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Abstract
The complexity of black-box algorithms can lead
to various challenges, including the introduction
of biases. These biases present immediate risks
in the algorithms’ application. It was, for in-
stance, shown that neural networks can deduce
racial information solely from a patient’s X-ray
scan, a task beyond the capability of medical ex-
perts. If this fact is not known to the medical
expert, automatic decision-making based on this
algorithm could lead to prescribing a treatment
(purely) based on racial information. While cur-
rent methodologies allow for the “orthogonaliza-
tion” or “normalization” of neural networks with
respect to such information, existing approaches
are grounded in linear models. Our paper ad-
vances the discourse by introducing corrections
for non-linearities such as ReLU activations. Our
approach also encompasses scalar and tensor-
valued predictions, facilitating its integration into
neural network architectures. Through extensive
experiments, we validate our method’s effective-
ness in safeguarding sensitive data in generalized
linear models, normalizing convolutional neural
networks for metadata, and rectifying pre-existing
embeddings for undesired attributes.

1. Introduction
In the burgeoning landscape of artificial intelligence and
deep learning, black-box algorithms have become a cen-
terpiece for driving advances in many fields of application.
These powerful and often inscrutable models offer impres-
sive predictive capabilities, but their complexity also gives
rise to challenges that cannot be overlooked. One of the
most urgent contemporary challenges is the correction of un-
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wanted behaviors in these algorithms. In particular, the pres-
ence of biases in model predictions and learned representa-
tions can lead to unintended consequences that transcend the
technological sphere, impacting societal norms and ethical
considerations. For example, Glocker et al. (2023b) and We-
ber et al. (2023) realized that predictions of convolutional
networks trained for chest X-ray pathology classification are
heavily affected by implicitly encoded racial information,
leading to potentially inaccurate or unfair medical assess-
ments.

In this paper, we stress the necessity of addressing these
challenges and propose several solutions, focusing on what
has been termed “orthogonalization” or “normalization” of
neural networks in the literature (see, e.g., Lu et al., 2021;
Rügamer, 2023). These approaches can be used to adjust
predictions, prevent unequal treatment of population sub-
groups, protect from unintentionally revealing sensitive in-
formation, or ensure the interpretability of black-box models.

1.1. Related Literature

Classical Orthogonalization In contrast to research in-
vestigating network weight dependencies (see, e.g., Huang
et al., 2020), the orthogonalization discussed in this work
is usually motivated as a normalization operation or correc-
tion method. Lu et al. (2021), e.g., proposed the so-called
metadata normalization network, which applies a layer-wise
orthogonalization to remove metadata information from lay-
ers. Similarly, He et al. (2019) study an orthogonalization
procedure to encourage fair learning by removing protected
information from feature representations. To circumvent
training instabilities caused by dependence on the batch
size, Vento et al. (2022) propose to cast the metadata nor-
malization as a bi-level problem optimized using a penalty
approach. Kaiser et al. (2022) use the same idea to in-
corporate fairness in automated decision-making systems
for labor market data. A related but different problem is
addressed by Rügamer et al. (2023), who propose an orthog-
onalization cell to preserve effect identifiability and thereby
interpretability. This idea was then also adapted to other
model classes (Baumann et al., 2021; Kopper et al., 2021).
Further, orthogonalization can also be used as a debiasing
technique (e.g., in graph neural networks, Palowitch & Per-
ozzi, 2020). Similar to our work, orthogonalization can be
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Table 1. Estimated influence (coefficients) of sex, age, and race on the model’s predictions when using self-supervised embeddings of the
MIMIC-CXR dataset (Sellergren et al., 2022) on the label Pleural Effusion. The first row shows uncorrected values, the second row the
results after classical orthogonalization, and the third row after applying our generalized orthogonalization. p-values in brackets indicate
whether these coefficients represent a significant influence (p-values smaller than 0.05 show a ✗ -sign, otherwise a ✓-sign).

Sex (male) Age Race (Black) Race (White)
Without correction 0.064 (9.3e-9) ✗ 2.237 (< 2e-16) ✗ -0.483 (< 2e-16) ✗ -0.050 (0.0743) ✓

Classical orthogonalization Cl 0.014 (0.192) ✓ 0.453 (< 2e-16) ✗ -0.117 (< 2e-4) ✗ -0.015 (0.603) ✓

Generalized orthogonalization Ch 0.001 (0.994) ✓ -0.011 (0.689) ✓ -0.001 (0.753) ✓ -0.000 (0.904) ✓

applied as part of a neural network (e.g., Lu et al., 2021)
or post-model fitting (Rügamer, 2023). The latter approach
also has a link to double and debiased machine learning in
econometrics (see, e.g., Chernozhukov et al., 2018), where
a related correction is performed to allow for inference state-
ments about a treatment variable after removing (potentially
non-linear) nuisance effects.

Fair Machine Learning Another related strand of liter-
ature is fair machine learning (Chen et al., 2022). As we
discuss later in our work, methods to achieve fairness are
closely linked to orthogonalization and vice versa. A wide
range of notions and approaches exists to operationalize
the concept of fairness (see, e.g., Mehrabi et al., 2021; Pes-
sach & Shmueli, 2022, for literature reviews). Proposed
methods are applied at different steps, e.g., in data pre-
processing (Calmon et al., 2017) or post-processing (Hardt
et al., 2016; Sattigeri et al., 2022; Xu et al., 2022), and
have been derived for different model classes, such as gen-
eralized linear models (GLMs; Do et al., 2022) or kernel
learning (Pérez-Suay et al., 2017). These approaches are
usually implemented as constrained (see, e.g., Komiyama
et al., 2018; Zafar et al., 2019) or regularized optimization
problems (e.g., Scutari et al., 2022; Do et al., 2022) and
require making a trade-off between model performance and
the amount of achieved fairness. In contrast, our approach
forces the model predictions to be uncorrelated with the
protected information, thereby ensuring that they can not be
inferred to any degree from the predictions using a linear
model. While this potentially comes at the cost of a loss in
model performance, a conservative correction routine that
errs on the side of caution is required in many risk-averse
domains such as medical applications with sensitive patient
information (Glocker et al., 2023a), or when the goal is to
achieve model identifiability (Rügamer, 2023). A limitation
of presented fairness solutions is that the sensitive informa-
tion is made explicit in the model under the assumption of a
linear effect on the outcome (see, e.g., Scutari et al., 2022).

Despite the versatility of orthogonalization in practice, most
existing methods share the same working principle which as-
sumes linearity in both the model that needs to be corrected
and the correction function. In many real-world situations,
however, models include non-linearities that render the clas-

sical orthogonalization unable to fully correct the model
(cf. Table 1 with details in Section 4.2.1).

1.2. Our Contribution

In this paper, we extend the orthogonalization operation to
non-linearity in both the model that needs to be corrected
and the correction function. We derive a correction routine
that works for a variety of non-linear models, including
GLMs and neural networks. Moreover, we show how to
extend our approach to arbitrary tensor-valued predictions.
This allows our method to be flexibly inserted anywhere in
common neural network architectures and thereby further
generalizes the idea of normalization. Our experimental
results demonstrate the efficacy of our approach, showing
how 1) sensitive information can be successfully protected
in GLMs, 2) neural networks with non-linear activation
functions can be normalized for metadata during training,
and 3) orthogonalization effectively corrects pre-trained
embeddings for unwanted attributes.

