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Figure 1. We introduce Align Your Steps (AYS), a novel general framework for optimizing sampling schedules in diffusion models that
significantly boosts the quality of outputs, especially when performing synthesis in few steps. Notice the improved details with AYS.

Abstract

Diffusion models (DMs) have established them-
selves as the state-of-the-art generative model-
ing approach in the visual domain and beyond.
A crucial drawback of DMs is their slow sam-
pling speed, relying on many sequential function
evaluations through large neural networks. Sam-
pling from DMs can be seen as solving a differ-
ential equation through a discretized set of noise
levels known as the sampling schedule. While
past works primarily focused on deriving efficient
solvers, little attention has been given to finding
optimal sampling schedules, and the entire litera-
ture relies on hand-crafted heuristics. In this work,
for the first time, we propose a general and princi-
pled approach to optimizing the sampling sched-
ules of DMs for high-quality outputs, called Align
Your Steps. We leverage methods from stochastic
calculus and find optimal schedules specific to dif-
ferent solvers, trained DMs and datasets. We eval-
uate our novel approach on several image, video
as well as 2D toy data synthesis benchmarks, us-
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ing a variety of different samplers, and observe
that our optimized schedules outperform previous
hand-crafted schedules in almost all experiments.
Our method demonstrates the untapped potential
of sampling schedule optimization, especially in
the few-step synthesis regime.

1. Introduction
Diffusion models (DMs) have proven themselves to be ex-
tremely reliable probabilistic generative models that can
produce high-quality data. They have been successfully
applied to applications such as image synthesis (Dhariwal &
Nichol, 2021; Ho et al., 2020; Song et al., 2020b; Rombach
et al., 2021; Saharia et al., 2022; Ramesh et al., 2022), im-
age super-resolution (Saharia et al., 2021b), image-to-image
translation (Saharia et al., 2021a), image editing (Brooks
et al., 2023), inpainting (Lugmayr et al., 2022), video syn-
thesis (Ho et al., 2022; Blattmann et al., 2023b), text-to-3d
generation (Poole et al., 2022; Lin et al., 2023), and even
planning (Janner et al., 2022). However, sampling DMs
requires multiple sequential forward passes through a large
neural network, limiting their real-time applicability.

As a result, extensive research effort has gone into design-
ing fast and efficient samplers of these models, broadly
categorized into training-based and training-free methods.
Training-based approaches, such as distillation, can signifi-
cantly accelerate the sampling process but often require sig-
nificant compute power, comparable to training the model
itself, and face a trade-off between speed, diversity, and fi-
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Figure 2. Align Your Steps. We minimize an upper bound on the
Kullback-Leibler divergence (KLUB) between the true and lin-
earized generative SDEs to find optimal DM sampling schedules.

delity (Salimans & Ho, 2022; Song et al., 2023; Sauer et al.,
2023b; Luo et al., 2023; Yin et al., 2023), lagging behind
standard DMs in terms of output quality, especially in large
models. Although promising, these methods have not yet
found wide-spread adoption by practitioners. On the other
hand, since sampling from DMs corresponds to solving
a generative Stochastic or Ordinary Differential Equation
(SDE/ODE) in reverse time (Song et al., 2020b), training-
free methods usually seek to derive more efficient SDE/ODE
solvers, making them more broadly applicable to different
models with relative ease (Lu et al., 2022a;b; Song et al.,
2020a; Cui et al., 2023; Xu et al., 2023a; Karras et al., 2022).

Solving SDE/ODEs within the interval [tmin, tmax] works
by discretizing it into n smaller sub-intervals tmin = t0 <
t1 < · · · < tn = tmax, and numerically solving the dif-
ferential equation between consecutive ti values. This dis-
cretization has been given many names in the literature, e.g.
step size schedule, denoising schedule, timestep schedule,
etc.1 We will be referring to it as the sampling schedule.
Changing the sampling schedule can significantly change
the quality of the outputs (Karras et al., 2022); however,
most prior works simply adopt one of a handful of heuristic
schedules, such as simple polynomials and cosine functions.
Although significant effort has gone into developing faster
solvers, little research has been conducted to optimize the
sampling schedule. We attempt to fill this gap by introduc-
ing a principled approach for optimizing the schedule in a
dataset-specific manner, resulting in improved outputs given
the same compute budget. We’ll be focusing on stochastic
SDE solvers. These solvers excel in sampling from diffu-
sion models due to their built-in error-correction, allowing
them to outperform ODE solvers.

In a toy example using a Gaussian data distribution
(Sec. 3.1), we demonstrate the reliance of the optimal sam-

1This is different from the noising schedule which specifies
the amount of noise injection and scaling in the forward process.
Please refer to Sec. 2 for details.

pling schedule on the dataset characteristics and find that
the optimal schedule significantly differs from heuristic
sampling schedules used across the literature. With this as
motivation, we propose Align Your Steps (AYS), a principled
and general framework for optimizing the sampling sched-
ule specific to any choice of dataset, model, and stochastic
SDE solver. The framework is based on the observation that
all stochastic SDE solvers can be reinterpreted as exactly
solving an approximated linearized SDE on short intervals.
This allows us to minimize the mismatch between solving
the approximated linear SDE and the true generative SDE
using techniques from stochastic calculus by framing it as
an optimization problem over the sampling schedule (Fig. 2).
Although the framework assumes the use of stochastic SDE
solvers, we empirically find that the optimized schedules
generalize to several popular ODE solvers as well. The
proposed framework is general and applicable to all DMs
regardless of the data modality, and it is the first general
schedule optimization framework that leads to improved
output quality.

We empirically evaluate our method by optimizing the
schedule for various datasets and models. These in-
clude 2D toy data, standard image datasets such as CI-
FAR10 (Krizhevsky et al., 2009), FFHQ (Karras et al.,
2019), and ImageNet (Deng et al., 2009), large scale text-to-
image models widely used by practitioners such as Stable
Diffusion (Rombach et al., 2021) and SDXL (Podell et al.,
2023), as well as the recent video DM Stable Video Diffu-
sion (Blattmann et al., 2023a). Our results show the practical
advantages of optimizing the sampling schedule, ranging
from fewer outliers in 2D point generation, enhanced qual-
ity in image generation, and improved temporal stability in
video generation (Fig. 1).

Contributions. (i) We analytically establish the dependency
of the optimal sampling schedule on the ground truth data
distribution. (ii) We introduce Align Your Steps, a princi-
pled and general framework for optimizing the sampling
schedule specific to any dataset, model and stochastic solver.
(iii) We improve upon previous heuristic sampling sched-
ules for many popular stochastic and deterministic solvers,
especially in the low NFE regime. (iv) We provide the opti-
mized schedules for several commonly used models in the
appendix to allow for easy plug-and-play use by the research
community.

2. Background
DMs are probabilistic generative models that inject noise
into the data with a forward diffusion process and generate
samples by learning and simulating a time-reversed back-
ward diffusion process, initialized with a sample from a
tractable distribution, e.g. Gaussian noise. We adopt the
framework of Karras et al. (2022), denote the data distri-
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bution by pdata(x) where x ∈ Rd, and define p(x;σ) as
the distribution obtained by adding i.i.d. Gaussian noise of
standard deviation σ to the data.

Forward process. Score-based diffusion models (Song
et al., 2020b) progressively transform the data pdata(x) to-
wards a noise distribution through a forward noising pro-
cess. This process is determined by a noising schedule,
consisting of two functions s(t), σ(t) that define the scal-
ing and noise level at time t. Specifically, xt = s(t)x̂t

where x̂t ∼ p(x, σ(t)). The distribution of xt is denoted as
p′(x, t). Given the noising schedule, the forward noising
process can be written in the form of the following SDE

dxt =
ṡ(t)

s(t)
xt + s(t)

√
2σ(t)σ̇(t)dwt, (1)

where wt ∈ Rd denotes a standard Wiener process.

Backward process and sampling. The forward SDE
in Eq. (1) has an associated reverse-time diffusion pro-
cess (Song et al., 2020b) given by

dxt =

[
ṡ(t)

s(t)
xt − 2s(t)2σ(t)σ̇(t)∇x log p

(
xt

s(t)
, σ(t)

)]
dt

+ s(t)
√
2σ(t)σ̇(t)dw̄t,

(2)

where w̄t denotes a standard Wiener process backwards
in time. However, there exists an entire class of reverse-
time SDEs with matching marginals as the backward SDE
in Eq. (2) (Huang et al., 2021; Karras et al., 2022; Cui
et al., 2023). The most notable being the non-stochastic
probability flow ODE, introduced by (Song et al., 2020b):

dxt =

[
ṡ(t)

s(t)
xt − s(t)2σ(t)σ̇(t)∇x log p

(
xt

s(t)
, σ(t)

)]
dt.

(3)

As stated previously, sampling from a diffusion model boils
down to solving one of these SDE/ODEs backward in time
starting from random noise. This is done by discretizing
the interval [tmin, tmax] into n sub-intervals tmin = t0 <
t1 < · · · < tn = tmax, known as a sampling schedule, and
solving the SDE/ODEs on this schedule.

3. Optimizing Sampling Schedules
Contrary to previous works, which have primarily focused
on deriving efficient SDE/ODE solvers using heuristic
schedules for sampling, we focus on fundamentally optimiz-
ing the sampling schedule given a specific choice of (dataset,
model, stochastic solver) for a large class of SDE solvers.

In Sec. 3.1, we first show how changing dataset characteris-
tics causes the optimal sampling schedule to change. Next,
in Sec. 3.2, we analyze the error introduced by discretiz-
ing the interval of the SDE into n sub-intervals that define
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Figure 3. Comparing popular sampling schedules against the opti-
mal schedules for Gaussian data.

the sampling schedule, and formulate finding an optimal
schedule as an optimization problem which can be solved
iteratively. Sec. 3.3 addresses implementation details.

