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Abstract
Attention is at the heart of the popular Trans-
former architecture, yet suffers from quadratic
time and memory complexity. In a recent sig-
nificant development, FlashAttention shows that
the I/O complexity of attention is the true bottle-
neck in scaling Transformers. Given two levels
of memory hierarchy, a fast cache (e.g. GPU on-
chip SRAM) where computation happens and a
slow memory (e.g. GPU high-bandwidth mem-
ory) where the data resides, the I/O complexity
measures the number of accesses to the slow mem-
ory. FlashAttention is an I/O-aware algorithm
for self-attention that requires N2d2

M I/O opera-
tions where N is the dimension of the attention
matrix, d is the head-dimension and M is the
size of cache. Naturally, to further reduce the
computational costs of Attention, the authors ask
the question: is FlashAttention’s I/O complexity
optimal for every value of M? We resolve the
above question in its full generality by showing
an I/O complexity lower bound that matches the
upper bound provided by FlashAttention for any
values of M ≥ d2 within any constant factors.
Moreover, our lower bounds do not rely on using
combinatorial matrix multiplication for comput-
ing the attention matrix: even if one uses fast
matrix multiplication, the above I/O complexity
bounds cannot be improved. Further, we give a
better algorithm with lower I/O complexity for
M < d2, and show that it is optimal for com-
binatorial algorithms. We do so by introducing
a new communication complexity protocol for
matrix compression, and connecting communica-
tion complexity to I/O complexity. We believe
this connection could be of independent interest
and will find more applications in proving I/O
complexity lower bounds in future.
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1. Introduction
Transformer models (Vaswani et al., 2017) have emerged
as the architecture of choice for a variety of applications
including natural language processing and computer vi-
sion. The self-attention module at the heart of the Trans-
former architecture requires quadratic time and memory
complexity. Thus despite their popularity, Transformers are
slow and memory-hungry. In a seminal paper, (Dao et al.,
2022) proposes FlashAttention, an IO-aware algorithm for
self-attention. Given two levels of memory hierarchy, a
fast cache (e.g. GPU on-chip SRAM) where computation
happens and a slow memory (e.g. GPU high-bandwidth
memory) where the data resides, the I/O complexity mea-
sures the number of accesses to the slow memory. (Dao
et al., 2022) argues that I/O complexity is indeed the true
bottleneck in achieving wall-clock speed up, and provide
an algorithm that achieves an I/O complexity of O(N

2d2

M )
where N is the dimension of the attention matrix, d is the
head-dimension and M is the cache size. In self-attention,
three input matrices Q,K, V ∈ RN×d are used to compute
softmax(QKT )V where A = exp(QKT ) is the attention
matrix. For M = Θ(Nd), the above I/O complexity bound
becomes Nd which matches the trivial lower bound Ω(Nd),
as the algorithm must at least read the input matrices of
size Θ(Nd) into cache and write the output matrix of size
Θ(Nd) to memory. This leaves a tantalizing open question
whether FlashAttention I/O complexity is optimal for any
values of M (specifically M = o(Nd)).

We resolve this question in affirmative for any value of M
as long as M ≥ d2. Moreover, for M < d2, we give a better
algorithm than FlashAttention and also show the bound is
optimal among algorithms using combinatorial matrix mul-
tiplication. Formally, we give an algorithm (Algorithm 1)
computing Attention with I/O complexity O

(
N2d√
M

)
. Note

that whenever M < d2, N2d√
M
≤ N2d2

M and both algorithms
have I/O complexity N2 when M = d2. Our algorithm
matches the optimal I/O complexity of the standard matrix
multiplication algorithm on N × d and d × N matrices
(Hong & Kung, 1981). This is no accident, and in fact we
prove that for M ≤ d2, the I/O complexity of self-attention
is at least as high as the I/O complexity of computing ma-
trix multiplication of two N × d and d×N matrices. For
M ≥ d2 which is also the more practical regime, our proof
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of optimality of FlashAttention brings in several new ideas.

First, we show that FlashAttention has optimal I/O com-
plexity among algorithms using combinatorial matrix mul-
tiplication by utilizing the famous red-blue pebble game
from the early eighties (Hong & Kung, 1981). However, it
may still be possible to improve FlashAttention by utilizing
fast matrix multiplication (Gall & Urrutia, 2018; Williams
et al., 2024) to obtain lower I/O complexity. We rule out any
such possibilities. We prove a general lower bound against
all such algorithms. We introduce a new matrix compres-
sion problem, and show that it has a high communication
complexity. Next, we establish a connection between the
communication complexity of a matrix compression pro-
tocol with the I/O complexity of attention. We show even
when the input matrix entries are restricted to binary, the
lower bound holds within polylogarithmic factors by uti-
lizing Binary BCH codes (Hocquenghem, 1959; Bose &
Ray-Chaudhuri, 1960) from coding theory to prove lower
bounds against binary matrix compression.

1.1. Related Work

Many papers have studied attention, a key bottleneck of
the transformer architecture (Vaswani et al., 2017) which
has become the predominant architecture in applications
such as natural language processing. Many approximate no-
tions have been studied to reduce its compute and memory
constraints (Brown et al., 2020; Katharopoulos et al., 2020;
Kitaev et al., 2020; Zaheer et al., 2020; Chen et al., 2021;
Choromanski et al., 2021; Alman & Song, 2024; Han et al.,
2023). Algorithms such as FlashAttention have made sig-
nificant practical gains by designing I/O-aware algorithms
(Dao et al., 2022; Dao, 2023).

The role of learning under bounded space constraints has
been studied primarily in the context of bounded memory,
with applications including Online Learning (Srinivas et al.,
2022; Peng & Rubinstein, 2023; Peng & Zhang, 2023),
continual learning (Chen et al., 2022), convex optimization
(Woodworth & Srebro, 2019; Marsden et al., 2022; Chen
& Peng, 2023), and others (Raz, 2019; Sharan et al., 2019;
Gonen et al., 2020). In this work, we instead consider
learning in the context of a two-level memory hierarchy
with a bounded cache. While the algorithm has unlimited
memory, it can only access a small portion of this memory at
any given time, and is charged for every access to memory.
We believe that the task of minimizing I/O complexity is
both theoretically interesting and practically significant, as
I/O operations often form a key computational bottleneck
in practice.

There is a long-line of work on I/O complexity (Hong &
Kung, 1981; Aggarwal & Vitter, 1988; Pagh & Silvestri,
2014). Within this body of work, many papers have fo-
cused on the problem of matrix multiplication (Ballard et al.,

2012b;a; Pagh & Stöckel, 2014; Scott et al., 2015; Bilardi &
Stefani, 2017). Communication complexity plays an impor-
tant role in establishing lower bounds for streaming and cell
probe models (Verbin & Zhang, 2013; Hu et al., 2015), and
has been used to establish I/O complexity bound for data
structure problems (Eenberg et al., 2017).