2. Orthogonalization
Given an input X ∈ Rn×p, p ≤ n with full column rank,
the linear predictor in a parametric learning model (or the
pre-activation of a fully-connected neural network layer) is
given by Xβ, where β ∈ Rp denotes the model’s or layer’s
weights. In a linear model, we can write the least squares
predictions ŷ as a function of the inputs X and targets y:

ŷ = Xβ̂ = PXy,

where PX = X(X⊤X)−1X⊤ is the projection matrix
projecting y onto span(X), the space spanned by the
columns of X . Instead of projecting onto span(X), we can
also project onto the orthogonal complement span(X)⊥ us-
ing P⊥

Xy = (In − PX)y, where In is the identity matrix.
Hence, when left-multiplying a term by P⊥

X , we orthogonal-
ize this term (w.r.t. features X). Ultimately — whether the
motivation is debiasing, protecting information, or identifia-
bility — the universal recipe for most approaches discussed
in Section 1.1 is to use the described orthogonalization oper-
ation. Given protected features X , which are not supposed
to influence the modeling process, and a model that uses a
different set of features Z ∈ Rn×q, q ≥ p for prediction, we
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Figure 1. Exemplary optimization process for a fixed number of iterations (converging towards the black crosses) for logistic regression
with features z1, z2, weights γ1, γ2, and one protected feature x1 correlated with z1. The upper row shows the loss surface and optimization
path for the three different methods (columns) a small step size. The bottom row shows the correlation between the model’s prediction
and the protected feature along the optimization path, where only the generalized orthogonalization yields predictions uncorrelated with
the sensitive information.

can “correct” the model (or, in this case equivalently, the fea-
tures Z) by fitting the model with Zc := P⊥

XZ instead of
Z. This is equivalent to removing all linear X-information
in Z. Note that Z might also contain features from X , but
the correction is supposed to work for unobserved relation-
ships between Z and X . We call this correction function
Cl in the following.

To see that Cl in fact removes the effect of protected fea-
tures X from Z in the prediction, we can check whether
the corrected predictions ŷc = Zcγ̂c, based on the orthogo-
nalized features Zc = P⊥

XZ and a corrected weight vector
γ̂c ∈ Rq, can be linearly explained by the features X to
any degree. This can be done by regressing ŷc on X . If the
correction is successful, the debiased effect

β̂c := argmin
βc

∥ŷc −Xβc∥22

of X in the linear model with outcome ŷc and features X
should be β̂c ≡ 0. Plugging in the terms of the ordinary
least squares solution for both β̂c and γ̂, we get

β̂c = (X⊤X)−1X⊤ŷc = (X⊤X)−1X⊤Zcγ̂

= (X⊤X)−1X⊤P⊥
XZ(Z⊤P⊥

XZ)−1Z⊤P⊥
Xy,

which yields 0 as X⊤P⊥
X = 0p×n. This confirms that we

have successfully removed any linear effect of X from the
predictions ŷc and corrected features Zc. So when Z is,
e.g., a pre-trained embedding, using Zc instead of Z in a
downstream task removes the partial influence of protected
features X contained in Z, as we first project the original
embedding onto a space that is orthogonal to the space
spanned by the protected features X .

3. Orthogonalization for Models with
Non-linearities

While the classical orthogonalization allows correcting for
metadata of images (Lu et al., 2021) or identifying contribu-
tions in additive predictors (Rügamer, 2023), all previous
methods fail to provide a valid correction in the case of a
non-linear, element-wise transformation h applied to Zγ,
i.e., ŷ = h(Zγ), such as in GLMs or most neural network
layers (see Figure 1 for an example). In the following, we
present an extension to previously proposed orthogonaliza-
tion approaches that also encompass models with non-linear
transformations of the linear predictor, thereby accounting
for various important use cases. For simplicity, we motivate
our approach using a GLM, but also discuss its embedding
in neural architectures in Sections 3.2–3.4. Before deriving
the theoretical details, we provide an instructive example in
the following.

Example 1. Following Weber et al. (2023), assume we are
given an embedding Z ∈ Rn×q from a medical imaging
task and want to ensure that by using this embedding, we
do not share any protected patient information encoded in
X . Assume that the embedding contains information from
X (which represents a very real problem; see Glocker et al.,
2023b). When predicting the patients’ disease status using
the embedding Z in a GLM with ŷ = h(Zγ̂), where h is
the sigmoid function, we risk making decisions implicitly
based on protected features. Instead, we have to come up
with a corrected GLM routine such that the corrected non-
linear model predictions ŷc do not utilize or leak patient
information X .
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ŷc
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Figure 2. Workflow of generating predictions via model Mp and
checking the influence of X on the resulting predictions ŷ using
Me. Green parts indicate the orthogonalization applied to Mp.

3.1. Types of Orthogonalizations

We first start by examining the properties of the original or-
thogonalization Cl when applied to models with non-linear
activation functions. In particular, it is worth noting that
using Zc = P⊥

XZ from Section 2 can be used in a GLM
when the goal is to orthogonalize the model’s additive pre-
dictor η = Zγ. In this case, a corrected version ηc = Zcγ
will be orthogonal to the column space of X for any γ and
hence, before the non-linear transformation h, “free” of
any (linear) effect of protected features X . In other words,
regressing ηc on X will result in effects β̂c = 0 as derived
for the linear case in Section 2. In contrast, when trans-
forming ηc with h, the model space becomes non-linear
and regressing ŷ = h(ηc) on X will generally not yield
effects β̂c = 0, i.e., the transformed predictor h(ηc) still
potentially contains X-information (cf. Appendix A for
an illustrative explanation). As illustrated in Example 1,
such non-linear transformations are ubiquitous in machine
learning and employed in most classification tasks.

When using a non-linear activation function h in the predic-
tion of y based on Z, a natural choice is to also use the same
non-linear transformation to check the model’s prediction
for any X influence. To better clarify the different types
of models involved in an orthogonalization and to unify
previous endeavors, we define the following terms for the
workflow described in Figure 2:

Definition 1. Given features Z ∈ Rn×q, a monotonic
activation function h, loss function ℓ : Rn × Rn → R,
and protected features stored in a full column rank matrix
X ∈ Rn×p, we define

• the prediction model Mp : Rn×q → Rn, Z 7→ ŷ =
h(Zγ̂), the model using Z to generate predictions ŷ
for an outcome of interest y, with parameters γ̂ learned
by minimizing ℓ;

• the correction routine Ch : A routine correcting Mp

to produce corrected predictions ŷc;

• the evaluation model Me : Rn×p × Rn → Rp,
(X, ŷc) 7→ β̂c, the model minimizing ℓ(ŷc, h(Xβ̂c))
to check whether the influence of X on the corrected
predictions ŷc from Mp has been successfully re-
moved by Ch.

The previous definition assumes that the activation function
h is the same for all three components Mp, Me, and Ch.

Before introducing our new orthogonalization algorithm
when the activation function h is used, we more formally
define what we mean by “correcting for the influence of
X”:

Definition 2. Given the setup and models in Definition 1,
we say the model predictions ŷ of Mp are corrected (or
orthogonalized) if Me yields coefficient values β̂c = 0.
ŷc are then called corrected predictions.

While these definitions imply a similar goal as pursued in
fair machine learning, our approach uses a slightly different
measure of “unbiasedness” that coincides with the previ-
ously introduced normalization (Lu et al., 2021) as well
as the orthogonalization for identifiability (Rügamer et al.,
2023). In contrast, in fair machine learning, the level of
unfairness is, e.g., defined as the proportion of the variance
of ŷ that can be explained by X (see, e.g., Scutari et al.,
2022, or further explanations in Appendix B). Using this
notion, a model adhering to Definition 2 is perfectly fair,
but the opposite is not always true. This is because fair-
ness is achieved using a criterion different from the one in
Definition 2. In addition, these approaches often do not
fully enforce fairness to preserve other model properties, in
most cases only use the L2 loss for ℓ and assume a linear
relationship between X and y.