3.1. The Need for Optimized Schedules

Although the sampling schedule used for solving
SDE/ODEs is a powerful hyperparameter at our disposal, lit-
tle research effort has gone into optimizing it. Especially in
the relevant few-step synthesis regime, discretization errors
can become significant (Atkinson et al., 2009) and having an
optimal sampling schedule can make a considerable impact.

As a motivating example, we analyze a simple case where an
optimal sampling schedule can be derived analytically. Con-
sider the case where the initial distribution is an isotropic
Gaussian with a standard deviation of c, i.e. pdata(x) ∼
N (0, c2I). We’ll assume s(t) = 1, σ(t) = t (Karras et al.,
2022). Forward SDE and Probability Flow ODE then are{

Forward SDE: dxt =
√
2t dwt,

Reverse ODE: dxt = −t∇x log p(xt, t)dt.
(4)

In this setting, assuming use of the forward Euler method,
also known as DDIM (Song et al., 2020a), to solve the re-
verse ODE, an optimal schedule can be derived analytically.

Theorem 3.1 (Proof in App. A.1). Let pdata(x) =
N (0, c2I). Sample xtmax

∼p(x, tmax) and solve the prob-
ability flow ODE using n forward euler steps along the
schedule tmax = tn > tn−1 > · · · > t1 > t0 = tmin

to obtain x̄tmin . The optimal schedule t∗ minimizing the
KL-divergence between p(x, tmin) and the distribution of
x̄tmin

is given by

αmin := arctan(tmin/c), αmax := arctan(tmax/c)

⇒ t∗i = c tan

(
(1− i

n
)× αmin + (

i

n
)× αmax

)
.
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Figure 4. Modeling a 2D toy distribution: (a) Ground truth samples; (b), (c), and (d) are samples generated using 8 steps of SDE-DPM-
Solver++(2M) with EDM, LogSNR, and AYS schedules, respectively. Each image consists of 100,000 sampled points. The colors denote
the local density of the samples where warmer colors correspond to higher density regions. See App. C.2 for details.

In this theorem, the distribution p(x, tmin) is the output dis-
tribution of exactly solving the probability flow ODE from
tmax to tmin. Therefore, the theorem states that the optimal
schedule t∗, that has the minimum mismatch between its
outputs and the outputs of exactly solving the ODE, has the
interesting property that arctan(t∗/c) is a linear function.

In Fig. 3, we compare several popular sampling schedules
used in practice against these optimal schedules when
tmin = 0.002, tmax = 80.0 for various initial std. devs. c.
The featured schedules include EDM (Karras et al., 2022),
Linear LogSNR (Lu et al., 2022a;b), Cosine LogSNR
(Hoogeboom et al., 2023; Nichol & Dhariwal, 2021),
linear time (Song et al., 2020a), and quadratic time (Song
et al., 2020a). This plot shows how changing the dataset
(through changing the data distribution’s std. dev. c)
can have a significant impact on the optimal sampling
schedule. Judging by how dissimilar the hand-crafted
schedules appear compared to the optimal Gaussian ones,
it is reasonable to believe that optimizing the schedules for
each dataset could lead to significant performance gains.
Note that in practice, it is common to normalize the input
data to ensure unit variance. Yet, even only comparing the
optimal schedule when c = 1 to the others, there remains
a big difference between them. We show the distribution
of outputs for different samplers in App. C.1.

3.2. Analyzing the Discretization Errors

Since the sampling schedule defines how the reverse-time
generative SDE will be discretized, optimizing the schedule
corresponds directly to minimizing the discretization error
of solving the SDE/ODE. One method for analyzing such
discretization errors in diffusions (and SDEs in general) is
to use Girsanov’s theorem (Oksendal, 1992). A simplified
version of Girsanov’s theorem is the following:
Theorem 3.2 (KL-divergence Upper bound (KLUB), proof
in App. A.2). Consider the following two SDEs:{

SDE 1 : dxt = f1(x0→t, t)dt+ g(t)dwt

SDE 2 : dxt = f2(x0→t, t)dt+ g(t)dwt

where x0→t represents the entire path from the start (t = 0)
to the current time t (this formulation is useful for multi-step
methods that benefit from having access to the history). Let
P1 and P2 be the resulting probability distributions at time
T of the outputs of SDE 1 and SDE 2, respectively.

Under mild regularity constraints, we have:

DKL(P1∥P2) ≤ KLUB(0, T ) :=

1

2
EP paths

1

[∫ T

0

||f1(x0→t, t)− f2(x0→t, t)||2

g(t)2
dt

]
,

(5)

where P paths
1 refers to the distribution over path space

x0→T ∈ C([0, T ];Rd) generated by running SDE 1.

This theorem gives us an upper bound on the outputs’ mis-
match of two SDEs that share a diffusion term. In this
work, our main goal is minimizing the mismatch between
the outputs obtained by exactly solving the reverse-time
generative SDE without discretization and the outputs of
stochastic SDE solvers in practice, which use a finite sam-
pling schedule. Most stochastic solvers work by decompos-
ing the problem into multiple sub-intervals, within each of
which the SDE is approximated by a linear SDE that has the
same diffusion term. For these linear SDEs, exact numerical
solutions exist which are used by the solvers. Therefore, for
each stochastic SDE solver there exists a solver-specific lin-
earized SDE, and the outputs of these solvers are the exact
solutions of their respective linearized SDEs. As a result,
we can use the theorem above to derive a Kullback-Leibler
divergence Upper Bound (KLUB) between the outputs of
practical stochastic solvers and the outputs of solving the
reverse-time generative SDE without discretization. To clar-
ify, solving the generative SDE without discretization is not
possible in practice due to the nonlinear nature of the neural
network. However, Girsanov’s theorem offers us a tool to
analyze the corresponding distribution regardless.

In the following, we will demonstrate deriving the KLUB
for Stochastic-DDIM (η = 1) (Song et al., 2020a), and
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Figure 5. Side-by-side comparison of selected images generated
with Stable Diffusion 1.5 with SDE-DPM-Solver++(2M) over 10
steps with different sampling schedules.

a similar procedure can be applied to other solvers with
minimal adjustments. We follow Karras et al. (2022) and let
Dθ(x, σ) be the learnt denoiser function that takes in a noisy
sample x with σ noise and denoises the sample. Plugging
in the relation ∇x log pθ (x, σ) = (Dθ(x, σ)− x)/σ2 into
Eq. (2) yields the following true learnt SDE:

dxt =

[(
ṡ(t)

s(t)
+

2s(t)2σ̇(t)

σ(t)

)
xt −

2s(t)2σ̇(t)

σ(t)
Dθ

(
xt

s(t)
, σ(t)

)]
dt

+ s(t)
√
2σ(t)σ̇(t)dw̄t

(6)

Lu et al. (2022b) have shown that Stochastic-DDIM is the
exact solution of a 1st order approximation of the true
learnt SDE. This means when solving the SDE in the sub-
interval [ti−1, ti], using the assumption Dθ(

xt

s(t) , σ(t)) ≈
Dθ(

xti

s(ti)
, σ(ti)), the discretized learnt SDE of this solver is

dxt =

[(
ṡ(t)

s(t)
+

2s(t)2σ̇(t)

σ(t)

)
xt −

2s(t)2σ̇(t)

σ(t)
Dθ

(
xti

s(ti)
, σ(ti)

)]
dt

+ s(t)
√

2σ(t)σ̇(t)dw̄t,

(7)
where the outputs of applying 1 step of Stochastic-DDIM
from noise level ti → ti−1 are the exact solution of this
SDE. Note that this is a linear SDE since the denoiser does
not rely on the current state xt, but only on the fixed xti at
the beginning of the interval, and its output can be treated as
a constant vector inside the interval. Stitching together all
these linear SDEs for the different sub-intervals gives us a
general discretized learnt SDE that corresponds to applying
the solver using the entire sampling schedule.

At this point, there are two SDEs that share the same diffu-
sion term. The outputs of the true learnt SDE are samples
obtained theoretically, given an unlimited compute budget,

Figure 6. Side-by-side comparison of selected images generated
with SDXL with 10 steps with different sampling schedules. The
first and second rows use the SDE-DPM-Solver++(2M) and DPM-
Solver++(2M) solvers respectively.

and outputs of the second general discretized SDE are sam-
ples obtained by running n steps of Stochastic-DDIM along
the finite sampling schedule in practice. The goal is to op-
timize the schedule in such a way as to ensure these two
output distributions are as close as possible to each other,
and for that we can use our KLUB formalism from above.

To start, we consider a single sub-interval. Assuming both
SDEs start from the forward diffusion process’ distribution
p′(x, ti) and are run from ti → ti−1, we can apply Theo-
rem 3.2 backwards in time to obtain a KLUB between their
output distributions. Letting the SDE in Eq. (6) be SDE 1
and the SDE in Eq. (7) be SDE 2 in the theorem, we obtain:

DKL(P
true
ti→ti−1

∥P disc
ti→ti−1

) ≤

2× EP true paths
ti→ti−1

∫ ti
ti−1

s(t)2σ̇(t)
σ(t)3

∥∥∥Dθ

(
xt

s(t) , σ(t)
)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥2 dt.
(8)

Here P true
ti→ti−1

represents the distribution of running the true
learnt SDE, P disc

ti→ti−1
denotes the distribution of running

the discretized learnt SDE (that corresponds to Stochastic
DDIM’s 1-step outputs), and P true paths

ti→ti−1
is the distribution

over path space of the true learnt SDE.