1.2. Our Contributions

We study the I/O complexity of attention on a two-level
memory hierarchy. The attention mechanism takes inputs
Q,K, V ∈ RN×d and computes softmax(QKT )V (see
Section 2.1) where A = exp(QKT ) is the attention matrix.
Our first result resolves the I/O complexity of any algorithm
computing attention using the standard matrix multiplication
algorithm. This answers an open question of (Dao et al.,
2022) and shows that FlashAttention is optimal among this
class of algorithms.
Theorem 3.1. The I/O complexity of attention with standard
matrix multiplication is

Θ

(
min

(
N2d√
M

,
N2d2

M

))
We divide the analysis into two cases, the large cache (M ≥
d2) and small cache (M < d2) case. When M < d2, we
show that attention and matrix multiplication are equivalent.
In the small cache setting, N2d2

M > N2d√
M

> N2, so we can
explicitly write QKT to memory while computing attention.
Thus, any algorithm computing attention in fact computes
QKT , establishing an equivalence between attention and
matrix multiplication.

In the more interesting large cache case, when M ≥ d2, the
upper bound is given by the breakthrough FlashAttention
algorithm (Dao et al., 2022). In this setting, the I/O complex-
ity approaches O(Nd) as cache size increases, providing
significant practical improvements, despite the theoretical
time complexity remaining O(N2d). To prove a matching
lower bound, we use the red-blue pebble game of (Hong &
Kung, 1981). Executing an algorithm A on a machine with
cache size M is equivalent to playing the red-blue pebble
game with M red pebbles on the computational directed
acyclic graph G corresponding to A. Specifically, the par-
titioning lemma (Lemma C.2) states that any successful
execution of A corresponds to a partition of G where each
part corresponds to a sub-computation of A with no I/O
operations (called a M -partition). Thus, it suffices to prove
a lower bound on the size of any M -partition to obtain a I/O
complexity lower bound forA on a machine with cache size
M . Our lower bound on the partition size then follows from
a careful analysis of the computational graph of attention
(Figure 3). Specifically, we show that any part Vi in the
partition can only compute M2

d2 +M ≤ 2M2

d2 entries in the
product QKT .

2



I/O Complexity of Attention, or How Optimal is FlashAttention?

We then extend our lower bound in the large cache (M ≥ d2)
case to arbitrary algorithms for attention. More precisely,
we show that even with fast matrix multiplication (FMM),
Ω
(

N2d2

M

)
I/O operations are required to compute attention.

In particular, fast matrix multiplication can only reduce time
complexity, not I/O complexity.

Theorem 4.8. Suppose Q,K ∈ FN×d
q where q > N . The

I/O complexity of attention (with any matrix multiplication
algorithm) is Ω

(
min

(
N2d2

M , N2
))

.

To establish a general lower bound, we can no longer reason
about a specific computational graph. Instead, we appeal to
communication complexity, a useful tool for proving lower
bounds for learning (Dagan et al., 2019; Kane et al., 2019),
specifically space-bounded learning (Chen et al., 2022).

For simplicity, assume that A performs I/O operations in
batches of size M (Lemma 4.1 shows that this can be as-
sumed without loss of generality). Within each batch, A
can only access the cache of size M , with no further I/O
operations. In order to give a lower bound on the number of
batches, we argue that A cannot make too much progress in
each batch. In the context of attention, we measure progress
as the number of entries computed in QKT (regardless of
whether these entries are written to memory).

Formally, we introduce the B-entry matrix compression
problem (Definition 4.2) and argue that any algorithm mak-
ing too much progress on a given batch gives an efficient
communication protocol (Theorem 4.4). We then complete
the argument by giving a lower bound on the communica-
tion complexity of the matrix compression problem (Lemma
4.6). Our lower bound follows from constructing input ma-
trices satisfying strong linear independence constraints. For
large q, this is achieved by Vandermonde matrices.

Finally, we relax the constraint q > N and consider the
special case q = 2, i.e. Q,K, V are binary matrices and
obtain a lower bound tight up to polylogarithmic factors.
Our lower bound uses Binary BCH codes (Hocquenghem,
1959; Bose & Ray-Chaudhuri, 1960) to construct matrices
satisfying strong linear independence constraints.

Theorem 4.11. Suppose Q,K ∈ {0, 1}N×d. The I/O com-
plexity of attention (with any matrix multiplication algo-
rithm) is Ω

(
min

(
N2d2

M log2 N
, N2

))
.

In the small cache setting (M < d2), Theorem 4.14 gives a
simple equivalence between attention and rectangular matrix
multiplication.

2. Preliminaries
Given a matrix A, we index an entry as A[i, j]. The i-th row
is A[i] while the j-th column is A[∗, j]. AT , A−1 denote

the transpose and inverse of A. For v ∈ Rn, let diag(v)
denote the matrix D ∈ Rn×n with D[i, i] = v[i].

2.1. The Attention Mechanism

Given input matrices Q,K, V ∈ RN×d, the attention
mechanism computes D−1AV where the attention matrix
A = exp(QKT ) is computed by taking exponents entry-
wise and D = diag(A ·1) is the diagonal matrix containing
row-sums of A.

2.2. The Memory Hierarchy

In this work, we assume that the memory hierarchy has
two levels: the small fast layer (called the cache) and the
large slow layer (called the memory). We assume that the
memory is unbounded while the cache is bounded by some
size constraint M . Furthermore, computations only occur
on the cache.

2.3. Red-Blue Pebble Game

We require the red-blue pebble game of (Hong & Kung,
1981), designed to model computations on a two-level mem-
ory hierarchy. In this section, we give only the necessary
definitions. For a longer discussion, see Appendix C.

Definition 2.1. [Red-Blue Pebble Game (Hong & Kung,
1981)] Let G be a directed acyclic graph with a set of input
vertices containing all vertices with no parents, and a set of
output vertices containing all vertices with no children. A
configuration is a pair of (not necessarily disjoint) subsets
of vertices, one containing all vertices with red pebbles, and
the other containing all vertices with blue pebbles.

The initial (resp. terminal) configuration is one in which
only input (resp. output) vertices contain pebbles, and all
of these pebbles are blue. The rules of the red-blue pebble
game are as follows:

R1 (Input) A red pebble may be placed on any vertex with
a blue pebble.

R2 (Output) A blue pebble may be placed on any vertex
with a red pebble.

R3 (Compute) A red pebble may be placed on a vertex if
all its parents have red pebbles.

R4 (Delete) A pebble may be removed from any vertex.