3.2. Orthogonalization for GLM-type Routines

We first extend the classical orthogonalization of Section 2
motivated by linear models to GLMs. This model class is de-
scribed by a distributional assumption inducing a loss func-
tion ℓ defined by the corresponding negative log-likelihood
and strictly monotone activation function h (equal to the
so-called inverse link function in GLMs). The implied loss
function comprises many common machine learning setups:
binary classification using sigmoid activation, multi-class
classification using a softmax-type activation, or, e.g., a
count regression using the exp-activation function. When
applying Definition 2 to these GLMs using their canonical
link function, we say that the correction of a model Mp

yielding ŷc is successful if the evaluation model Me defined
by the minimizer

β̂c = argmin
βc

ℓ(ŷc, h(Xβc)) (1)
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is a null model, i.e., β̂c ≡ 0. Note that we here assume
a model without intercept for better readability1. While
the solution of (1) is known not to have an analytical so-
lution in general (see, e.g., Nelder & Wedderburn, 1972),
the GLM poses a convex optimization problem and can be
solved efficiently with iteratively reweighted least squares
or Newton-type procedures (Gill et al., 2019).

Importantly, the iterates of these Newton-type opti-
mization procedures can be represented as β̂[t] =
(X⊤Υ[t]X)−1X⊤Υ[t]r[t−1], t ∈ N, where the weights
Υ[t] ∈ Rn×n are given by a diagonal matrix and r[t] ∈ Rn

is a working response (see Appendix D for details). As both
Υ[t] and r[t−1] are fixed after fitting the evaluation model,
we can make use of the approximate linearity of both Mp

and Me at convergence to derive our generalized orthogo-
nalization. A helpful intermediate result is the following:
Lemma 3. Given any GLM model Mp with predictions ŷ,
and GLM model Me with features X ,

ŷc = P⊥
X ŷ + h(0)1n (2)

defines corrected predictions yielding β̂c = 0.

Lemma 3 is an interesting and important finding to construct
a correction, stating that despite the non-linearity of Me, it
is sufficient to (linearly) orthogonalize predictions of Mp

using the orthogonal projection P⊥
X . The derivation and

proof can be found in Appendix E.1. However, as we discuss
in the following paragraph, it is not straightforward to relate
this finding to a corrected GLM model Mp.

Deriving corrected coefficients In order to derive a cor-
rected GLM routine for corrected coefficients γ̂c that are
consistent with ŷc, a naı̈ve approach is to simply invert their
definition ŷc = h(Zγ̂c), yielding

γ̂c = Z†h−1(ŷc) = Z†h−1(P⊥
X ŷ),

where Z† = (Z⊤Z)−1Z⊤ is the pseudo-inverse of Z.
However, as dom(P⊥

X ŷ) is not necessarily a subset of
dom(ŷ), h−1 might not be defined on this new domain. In
classification tasks, for example, this could lead to predicted
probabilities ŷc /∈ (0, 1) for which the inverse sigmoid func-
tion is not defined. Since this problem will occur whenever
non-linear functions h or h−1 are employed, we instead
have to adapt the GLM optimization routine as described in
the following.
Corollary 4. Given activation function h, prediction model
Mp and evaluation model Me with features X , the solution
γc to the optimization problem

argmin
γ

ℓ(y, h(Zγ))

s.t. ||(X − n−11n 1
⊤
nX)⊤h(Zγ)||22 = 0

(3)

1The intercept does not necessarily have to be equal to zero, as
it does not use any information from the protected features

produces corrected coefficients satisfying β̂c = 0.

The mathematical details and derivations are given in the
Appendix E.2. While various routines exist to solve (3),
the problem turns out to be hard in practice, in particular
in applications that are concerned with fairness, such as
the ones addressed in Section 4.1. We found the modified
differential multiplier method (Platt & Barr, 1987) to be very
effective and describe its details in Appendix E.2. Further,
note that in the case of an identity activation function h, the
derived optimization problem in Corollary 4 is also directly
solved by using Ch = Cl.

3.3. Orthogonalization with Piece-wise Linear
Activations

While the previous orthogonalization can be used in many
different situations, intermediate network layers are often
specified with piece-wise linear activation functions not
comprised by the GLM framework, most notably the ReLU
function. As for canonical activation functions in GLMs,
the ReLU activation ReLU(Xβ) = Xβ ◦ 1(Xβ > 0)
is applied element-wise, with ◦ denoting the Hadamard
product and 1(·) an indicator function individually eval-
uated for all entries of the vector. While at first glance
the definition of the ReLU activation might suggest that
ReLU(Xβ) ∈ span(X) and hence Cl from Section 3.1 is
sufficient for successful orthogonalization, this is not the
case as can be verified with a simple counterexample.

Example 2. Assume X = (1,−1)⊤ ∈ R2 and β = 1.
Then ReLU(Xβ) = (1, 0) /∈ span(X).

Although ReLU(Xβ) does not necessarily lie in span(X),
we can derive the following result

Theorem 5. Given a prediction model Mp with ReLU
activation, and an evaluation model Me with ReLU ac-
tivation and L2 loss, a Ch-orthogonalization of the form
Zc = P⊥

XZ, will yield β̂c = 0.

The proof of Theorem 5 is given in the Appendix.

3.4. Orthogonalization for Tensor Predictions

We now show that our concept of orthogonalization is not re-
stricted to regression models, but can also be used to remove
information from learned representations in layers of neural
networks. Such a correction should be able to deal with
prediction models (or layers) with tensor-shaped predictions
(e.g., present in early layers of convolutional networks) and
we show how to adapt previous results accordingly. We first
define the linear evaluation model Me with L2-loss ℓ as the
solution of the following tensor-on-vector regression:

B̂c = argmin
Bc

ℓ(Ŷc,X ×1 B
c), (4)
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where the outcome tensor Ŷc ∈ Rn×d1×···×dR is the cor-
rected version of an (intermediate) non-linear prediction
Ŷ, X ∈ Rn×p is a feature matrix as before, Bc ∈
Rp×d1×···×dR a tensor-valued regression coefficient, and
×1 denotes the 1-mode product. For a successful correc-
tion Ch from which we obtain Ŷc, it must hold B̂c ≡ 0
in (4), which can be achieved by projecting vec(Ŷ) onto
span(X)⊥ as before. Indeed, using a vectorized reformula-
tion, we can prove that this yields corrected predictions (see
Appendix E.4 for details):

Corollary 6. Given the set-up around the evaluation model
defined by (4), the corrected predictions satisfying B̂c ≡ 0
are given by

Ŷc = P⊥
X ×1 Ŷ. (5)

While the result in (5) can be extended to GLM-type non-
linearities, and hence an orthogonalization as the one in
Section 3.2 can be derived, we here focus on the ReLU acti-
vation function, arguably the pervasive type of non-linearity
in intermediate DNN layers. Hence, we consider an evalua-
tion model Me with ReLU activation defined by

B̂c = argmin
Bc

ℓ(Ŷc,ReLU(X ×1 B
c)), (6)

and a prediction model Mp yielding predictions Ŷ =
ReLU(Ȳ) with pre-activation Ȳ. In contrast to previous
sections, we here focus on correcting the predictions and
not the effects of Mp, as predictions of an intermediate
layer in a large neural network are not necessarily formed
by a linear operation. We obtain the following result:

Corollary 7. Assuming the evaluation model (6), the cor-
rected pre-activations Ȳc yielding corrected predictions Ŷc

following ReLU activation are given by Ȳc = P⊥
X ×1 Ȳ.

See Appendix E.5 for a proof. In other words, by mul-
tiplying the first dimension of a non-activated output of
some layer with P⊥

X from the left before applying the ReLU
activation, we obtain corrected predictions in the next layer.

