, b2⟩ · c′.

To lower-bound ⟨w2, b2⟩ we effectively need to show alignment. We can use our initialization plus Theorem 5.2 to do this:

⟨w(t)
L [j], bL[j]⟩

=
1

2
∥w(t)

L−1[j]∥
2
F + (⟨w(0)

L [j], bL⟩ −
1

2
∥w(0)

L−1[j]∥
2
F )

=
1

2
∥w(t)

L−1[j]∥
2
F + (∥w(0)

L ∥2F − 1

2
∥w(0)

L−1[j]∥
2
F )

≥ 1

2
∥w(t)

L−1[j]∥
2
F > 0.

The first equality follows from Theorem 5.2, the last two steps follow from our initialization assumption. Therefore, there is
some constant c > 0 such that wT

2 Tijb2 > c as desired. Combining our results we obtain:

⟨∇W1
L(θ), ∇̃W1

L(θ)⟩ ≥ c · Ei,j [Tr(yiℓ′ix
T
i xjℓ

′
jyj)]

≥ c · Ei,j [ℓ
′
iℓ

′
j⟨xiyi, xjyj⟩]

≥ c · Ei,j [Tr(yiℓ′ix
T
i xjℓ

′
jyj)]

≥ c · Ei,j [ℓiℓj⟨xiyi, xjyj⟩].

The last step follows because we are considering the exponential margin loss.

Assume Orthogonal Separability: By our assumption of orthogonal separability we know that ⟨xiyi, xjyj⟩ > γ and we
obtain:

⟨∇W1L(θ), ∇̃W1L(θ)⟩ ≥ c · γ · L(θ)2 ⇒ ∂◦(L ◦ θ)′(t) ≤ −c · γ · L(θ)2.

This establishes (c · γ, 2)-alignment dominance.

Assume Near Orthogonality: The first part of the proof establishes that,

⟨∇W1
L(θ), ∇̃W1

L(θ)⟩ ≥ c · Ei,j [ℓiℓj⟨xiyi, xjyj⟩]

where c > 0 is some data independent constant that only depends on activation and initialization. Our proof strategy is
to lower bound the expectation in two stages. Because the pairs (i, j) are sampled independently we can break the full
expectation into two parts.

Let j ∈ [n] indicate an arbitrary sample. By our assumption of near orthogonality we know that ∥xi∥22 ≥ n · (γ + ϵ) where
γ := maxi ̸=j |⟨xi, xj⟩| and ϵ > 0 so we obtain:

Ei[ℓi⟨xiyi, xjyj⟩] =
1

n

n∑
i=1

ℓi⟨xiyi, xjyj⟩ =
1

n
ℓj⟨xjyj , xjyj⟩+

1

n

∑
i̸=j

ℓi⟨xiyi, xjyj⟩

18
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≥ 1

n
ℓj [n · (γ + ϵ)] +

1

n

∑
i ̸=j

ℓi⟨xiyi, xjyj⟩ ≥ ℓj · (γ + ϵ) +
1

n

∑
i ̸=j

ℓi⟨xiyi, xjyj⟩.

The first inequality follows from our definition of near orthogonality. From the definition of γ := maxi ̸=j |⟨xi, xj⟩| we see
that the inter-sample inner-product satisfies:

⟨xi, yi, xj , yj⟩ ≥ −|⟨xi, xj⟩| ≥ −max
i ̸=j

|⟨xi, xj⟩| := −γ.

Therefore, we can obtain the following bound:

Ei[ℓi⟨xiyi, xjyj⟩] ≥ ℓj · (γ + ϵ)− 1

n

∑
i ̸=j

ℓiγ

≥ ℓjϵ+ γ

(
ℓj −

1

n

n∑
i=1

ℓi

)
.

The last inequality follows because the exponential margin loss is non-negative which allows us to add back in the removed
term when i = j. Now we consider the full expectation:

Ei,j [ℓiℓj⟨xiyi, xjyj⟩]

≥ 1

n

n∑
j=1

ℓ2jϵ+ γ

 1

n

n∑
j=1

ℓ2j −

 1

n

n∑
j=1

ℓj

( 1

n

n∑
i=1

ℓi

) .

We simplify to obtain the following:
Ei,j [ℓiℓj⟨xiyi, xjyj⟩]

≥ 1

n

n∑
j=1

ℓ2j · ϵ+
1

n2
γ ·

n ·
n∑

j=1

ℓ2j −

 n∑
j=1

ℓj

( n∑
i=1

ℓi

)
=

1

n

n∑
j=1

ℓ2j · ϵ+
1

n2
γ ·

n ·
n∑

j=1

ℓ2j −

 n∑
j=1

ℓj

2
 .

In the first step we factor out n. In the second step we combine summands. Since ℓj ≥ 0 we can use the Cauchy-Schwartz
inequality to show the second term is non-negative: n∑

j=1

ℓj

2

=

 n∑
j=1

1 · ℓj

2

= |⟨1, ℓ⟩|2 ≤ n ·
n∑

j=1

ℓ2j

⇒ n ·
n∑

j=1

ℓ2j −

 n∑
j=1

ℓj

2

≥ 0.

This also implies the following bound on the first term:

1

n
·

n∑
j=1

ℓ2j ≥

 1

n

n∑
j=1

ℓj

2

= L(θ)2.

Putting the two bounds together we obtain:

Ei,j [ℓiℓj⟨xiyi, xjyj⟩] ≥ L(θ)2 · ϵ+ 0 = ϵ · L(θ)2.

To finish, we substitute our results:
⇒ ⟨∇W1

L(θ), ∇̃W1
L(θ)⟩ ≥ c · ϵ · L(θ)2

⇒ ∂◦(L ◦ θ)′(t) ≤ −c · ϵ · L(θ)2.
This establishes (c · ϵ, 2)-alignment dominance.
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