A transition is an ordered pair of configurations where the
second can be obtained from the first following one of the
above rules. A calculation is a sequence of configurations,
where each successive pair forms a transition. A complete
calculation is a calculation that begins with the initial con-
figuration and ends with the terminal configuration.
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To model a bounded cache, we assume that there are at most
M red pebbles on the graph at any given time, while any
number of blue pebbles can be placed on the graph. Given a
graph G, we are interested in the I/O complexity.

Definition 2.2. [I/O Complexity (Hong & Kung, 1981)]
Given a graph G and integer M , the I/O complexity
Q(G,M) is defined by the minimum number of transitions
according to rules R1 and R2 required by any complete
calculation. When the underlying graph G is clear, we omit
G and write Q(M).

To obtain I/O complexity lower bounds, (Hong & Kung,
1981) show that any complete calculation induces a M -
partition of G. Before defining the M -partition, we give the
necessary definitions of dominator sets and minimum sets.

Definition 2.3 (Dominator Set). Let S ⊂ V . D ⊂ V is a
dominator set of S if every path from an input vertex of G
to a vertex in S contains a vertex in D.

Definition 2.4 (Minimum Set). Let S ⊂ V . The minimum
set of S is the subset of vertices in S with no children in S.

We now give the definition of a M -partition (S-partition in
(Hong & Kung, 1981)).

Definition 2.5. [M -partition (Hong & Kung, 1981)] Let G
be a directed acyclic graph. A family of subsets {Vi}hi=1 is
a M -partition of G if the following properties hold:

P1 (Partition) The sets Vi are disjoint and V =
⋃h

i=1 Vi.

P2 (Dominator) For each Vi, there exists a dominator set
Di of size at most M .

P3 (Minimum) For each Vi, the set of minimum vertices
Mi has size at most M .

P4 (Acyclic) There is no cyclic dependence among vertex
sets {Vi}hi=1 (Definition C.1).

The partitioning lemma of (Hong & Kung, 1981) shows
that it suffices to prove a lower bound on the size of any
2M -partition to obtain a lower bound on the I/O complexity.

Lemma 2.6 (Lemma 3.1 of (Hong & Kung, 1981)). For any
directed acyclic graph G, let P (G,M) denote the minimum
size of any M -partition of G. Then,

Q(G,M) ≥M · (P (G, 2M)− 1)

2.4. Computational Graph for the Attention Mechanism

Figure 3 gives a computational graph modelling the attention
mechanism (Dao et al., 2022; Dao, 2023). In this compu-
tational graph, we assume that matrix products are com-
puted using the standard algorithm, that is, we compute
(AB)ij =

∑
k AikBkj for all i, j.

𝐿!

𝑄!" 𝑄!# 𝑄!$ 𝑄!% 𝐾&" 𝐾&# 𝐾&$ 𝐾&%

𝑄!"𝐾#" 𝑄!$𝐾#$ 𝑄!%𝐾#% 𝑄!&𝐾#&

𝑄𝐾!"# 	

Figure 1. A single summation tree with d = 4. Orange and yellow
vertices denote inputs from Q,K respectively. Grey and green
vertices denote level-1 vertices. The green vertex denotes an entry
in QKT . Edges in the bottom layer denote multiplications and
edges in the tree denote additions. Vertices in the blue box denote
vertices in L1.

The key structure we exploit are level-1 vertices, making
up the summation trees described in Figure 1. Within each
summation tree, the leaves are denoted L1 vertices, each
representing a product QikKjk. For every entry (QKT )ij ,
there is a summation tree computing its value, and all N2

trees are vertex-disjoint. See Appendix A.1 for a detailed
discussion of the full computational graph.

3. I/O Complexity of Attention
In this section, we present a tight characterization of the I/O
complexity of any algorithm computing attention exactly
using the standard matrix multiplication algorithm.

Theorem 3.1. The I/O complexity of attention with standard
matrix multiplication is

Θ

(
min

(
N2d√
M

,
N2d2

M

))

At the crossover point M = d2, observe N2d√
M

= N2d2

M =

N2. We define M ≥ d2 as the large cache regime, and
M < d2 as the small cache regime. We are primarily
interested in the large cache regime, since this is where
I/O complexity is sub-quadratic. This is the regime where
FlashAttention outperforms standard implementations of
attention, since we can avoid writing the entire N × N
matrix QKT to memory.

3.1. Large Cache: M = Ω(d2)

For large M = Ω(d2), we show that the following result of
(Dao et al., 2022) is optimal in terms of I/O complexity.

Theorem 3.2 (Theorem 2 of (Dao et al., 2022)). FlashAt-
tention has I/O complexity O

(
N2d2

M

)
.

To prove a matching lower bound, we bound the number of
level-1 vertices in each part of a M -partition. This gives a
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lower bound on the size of any partition, implying an I/O
complexity lower bound via Lemma 2.6.

Lemma 3.3. Suppose M = Ω(d2) and let P be a M -
partition of the computational graph in Figure 3. Let V ′ ∈
P . Then, V ′ contains at most O

(
M2

d

)
level-1 vertices.

Proof. First, since V ′ has a dominator set D′ of at most
M , and each summation tree in the computational graph
is disjoint, there are at most M level-1 summation trees
containing a dominator vertex. Next, since V ′ has at most
M minimum vertices, disjointness again implies that at most
M level-1 summation trees contain a minimum vertex. See
Figure 2 for an example of V ′ containing dominator and
minimum vertices.

(%& (%' (%( (%) )*& )*' )*( )*)

!!""#" !!$"#$ !!%"#% !!&"#&

*

!"!"# 	

Figure 2. An example of a summation tree containing dominator
and minimum vertices. Blue vertices denote elements of the par-
tition V ′. {M} is the minimum vertex, and {Qi1Kj1, Qi2,Kj2}
are the dominator vertices.

Suppose V ′ contains level-1 vertices not in any of the above
2M summation trees (at most M trees containing a domina-
tor and another at most M containing minimum vertices).

Consider a tree T containing level-1 vertices that does not
intersect D′ or contain a minimum vertex. We denote such
a tree as extra. Since T does not contain any minimum ver-
tices, the root r of T , representing some entry (QKT )[i, j],
must be in V ′. There are 2d input vertices with paths to r,
namely the inputs {Q[i, ℓ],KT [ℓ, j]}dℓ=1. We denote the i-
inputs of T as the set {Q[i, ℓ]}dℓ=1 and the j-inputs as the set
{KT [ℓ, j]}dℓ=1. On each path, all vertices but the inputs are
in T . Since T contains no vertices in D′, D′ must contain
all 2d input vertices. For example, in Figure 1, V ′ contains
(QKT )[i, j] and none of the grey vertices, and therefore
must contain all 2d = 8 input vertices (orange and yellow).