4. Numerical Experiments
In Section 4.1, we first check whether sensitive information
can be successfully protected in GLMs with our approach,
using both synthetic and real-world datasets. We then show
in various settings how our method corrects learned rep-
resentations for potential biases (Section 4.2), and finally
investigate its effectiveness as an online version applied dur-
ing training (Section 4.3). The details of all experiments
are provided in Appendix F. In all experiments, categorical
information in the protected features is included in Z as
one-hot encoded features with the first column removed (as
we don’t want to orthogonalize or penalize the model for a
constant intercept term).

4.1. Generalized Linear Model

In the following, we focus on real-world applications but
provide synthetic data examples in Appendix G.1, confirm-
ing that Ch works as intended for GLMs in a variety of
settings.

4.1.1. ADULT INCOME DATA

Using the adult income data also investigated in Xu et al.
(2022) to analyze algorithm fairness, we check the efficacy
of our approach for protected features sex and race. We
therefore first fit our prediction model, a GLM with features
age, work class, education, marital status, relationship, and
working hours per week, to predict the person’s income
binarized into ≤ 50k and > 50k (as provided by the original
dataset) and then correct for the protected features.

Results We find (Table 2, first row) that the income predic-
tions are significantly influenced if the individual is white
and/or male with a multiplicative increase in the odds-ratio
of approximately exp(0.522) = 1.68 and exp(1.066) = 2.90
for earning more than 50k for white individuals and males,
respectively. Similar results are inferred from Xu et al.
(2022)’s approach. When applying our framework and ad-
justing for sex and race, we can see that all effects of these
protected features are estimated to be close to zero and are
non-significant.

Table 2. Estimated coefficients from Me with corresponding p-
values in brackets when not correcting the model (first column),
when using Xu et al. (2022) (second column), and when correcting
with Ch (last column). P-values smaller than 0.05 show a ✗ -sign,
otherwise a ✓-sign.

w/o correction Xu et al. (2022) using Ch

Sex (male) 1.066 (< 2e-16) ✗ 1.255 (< 2e-16) ✗ -0.000 (0.998) ✓
Race (Asian) 0.263 (0.227) ✓ 0.859 (2e-4) ✗ 0.011 (0.954) ✓
Race (Black) -0.094 (0.577) ✓ 0.191 (0.319) ✓ 0.008 (0.957) ✓
Race (Other) -0.165 (0.594) ✓ -0.131 (0.706) ✓ -0.131 (0.609) ✓
Race (White) 0.522 (0.001) ✗ 0.928 (4e-7) ✗ 0.005 (0.969) ✓

4.1.2. FAIRNESS BENCHMARK

While fairness methods target a slightly different goal than
orthogonalization, it might still be interesting to see whether
our criterion for orthogonalization (cf. Definition 2) can
also be met by approaches suggested in the fairness liter-
ature. We therefore run a comprehensive analysis on fair-
ness datasets with non-Gaussian outcomes and compare the
results of various fairness methods with our orthogonaliza-
tion. In the case of GLMs, closely related methods are fair
(logistic / Poisson) regression with different optimization
strategies. Komiyama et al. (2018) bounds the proportion
of explained variance by protected features (we refer to this
as Komiyama1). Another variant by the same authors first
regresses the fitted values against the protected features (re-
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Figure 3. Comparison of orthogonalization properties of fairness methods in comparison with our approach. Ideally, methods should yield
effects of zero (in the left plot) and large p-values (in the right plot). Missing boxes indicate that the method did not converge.

ferred to as Komiyama2). An alternative is the approach by
Berk et al. (2017) enforcing individual fairness by penaliz-
ing pairs of observations that have different outcomes for
the same protected features (referred to as Berk). A fourth
approach we compare against is the one of Zafar et al. (2019)
(referred to as Zafar) enforcing fairness by bounding the co-
variance of protected features and other predictors. We run
these and our method on the benchmark datasets adult,
bank, compas, and health.retirement provided in
Scutari (2023) containing various protected features such as
race, sex, or marriage.

Results The results are depicted in Figure 3 showing that
all fairness approaches show significant feature effects with
effect strengths often different from 0. In contrast, our ap-
proach adheres to the orthogonality requirement from Defi-
nition 2, yielding effects close to 0 with no significant im-
pact. As stated earlier, this does not imply unfairness of the
other approaches, but demonstrates that fairness approaches
cannot be simply used as a substitute to achieve orthogo-
nality. As orthogonality might potentially decrease model
performance, Table 3 additionally compares the model per-
formances with and without the correction. Since most of

Table 3. Test set prediction performances with/out correction.
Dataset (Metric) w/o Corr. w/ Corr.

adult (Accuracy) 0.854 0.833
bank (Accuracy) 0.899 0.887
compas (Accuracy) 0.739 0.724
health (Root mean squared error) 0.750 0.789

the datasets contain the protected features also in Z, i.e.,
as features for the prediction model, the prediction perfor-
mance with orthogonalization will naturally decrease (if not,
then the protected features would likely not bias the model
and raise fairness issues in the first place). However, as can
be seen in Table 3, the decrease in performance is often
negligible with a maximum of 2% decrease in accuracy for
compas.

4.2. Orthogonalization of Learned Representations

4.2.1. COMPARING Cl AND Ch ON IMAGE EMBEDDINGS

Going back to our instructive Example 1, we use self-
supervised embeddings for the MIMIC Chest X-Ray dataset
(Johnson et al., 2019; Sellergren et al., 2022) known to have
encoded race, sex and age (Glocker et al., 2023b), and try
to remove this implicit information using orthogonalization.
Following Glocker et al. (2023b), we first validate that meta-
information such as race, in fact, is influencing predictions
in a downstream task. As Mp we use a GLM to predict
whether the patient suffers from pleural effusion using only
the embedding as features. We then check whether a Cl-
orthogonalization is sufficient to remove this information,
but in contrast to the Adult data application, check on the
level of probabilities where Cl should fail. Finally, we apply
Ch-orthogonalization to obtain the corrected predictions.

Results Table 1 (page 2) summarizes the results, confirm-
ing our hypotheses and demonstrating that our approach
effectively removes the meta-information from embeddings.
In this case, removing the features even results in a slight
improvement in prediction performance with a 0.02 increase
in AUC.

4.2.2. POST-HOC ORTHOGONALIZATION FOR NEURAL
REPRESENTATIONS

As another demonstration, we analyze the race and age
bias in a learned neural representation of faces from the
UTKFace dataset (Zhang et al., 2017), where previous lit-
erature suggests, among other biases, a misalignment for
black women (see, e.g., Krishnan et al., 2020). We first
train a ResNet50 (He et al., 2016) on the provided images to
classify the sex of the depicted person. We then check the
influence of race and age on the predictions using a logistic
regression. In order to correct for biases, we extract the
weights in the ResNet’s penultimate layer and apply the
Ch-orthogonalization by fitting a corrected GLM (following
Corollary 4) with learned representations as features and sex
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as the binary outcome. Finally, we again check the influence
of race and age on the model’s predictions.

Results Results are summarized in Table 4, again depicting
coefficients and p-values, and confirm the effectiveness of
our approach in blinding the network for certain features
(here age and race). The orthogonalization in this case
comes at the cost of an AUC reduction from 0.831 (w/o cor-
rection) to 0.826 (with Ch), which seems to be a reasonable
trade-off to correct for age and race effects.