If we had a perfect score model, i.e. Dθ(x, σ) =

Epdata(x0|xσ)[x0], then P true paths
ti→ti−1

would perfectly match the
path distributions of the forward noising process, and
P true
ti→ti−1

= p′(x, ti−1), where p′ is the distribution of the
forward noising process. We’ll assume that Dθ is suffi-
ciently close to the true denoising function, and approximate
it as such moving forward (for a more detailed error analysis,
please refer to App. A.4). Applying this approximation to
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the equation above results in the following:

DKL(P
true
ti→ti−1

∥P disc
ti→ti−1

)

≤ 2× EP true paths
ti→ti−1

∫ ti
ti−1

s(t)2σ̇(t)
σ(t)3

∥∥∥Dθ

(
xt

s(t) , σ(t)
)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥2 dt
≈ 2×

∫ ti
ti−1

s(t)2σ̇(t)
σ(t)3 E xt∼p′(x,t)

xti
∼p′(xti

|xt)

∥∥∥Dθ

(
xt

s(t) , σ(t)
)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥2 dt.
(9)

This final value can be estimated using Monte Carlo integra-
tion and (xt, xti) can be drawn from the forward diffusion.

This approach can be easily extended to the entire integra-
tion from tmax → tmin. Assuming the sampling schedule
is tmin = t0 < t1 < · · · < tn = tmax, we apply the same
technique on all sub-intervals and combine them to achieve
a total KLUB between the outputs of running the true learnt
SDE and the general discretized learnt SDE (which cor-
responds to Stochastic-DDIM with n-steps following the
sampling schedule). The total KLUB then is

KLUB(t0, t1, . . . , tn)

=
n∑

i=1

∫ ti

ti−1

s(t)2σ̇(t)

σ(t)3
E xt∼p′

t

xti
∼p′

ti|t

∥∥∥∥Dθ

(
xt

s(t)
, σ(t)

)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥∥2 dt.
(10)

Note that each of the integrals only depends on the beginning
and end of the intervals (due to the solver being first-order),
allowing us to rewrite Eq. (10) as:

KLUB(t0, t1, . . . , tn) =

n∑
i=1

KLUB(ti−1, ti). (11)

Finally, we formulate the problem of finding an optimal sam-
pling schedule as minimizing this KLUB value, resulting in
the following optimization:

t∗1,...,n−1 = argmin
t1,t2,...,tn−1

KLUB(t0, t1, . . . , tn)

= argmin
t1,t2,...,tn−1

n∑
i=1

KLUB(ti−1, ti),
(12)

assuming t0 = tmin, tn = tmax are fixed. This opti-
mization is done iteratively by choosing one of the sched-
ule indices i ∈ {1, . . . , n − 1}, discretizing a neighbour-
hood around ti into several candidate points, computing the
KLUB for each candidate, and setting ti to the candidate
with the least value. Due to the decomposition, this process
can be highly parallelized for non-neighbouring indices. A
pseudocode is given in App. B.1. We call this technique
Align Your Steps (AYS).

3.3. Practical Considerations of KLUB Estimation

As discussed in the previous section, estimating the KLUB
is the key to optimizing the sampling schedule. As such,

an accurate estimator for the KLUB with low variance is
required, and Importance Sampling with respect to time
t is used to achieve this. Inspired by prior work (Vahdat
et al., 2021) we select the importance sampling distribution
based on Gaussian data assumptions. Specifically, we as-
sume Gaussian data and analytically calculate all integration
terms in Eq. (10). Then we sample t from a distribution
whose probability density function (pdf) matches these cal-
culated values, up to a constant factor. Empirically, we
found that this approach significantly reduces the variance
in our KLUB estimation and is effective across all datasets.

Under the Gaussian data assumption, we have the following:

Lemma 3.3 (Proof in App. A.3). Let pdata(x) = N (0, c2I).
We assume D(x, σ) = Epdata(x0|xσ)[x0] to be the ideal de-
noiser. Then for all t < ti we have

E xt∼p′
t

xti
∼p′

ti|t

[∥∥∥∥D( xt

s(t)
, σ(t)

)
−D

(
xti

s(ti)
, σ(ti)

)∥∥∥∥2
]

= c4
(

1

σ(t)2 + c2
− 1

σ(ti)2 + c2

)
.

(13)

And applying this lemma to Eq. (10) yields:

KLUB ∝
∑n

i=1

∫ ti
ti−1

s(t)2σ̇(t)
σ(t)3

(
1

σ(t)2+c2 −
1

σ(ti)2+c2

)
dt.

(14)

For simplicity, we will use σ(t) = t, s(t) = 1 (Karras
et al., 2022) moving forward. Considering an example
case of (ti−1, ti, ti+1) = (0.1, 0.2, 0.5), the values from
the integral above range 3 orders of magnitude [0− 1000],
and if Monte Carlo integration were to be used naively in
this case, the estimator would have a huge variance. To fix
this, we perform importance sampling on t according to the
distribution π(t) where

π(t) ∝ 1

t3

(
1

t2 + c2
− 1

t2i + c2

)
(15)

for c = 0.5. Given these t samples, we av-
erage the reweighted integration terms ||Dθ(xt, t) −
Dθ(xti , ti)||2/( 1

t2+c2 −
1

t2i+c2
) which yields the final es-

timation of the KLUB (up to a constant). This results in
a much lower-variance estimator of the KLUB. A pseu-
docode and extra visualizations are given in App. B.1.

In practice, the schedules are optimized in a hierarchical
fashion. Specifically, we start with a 10-step schedule initial-
ized using one of the heuristic schedules (t0, t1, . . . , t10).
This is then iteratively optimized on all the 9 intermedi-
ate points (t1, t2, . . . , t9). At this initial stage, an early
stopping mechanism is necessary to avoid over-optimizing,
which is due to the optimization objective being an upper
bound on the discretization error and not the error itself (see
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Figure 7. FID curves
for different solvers
and schedules on
CIFAR10 (left) and
FFHQ (right). See
Tables 5 and 6 in
App. C.3 for more
comprehensive
results.

App. A.3 for a rigorous proof). After this process is finished,
two rounds of subdivision and further fine-tuning are per-
formed to obtain a 40-step schedule. Each time the schedule
(t0, t1, . . . , tn) is subdivided to obtain a new schedule with
twice the number of steps (t′0, t

′
1, . . . , t

′
2n where t′2i = ti

and log t′2i+1 = 0.5 × (log ti + log ti+1). After a subdivi-
sion, the training process only focuses on further optimizing
the newly added intermediate points (i.e. t′2i+1) and keeps
the other points frozen. This allows the general “shape”
of the schedule to become fixed, removing the need for
early stopping during these later stages. Finally, to obtain a
schedule with a different number of steps than [10, 20, 40],
we view the 40-step schedule as a piece-wise log-linear
function and interpolate it to match the number of desired
number of steps. See App. B.1 for more details. All in all,
the schedule optimization requires only a few iterations to
converge (<300).

4. Related Work
We briefly review prior work on accelerating DM sampling.

Various training-free methods have been introduced to
speed up DM synthesis, including efficient ODE (Song
et al., 2020a; Lu et al., 2022a;b; Zhang & Chen, 2022;
Dockhorn et al., 2022; Liu et al., 2022; Zheng et al., 2024)
and SDE solvers (Jolicoeur-Martineau et al., 2021; Xu et al.,
2023a), as well as predictor-corrector methods (Song et al.,
2020b; Zhao et al., 2023). They are easy to integrate into
existing models and we use several of these samplers in our
experiments.

Moreover, training-based methods include neural opera-
tors (Zheng et al., 2022b), truncated diffusion (Zheng et al.,
2022a; Lyu et al., 2022), and distillation (Salimans & Ho,
2022; Meng et al., 2022; Song et al., 2023; Luo et al.,
2023; Liu et al., 2023), often employing adversarial objec-
tives (Xiao et al., 2022; Xu et al., 2023b; Sauer et al., 2023a;
Yin et al., 2023; Kim et al., 2023). Although promising and
almost reaching real-time sampling speeds, these methods
often face trade-offs between inference speed, sample diver-

sity, and output quality and require substantial compute for
training. In practical applications, virtually all DMs rely on
training-free samplers and solvers, which makes sampling
schedule optimization a highly relevant task.

Watson et al. (2021) introduced a dynamic programming
method aimed at minimizing the DM’s evidence lower
bound (ELBO) to select the best K-step schedule from a
larger N -step schedule. Although their optimized schedules
improve log likelihoods, they do not yield improvements
in image quality (as measured by FID scores). This is ex-
pected, as optimizing an exact ELBO is not favourable for
image quality (Ho et al., 2020). In follow-up work, Wat-
son et al. (2022) proposed differentiating through sample
quality scores, specifically KID (Binkowski et al., 2018), to
create an optimized sampler, including a trainable sampling
schedule. This method showed improved FID scores com-
pared to the baseline DDIM/DDPM samplers; however, it
is limited to image-based diffusion models and lacks ver-
satility for data types. Our method’s comparison with this
previous work can be seen in App. C.4. In summary, we
found their sampler to be outdated and it is unclear whether
their optimized schedules are adaptable to different solvers.
In contrast, our approach is derived in a principled manner,
works on all data types, is compatible with a wide range of
popular solvers, all while providing similar benefits. We
also demonstrate our method on 2D data as well as video
synthesis, which would not be possible with their technique.
Wang et al. (2023) explore the concept of asynchronous
time inputs, where the time input provided to the denoiser
differs from the actual noise level of the current latent, with
these parameters being trainable and learned. This approach
is orthogonal to ours, as it keeps a fixed “sampling sched-
ule” while learning the “denoiser inputs”, and integrating
it with our optimized schedules could potentially improve
the results even further. Xia et al. (2023) proposes using
a schedule predictor, trained with reinforcement learning,
that takes in the noisy latents and the current timestep as
inputs, and predicts the optimal next step to denoise to.
This results in a sampling schedule that adapts based on the

7
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Figure 8. Side-by-side comparisons
for Stable Video Diffusion (Blattmann
et al., 2023a). We animate a meme
(image-to-video). Using the optimized
schedule results in a more stable video;
note the temporal artifacts of the cup
for the baseline. See supplementary
material for full videos.

sample being generated. However, the authors experiment
exclusively with the first-order DDIM solver and it remains
unclear if their learnt schedule predictor generalizes to more
commonly used higher-order solvers.