For two extra trees Tij , Ti′j′ whose roots correspond to en-
tries (QKT )[i, j], (QKT )[i′, j′] respectively, observe that
the i-inputs are equal if i = i′ and disjoint otherwise. Simi-
larly, the j-inputs are equal if j = j′ and disjoint otherwise.
Suppose V ′ contains level-1 vertices in C extra level-1 sum-
mation trees. The C roots of these trees correspond to C

entries in the matrix QKT . Suppose the C entries have I
distinct values in the row index. Choose one entry in C for
each row index. Each entry requires d i-input vertices to
be placed in the dominator set, and furthermore these input
vertices are disjoint. Therefore, there are at least Id input
vertices from Q in the dominator set D′. By a similar argu-
ment, if the C entries have J distinct values in the column
index, there are at least Jd input vertices from K in the
dominator set D′. In particular, if there are C extra trees,
then there are at least (I + J)d input vertices in the dom-
inator set D′. Finally, we can bound C by observing that
I + J ≥ max(I, J) ≥

√
C since IJ ≥ C. In particular,

√
Cd ≤ (I + J)d ≤ |D′| ≤M

so that C ≤ M2

d2 .

In total, V ′ contains vertices in at most C + 2M level-1
trees. Each level-1 tree contains O(d) level-1 vertices so
that V ′ contains at most,

O

(
M2

d
+Md

)
= O

(
M2

d

)
level-1 vertices, where we have used M = Ω(d2).

Using Lemma 2.6, we obtain a lower bound for computing
attention using standard matrix multiplication. In fact, since
we have not used any other part of the computational graph,
our lower bound holds for any algorithm computing QKT

using standard matrix multiplication.
Lemma 3.4. Suppose M = Ω(d2). Then, P (M) =

Ω
(

N2d2

M2

)
and Q(M) = Ω

(
N2d2

M

)
.

The (simple) proof is deferred to Appendix A.2.

3.2. Small Cache: M = o(d2)

When M = o(d2), we show that attention is equivalent to
matrix multiplication, establishing a Θ

(
N2d√
M

)
bound on the

I/O complexity. The details are left to Appendix A.3.

4. I/O Complexity of Attention with Fast
Matrix Multiplication

We can in fact lower bound the I/O complexity of any al-
gorithm computing attention exactly, including those using
fast matrix multiplication. The only assumption we require
is that the algorithm computes the matrix product QKT

explicitly (whether or not it writes the result to memory).
Since we do not make any further assumptions on the al-
gorithm, the previous approach of analyzing a computa-
tional directed acyclic graph is not sufficient (Hong & Kung,
1981). Instead, we relate I/O complexity to compression
lower bounds. As discussed previously, we are primarily
interested in the large cache regime where M = Ω(d2).
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4.1. Large Cache: M = Ω(d2)

Given some algorithm A and a sample execution, we split
this computation into batches of roughly M I/O operations
each using the framework of (Pagh & Silvestri, 2014).
Lemma 4.1. [Theorem 3 of (Pagh & Silvestri, 2014)]
Suppose A′ is an execution of algorithm A on a machine
with cache of size M . The execution A′ can be split into T
epochs of at most M I/O operations, such that in each epoch
the algorithm A has access to a cache of size at most 2M
and no I/O operations. Furthermore, the I/O complexity of
A′ is at least (T − 1)M .

We provide the proof in Appendix B for completeness. In-
tuitively, we split the execution A′ into T epochs such that
exactly M I/O operations take place in each of the first T −1
epochs, and at most M I/O operations take place in the final
epoch. In other to simulate an epoch, the algorithm uses the
extra M entries in the cache of size 2M to create a buffer
for the next M I/O operations, reading at most M entries
into cache at the start of the epoch, and writing at most M
entries into memory at the end of the epoch.

To show our lower bound, we will simplify the problem
and assume the matrices Q,K, V have entries in some finite
field Fq. This is similar to the “indivisibility” assumptions
of (Arge & Miltersen, 1998; Pagh & Silvestri, 2014), as the
field size fixes some bound on the amount of information in
a single cache entry. Otherwise, if each cache entry can hold
an arbitrary real number, then even when M = 1 we could
encode the entire matrices Q,K in a single cache entry.

Under this assumption, we will assume the cache holds M
elements of Fq, and we will correspondingly define I/O
complexity as the number of finite field elements read and
written between the memory hierarchy. In practice, matrices
Q,K have arbitrary real entries. Since our lower bounds
only need to consider algorithms computing QKT , we may
restrict the inputs to some finite field Fq without loss of gen-
erality (choosing q large enough to avoid overflows under
arithmetic operations) and we can assume q is of polynomial
size since we do not need to consider the softmax operation.
We will separately consider the cases q = 2 (i.e. every entry
in the cache and the matrices is a single bit) and the case for
an arbitrarily large finite field of size q.

4.2. I/O Complexity and Compression

We will prove our I/O lower bound by arguing that any al-
gorithm computing entries of QKT amounts to an efficient
compression protocol. First, we show a lower bound for any
compression protocol computing entries of QKT .
Definition 4.2 (Matrix Compression). Let B ≥
0. In the B-entry matrix compression problem
MatrixEntryCompressionB Alice is given input ma-
trices Q,K ∈ FN×d

q . Alice must send a message to Bob so

that Bob can compute at least B entries in QKT .

We review the definition of one-way communication com-
plexity below.

Definition 4.3 (One-Way Communication Complexity). Let
f : XA ×XB → Y be an arbitrary function. Suppose Alice
has x ∈ XA and Bob has y ∈ XB . A one-way communica-
tion protocol computing f is a pair of functions (E,D) such
that D(E(x), y) = f(x, y) for all (x, y) ∈ XA × XB . The
complexity of the protocol is max(x,y) |E(x)|. The one-way
communication complexity of f is the complexity of the
optimal protocol.

OneWayCC(f) = min
(E,D)

max
(x,y)∈XA×XB

|E(x)|

The one-way communication complexity of
MatrixEntryCompressionB is O(B log q), since
Alice can compute QKT and transmit the relevant B
entries. Instead, if Bob computes a square sub-matrix of
QKT , Alice can instead send the relevant bits of Q,K,
transmitting only O(d

√
B log q) entries. We give a lower

bound of Ω
(
min(d

√
B log q,B log q)

)
, showing that this

is essentially tight.

Our key lemma states that any algorithm outputting
many bits of QKT in one epoch (as described in
Lemma 4.1) gives an efficient compression protocol for
MatrixEntryCompressionB .

Theorem 4.4. Let A′(Q,K) be an execution of an al-
gorithm A on input Q,K on a machine with cache of
size M . Let Bt be the number of entries of QKT com-
puted in the t-th epoch as described in Lemma 4.1 and
B′(Q,K) = maxt Bt. Define,

B∗ = min
Q,K

B′(Q,K)

so that on every input A computes at least B∗ entries of
QKT on some epoch. Then, the one-way communication
complexity of MatrixEntryCompressionB∗ is at most
2M log q.