Table 4. Estimated coefficients from Me with corresponding p-
values in brackets when not correcting the model (first column)
and when correcting the model for age and race (second column).
Significant influences are highlighted in bold for an α-level of
0.05.

w/o correction Ch orthogonalization
Age -0.017 (< 2e-16) ✗ -0.000 (0.976) ✓
Race (Black) -0.352 (8.68e-10) ✗ 0.009 (0.872) ✓
Race (Indian) -0.620 (< 2e-16) ✗ 0.008 (0.894) ✓
Race (Other) -0.315 (4.05e-05) ✗ -0.002 (0.979) ✓
Race (White) -0.377 (5.65e-13) ✗ -0.008 (0.872) ✓

4.2.3. WORD EMBEDDINGS

As a last example, we demonstrate that our approach is not
limited to tabular and image data. As, e.g., discussed in
Bolukbasi et al. (2016), text embeddings, as well, can have
biases encoded, and addressing this property seems of great
relevance given the rise of GPT(-like) models which have
also been shown to not always be neutral in their generation
(see, e.g., Ray, 2023). To show that the proposed method
also works for the correction of text embeddings in a non-
linear model, we use the movies review dataset (Maas et al.,
2011), which we enhance with the gender information of the
protagonist and the movie director. Using an LSTM model
and a learned text embedding Z (see Appendix F for details),
we try to predict the number of reviews for each movie (i.e.,
a Poisson-distributed outcome). We do this once without
correction and once by correcting the embeddings Z of size
100× 100 of every movie description following the results
from Corollary 7 using the available gender information as
X .

Results When not correcting the model’s prediction, we
obtain p-values <2e-16 for both gender effects, suggesting
a significant influence of gender on the predictions ŷ. After
correction, p-values are 0.993 and 1.0, implying a successful
embedding correction with only a small increase in root
mean squared error of 1% compared to the model without
correction.

4.3. Online Orthogonalization

Finally, we test how our approach performs when applied
in an online fashion by iteratively optimizing a small CNN

and orthogonalizing the network with respect to some fixed
features X as proposed in the Metadata Normalization ap-
proach (Lu et al., 2021). In other words, we perform the pro-
posed orthogonalization during training. Inspired by Clever
Hans predictors (Lapuschkin et al., 2019) and orthogonal-
ization in distribution shift situations (Chen et al., 2023), we
colorize the MNIST data by reshaping the grayscale image
to an RGB image where one of the three channels is filled
with the original grayscale pixel values and the remaining
two channels filled with zeros, i.e., set to black. The binary
prediction task is to classify a subset of the MNIST dataset
reduced to digits 0 and 9. For the train set, we intentionally
create only red images of 0s by assigning the pixel values to
the first channel. For the images of 9s we randomly assign
either the second (green) or third (blue) channel. In the
counterfactual test set, images of both classes are colored
randomly in green or blue, but not red. As a result, the
color red is predictive for the train but not the test set. We
then use the color information “red”, denoted as the binary
feature X , in the correction model to normalize the CNN’s
predictions. In other words, we train a CNN on RGB im-
ages but blind the network w.r.t. the color red (or in fact any)
color information by orthogonalizing the first convolutional
layer’s latent features w.r.t. X .
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Figure 4. Estimated influence of the color red on the convolu-
tional layer’s predictions (left plot) and train-, validation- and
test-accuracy of the two models (with/out correction).

Results Figure 4 summarizes the results of the experiment
showing that our method correcting for the color red in fact
yields no influence of the metadata information on the hid-
den layer’s weights (left plot) and further illustrates how the
model without correction is fooled by the training/validation
data by focusing on the information of the color channels
instead of the pixel values. This leads to a poor test perfor-
mance of not much more than 50% accuracy. The corrected
model shows a better test performance as it learned to focus
on the image content and not the channel information.

5. Discussion
In this work, we introduced a novel correction routine that
extends the concept of orthogonalization to non-linear and
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Figure 5. Comparison of orthogonalization properties of fairness methods in comparison with our approach when extending the notion of
orthogonality beyond linear feature effects. Ideally, methods should yield random forest feature importance (RFimp) of zero (in the left
plot) and large p-values (in the right plot). Missing boxes indicate that the method did not converge.

tensor-valued models. Our experimental results confirm
that our approach is effective in correcting sensitive data
in linear models and neural networks, as well as rectifying
pre-existing embeddings for undesired attributes.

Caveat We want to emphasize that the given examples and
results in this paper are limited by the representativeness
of the datasets used and should not be the sole basis for
decision-making in applications involving medical imaging
or text applications. Furthermore, as “protection of informa-
tion” can be defined in various ways, our presented methods
do not offer guarantees of absolute protection for sensitive
information in every situation. In particular, note that or-
thogonalization does not imply stochastic independence of
the involved random variables, which means that some form
of residual dependence could persist in theory.

Limitations and future research The proposed algorithms
require the number of observations n to be larger than the
number of features p (or intermediate layer predictions in a
network), and that there are more features q in the prediction
model than in the evaluation model (p). While this is usually
the case, extensions to applications for n < p or q < p are
a challenging yet interesting future research direction.

The proposed orthogonalization also requires knowledge
of features Z related to protected information. Performing
such an operation to remove implicit biases is another inter-
esting approach brought up by an anonymous reviewer but
would require simultaneously learning the protected feature
and being able to evaluate whether these present potential
biases.

6. Outlook
A possible extension suggested by one of the anonymous
reviewers is to make the class of evaluation models more
flexible, allowing it to go beyond linear effects of protected
features on the additive predictor scale, i.e., fitting an evalu-

ation model h(g(X)) where g is, e.g., a non-linear function.
This would yield a more general notion of orthogonalization
than presented in this paper but is also more challenging
to analyze theoretically. In order to check how robust ex-
isting approaches and ours are w.r.t. non-linear evaluation
models, we run the fairness benchmark again and use a ran-
dom forest as an evaluation model to explain the prediction
model’s output using protected information. We then ex-
tract the importance of each feature together with a p-value
for the importance values using a permutation test. Results
are depicted in Figure 5, showing a very similar pattern to
Figure 3. Interestingly, our method seems to work well in
terms of this new orthogonalization notion, only yielding
significant feature importances for the bank dataset. Results
for all other methods suggest that protected features play
a significant role in the random forest’s explanation of the
prediction model’s output.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Simplified Problem Statement
To illustrate our problem, consider two vectors x = (0, 1) and y = (1, 0), which are orthogonal as x⊤y = 0. However, after
transformation h(x) and h(y) are not orthogonal anymore for non-linear transformations h as depicted in Figure 6.

x

y

x = [1, 0]

y = [0, 1] hexp(x) = [e, 1]

hexp(y) = [1, e]

hσ(x) = [ e
e+1 ,

1
2 ]hσ(y) = [12 ,

e
e+1 ]

Figure 6. Graphical depiction of orthogonality without transformation (blue vectors) and after transformation with hexp (red) or the
sigmoid function hσ (green).

B. Connection to Fair Machine Learning
When comparing the original orthogonalization approach in Lu et al. (2021); Rügamer et al. (2023) and Komiyama et al.
(2018), both approaches use corrected features

Zc = P⊥
XZ (7)

in their model equation. The main difference is that fair machine learning approaches incorporate the protected features into
the analysis as well, i.e., estimate the model

y = Xβ +Zcγc + ε (8)

with residual term ε, whereas the prediction model Mp in the orthogonalization approach does not necessarily include the
features X in the model. If X is incorporated and without further constraints on the model, the approach of Komiyama
et al. (2018) and the orthogonalization would lead to the same effect estimates (e.g., when using orthogonalization for
identifiability as in Rügamer, 2023). Fair machine learning, however, offers a trade-off between model performance and
(un-)fairness by regularizing the effects β of X in (8) using an explained variance formulation:

min
β,γc

E[(y − ŷ)2] s.t.
Var(Xβ)

Var(ŷ)
≤ r (9)

with predictions ŷ = Xβ̂ +Zcγ̂c and some constraint r ∈ [0, 1]. This approach and reformulations, such as the one of
Scutari et al. (2022) as a ridge-penalized optimization problem, hence do not provide the full unpenalized effects β as
obtained by the orthogonalization.