5. Experiments
We demonstrate how optimizing the sampling schedule can
significantly boost generation quality using the same number
of forward evaluations (NFEs). We show how upsampling
an optimized schedule with a small number of steps general-
izes to higher NFE regimes as well as how using a schedule
optimized on one solver’s KLUB can generalize to other
solvers. We compare outputs of various SDE/ODE solvers
while using different schedules and show that optimized
schedules lead to improvements almost across the board.
Popular heuristic schedules listed in App. B.2.

We evaluate our method on various datasets including 2D
toy data, widely-used image datasets, and text-to-image
and image-to-video models. As sample quality metric, for
CIFAR10 (Krizhevsky et al., 2009), FFHQ (Karras et al.,
2019), and ImageNet (Deng et al., 2009), we use FID scores
(Heusel et al., 2017). For the text-to-image and text-to-video
models, we show the benefits of our method both qualita-
tively and quantitatively using human evaluation scores.

5.1. Toy Experiments

In Fig. 4, we show the advantages of optimized sampling
schedules using a 2D toy dataset. We used a continuous-
time EDM-based DM to learn the score, which was used
to optimize the schedule. The samples generated with the
optimized schedule more closely resemble the original
distribution and have less outliers. Additional 2D results
in App. C.2.

5.2. CIFAR10, FFHQ, ImageNet

For CIFAR10 and FFHQ experiments, we use pretrained
continuous-time DMs from Karras et al. (2022). For Im-
ageNet, we use the pretrained latent DM from (Rombach
et al., 2021) with classifier free guidance with a scale of 2.0.

We use 3 different classes of stochastic solvers: Stochas-
tic DDIM (Song et al., 2020a), second-order SDE-DPM-

Solver++ (Lu et al., 2022b), and the recently proposed 1st,
2nd, and 3rd order ER-SDE-Solvers (Cui et al., 2023). We
also report FID scores for two popular deterministic solvers,
namely DDIM (Song et al., 2020a) and DPM-Solver++
(2M) (Lu et al., 2022b). For simplicity, no dynamic thresh-
olding is used (Saharia et al., 2022).

In Fig. 7, we compare FIDs of generated images using the
AYS schedule versus the best baseline schedule across four
different solvers, including two stochastic and two determin-
istic ones. The results clearly demonstrate the benefits of
optimizing the schedule. In some cases, e.g. for SDE-DPM-
Solver++(2M), images generated with an optimized 20 step
schedule achieve FIDs comparable to those from a 30-step
default schedule, achieving a 1.5x speedup. Additionally,
the results indicate that as the number of steps increases, the
impact of different schedules diminishes, which is due to
the discretization error becoming small. For more compre-
hensive results, please see Tables 5 and 6 in App. C.3.

In Table 1, we compare the quality of images generated
using the EDM, time-uniform, and AYS schedules on Ima-
geNet. While the FID values occasionally exhibit untypical
behavior, such as deterioration with an increased number of
steps, we suspect this is due to the absence of thresholding,
potentially causing instabilities with higher-order solvers for
small NFE. Nevertheless, in most instances, the optimized
schedule outperforms the other two in all three metrics.

5.3. Text-to-Image

We also used our method to optimize sampling schedules for
popular open-source text-to-image models, including Stable
Diffusion 1.5 (Rombach et al., 2021), SDXL (Podell et al.,
2023), and DeepFloyd-IF (Dee, 2023). For models that rely
on classifier-free guidance, each guidance value essentially
creates a different score model, suggesting that the optimal
schedule should be tailored to each specific value. However,
our experiments show that schedules optimized with default
guidance values are effective across a reasonable range of
values. See App. C.5 for FID vs. CLIP score pareto curves.

The benefits of the optimized schedules are evident in Figs. 5
and 6, which present side-by-side comparisons for SD 1.5
and SDXL, respectively. The results demonstrate that opti-
mized schedules yield superior images in low NFE regimes,
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Table 1. Sample fidelity (FID ↓, sFID ↓, Inception Score ↑) on the ImageNet 256× 256 dataset.

Sampling method Schedule NFE=10 NFE=20 NFE=30

FID ↓ sFID ↓ IS ↑ FID ↓ sFID ↓ IS ↑ FID ↓ sFID ↓ IS ↑

Stochastic
Samplers

Stochastic DDIM
EDM 66.71 126.92 25.04 17.42 49.89 152.74 9.85 26.15 242.81
Time-uniform 24.48 67.96 112.53 9.32 22.65 256.27 8.41 13.67 299.44
AYS 23.13 64.37 118.61 8.96 19.78 264.98 8.29 11.65 304.37

SDE-DPM-Solver++ (2M)
EDM 8.48 21.83 214.49 7.05 8.17 307.41 7.55 6.58 325.78
Time-uniform 8.47 13.36 243.09 7.63 11.02 282.77 7.14 8.59 305.57
AYS 6.11 8.48 281.44 6.79 5.93 322.92 7.28 5.48 330.01

ER-SDE-Solver 1
EDM 17.78 35.25 147.57 6.99 12.70 255.69 6.20 8.51 282.52
Time-uniform 8.79 18.33 222.93 6.25 8.19 280.74 6.09 6.56 293.47
AYS 8.36 15.91 266.44 6.06 7.28 282.06 5.87 5.97 295.40

ER-SDE-Solver 2
EDM 7.36 14.19 231.46 5.58 6.33 290.80 5.85 5.69 299.12
Time-uniform 5.28 6.19 277.57 5.56 5.55 295.69 5.72 5.50 300.25
AYS 5.38 6.24 275.35 5.45 5.19 297.78 5.71 5.16 301.79

ER-SDE-Solver 3
EDM 6.94 13.01 237.70 5.58 6.13 292.75 5.87 5.61 299.33
Time-uniform 5.13 6.08 277.65 5.52 5.57 295.94 5.71 5.48 301.52
AYS 5.28 6.10 275.80 5.47 5.17 298.05 5.73 5.14 302.40

Deterministic
Solvers

DDIM Time-uniform 7.57 14.53 224.50 5.39 7.08 273.33 5.23 5.87 283.27
AYS 6.96 12.21 226.25 5.09 12.21 273.94 4.99 5.53 283.37

DPM-Solver++ (2M) LogSNR 4.82 6.83 252.71 4.81 5.41 287.20 4.98 5.22 288.81
AYS 4.31 6.64 260.32 4.70 5.34 284.17 4.96 5.15 290.65

Figure 9. User study results on
Stable Diffusion 1.5.

sometimes showing significant improvements. See App. C.5
for additional side-by-side comparisons.

To quantitatively evaluate the effectiveness of different
schedules, we conducted a user study with 42 participants
to assess image fidelity and image-text alignment. Each
participant received a text prompt and three images gen-
erated with the EDM, time-uniform, and AYS schedules,
respectively, using the same random seed. The SDE-DPM-
Solver++(2M) (Lu et al., 2022b) was used to generate the
images with 10 steps. The order of the images was ran-
domly permuted to avoid any biases. The participants then
select the superior option according to image-quality and
image-text alignment, or a choice for a three-way tie. The
results, summarized in Fig. 9, reveal a clear preference for
our optimized schedule with respect to both metrics.

5.4. Video Generation Models

With the growing interest in video synthesis and open-source
video diffusion models becoming available, it is important to
look at efficient samplers in this area. However, few efficient
samplers have been evaluated in this context. To address this
gap, we also study the effect of our method in this domain,
using the recent Stable Video Diffusion (SVD) (Blattmann
et al., 2023a). We compare videos generated using DDIM
with the default EDM schedule against our optimized sched-
ule in Fig. 8. We find that the optimized schedule helps
improve temporal color consistency and addresses the issue
of over-saturation in later video frames. We also conduct
a user-study on the generated videos, similar to the image-
generation case. However, due to the continuous nature
of SVD, the EDM schedule is used by default and serves
as the baseline, and we compare it against our optimized
schedule. The default DDIM (Song et al., 2020a) was used
with 10 steps to generate the videos due to the instability of

higher-order solvers. Once again the results, summarized
in Table 2, reveal a clear preference for our optimized sam-
pling schedule. More details about these experiments in
App. C.6.

Table 2. Video generation user study results.
EDM AYS

SVD (Blattmann et al., 2023a) 42% 58%

6. Conclusions and Future Work
In summary, we present a novel framework for the opti-
mization of sampling schedules in diffusion models aimed
at enhancing the quality of generated samples in low NFE
regimes. We successfully applied our method to several
commonly used text-to-image and image-to-video models,
and the schedules have been made publicly available2; see
App. B.2 . Note that our framework is not strictly limited
to diffusion models, and can also be integrated with recent,
closely related generative techniques interpolating between
data and noise, such as flow matching (Lipman et al., 2022;
Esser et al., 2024) and stochastic interpolants (Albergo et al.,
2023; Ma et al., 2024). When considering generative mod-
eling with a Gaussian noise prior, these methods correspond
to re-formulations of the same underlying generation frame-
work and always allow us to form a generative SDE, neces-
sary for the application of AYS. Looking forward, there are
promising avenues for future research, including extending
this framework to label- or text-conditional schedule opti-
mization and applying it to single-step higher-order ODE
solvers, such as Heun or Runge-Kutta methods.