Proof. We will use A to construct a compression protocol.
Given input matrices Q,K, we executeA on Q,K to obtain
an execution A′. As described in Lemma 4.1, the execu-
tion A′ can be split into epochs, where in each epoch the
algorithm A has access only to 2M finite field elements in
cache and reads no other inputs from memory in this epoch.
Let t∗ be an epoch in which the algorithm A computes
B′(Q,K) entries of the product QKT . In particular, Alice
can send to Bob the state of the cache of size at most 2M
at the beginning of the t∗-th epoch, so that Bob computes
B′(Q,K) ≥ B∗ entries of QKT .

6
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4.3. Matrix Compression Lower Bounds

In this section, we prove a lower bound on the
one-way communication complexity of the B-entry
MatrixEntryCompression problem. More precisely,
we will show an upper bound on the number of entries that
can be computed given a message of size M . Our previous
discussion then implies an upper bound on the number of
bits computed in each epoch, therefore lower bounding the
number of epochs and the I/O complexity.

As a warmup, we give a simple lower bound of
√
B log q.

Lemma 4.5. Let B ≥ 0. Then, the one-way communication
complexity of MatrixEntryCompressionB is at least√
B log q.

The proof is presented in Appendix B. We generalize this
for matrices Q,K of dimension N × d with rank d ≥ 1.

Lemma 4.6. Suppose Q,K ∈ FN×d
q with finite field

Fq of size q > N . Then, the one-way communication
complexity of MatrixEntryCompressionB is at least

min
(
d
√

B
2 ,

B
4

)
log q.

We show that for any set of B indices, there are more than
qM possible values. Thus, a message length of at least
M log q is required to specify these entries exactly.

Proof. Let M denote the maximum message length in the
communication protocol. Let I ⊆ [N ]2 denote the indices
of QKT computed with B = |I|. Define RI to be the
distinct row indices in I and CI to be the distinct column
indices in I so that I ⊆ RI × CI .

For each i ∈ RI , let Ri = {j s.t. (i, j) ∈ I} be the
computed entries in the i-th row of QKT . Similarly, for
each j ∈ CI , let Cj = {i s.t. (i, j) ∈ I} be the com-
puted entries in the j-th column of QKT . Next, define
LR = {i s.t. |Ri| ≥ d} and LC = {j s.t. |Cj | ≥ d}.
We also define SR = {(i, j) ∈ I s.t. i ̸∈ LR} and
SC = {(i, j) ∈ I s.t. j ̸∈ LC}.

First, suppose max(|LR|, |LC |) ≥
√
B/2. Without loss of

generality, assume |LR| ≥
√
B/2. Since q > N , we fix K

to be the Vandermonde matrix guaranteed by Lemma 4.7.
In particular, every subset of d columns in KT is linearly
independent.

Fix some row i ∈ RI . We claim that there are at least
qmin(|Ri|,d) distinct values in the Ri indices of the i-th row.
First, suppose |Ri| ≤ d. By the construction of matrix K
and |Ri| ≤ d, the columns of KT indexed by Ri are linearly
independent. Then, for any v⃗ ∈ F|Ri|

q , we can set the i-th
row of Q to be,

Q[i] = v⃗
(
K[r1]

TK[r2]
T . . .K[r|Ri|]

T
)−1

where K[ri] is the ri-th row of K and Ri = {r1, . . . , r|Ri|}.
In particular, this choice of Q[i] ensures that the Ri entries
of QKT are exactly v⃗ so that there are at least q|Ri| distinct
values. Whenever |Ri| > d, we simply take an arbitrary
subset of Ri of size d, and use their linear independence to
proceed with the same argument, thus obtaining the lower
bound of qmin(|Ri|,d).

Finally, note that the we can obtain these distinct values for
each row in RI independently, since we have fixed K as the
Vandermonde matrix and for each row we only modify the
entries of Q[i]. In particular, the total number of possible
distinct values in all the entries of I is at least,∏

i∈RI

qmin(|Ri|,d)

so that we obtain the following lower bound on the message
length of the communication protocol in order to unambigu-
ously specify B entries,

M ≥

(∑
i∈RI

min(|Ri|, d)

)
log q

≥ (d|LR|+ |SR|) log q

≥ d

√
B

2
log q (1)

where SR = {(i, j) ∈ I s.t. i ̸∈ LR} and the final inequal-
ity follows from our assumption on LR. In particular, this
implies M ≥ d

√
B/2 log q as desired.

Finally, we consider the case max(|LR|, |LC |) <
√

B/2.
Then, the number of entries in LR ×LC is at most B

2 . Note
that any entry of I not in LR×LC must be in SR ∪SC and
therefore,

B

2
≤ |SR|+ |SC |

Assume without loss of generality |SR| ≥ |SC |. Equa-
tion (1) then implies M ≥ B

4 log q.

In our lower bound construction, we require matrices satis-
fying strong linear independence constraints. Specifically,
we require a N×d matrix such that every subset of d rows is
linearly independent. When the matrices have elements in a
large finite field, this is obtained by Vandermonde matrices.
Lemma 4.7. There is a N × d Vandermonde matrix with
entries in a finite field Fq of size q > N where every subset
of d rows is linearly independent.

We leave the proof to Appendix B. We are now ready to
prove the main result of this section. For M ≥ d2, this
matches the upper bound given by (Dao et al., 2022).
Theorem 4.8. Suppose Q,K ∈ FN×d

q where q > N . The
I/O complexity of attention (with any matrix multiplication
algorithm) is Ω

(
min

(
N2d2

M , N2
))

.

7
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Proof. The theorem follows from combining Theorem 4.4
and Lemmas 4.1 and 4.6. Consider an arbitrary algorithm
A and its best execution A′, on an input Q,K, V with
B′(Q,K) = B∗ as described in Theorem 4.4.

Since q > N we apply Lemmas 4.1 and 4.6 and obtain

min

(
d

√
B∗

2
,
B∗

4

)
log q ≤ 2M log q

In particular, the maximum number of entries of QKT com-
puted in any epoch has the upper bound,

B∗ = O

(
max

(
M2

d2
,M

))
Then since the algorithm computes all N2 values of QKT

(regardless of whether these values are written to memory
from cache), the number of epochs is at least,

T = Ω

(
min

(
N2d2

M2
,
N2

M

))
Then, since the I/O complexity of A is at least (T − 1)M ,
this completes the lower bound.

Whenever M ≥ d2, we obtain a lower bound matching the
O
(

N2d2

M

)
algorithm of (Dao et al., 2022).