Apart from the difference between the two approaches induced by the regularization, the generalization of fair machine
learning approaches to models with activation functions differs further. In particular, as, e.g, suggested by Scutari et al.
(2022) the orthogonal predictors Zc are only used on the pre-activation scale, i.e., the fair model uses Zc in the GLM by
incorporating it only once in the additive predictor: E(y|X,Z) = h(Xβ +Zcγc). As discussed in the main part of our
paper and in the previous section, this does not imply orthogonality of h(Xβ) and h(Zγ) as required in our work.

A slightly different approach is used by Xu et al. (2022) who correct a classifier trained with all variables by another classifier
trained only on the protected variables. Their approach, however, does not debias representations but only finds directions
for predictions that are orthogonal.

C. Other Notions of Orthogonality
In the following, we briefly describe connections to other notions of orthogonality that are used in different fields of machine
learning research.
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C.1. Domain Generalization

The objective of the domain generalization (DG) problem is to train models to be robust against (or orthogonal to) domain
(or covariate) shifts (Ganin et al., 2016; Shankar et al., 2018). While our orthogonalization approach and DG have different
goals, viewing orthogonalization through the lens of DG is an interesting idea brought up by an anonymous reviewer. In
particular, distributionally robust optimization (DRO; Sagawa et al., 2019) aims to ensure that predictive accuracy is robust
w.r.t. changes in the distribution of the sensitive features. Our orthogonalization approach, in contrast, aims to ensure that
the sensitive features do not affect the predictions (in the sense of a zero coefficient in the evaluation model). Note, however,
that DRO does not provide any guarantees regarding our goal.

C.2. Orthogonality of Predictions and Embeddings

Another interesting question brought up by an anonymous reviewer is how our notion of orthogonality relates to the following
two concepts:

• Concept 1: requiring that the predictions do not change when the sensitive attributes are changed;

• Concept 2: requiring that the embeddings are free from the influence of sensitive information.

Concept 2 is a special case of our proposed notion if the model is linear. Concept 1 can also coincide with our definition if
sensitive attributes are part of the prediction model. In our setting, however, this is not necessarily the case. Other (fairness)
approaches aligning with concept 1 assume knowledge of the causal relationship between sensitive and non-sensitive
attributes, which we also do not require.

D. Background on GLMs
We briefly introduce several quantities used in the estimation of GLMs, but refer to Wood (2017) for more detailed
explanations and derivations. Let g = h−1 be the link function. The weights Υ are defined as

Υ = diag(α(µi)/{g′(µi)
2V (µi)}) (10)

where µi = h(x⊤
i β) and

α(µi) = 1 + (yi − µi){V ′(µi)/V (µi) + g′′(µi)/g
′(µi)} (11)

and
V (µi) = Var(y)/ϕ (12)

with ϕ denoting the distribution’s scale parameter. The working response r is defined as

r = G(y − µ) (13)

where µ = (µ1, . . . , µn)
⊤ and

G = diag(g′(µi)/α(µi)). (14)

In particular, note that in the case of using Fisher weights, i.e., the expected Hessian matrix, α(µi) = 1 and we have the
following simplification:

G−1Υ−1/2 = diag(V (µi)
1/2), (15)

i.e., a function of µi only. We can use this result in later derivations.

D.1. GLM in Detail

The above derivation for GLMs can be made more explicit for our purposes. As noted before, using the Fisher weights
implies α(µi) = 1. As µi = h(x⊤

i β) ≡ h(0) in case of a successful correction, this implies

G = diag(g′(µi)) = (h−1)′(0) · I. (16)

In other words, multiplying with G only scales all observations by a constant. Similarly, (15) reduces to a constant
multiplicative factor of V (h(0)1/2).

13



Generalizing Orthogonalization for Models with Non-Linearities

E. Proofs and Derivations
E.1. Proof of Lemma 3

To prove Lemma 3, we use the final iterate representation of weights β̂c in a GLM and note that the evaluation model (first
without intercept) must yield

β̂c = (X⊤ΥX)−1X⊤Υr = (X⊤ΥX)−1X⊤ΥG(ŷc − µ)
!
= 0. (17)

Consequently, it must also hold µ = h(Xβ̂c) = h(0). The equality in (17) yields two possible solutions: either ŷc = µ,
which is undesirable as it implies that we cannot predict anything after removing the influence of X , or we can construct ŷc

so that when first subtracting µ and then projecting it onto the space spanned by the columns of
∼
X= Υ1/2X , we obtain the

zero vector (see details below). Solving for ŷc, we get the following result.

Lemma 8. Consider a prediction model Mp with activation function h using data Z to produce predictions ŷ. Given
weights Υ and protected features X , corrected predictions satisfying β̂c = 0 are given by

ŷc = G−1Υ−1/2P⊥
X̃
ŷ + h(0). (18)

We can easily confirm that this yields a desired solution by plugging in (18) into (17). Further note that µ = h(0) · 1n, i.e.,
shifts by a constant c2 := h(0) and the multiplication from the left with G−1Υ−1/2 does only scale by a constant factor
c1 := V (h(0))1/2 (see Section D.1) but not rotate P⊥

X̃
ŷ, i.e.,

ŷc = G−1Υ−1/2P⊥
X̃
ŷ + µ

(15)
= V (h(0))1/2P⊥

X̃
ŷ + h(0) = c1P⊥

X̃
ŷ + c21n (19)

with constants c1, c2. Any multiplicative constant does not change the result. We can therefore further simplify the previous
expression from (18) to

ŷc = P⊥
X ŷ + c21n. (20)

This is due to the fact that P⊥
X̃

is the projection matrix of X̃ = Υ1/2X with Υ1/2 being Υ1/2 =

diag(1/(g′(µi)
√
V (µi))) ≡ c3 · I for some constant c3 as µ = h(0) = const. · 1n, and hence both g′(µi) and V (µi) are

constant. As a consequence, we have PX̃ = c3X(c23X
⊤X)−1Xc3 = PX . For a similar reason, we can ignore c1 as

(X⊤X)−1X⊤c1P⊥
X ŷ = c1(X

⊤X)−1X⊤P⊥
X ŷ = 0.

Model with Intercept Similar results can be derived for a model with intercept. First, note that µ = h(β01n). Hence,
c1 and c2 are fixed constants c2 = h(β0) and c1 = V (h(β0))

1/2. Hence, this yields again (20), now just with different
constants c1 and c2. In an intercept-only GLM with canonical link function, the intercept can be computed using only
the response values, allowing to derive the closed-form solution β̂0 = h−1(¯̂y) with ¯̂y = n−1

∑
i ŷi. As the intercept in

the evaluation model is of no particular interest, one can alternatively center the predictions ŷ and subsequently drop the
constant c2. We will assume centered predictions in the following and use the correction ŷc = P⊥

X ŷ.

E.2. Details and Derivation of Corollary 4

In the following, we describe how to derive the constrained optimization problem and subsequently our preferred way of
solving it.

Deriving the constrained optimization problem To see that we can write problem

γ̂c = argmin
γc

ℓ(y, h(Zγc)) s.t. β̂c = 0 (21)

with
β̂c = argmin

βc

ℓ(ŷc = h(Zγ̂c), h(Xβc)) (22)

as
γ̂c = argmin

γc
ℓ(y, h(Zγc))

s.t. ||(X − n−11n1
⊤
nX)⊤h(Zγc)||22 = 0,

(23)

14
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note that the statement in Lemma 3 can be simplified by recognizing that (17) will also hold true if X⊤(ŷc − µ) =
X⊤(ŷc−c21n) = 0. The second term X⊤c21n is always equal to zero if we center X , i.e., use (X−n−11n1

⊤
nX). Hence,

if (X−n−11n1
⊤
nX)⊤ŷc = 0 is fulfilled, (17) will also hold true. Now, instead of using (X−n−11n1

⊤
nX)⊤h(Zγc) = 0

as a constraint, introducing p auxiliary variables when using the Lagrangian multiplier method (see details below), we
can instead also use the constraint ||(X − n−11n1

⊤
nX)⊤h(Zγc)||22 = 0, which implies the former, but only requires one

Lagrangian multiplier variable.