2We also provide a colab notebook which shows how to use
these schedules in practice on our project page.

9

https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/


Align Your Steps: Optimizing Sampling Schedules in Diffusion Models

Impact Statement
Diffusion models have evolved into a powerful and highly
expressive generative modeling framework. Our novel
method fundamentally advances diffusion models and accel-
erates their sampling. Faster synthesis can reduce diffusion
models’ inference compute demands, thereby decreasing
their energy footprint, and it is also important for real-time
applications. However, our approach is broadly applicable
and its societal impact therefore depends on the specific
domain and where and how the accelerated models are used.
In our work, we validate the proposed techniques in the
context of complex image and video synthesis, which have
important content creation applications and can, for instance,
improve the artistic workflow of digital artists and democra-
tize creative expression. However, deep generative models
like diffusion models can also be used to produce deceptive
imagery and videos, as discussed, for instance, in Vaccari
& Chadwick (2020); Nguyen et al. (2021); Mirsky & Lee
(2021). Therefore, they need to be used with an abundance
of caution.
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A. Theoretical Details
A.1. Optimal Schedule for Isotropic Gaussian

In the simple Gaussian setting where p(x) = N (0, c2Id×d), the score after diffusion for time t can be analytically calculated
as follows

∇x log p(x, t) = −
x

c2 + t2
. (16)

Using this score, we can derive what 1 step of forward Euler will be, when going from noise level b to a using the probability
flow ODE (see Eq. (4)) as follows

x̂a = xb + (a− b)× b

b2 + c2
xb = (

ab+ c2

b2 + c2
)xb. (17)

Assuming that xb ∼ N (0, (c2 + b2)Id×d), the distribution obtained from forward Euler will be x̂a ∼ N (0, (ab+c2

b2+c2 )
2 ×

(b2 + c2)Id×d).

This can be easily extended to n steps. Assuming that a = t0 < t1 < · · · < tn = b is the schedule that is used to perform n
steps from noise level b to a. Letting x̂a be the output, we have

x̂a =

n∏
i=1

(
ti−1ti + c2

t2i + c2

)
× xb (18)

and similarly we will have x̂a ∼ N (0,
∏n

i=1(
ti−1ti+c2

t2i+c2
)2 × (b2 + c2)Id×d).

We’re looking to find the optimal values of ti such that the KL-divergence between x̂a and xa is minimized. Since both
distributions are Gaussian, the KL-divergence has a closed form:

DKL(p(xa)∥p(x̂a)) = DKL

(
N (0, (t20 + c2)Id×d), N (0,

n∏
i=1

(
ti−1ti + c2

t2i + c2
)2 × (t2n + c2)Id×d)

)

=
1

2

[
log
|Σ2|
|Σ1|

− d+ tr(Σ−1
2 Σ1) + (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

]
=

1

2

[
d× log

1

f(t0, . . . , tn)
− d+ d× f(t0, . . . , tn) + 0

]
=

d

2
(− log f(t0, . . . , tn) + f(t0, . . . , tn)− 1) (19)

where

f(t0, . . . , tn) =
(t20 + c2)(t21 + c2)2(t22 + c2)2 . . . (t2n−1 + c2)2(t2n + c2)

(t0t1 + c2)2(t1t2 + c2)2 . . . (tn−1tn + c2)2
.

To minimize this expression w.r.t. all ti values, the partial derivatives of the expression must be zero. Formally, for
i ∈ [1, n− 1] we have

∂

∂ti
DKL(p(xa)∥p(x̂a)) =

d

2
× ∂

∂ti
f(t0, . . . , tn)×

(
1− 1

f(t0, . . . , tn)

)
. (20)

Using the Cauchy–Schwarz inequalities we have

(t20 + c2)(t21 + c2) > (t0t1 + c2)2

. . .

(t2n−1 + c2)(t2n + c2) > (tn−1tn + c2)2

⇒ f(t0, . . . , tn) > 1⇒
(
1− 1

f(t0, . . . , tn)

)
> 0, (21)

where the inequalities are strict because of the assumption that all ti are distinct. Therefore the partial derivative of f w.r.t.
all ti must be zero ∂

∂ti
f(t0, . . . , tn) = 0.
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Computing this partial derivative gives

∂

∂ti
f(t0, . . . , tn) = 0⇒ ∂

∂ti

(
(t2i + c2)2

(ti−1ti + c2)2(titi+1 + c2)2

)
= 0

⇒ ∂

∂ti

(
(t2i + c2)

(ti−1ti + c2)(titi+1 + c2)

)
= 0

⇒ (2ti)(ti−1ti + c2)(titi+1 + c2) = (t2i + c2)(2titi−1ti+1 + c2(ti−1 + ti+1))

⇒ t2i (ti−1 + ti+1) + 2m(c2 − ti−1ti+1)− (ti−1 + ti+1)c
2 = 0

⇒ ti =
(ti−1ti+1 − c2) +

√
(t2i−1 + c2)(t2i+1 + c2)

ti−1 + ti+1
. (22)

This equation can be simplified and written as the following:

αi−1 := arctan(ti−1/c), αi+1 := arctan(ti+1/c)⇒ ti = c tan

(
αi−1 + αi+1

2

)
. (23)

Using this result, the values of arctan(ti/c) must be linear in the optimal schedule, which concludes the proof.

A.2. Deriving the KL-Divergence Upper Bound

To derive Theorem 3.2, we borrowed the argument from Section 5.1 of (Chen et al., 2022).

As a reminder, the following two SDEs are considered{
SDE 1 : dxt = f1(x0→t, t)dt+ g(t)dwt

SDE 2 : dxt = f2(x0→t, t)dt+ g(t)dwt

where x0→t represents the entire path from the start (t = 0) to the current time t (this formulation is useful for multi-step
methods that benefit from having access to the history).

We start with some notations. When applying Girsanov’s theorem, it is convenient to think about a single stochastic process
(xt)t∈[0,T ] and to consider different measures over the path space C([0, T ];Rd). A stochastic process can be viewed as a
function from sample space to path space, i.e. x(ω) : Ω→ C([0, T ];Rd).

We define two measures over the path space:

• Qpaths, under which (xt)t∈[0,T ] has the law of SDE 1,

• Ppaths, under which (xt)t∈[0,T ] has the law of SDE 2.

Assume that bt = f2(x0→t,t)−f1(x0→t,t)
g(t) and let Bt be a Brownian motion under Qpaths. Let E :=

exp
(∫ T

0
bsdBs − 1

2

∫ T

0
||bs||2ds

)
. According to (Chen et al., 2022), under mild regularity constraints, E is a random

variable such that EQpaths
[E ] = 1. Therefore, we can define P ′

paths to be a measure that satisfies dP ′
paths = EdQpaths.

According to theorem 8 of (Chen et al., 2022), under P ′
paths the process t→ Bt −

∫ t

0
bsds is a Brownian motion, which we

will call βt. We can rewrite this as
dBt = btdt+ dβt. (24)

Using the definition of Qpaths, we know that

dxt = f1(x0→t, t)dt+ g(t)dBt, x0 ∼ p(x). (25)
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Since P ′
paths is absolutely continuous with respect to Qpaths, i.e. P ′

paths ≪ Qpaths, this equation will also hold under
P ′
paths. Plugging Eq. (24) into the above, we can conclude that under P ′

paths we have

dxt = f1(x0→t, t)dt+ g(t) (btdt+ dβt) (26)
= f2(x0→t, t)dt+ g(t)dβt, x0 ∼ p(x). (27)

Since βt is a Brownian motion under P ′
paths, this becomes the exact same as SDE 2. Therefore P ′

paths = Ppaths. In other
words

dPpaths

dQpaths
= E . (28)

Using this expression in the KL-divergence we have

DKL(Qpaths||Ppaths) = EQpaths
log

dQpaths

dPpaths

= −EQpaths
log E

= EQpaths

(
−
∫ T

0

bsdBs +
1

2

∫ T

0

||bs||2ds

)
(i)
= EQpaths

(
1

2

∫ T

0

||bs||2ds

)

=
1

2
EQpaths

(∫ T

0

||f1(x0→s, s)− f2(x0→s, s)||2

g(s)2
ds

)
,

where (i) is due to the martingale property of Ito integrals.

Since Q,P are marginals of Qpaths and Ppaths at time t = T , by the data processing inequality, the KL-divergence
DKL(Q||P ) is upper-bounded by the KL-divergence DKL(Qpaths||Ppaths) which concludes the proof.

A.3. Early Stopping is a Necessity

In this section, we prove that the schedule that minimizes the KLUB isn’t necessarily going to minimize the KL-divergence
too. We will do this by once again considering the simple Gaussian case where p(x) ∼ N (0, c2Id×d).

The proof is by contradiction. Let’s assume that the schedule minimizing the KLUB must also always minimize the KL
as well. We’ll consider the family of Extended Reverse-Time SDEs (ERSDEs introduced in Cui et al. (2023)) that have
h(t) = λ×

√
2t for some constant λ. The SDE formulation for these will be

dxt = −(λ2 + 1)t∇x log p(xt, t) dt+ λ
√
2t dwt

⇒ dxt = (λ2 + 1)

(
xt − xθ(xt, t)

t

)
dt+ λ

√
2t dwt

⇒ dxt = (λ2 + 1)
xt

t
− (λ2 + 1)

(
xθ(xt, t)

t

)
dt+ λ

√
2t dwt,

and Cui et al. (2023) have shown that these SDEs share the same marginals as the original reverse-time SDE and probability
flow ODE.