4.4. Binary Matrix Compression Lower Bounds

In the previous section, we obtained a tight lower bound
for the I/O complexity of attention when the entries are
allowed to come from a large finite field. We believe it
is an interesting theoretical question to investigate the I/O
complexity with entries in smaller finite fields. Specifically,
we will consider the binary finite field F2 = {0, 1}.

The assumption q > N was only required to construct a
matrix satisfying strong linear independence constraints in
Lemma 4.7. Even relaxing this constraint and consider-
ing q = 2, we can still construct matrices satisfying fairly
strong linear independence constraints using error correcting
codes. In fact, our previous use of Vandermonde matrices
can be interpreted as using Reed-Solomon codes by allow-
ing for arbitrarily large finite fields. Recall that a linear code
C ⊂ {0, 1}N is the null-space of the parity check matrix
H . Using Binary BCH codes, we can obtain a similar result
with binary matrices.
Lemma 4.9. There exists a matrix K ∈ {0, 1}N×d such
that every set of 2d

log(N+1) − 1 rows is linearly independent.

Given the construction of the matrix K, we can prove the
following analogues of Lemma 4.6 and Theorem 4.8. These
results match the upper bound of Theorem 3.2 up to a
O(log2 N) factor.

Lemma 4.10. Suppose Q,K are binary N × d
matrices. Then, the one-way communication com-
plexity of MatrixEntryCompressionB is at least

Ω
(
min

(
d
√
B

logN , B
))

.

We now state the I/O complexity lower bound of attention
given binary input matrices.

Theorem 4.11. Suppose Q,K ∈ {0, 1}N×d. The I/O com-
plexity of attention (with any matrix multiplication algo-
rithm) is Ω

(
min

(
N2d2

M log2 N
, N2

))
.

We leave the proofs of this section to Appendix B.1.

4.5. Small Cache: M = o(d2)

In the small cache setting, we proved an equivalence be-
tween attention and matrix multiplication in the setting
where both are computed using the standard algorithm. We
do the same for algorithms using fast matrix multiplication.

Let QAtt(M) denote the I/O complexity of attention on a
machine with cache size M . Let QM(a,b,c)(M) denote the
I/O complexity of multiplying a a× b matrix with a b× c
matrix on a machine with cache size M . First, we show
matrix multiplication is more expensive than attention.

Lemma 4.12. For all M ,

QAtt(M) = O
(
QM(N,d,N)(M) +QM(N,N,d)(M)

)
When M ≤ d2, the two are equivalent.

Lemma 4.13. Let M ≤ d2. Then, QAtt(M) =
Ω
(
QM(N,d,N)(M)

)
.

We defer the proofs to Appendix B.2. As a corollary, we
obtain the following equivalence in the small cache setting.

Theorem 4.14. Let M ≤ d2. Then,

QAtt(M) = Ω
(
QM(N,d,N)(M)

)
QAtt(M) = O

(
QM(N,d,N)(M) +QM(N,N,d)(M)

)
5. Conclusion
We have established tight I/O complexity lower bounds for
attention. Our lower bound in fact holds for any algorithm
computing matrix product QKT . We give a tight character-
ization of the I/O complexity of algorithms using standard
matrix multiplication, answering an open question of (Dao
et al., 2022).

Furthermore, in the regime of practical interest, where cache
size M ≥ d2 is large, we extend our lower bound to al-
gorithms using fast matrix multiplication, showing that
FlashAttention is optimal even when fast matrix multipli-
cation is allowed. Furthermore, our results continue a line

8
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of work establishing a connection between communication
complexity and I/O complexity (Iacono & Puatracscu, 2011;
Eenberg et al., 2017), exhibiting the versatility of this idea.
While our lower bounds are tight when the input matri-
ces have entries chosen from a sufficiently large field, our
lower bounds lose polylogarithmic factors if the inputs are
constrained to be binary matrices. We leave the exact char-
acterization of attention with binary input matrices as an
interesting open problem.

Finally, we leave the problem of establishing tight I/O
complexity bounds for attention in the small cache regime
(M ≤ d2) (equivalently rectangular matrix multiplication)
as an interesting open problem.

Acknowledgements
The authors are partially supported by NSF grants 1652303,
1909046, 2112533, and EnCORE:HDR TRIPODS Phase
II grant 2217058. The authors would like to thank Arya
Mazumdar and Harry Sha for helpful discussions, and
Kasper Green Larsen for helpful comments. The authors
would also like to thank anonymous reviewers for their care-
ful reviews and thoughtful comments.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work. First, we prove FlashAttention
is optimal for certain ranges of memory. FlashAttention
has been shown to have a huge impact in the scalability
of Transformers which is the architecture of choice for a
variety of practical applications. Second, we give a better
algorithm than FlashAttention when fast memory is small.
This can have huge impact especially when resources are
low. Third, the techniques that we introduced can be utilized
beyond attention and Transformers and may leave a lasting
impact in the field of Machine Learning.

References
Aggarwal, A. and Vitter, J. S. The input/output complexity

of sorting and related problems. Commun. ACM, 1988.

Alman, J. and Song, Z. Fast attention requires bounded
entries. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Arge, L. and Miltersen, P. B. On showing lower bounds for
external-memory computational geometry problems. In
External Memory Algorithms, Proceedings of a DIMACS
Workshop, 1998.

Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., and
Schwartz, O. Graph expansion analysis for communi-

cation costs of fast rectangular matrix multiplication.
In Mediterranean Conference on Algorithms MedAlg,
2012a.

Ballard, G., Demmel, J., Holtz, O., and Schwartz, O. Graph
expansion and communication costs of fast matrix multi-
plication. J. ACM, 59(6):32:1–32:23, 2012b.

Bilardi, G. and Stefani, L. D. The I/O complexity of
strassen’s matrix multiplication with recomputation. In
Algorithms and Data Structures WADS, 2017.

Bose, R. C. and Ray-Chaudhuri, D. K. On A class of error
correcting binary group codes. Inf. Control., 3(1):68–79,
1960.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Neural Information
Processing Systems, NeurIPS, 2020.

Chen, B., Dao, T., Winsor, E., Song, Z., Rudra, A., and
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tention: Fast and memory-efficient exact attention with
io-awareness. In Neural Information Processing System-
sNeurIPS, 2022.

9



I/O Complexity of Attention, or How Optimal is FlashAttention?

Eenberg, K., Larsen, K. G., and Yu, H. Decreasekeys are
expensive for external memory priority queues. In Sym-
posium on Theory of Computing, STOC, 2017.

Gall, F. L. and Urrutia, F. Improved rectangular matrix mul-
tiplication using powers of the coppersmith-winograd ten-
sor. In Czumaj, A. (ed.), Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pp. 1029–1046. SIAM, 2018.

Gonen, A., Lovett, S., and Moshkovitz, M. Towards a
combinatorial characterization of bounded-memory learn-
ing. In Neural Information Processing Systems, NeurIPS,
2020.