Modified differential multiplier method (MDMM) Following Platt & Barr (1987), we first reformulate the constrained
optimization problem (23) using Lagrangian multipliers, yielding

argmin
γ,λ

ℓ(y, h(Zγ)) + λ ||(X − n−11n1
⊤
nX)⊤h(Zγ)||22︸ ︷︷ ︸

=:A(γ)

=: argmin
γ,λ

E(γ, λ). (24)

In order to optimize (24), we can use the basic differential multiplier method (BDMM) by performing gradient descent
to optimize E w.r.t. γ but gradient ascent for the auxiliary term λA w.r.t. λ, i.e., updating the parameters in each iteration
t ∈ N as

γ[t] = γ[t−1] − ν[t]∇γE(γ[t−1];λ[t−1]),

λ[t] = λ[t−1] + ν[t]A(λ[t−1];γ[t−1]),
(25)

with learning rate ν[t]. The modified version MDMM of the BDMM suggested by Platt & Barr (1987) combines the
Lagrangian method with the penalty method augmenting the overall objective by a penalty term

EP (γ, λ) := E(γ, λ) + ζ

2
A(γ)2 (26)

with damping factor ζ (that defaults to 1), and thus adds another term ζA(γ) to the gradient descent direction in (25).

E.3. Proof of Theorem 5

Consider the ReLU activation function defined as h(x) = x · 1(x ≥ 0). Using the fact that the MSE-optimal β̂c is found by

β̂c = argmin
βc

1

n
||h(Zγ)− h(Xβc)||22, (27)

we can first expand the objective which is minimized in (27) to

1

n

(
h(Zγ)⊤h(Zγ)− 2h(Zγ)⊤h(Xβc) + h(Xβc)⊤h(Xβc)

)
. (28)

The first dot product in (28) is constant w.r.t. βc and the last dot product only determines the scaling of β̂c, hence we focus
on the mixed term. If, after feature correction Zc = P⊥

XZ, the mixed term

h(Zcγ)⊤h(Xβc) = 0, (29)

the optimal β̂c in (27) will also be zero.

We can exploit properties of the ReLU function to show that this is indeed the case, using the fact that for any a, b ∈ Rn it
holds

a⊤b =
∑
i

aibi =
∑
i

[h(ai)h(bi) + h(−ai)h(bi) + h(ai)h(−bi) + h(−ai)h(−bi)]

=
∑
i

h(ai)h(bi) +
∑
i

h(−ai)h(bi) +
∑
i

h(ai)h(−bi) +
∑
i

h(−ai)h(−bi)

= h(a)⊤h(b) + h(−a)⊤h(b) + h(a)⊤h(−b) + h(−a)⊤h(−b),

(30)
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which allows us to rewrite the left-hand side of (29) as

h(Zcγ)⊤h(Xβc) = (Zcγ)⊤(Xβc)− h(−Zcγ)⊤h(Xβc)− h(Zcγ)⊤h(−Xβc)− h(−Zcγ)⊤h(−Xβc)

⇐⇒ h(Zcγ)⊤h(Xβc) = γ⊤Z⊤P⊥
XXβc︸ ︷︷ ︸

=0

−h(−Zcγ)⊤h(Xβc)− h(Zcγ)⊤h(−Xβc)− h(−Zcγ)⊤h(−Xβc)

⇐⇒ h(Zcγ)⊤h(Xβc) = −h(−Zcγ)⊤h(Xβc)− h(Zcγ)⊤h(−Xβc)− h(−Zcγ)⊤h(−Xβc)

⇐⇒ h(Zcγ)⊤h(Xβc) + h(−Zcγ)⊤h(Xβc) + h(Zcγ)⊤h(−Xβc) + h(−Zcγ)⊤h(−Xβc) = 0.

(31)

Since h(·) ≥ 0 for all inputs, the left side of the equation consists of a sum of products of non-negative terms, implying that
all product terms must be equal to zero.

E.4. Proof of Corollary 6

Using the vec(·) operation, we can first reformulate the evaluation model with uncorrected predictions vec(Ŷ) ∈ Rn·d,
d =

∏R
r=1 dr, as

vec(Ŷ) = vec(X ×1 B
c) = vec(X mat(Bc)︸ ︷︷ ︸

p×d

) = (Id ⊗X)vec(Bc). (32)

The orthogonal projection matrix of (Id ⊗X) is given by (Id ⊗ P⊥
X). Premultiplying vec(Ŷ) by this term yields

(Id ⊗ P⊥
X)vec(Ŷ) = vec(P⊥

X mat(Ŷ)︸ ︷︷ ︸
n×d

) = vec(P⊥
X ×1 Ŷ︸ ︷︷ ︸
:=Ŷc

). (33)

The solution B̂c to the evaluation model using corrected predictions Ŷc can then be found by minimizing

||vec(Ŷc)− vec(X ×1 B
c)||22, (34)

over Bc. The closed-form solution is given by

vec(B̂c) = ((Id⊗X)⊤(Id⊗X))−1(Id⊗X)⊤vec(Ŷc) = ((Id⊗X)⊤(Id⊗X))−1 (Id ⊗X)⊤(Id ⊗ P⊥
X)︸ ︷︷ ︸

=0

vec(Ŷ), (35)

proving that B̂c ≡ 0.

E.5. Proof of Corollary 7

Similar to the proof of Theorem 5, we start with the solution of the evaluation model given by

B̂c = argmin
Bc

1

n
||h(vec(Ȳc))− h(vec(X ×1 B

c))||22, (36)

where h(x) = x · 1(x ≥ 0) denotes the ReLU function, and focus on the mixed term h(vec(Ȳc))⊤h(vec(X ×1 B
c)) when

expanding the argument. Noting that this is again a dot product of vectors, we can use the same argument as before in (30)
for the proof of Theorem 5. In particular, the non-activated mixed term including the correction evaluates to

vec(P⊥
X ×1 Ȳ)⊤vec(X ×1 B

c) = (vecȲ)⊤ (Id ⊗ P⊥
X)(Id ⊗X)︸ ︷︷ ︸

0

vec(Bc) = 0, (37)

and all other terms are again activated using the ReLU activation (and hence must be non-negative, but since their sum must
be zero, all terms must be zero).

F. Numerical Experiment Details
The code for reproducing results can be found on the first author’s Github repository.
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Table 5. Overview of all datasets used. The reference category refers to the category used as a reference in the Me when encoding
categorical variables.

ntrain ntest p q reference category
Adult 30162 - 5 45 female, White
Bank 40195 - 1 49 -

Compas 5855 - 6 13 female, African-American
Health Retirement 38653 - 4 25 female, married, Black

MNISTred 11872 1989 1 28 × 28 red
MIMIC 181342 3041 4 111 female, Asian

UTKfaces 16514 4129 5 256 Asian
Movie Reviews 34167 8538 2 100 × 100 female, female (main actor, movie director)

F.1. Adult Income Prediction

For Mp we use the features age, employment status, education, marital status, relationship, and hours per week. Protected
features are given in Table 5. All models are GLMs with canonical link function and binomial distribution, i.e., ℓ is the
binary cross-entropy loss and h() the sigmoid function.