Assuming we use a first-order approximation for xθ as our solver, the KLUB of this solver will be

KLUB = E xt∼pt
xtnext∼ptnext|t

∫ tmax

tmin

||(λ2 + 1)/t× xθ(xt, t)− (λ2 + 1)/t× xθ(xtnext
, tnext)||2

λ2 × 2t
dt (29)

=
(λ2 + 1)2

2λ2

∫ tmax

tmin

1

t3
E xt∼pt
xtnext∼ptnext|t

||xθ(xt, t)− xθ(xtnext
, tnext)||2dt, (30)
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where tnext is the smallest value in the sampling schedule larger than t. Since all the terms containing λ only appear as a
constant outside the integral, the schedule that minimizes the KLUB is the same for all λ > 0. As such, using our initial
assumption, that schedule is KL-minimizing for all these solvers as well.

Since every term in the KLUB can be found analytically for this Gaussian example, we can derive exactly what the
KLUB-optimal schedule will be. To do this, we start by noting that

− x

t2 + c2
= ∇x log p(x, t) =

xθ(x, t)− x

t2

⇒ xθ(x, t) =
c2

t2 + c2
x

We can use this to calculate the expectations inside the integral of Eq. (30) as follows

E xt∼pt
xtnext∼ptnext|t

||xθ(xt, t)− xθ(xtnext
, tnext)||2 = E xt∼N (0,(t2+c2)I)

xtnext∼N (xt,
√

t2next−t2I)

||xθ(xt, t)− xθ(xtnext
, tnext)||2

= Ext∼N (0,(t2+c2)I)
ϵ∼N (0,I)

||xθ(xt, t)− xθ(xt +
√

t2next − t2ϵ, tnext)||2

= Ext∼N (0,(t2+c2)I)
ϵ∼N (0,I)

∥∥∥∥ c2

t2 + c2
xt −

c2

t2next + c2
(xt +

√
t2next − t2ϵ)

∥∥∥∥2

= c4Ext∼N(0,(t2+c2)I)
ϵ∼N (0,I)

∥∥∥∥∥
(

1

t2 + c2
− 1

t2next + c2

)
xt −

√
t2next − t2

t2next + c2
ϵ

∥∥∥∥∥
2

= c4 × d×

[(
1

t2 + c2
− 1

t2next + c2

)2

(t2 + c2) +
t2next − t2

(t2next + c2)2

]

= c4 × d×
(

1

t2 + c2
− 1

t2next + c2

)
,

where we used the fact that xt, ϵ are independent random variables, and ϵ has zero mean.

Assuming the sampling schedule is a = t0 < t1 < · · · < tn = b and plugging this into Eq. (30) we have

KLUB ∝
∫ tmax

tmin

1

t3

(
1

t2 + c2
− 1

t2next + c2

)
dt

∝
n∑

i=1

[
− c2t2i
c2 + t2i

(
1

t2i
− 1

t2i−1

)
+ log

(
t2i + c2

t2i−1 + c2

)
− log

(
t2i
t2i−1

)]

= log

(
b2 + c2

a2 + c2

)
− log

b2

a2
+ c2

n∑
i=1

t2i − t2i−1

(c2 + t2i )× t2i−1

.

To derive the optimal ti values, the partial derivative of the expression above w.r.t. each ti must be zero. Writing the partial
derivative w.r.t. ti and setting it to zero and simplifying yields

c2

t2i
=

√
(t2i−1 + c2)(t2i+1 + c2)− ti−1ti+1

ti−1ti+1
. (31)

Now, we want to figure out what these solvers will look like when λ→ 0. Deriving what a single step of the solver from
noise level b to a will be gives the following update rule

xa =
(a
b

)λ2+1

xb + xθ(xb, b)
(
1− (

a

b
)λ

2+1
)
+ a

√
1− (

a

b
)2λ2 zb, (32)

where zb ∼ N (0, I). In the limit when λ→ 0, this reduces to one step of forward Euler on the probability flow ODE. Using
our assumption that the KLUB-optimal schedule is KL-optimal, when λ→ 0 the same sampling schedule is KL-optimal
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for all λ, and the update rule gets closer and closer to the forward Euler update rule. As such, this schedule must also be
KL-optimal for forward Euler as well.

At this point, we have explicit expression for both the KLUB optimal schedule and forward Eulers’s KL-optimal schedules
from Eqs. (22) and (32).

KL optimal schedule : ti =
(ti−1ti+1 − c2) +

√
(t2i−1 + c2)(t2i+1 + c2)

ti−1 + ti+1

KLUB optimal schedule : ti = c×
√√√√ ti−1ti+1√

(t2i−1 + c2)(t2i+1 + c2)− ti−1ti+1

A simple comparison between these two equations makes it clear they are not the same, which is a contradiction, disproving
our initial assumption.

Therefore, using the KLUB objective to optimize the schedule does not translate directly into minimizing the mismatch
between final output distributions. This is expected, given that the objective measures the divergence in the path distributions
of the two SDEs, which is an upper bound for the mismatch between output distributions. As a result, optimizing the
schedule with this objective focuses on aligning the trajectories of the two SDEs, rather than their end states.

Empirically, we’ve found that the heuristic schedules commonly in use are extremely sub-optimal, affecting both output
and path distributions. Optimizing these schedules using the KLUB objective aligns the solver’s paths with the true paths
of the exact SDE. Initially, this alignment process also brings the output distributions closer together. However, after a
certain point, the process begins to favor the alignment of intermediate noised distributions at the expense of the final output
distributions, leading to more closely aligned paths. Therefore, early stopping must be used to prevent this from happening.

A.4. Exact Error Analysis

In Sec. 3.2 we assumed the learnt model is very close to the ideal denoiser, which let us approximate P true paths with the
path distribution from the forward noising process. In this section, we provide a detailed analysis without that assumption,
deriving an accurate KLUB that includes the model’s approximation error. We start with the following assumption:
Assumption A.1 (score estimation error). Letting D∗ be the ideal denoiser, for all t ∈ [tmin, tmax] the score estimation
error is bounded:

Ext∼p′(x,t)

∥∥∥∥D∗
(

xt

s(t)
, σ(t)

)
−Dθ

(
xt

s(t)
, σ(t)

)∥∥∥∥2 ≤ ϵ2.

Using this, we apply Theorem 3.2 to calculate the KLUB between the true reverse SDE, which contains the ideal denoiser
D∗, and the discretized linear SDE. Let P exact

ti→ti−1
represent the path distributions of the exact revere-time SDE, which

matches the paths of the forward noising process. Then we have:

DKL(P
exact
ti→ti−1

∥P disc
ti→ti−1

) ≤ 2× EP exact
ti→ti−1

∫ ti

ti−1

s(t)2σ̇(t)

σ(t)3

∥∥∥∥D∗
(

xt

s(t)
, σ(t)

)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥∥2 dt
= 2×

∫ ti

ti−1

s(t)2σ̇(t)

σ(t)3
× E xt∼p′(x,t)

xti
∼p′(xti

|xt)

(∥∥∥∥D∗
(

xt

s(t)
, σ(t)

)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥∥2
)
dt

≤ 4×
∫ ti
ti−1

s(t)2σ̇(t)
σ(t)3 × E xt∼p′(x,t)

xti
∼p′(xti

|xt)

(∥∥∥D∗
(

xt

s(t) , σ(t)
)
−Dθ

(
xt

s(t) , σ(t)
)∥∥∥2 + ∥∥∥Dθ

(
xt

s(t) , σ(t)
)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥2) dt

≤ 4×
∫ ti

ti−1

s(t)2σ̇(t)

σ(t)3
× E xt∼p′(x,t)

xti
∼p′(xti

|xt)

(
ϵ2 +

∥∥∥∥Dθ

(
xt

s(t)
, σ(t)

)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥∥2
)
dt

= O(ϵ2)︸ ︷︷ ︸
Approximation error

+4×
∫ ti

ti−1

s(t)2σ̇(t)

σ(t)3
× E xt∼p′(x,t)

xti
∼p′(xti

|xt)

(∥∥∥∥Dθ

(
xt

s(t)
, σ(t)

)
−Dθ

(
xti

s(ti)
, σ(ti)

)∥∥∥∥2
)
dt︸ ︷︷ ︸

Discretization error

.
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This means in the exact case, the KLUB can be broken into 2 parts, namely an approximation error and a discretization error.
The approximation error relies solely on the model, and can only be improved by training the model further. Therefore, we
can ignore it and focus on minimizing the discretization error, which leads to the KLUB objective derived in Sec. 3.2.

B. Experiment Details
B.1. Practical Implementation Details

As mentioned in Sec. 3.3, in practice to optimize a schedule for a given model and dataset, first a 10-step schedule
(t0, t1, . . . , t10) is initialized using one of the baseline hand-crafted schedules. For continuous-time models, we initialize the
schedule according to the EDM scheme, and for discrete-time models, time-uniform initialization is used.

Afterwards, the schedule is optimized in a hierarchical manner. This is done by first optimizing all the 9 intermediate points
(t1, t2, . . . , t9) of the schedule iteratively and using an early-stopping mechanism to avoid over-fitting. Perceptual image
quality metrics or even manual inspection can be used as proxies to determine the stopping point of the optimization. Next,
for 2 rounds, a subdivision operation is done that doubles the number of steps of the schedule, and further fine-tuning is
performed on the newly added intermediate points, keeping the initial previous-round points fixed. These fine-tuning stages
do not need early stopping due to the fixed “shape” of the schedule from the first-round optimization. The main reason
behind using hierarchical optimization is to speed up training which is due to two factors. First, when optimizing a specific
point ti of a schedule, the optimized value will always remain inside [ti−1, ti+1]. As a result, if instead of hierarchical
optimization, we optimized a 40-step schedule directly, the changes of each point would be smaller (due to the tighter
[ti−1, ti+1] intervals), resulting in more iterations to converge. Secondly, after each subdivision, only half of the points of a
schedule are being optimized and these points are non-adjacent, making each point’s optimization independent of the others.
This allows the entire process to be parallelized. Furthermore, since during the later stages each point being optimized lies
in a fixed interval (its endpoints are frozen), a very small number of iterations is required for it to converge.