Han, I., Jayaram, R., Karbasi, A., Mirrokni, V., Woodruff,
D. P., and Zandieh, A. Hyperattention: Long-context
attention in near-linear time. CoRR, abs/2310.05869,
2023.

Hocquenghem, A. Codes correcteurs d’erreurs. Chiffers, 2:
147–156, 1959.

Hong, J.-W. and Kung, H.-T. I/o complexity: The red-blue
pebble game. In Symposium on Theory of Computing
STOC, 1981.

Hu, X., Tao, Y., Yang, Y., Zhang, S., and Zhou, S. On the I/O
complexity of dynamic distinct counting. In International
Conference on Database Theory, ICDT, 2015.

Iacono, J. and Puatracscu, M. Using hashing to solve
the dictionary problem (in external memory). CoRR,
abs/1104.2799, 2011.

Kane, D., Livni, R., Moran, S., and Yehudayoff, A. On
communication complexity of classification problems. In
Conference on Learning Theory, COLT, 2019.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International Conference on
Machine Learning, ICML, 2020.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. In International Conference on
Learning Representations, ICLR, 2020.

Marsden, A., Sharan, V., Sidford, A., and Valiant, G. Effi-
cient convex optimization requires superlinear memory.
In Conference on Learning Theory, COLT, 2022.

Pagh, R. and Silvestri, F. The input/output complexity of
triangle enumeration. In Principles of Database Systems
PODS, 2014.
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A. Attention with Standard Matrix Multiplication
In this appendix, we provide supplemental material for Section 3.

A.1. Computational Graph for Attention

We provide the computational graph of attention using standard matrix multiplication.

𝑸
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𝑸𝑲𝑻 𝑨

𝑫 𝑫#𝟏
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Figure 3. Computational Graph for Attention.

The attention mechanism begins by computing the matrix product QKT . In the vertex set L1, there are N2d vertices
representing the values {QiℓK

T
ℓj}i,j,ℓ. Then, each entry (QKT )ij is computed by summing the appropriate vertices in L1,

i.e. the node (QKT )ij =
∑

ℓ QiℓK
T
ℓj . In particular, each entry (QKT )ij is connected to L1 via a summation tree. Note

that all nodes in the summation trees are disjoint. The summation tree can be thought of as a balanced binary tree with d
leaves, although the exact structure of the tree (i.e. order of summation) can be arbitrary. For a more detailed description of
the computational graph of the standard matrix multiplication algorithm, see (Hong & Kung, 1981). We define the set of
level-1 vertices to be all nodes in the computational graph that are in vertex sets L1, QKT , or one of the intermediate nodes
in the N2 summation trees between the two layers. See Figure 1 illustrates an example summation tree.

Then, each entry in A is computed by taking the exponent of the corresponding entry in QKT . Each node in D is computed
by summing over the rows of A. As above, this is realized in the graph by N disjoint summation trees and D−1 is computed
by taking the multiplicative inverse of each element in D. The matrix product is computed as in the first step, first by
storing all N2d products in the intermediate layer L2 = {AikVkj}i,k,j and computing AV via Nd disjoint summation trees.
Finally, each node in O is computed by scaling each entry of AV by the appropriate factor in D−1.

Although we have (roughly) described the computational graph of FlashAttention-2 (Dao, 2023) and there are different
ways to implement attention, all algorithms begin by computing the product QKT , and our lower bounds will hold for any
algorithm computing this matrix product.
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A.2. The Large Cache Case

We give the omitted proof of Lemma 3.4.

Lemma 3.4. Suppose M = Ω(d2). Then, P (M) = Ω
(

N2d2

M2

)
and Q(M) = Ω

(
N2d2

M

)
.

Proof. Note that there are Ω(N2d) level-1 vertices. Since each part in the M -partition contains at most O
(

M2

d

)
level-1

vertices, the lower bound on the number of parts in the M -partition follows immediately from Lemma 3.3.

A.3. The Small Cache Case

For M = o(d2), we first show that there is an algorithm with I/O complexity O
(

N2d√
M

)
.

We define some helpful notation for the algorithm. Given a matrix A ∈ Rn×m, we index an individual entry as A[i, j].
A[i1 : i2, j1 : j2] denotes a block of A consisting of entries (i, j) where i ∈ [i1, i2] and j ∈ [j1, j2]. Given a block size B,
the block A[(i− 1) ·B + 1 : i ·B, (j − 1) ·B + 1 : j ·B] is denoted A(B)[i, j]. For a vector v ∈ Rn, we similarly denote
entries v[i], a contiguous block of entries as v[i1 : i2], and the i-th block of size B as v(B)[i].

Theorem A.1. There is an algorithm computing attention with I/O complexity O
(

N2d√
M

)
. Furthermore, this algorithm uses

O
(
N2d

)
time and O

(
Nd+N2

)
space.

High Level Overview Our algorithm follows standard techniques for reducing the I/O complexity of matrix multiplication.
In Phase 1, we compute A = exp(QKT ) and D = diag(A · 1). First, we divide Q,K into N√

M
× d√

M
blocks of size

√
M ×

√
M and proceed to compute QKT one

√
M ×

√
M size block at a time. In Lines 5-8, we iterate over blocks of

QKT . In Lines 9-13, we compute each block of QKT by summing over d√
M

block matrix products. After computing
QKT , we apply exponents entry-wise and sum over rows in Lines 14-18 to compute the relevant blocks of A,D.

In Phase 2, we compute the matrix product D−1AV , storing the output in matrix O. We imagine D−1 as a vector and
partition into N√

M
blocks of size

√
M and partition A into N√

M
× N√

M
blocks of size

√
M ×

√
M . Lines 21-24 iterates over

blocks of O. Lines 25-29 compute a
√
M ×

√
M block of O by summing over N√

M
matrix products and scaling by the

approprite block of D−1. This completes the overview of the algorithm.

Correctness of Algorithm 1. We begin with Phase 1, showing that each block A(B)[i, j] is computed correctly. Fix a block
A(B)[i, j]. For any indices i′ ∈ [(i− 1)B + 1, iB] and j′ ∈ [(j − 1)B + 1, jB],

A[i′, j′] =

d∑
ℓ′=1

Q[i, ℓ′]KT [ℓ′, j] =

⌈d/B⌉∑
ℓ=1

ℓB∑
ℓ′=(ℓ−1)B+1

Q[i, ℓ′]KT [ℓ′, j]

In Line 11, we iterate over i′, j′, ℓ′, adding Q[i′, ℓ′]KT [ℓ′, j′] to A[i′, j′]. After iterating over 1 ≤ ℓ ≤ ⌈d/B⌉, A(B)[i, j] is
computed so that after applying exp entry-wise, we write the correct block A(B)[i, j] into memory. Next, since d should
contain row-sums,

d[i′] =

N∑
j′=1

A[i′, j′] =

⌈N/B⌉∑
j=1

jB∑
j′=(j−1)B+1

A[i′, j′]

we correctly write d(B)[i] into memory. Throughout Phase 1, the number of items in cache is 3B2 +B ≤ 4B2 ≤M .