F.2. Fairness Benchmark

For all methods, we set the unfairness amount to 0.05 (as 0 would result in an infinite penalty).

F.3. Chest X-ray Embeddings

We utilize the publicly available embeddings2 of the CXR foundation model proposed by (Sellergren et al., 2022). The train
and test partition is based on the recommended splits of the original MIMIC-CXR database.

Before using the embedding in a classifier, we apply singular value decomposition (SVD) to reduce the risk of overfitting in
the 1376-dimensional embedding. We find that q = 111 dimensions are the best trade-off between explained variance (98%)
and sparsity. The prediction model uses only these q features while the correction function and evaluation model are defined
by age, sex, and race.

F.4. Face Recognition

The embedding of the UTKFace dataset consists of the activations in the penultimate layer in a ResNet-50. Similar to
the Chest X-ray application, we first reduce the 2048-dimensional embedding to q = 32 features using an SVD. These q
features explain 95% of the embedding’s variance. The train and test split is based on a random 80/20 partitioning. We use
these embedding features in the prediction model while using age and race for the correction function and evaluation model.

F.5. Movie Reviews

We first extract the first actor’s sex and the director’s sex from the provided metadata. We then tokenize the movie
descriptions using 1000 words and an embedding size of 100 with a maximum length of 100 words for each description.
Padding is done at the end of sentences with less than 100 words. We further remove stop words and punctuations from
sentences and transform all texts to lowercase. We use the vote count as a Poisson-distributed outcome and partition the data
into 80/20% for training and testing.

The LSTM model is defined by an embedding layer with embedding size 100, an LSTM layer with 50 units and ReLU
activation, a dropout layer with 0.1 dropout rate, a dense layer with 25 units and ReLU activation, a dropout layer with 0.2
dropout rate, a dense layer with 5 units and ReLU activation, a dropout layer with 0.3 dropout rate, and a final dense layer
with 1 unit and exponential activation. The network is trained for a maximum of 1000 epochs with early stopping using
Adam with a learning rate of 1e-6, a batch size of 128, and Poisson loss.

For the orthogonalization, we use the same architecture but insert an orthogonalization operation between the embedding
layer and the LSTM layer. As features Z we use only the movie descriptions, whereas the protected features X consist of
the gender of the protagonist and director.

2https://doi.org/10.13026/pxc2-vx69
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F.6. Online Orthogonalization

We subsample the MNIST dataset to observations with labels 0 or 9. Based on the coloring described in the main part of the
paper, we train a CNN defined by a Conv2D layer with 8 filters, kernel size of 3× 3, and ReLU activation, followed by the
orthogonalization operation for the network that uses a correction. The output (with or without correction) is then fed into
another Conv2D layer with 16 filters, kernel size of 3× 3, and ReLU activation, followed by Max pooling of size 2× 2 and
a flattening operation. Finally, the classification head comprises a dense layer with 64 units and ReLU activation followed
by the output layer with one unit and sigmoid activation.

The prediction model only uses the images and, if corrected, also the color information to perform the orthogonal projection
for training. The networks are trained for 100 epochs with early stopping and a batch size of 128. Early stopping is based on
a 20% validation split and a patience of 25. The evaluation model is optimized using quadratic programming and only uses
the color red information.

F.7. Runtimes

Table 6 compares the runtimes of different methods on the fairness benchmark dataset.

Table 6. Runtimes on the fairness benchmark dataset (in seconds).

Method adult bank compas health.retirement

Komiyama1 3.62 2.37 0.65 1.00
Komiyama2 5.66 2.68 1.19 14.17
Berk 1.13 2.59 1.18 3.52
Zafar 15.02 0.56 12.02 -
Ours 1.11 13.20 0.48 3.84

For the colorized MNIST dataset, the average fitting time until early stopping (with standard deviation in brackets) of both
networks was 1.08 (0.528) minutes with orthogonalization and 0.40 (0.006) minutes without orthogonalization. We can see
that the orthogonalization takes on average longer to “converge”. This can mainly be attributed to the fact that it runs for
more iterations and not the additional operations required to perform the orthogonalization.

G. Additional Results
G.1. Synthetic Data

First, we simulate data from a Bernoulli and Poisson distribution to check whether our approach provides the proposed
protection for features X using a canonical activation function h and either Cl or Ch. We generate features X from a
standard normal distribution and generate features Z correlated to X using the transformation X = ρZ[:,1:q] +E, where
ρ ∈ {0, 1, 2} and E are realizations of a standard normal distribution with dim(E) = dim(Z). We examine different
settings for p ∈ {5, 10}, q ∈ {10, 100}, and n ∈ {200, 1000, 5000, 10000}, and repeat every setting 10 times with different
random seed.

Results Figure 7 shows the results of the simulation for the classification task and ρ = 2 (the count response task in
the Appendix is qualitatively the same) with and without correction for the model’s pre-activation (corrected with Cl) and
post-activation values (corrected with Ch). Results confirm that not only are coefficients estimated to be close to zero after
correction, but their p-value is also close to 1 in most cases, suggesting no significant influence of protected features in the
predicted value ŷc. In contrast, without correction, coefficients tend to be non-zero and “highly significant” (with a very
small p-value).

Similar results are obtained when using ρ = 0 or ρ = 1 for a logistic regression model (cf. Figure 8 and 9, respectively) and
also for ρ ∈ {0, 1, 2} for a count regression (Figures 10-12).
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Figure 7. Distribution of estimated coefficients (top row) and corresponding p-values (bottom row) for different data sizes n and features
q (columns) for the binary classification task (Bernoulli distribution). Boxplots summarize all different values of p and the 10 simulation
repetitions.

n: 200

q: 10

n: 200

q: 50

n: 200

q: 100

n: 1000

q: 10

n: 1000

q: 50

n: 1000

q: 100

n: 5000

q: 10

n: 5000

q: 50

n: 5000

q: 100

n: 10000

q: 10

n: 10000

q: 50

n: 10000

q: 100

effect
p−

value

C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch

−5

0

5

10

0.00

0.25

0.50

0.75

1.00

type

va
lu

e

w/o correction w/  correction

Figure 8. Distribution of estimated coefficients (top row) and corresponding p-values (bottom row) for different data sizes n (columns) for
the classification task and ρ = 0. Boxplots summarize all different values of p, q, and the 10 simulation repetitions.
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Figure 9. Distribution of estimated coefficients (top row) and corresponding p-values (bottom row) for different data sizes n (columns) for
the classification task and ρ = 0. Boxplots summarize all different values of p and the 10 simulation repetitions.
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Figure 10. Distribution of estimated coefficients (top row) and corresponding p-values (bottom row) for different data sizes n (columns)
for the count task (Poisson) and ρ = 0. Boxplots summarize all different values of p and the 10 simulation repetitions.

20



Generalizing Orthogonalization for Models with Non-Linearities

n: 200

q: 10

n: 200

q: 50

n: 200

q: 100

n: 1000

q: 10

n: 1000

q: 50

n: 1000

q: 100

n: 5000

q: 10

n: 5000

q: 50

n: 5000

q: 100

n: 10000

q: 10

n: 10000

q: 50

n: 10000

q: 100

effect
p−

value

C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch C l Ch

−2

0

2

0.00

0.25

0.50

0.75

1.00

type

va
lu

e

w/o correction w/  correction

Figure 11. Distribution of estimated coefficients (top row) and corresponding p-values (bottom row) for different data sizes n (columns)
for the count task (Poisson) and ρ = 1. Boxplots summarize all different values of p and the 10 simulation repetitions.
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Figure 12. Distribution of estimated coefficients (top row) and corresponding p-values (bottom row) for different data sizes n (columns)
for the count task (Poisson) and ρ = 2. Boxplots summarize all different values of p and the 10 simulation repetitions.
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