To optimize the i-th element ti, a number of candidate values are chosen in a neighbourhood around ti, and for each the
KLUB value is estimated with Monte-Carlo integration. Finally, ti is set to be the candidate with the minimum KLUB
value. In practice, we select 11 candidates with the current ti value being one of them to ensure the KLUB is always
decreasing. A pseudocode for this is given in Algorithm 1. We also experimented with having ti being learnable parameters
that are differentially optimized with respect to the KLUB loss term. We tried two different scenarios where ti’s are all
optimized simultaneously or iteratively. In our experiments, we found this approach to be extremely unstable, requiring
heavy fine-tuning of hyperparameters as well as a large effective batch size to smooth the gradient estimates. The large
batch size also resulted in very slow optimization. As a result, we opted for the zeroth-order optimization approach, which
does not rely on noisy gradient estimates. This optimization is relatively low-dimensional, consisting of only a small set of
time steps that need to be adjusted, and zeroth-order optimization can work well in such settings.
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Figure 10. The figure illustrates the integration values of the KLUB in a Gaussian data setting within the interval (0.1, 0.5) assuming a
schedule of (ti−1, ti, ti+1) = (0.1, 0.2, 0.5), highlighting a large range of values and a discontinuity at 0.2.

To perform the Monte-Carlo integration, as discussed in Sec. 3.3, importance sampling is used. As mentioned previously, this
is due to the integration values of the KLUB in Eq. (10) varying greatly in size. For example, we visualize these integration
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values for t ∈ [ti−1, ti+1] where (ti−1, ti, ti+1) = (0.1, 0.2, 0.5) in Fig. 10. The discontinuity at t = 0.2 highlights the
point where the integrand values change from ( 1

t2+c2 −
1

0.22+c2 ) for t ∈ (0.1, 0.2] to ( 1
t2+c2 −

1
0.52+c2 ) for t ∈ (0.2, 0.5].

As can be seen, in this example, the values range from [0− 1000] spanning roughly 3 orders of magnitude. A pseudocode is
given in Algorithm 2.

In practice, we found using a subset of 8192 data samples with the time-based importance sampling to work well, and
this configuration is used in all our experiments. Although the subset of samples used for estimating the KLUB isn’t
comprehensive, this is large enough to capture the essence of the data set and the optimized schedules generalize to the
entire dataset. One interpretation of this could be that hand-designed schedules are so far from optimal that even optimizing
them with respect to a small set of samples from the distribution gives substantial improvements. Moreover, note that we
are optimizing a sampling schedule consisting of only a handful of timesteps. This represents a rather low-dimensional
optimization problem, which may not require a large training datasets (in contrast, for instance, to the very high-dimensional
optimization problem of training a large neural network from data).

Finally, the optimization time needed for different models depends heavily on how resource-heavy the model is because
of the Monte-Carlo integration. However, in practice, each optimization only required at most 300 iterations. In our
experiments, we used RTX6000 GPUs to carry out the optimization. The FFHQ and CIFAR10 experiments required 4 GPUs
for 1.5 hours. The ImageNet 256x256 and text-to-image experiments were done with 8 GPUs and took roughly 3-4 hours.
Lastly, the Stable Video Diffusion experiments were done with 16 GPUs and took 6 hours. It is worth noting that since the
majority of training time was spent on Monte-Carlo integration and forward passing through the score network, increasing
the number of GPUs linearly would almost linearly decrease the amount of time spent.

Algorithm 1 KLUB optimization with σ(t) = t and s(t) = 1.

1: Input: denoiser Dθ(x, σ), schedule ti∈{0,1,...,n}
2: repeat
3: Initialize noChange = True
4: for i = 1 to n− 1 do
5: candidates[0, . . . , r − 1]← Neighbourhood around ti
6: for j = 0 to r − 1 do
7: KLUB[j]← EstimateKLUB(Dθ, {ti−1, candidatesj , ti+1})
8: end for
9: minIdx← argminKLUB[0, . . . , r − 1]

10: if candidateminIdx ̸= ti then
11: ti ← candidateminIdx
12: noChange← False
13: end if
14: end for
15: until noChange

Algorithm 2 Monte Carlo estimation of KLUB with σ(t) = t and s(t) = 1.

1: Input: denoiser Dθ(x, σ), interval points tmin, tmid, tmax, monte carlo samples n
2: for i = 1 to n do
3: sample x0 ∼ pdata(x)
4: t← ImportanceSample(π, tmin, tmid, tmax)
5: tupper ← (t < tmid) ? tmid : tmax

6: xt ← x0 + t×N (0, I)

7: xtupper
← xt +

√
t2upper − t2 ×N (0, I)

8: KLUB[i]← ||Dθ(xt, t)−Dθ(xtupper
, tupper)||2/( 1

t2+c2 −
1

t2upper+c2 )

9: end for
10: tupper ← (t < tmid) ? tmid :
11: tmax

12: return mean(KLUB[0, . . . , n− 1])
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B.2. Popular Sampling Schedules

Currently, most diffusion models use one of a handful of different hand-designed sampling schedules at inference. Below
we go over some of the most popular ones.

EDM Schedule: This schedule first introduced by (Karras et al., 2022) chooses the sampling schedule as follows:

σ(ti) = (σ
1
ρ

min + (σ
1
ρ
max − σ

1
ρ

min)×
i

n
)ρ,

where ρ = 7 is usually used.

LogSNR schedule: This schedule is a special case of EDM’s schedule where ρ = 1. Specifically:

σ(ti) = (σmin + (σmax − σmin)×
i

n
).

Time-uniform schedule: This schedule is mainly used in discrete models. In these cases, the sampling schedule is simply:

ti = ϵ+
i

n
(1− ϵ).

In this case, the schedule will mimic the noise schedule with which the model was trained.

B.3. Optimized Schedules for Large Scale Models

We provide our optimized schedules for Stable Diffusion 1.5, SDXL, DeepFloyd-IF, and Stable Video Diffusion in Table 3.
The values in the table are the noise levels for the different steps i.e. σ(ti).

Table 3. Optimized schedules. The values represent the noise levels of the schedule σ(tn), σ(tn−1), . . . , σ(t0).

Optimized Schedules

Stable Diffusion 1.5 (Rombach et al., 2021) [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
SDXL (Podell et al., 2023) [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
DeepFloyd-IF / Stage 1 (Dee, 2023) [160.41, 8.081, 3.315, 1.885, 1.207, 0.785, 0.553, 0.293, 0.186, 0.030, 0.006]
Stable Video Diffusion (Blattmann et al., 2023a) [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]

C. Additional Results
C.1. Gaussian Data Extras
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Figure 11. Comparing the output distributions of using various schedules for different initial c values in the Gaussian setting.

C.2. Extra 2D Experiments

In this section, we provide extra experiments for various 2D toy data. First we consider a set of datasets for which we know
the ground truth score analytically, i.e. a mixture of gaussians. We consider 3 different variants of mixture of gaussians and
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show samples generated with various samplers using the EDM, LogSNR, and optimized schedules in Figs. 12 to 14. We
also report negative log-likelihoods (NLL) for these samples in Table 4.

We further consider two more complex 2D distributions, and use a continuous-time EDM-based diffusion model to learn the
score. For these datasets, we train the score model for 100,000 steps with a batch size of 8092. Figs. 15 and 16 showcase
samples drawn from these models using different schedules.

For these 2D toy data experiments, the colors in Figs. 12 to 16 denote the local density of the samples where warmer
colors correspond to higher density regions. The density is obtained with a 2D histogram with 50 bins on each axis. All
experiments are done in the unconditional generation setting and do not involve any class labels.

(a). Ground truth (b). EDM (c). LogSNR (d). AYS

Figure 12. Modeling a 2D toy distribution: (a) Ground truth samples; (b), (c), and (d) are samples generated using 10 steps of SDE-
DPM-Solver++(2M) with EDM, LogSNR, and AYS schedules, respectively. Each image consists of 100,000 sampled points.

(a). Ground truth (b). EDM (c). LogSNR (d). AYS

Figure 13. Modeling a 2D toy distribution: (a) Ground truth samples; (b), (c), and (d) are samples generated using 7 steps of DDIM with
EDM, LogSNR, and AYS schedules, respectively. Each image consists of 100,000 sampled points.
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(a). Ground truth (b). EDM (c). LogSNR (d). AYS

Figure 14. Modeling a 2D toy distribution: (a) Ground truth samples; (b), (c), and (d) are samples generated using 6 steps of Stochastic-
DDIM with EDM, LogSNR, and AYS schedules, respectively. Each image consists of 100,000 sampled points.

(a). Ground truth (b). EDM (c). LogSNR (d). AYS

Figure 15. Modeling a 2D toy distribution: (a) Ground truth samples; (b), (c), and (d) are samples generated using 6 steps of SDE-DPM-
Solver++(2M) with EDM, LogSNR, and AYS schedules, respectively. Each image consists of 100,000 sampled points.

(a). Ground truth (b). EDM (c). LogSNR (d). AYS

Figure 16. Modeling a 2D toy distribution: (a) Ground truth samples; (b), (c), and (d) are samples generated using 8 steps of SDE-DPM-
Solver++(2M) with EDM, LogSNR, and AYS schedules, respectively. Each image consists of 100,000 sampled points.

C.3. CIFAR10, FFHQ, and ImageNet Details

For these experiments, we generate 50,000 images to perform the evaluations. For the continuous-time models, i.e. the
CIFAR10 and FFHQ experiments, we use the FID calculation script and reference statistics from (Karras et al., 2022). For
the ImageNet results, we use the evaluation script from (Dhariwal & Nichol, 2021).

We provide more comprehensive results for CIFAR10 and FFHQ in Tables 5 and 6 respectively. As can be seen from the
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Table 4. Performance (measures in negative log likelihood) for mixture of gaussian data and varying solvers, schedules, and number of
steps.

Dataset Solver Schedule NFE=6 NFE=8 NFE=10

Gaussian mixture 8x8 SDE-DPM-Solver++(2M)
EDM 9.018 4.029 1.522

LogSNR 6.250 1.834 0.071
AYS -0.143 -0.505 -0.574

Gaussian mixture 8x4 DDIM
EDM 1.536 -0.144 -1.115

LogSNR 1.446 -0.288 -1.091
AYS -1.999 -2.260 -2.222

Gaussian mixture 6x6 Stochastic-DDIM
EDM 1.166 -0.606 -0.996

LogSNR -0.012 -0.978 -1.231
AYS -1.152 -1.376 -1.554

results, the schedules optimized using the KLUB derived for Stochastic-DDIM generalize well to all stochastic solvers. This
trend continues to ODE solvers as well, and KLUB-optimized schedules improve results on the first-order DDIM and the
multi-step second-order DPM-Solver++(2M) as well.

Table 5. Sample fidelity measured by FID ↓ on the CIFAR10 32× 32 unconditional dataset.
Sampling method Schedule NFE=10 NFE=20 NFE=30 NFE=50

Stochastic Sampling

Stochastic DDIM EDM 51.45 23.67 14.19 7.75
AYS 33.52 14.16 8.78 5.45

SDE-DPM-Solver++ (2M) EDM 15.32 4.64 3.15 2.64
AYS 8.16 3.23 2.55 2.40

ER-SDE-Solver 1 EDM 17.97 6.70 4.31 3.02
AYS 12.93 5.09 3.50 2.66

ER-SDE-Solver 2 EDM 9.92 3.33 2.48 2.16
AYS 7.77 3.14 2.40 2.14

ER-SDE-Solver 3 EDM 9.47 3.15 2.39 2.13
AYS 7.55 3.07 2.36 2.13

Deterministic Solvers
DDIM LogSNR 16.44 6.01 3.97 2.82

AYS 10.73 4.67 3.30 2.56

DPM-Solver++ (2M) LogSNR 5.07 2.37 2.12 2.04
AYS 2.98 2.10 2.02 2.01
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Table 6. Sample fidelity measured by FID ↓ on the FFHQ 64× 64 dataset.
Sampling method Schedule NFE=10 NFE=20 NFE=30 NFE=50

Stochastic Sampling

Stochastic DDIM EDM 53.83 31.97 22.14 13.42
AYS 42.03 22.73 14.90 9.135

SDE-DPM-Solver++ (2M) EDM 23.04 9.67 5.96 3.85
AYS 14.79 5.65 3.97 3.13

ER-SDE-Solver 1 EDM 21.25 9.29 6.24 4.28
AYS 15.27 7.09 4.88 3.68

ER-SDE-Solver 2 EDM 12.51 4.49 3.23 2.68
AYS 9.04 4.04 3.03 2.68

ER-SDE-Solver 3 EDM 11.97 4.18 3.06 2.61
AYS 8.71 3.92 2.97 2.65

Deterministic Solvers
DDIM EDM 18.37 8.19 5.60 3.96

AYS 12.83 6.05 4.41 3.38

DPM-Solver++ (2M) LogSNR 7.07 3.41 2.87 2.62
AYS 5.43 3.29 2.87 2.62

Figure 17. EDM Schedule Figure 18. AYS Schedule

Figure 19. Side-by-side comparisons for CIFAR10 with EDM and AYS schedules. Samples are generated using 10 steps with the
SDE-DPM-Solver++(2M) solver.

C.4. Comparison with Watson et al.

In this section, we compare our method against the one proposed by (Watson et al., 2022) on the unconditional ImageNet
64 × 64 dataset. Their approach works by formulating the weights of a multi-step solver and the sampling schedule as
trainable parameters, and optimizing them by differentiating through Kernel Inception Distance (KID) as a perceptual loss.
Note that this is only applicable to image diffusion models, and cannot be generally used for other data types. Furthermore,
it is not clear how their method affects the diversity of samples, due to them directly optimizing the denoising variance to
only increase the image quality.

The authors tested their method against DDIM with standard schedules (time-uniform and time-quadratic). For their
experiments, they trained a DDPM following (Nichol & Dhariwal, 2021) with their Lhybrid objective for 3M steps. In
contrast, we use the publicly available checkpoint, which was originally trained for 1.5M steps. For evaluation, the evaluation
script from (Dhariwal & Nichol, 2021) is used.
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Figure 20. EDM Schedule Figure 21. AYS Schedule

Figure 22. Side-by-side comparisons for FFHQ with EDM and AYS schedules.Samples are generated using 10 steps with the DPM-
Solver++(2M) solver.

Table 7 summarizes the results. The numbers show that, despite using a better diffusion model trained for twice as many
steps and optimizing the sampler itself, our optimized schedules alone outperform theirs in extremely low NFE regimes.
However, as NFE increases, the influence of the schedules diminishes, causing the better diffusion model to gain the upper
hand. Nevertheless, when comparing the improvements over the baseline time-uniform schedule, our performance, in terms
of FID reduction, is on par with theirs.

Table 7. Image quality measured by FID ↓ / Inception Score ↑ on the unconditional ImageNet 64× 64 dataset.

Model Sampler Schedule NFE=5 NFE=10 NFE=15 NFE=20 NFE=25

3M steps
DDIM Time-uniform 135.4 / 5.898 40.70 / 12.225 28.54 / 13.99 24.225 / 14.75 22.13 / 15.16
DDIM Time-quadratic 409.1 / 1.380 148.6 / 5.533 67.65 / 9.842 45.60 / 11.99 36.11 / 13.225
GGDM +PRED Optimized Schedule 55.14 / 12.90 37.32 / 14.76 24.69 / 17.225 20.69 /17.92 18.40 / 18.12

1.5M steps DDIM Time-uniform 145.01 / 5.45 42.51 / 11.25 30.32 / 12.89 26.60 / 13.57 24.77 / 14.00
DDIM AYS 50.38 / 11.08 29.23 / 13.64 24.21 / 14.24 22.26 / 14.62 21.42 / 14.80

C.5. Text-to-Image Extras

For these models that rely heavily on classifier-free guidance, each guidance value changes the models outputs, and can be
seen as its own model. As such, it would be ideal to optimize the schedule for each guidance value. However, to keep things
simple, we opt to only optimize the schedule using a default guidance value, and use the same schedule for all guidance
weights in these results.

We made use of the COCO (Lin et al., 2014) dataset to optimize the schedule for the text-to-image models. We used a subset
of 10,000 images for this task, and excluded these images during FID evaluation. Figs. 23 and 24 represent FID vs. CLIP
score pareto curves for Stable Diffusion 1.5 and SDXL respectively.

Interestingly, our optimized SD 1.5 schedule also generalizes and improves images for several personalized text-to-image
models based on Stable Diffusion 1.4/1.5. Figs. 25 to 27 show some side-by-side comparisons for these models. Please visit
our project page for additional qualitative examples.

To quantitatively evaluate the effectiveness of different schedules we performed a user study. See results in Fig. 9. This
study involved 42 participants and 600 distinct prompts. For each prompt, three images were generated using EDM, Time
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Uniform, and AYS schedules using SDE-DPM-Solver++(2M) with 10 steps. Participants were asked to choose the best
image in terms of fidelity and text alignment. The results, shown in Fig. 9, reveal a clear preference for the optimized
schedule.
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Figure 23. Plotting FID vs. CLIP scores for different classifier-free guidance weights for Stable Diffusion 1.5 using SDE-DPM-
Solver++(2M) with 10 and 20 steps.
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Figure 24. Plotting FID vs. CLIP scores for different classifier-free guidance weights for SDXL using SDE-DPM-Solver++(2M) with 20
steps. The image on the right is a zoomed in version of the left without the left most point corresponding to no guidance.
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Figure 25. SD 1.5 + 10 steps + SDE-DPM-Solver++(2M)

Figure 26. DreamShaper + SDE-DPM-Solver++(2M)

C.6. Stable Video Diffusion Details

For the video diffusion experiments, we used the validation subset of the WebVid10M dataset (Bain et al., 2021) to optimize
the schedule. This subset contains 5,000 videos from the internet and we downsampled each to a resolution of 320× 576.
Given the unclear nature as to how other inputs to the model besides the first frame were obtained during the training of
SVD, such as motion bucket id and noise augmentation strength, we simply set them to default values in our experiments.
Note that this is extremely sub-optimal, as the model was not trained in this way, however it still produced visible benefits in
our experiments.

We also do a user-study on the generated videos. For this, we asked ChatGPT for 150 visually interesting prompts.
Afterwards, we used DALLE3 and SDXL to generate 150 images from these prompts. These images will act as the first
frames of our generated videos. For each image and schedule, we generated 4 videos, resulting in 1200 videos, 600 using
EDM and 600 using the optimized schedule. These were shown to users and asked to identify the best one. Results are
summarized in Table 2.
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Figure 27. RealisticVision 5.1 + 10 steps + SDE-DPM-Solver++(2M)

Figure 28. Side-by-side comparisons for Stable Video Diffusion (Blattmann et al., 2023a). Using the optimized schedule results in a more
stable video; note the temporal color distortions of the background for the baseline.
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