Now, we proceed to Phase 2. Let D = diag(d) = diag(A ·1). Similarly, for i′ ∈ [(i−1)B+1, iB], j′ ∈ [(j−1)B+1, jB]

O[i′, j′] =
1

D[i′, i′]

N∑
k′=1

A[i′, k′]V [k′, j′] =

⌈N/B⌉∑
k=1

kB∑
k′=(k−1)B+1

A[i′, k′]V [k′, j′]

D[i′, i′]

which is computed by the loop in Phase 2. In particular, Line 27 adds the appropriate value for each block k. The overall size
of cache required is B + 3B2 ≤ 4B2 ≤M . Thus, Algorithm 1 correctly computes O = D−1AV with cache size M .
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Algorithm 1 SQUARETILINGATTENTION(Q,K, V,M)

1: Input: Matrices Q,K, V ∈ RN×d, Cache size M
2: Output: D−1AV where A = exp(QKT ) and D = diag(A · 1)
3: B ←

⌊√
M/4

⌋
4: Phase 1: Compute D,A
5: for i = 1 to ⌈N/B⌉ do
6: Initialize d(B)[i]← 0B in cache
7: for j = 1 to ⌈N/B⌉ do
8: Initialize AB [i, j]← 0B×B in cache
9: for ℓ = 1 to ⌈d/B⌉ do

10: Read Q(B)[i, ℓ] and (KT )(B)[ℓ, j] into cache
11: Compute AB [i, j]← AB [i, j] +Q(B)[i, ℓ](KT )(B)[ℓ, j] in cache
12: Delete Q(B)[i, ℓ] and (KT )(B)[ℓ, j] from cache
13: end for
14: Compute AB [i, j]← exp(AB [i, j]) and write AB [i, j] into memory
15: Compute d(B)[i]← d(B)[i] +AB [i, j] · 1 in cache
16: Delete AB [i, j] from cache
17: end for
18: Write d(B)[i] to memory and delete d(B)[i] from cache
19: end for
20: Phase 2: Compute D−1AV
21: for i = 1 to ⌈N/B⌉ do
22: Read d(B)[i] into cache
23: for j = 1 to ⌈d/B⌉ do
24: Initialize O(B)[i, j]← 0B×B in cache
25: for k = 1 to ⌈N/B⌉ do
26: Read A(B)[i, k] and V (B)[k, j] into cache
27: Compute O(B)[i, j]← O(B)[i, j] + diag

(
d(B)[i]

)−1
A(B)[i, k]V (B)[k, j]

28: Delete A(B)[i, k] and V (B)[k, j] from cache
29: end for
30: Write O(B)[i, j] to cache and delete O(B)[i, j] from cache
31: end for
32: Delete d(B)[i] from cache
33: end for

I/O Complexity of Algorithm 1. In Phase 1, for each iteration through i, j, ℓ, the algorithm reads O(B2) values from
memory into cache. This dominates the I/O complexity of the algorithm. The I/O complexity of Phase 1 is therefore
O
(

N2d
B3 B2

)
= O

(
N2d
B

)
= O

(
N2d√
M

)
.

Similarly for Phase 2, the I/O complexity is dominated by the reading A, V into the cache and this has I/O complexity
O
(

N2d√
M

)
, thus bounding the overall I/O complexity.

Time and Space Complexity of Algorithm 1. Since we use standard matrix multiplication, the overall time complexity is
O(N2d). The space required is O(Nd+N2) as the algorithm stores matrices Q,K, V,M and the vector d.

We now show that this is tight for M ≤ d2. We proceed by a reduction to the I/O complexity of matrix multiplication,
invoking the following result.

Lemma A.2 (Corollary 6.2 of (Hong & Kung, 1981)). Let A ∈ Rm×k and B ∈ Rk×n. The standard algorithm for matrix
multiplication satisfies Q(M) = Ω

(
mkn√

M

)
.

Theorem A.3. Suppose M = o(d2). Then, the I/O complexity of attention using standard matrix multiplication is at least

13
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Ω
(

N2d√
M

)
Proof. The lower bound follows from a reduction to matrix multiplication. We take advantage of the fact that if M ≤ d2,
N2d√
M
≥ N2, so the algorithm can afford to write the attention matrix A explicitly to memory. Given an algorithm A

for attention, we have the following algorithm for matrix multiplication. Given inputs Q,K, we execute A with one
modification: whenever an entry of QKT is computed for the first time, write this entry to memory. Over the course of the
algorithm, this computes QKT and adds at most N2 additional I/Os, which any attention algorithm must use whenever
M < d2. We give the reduction in terms of the computational graph below.

Suppose for contradiction there is an algorithm A computing attention with I/O complexity o
(

N2d√
M

)
. Consider A as a

complete calculation on the computational graph described in Figure 3. Since A is a complete calculation and the set of
input and output vertices are disjoint, every single vertex in the graph must have a pebble on it at some configuration in the
calculation. Consider then the algorithm B which executes A with the following modifications:

1. Whenever a blue pebble is deleted from a vertex in QKT , do not delete.

2. Whenever a red pebble is placed on a vertex in QKT for the first time, place also a blue pebble on this vertex.

The two properties guarantee that B will have at least the pebbles that A has, while any additional pebbles must be blue, so
that B respects the constraint on the overall number of red pebbles at any given configuration. In particular, B is a valid
calculation that computes QKT . We now analyze the I/O complexity of B. If QA denotes the I/O complexity of A, the
additional writes due to the second rule imply an overall I/O complexity of,

QA +N2 = o

(
N2d√
M

)
Since B computes QKT , this contradicts Lemma A.2.

B. I/O Complexity of Attention with Fast Matrix Multiplication - Omitted Proofs
In this section, we provide the omitted proofs of Section 4.

Lemma 4.1. [Theorem 3 of (Pagh & Silvestri, 2014)] Suppose A′ is an execution of algorithm A on a machine with
cache of size M . The execution A′ can be split into T epochs of at most M I/O operations, such that in each epoch the
algorithm A has access to a cache of size at most 2M and no I/O operations. Furthermore, the I/O complexity of A′ is at
least (T − 1)M .

Proof. Let A be any algorithm computing exact attention and A′ an arbitrary execution of A on machine with a cache size
of M bits. Note that given A′ all the decisions made by algorithm A are already taken.

We proceed to simulate the execution A′ on a machine with cache size of 2M so that the computation is split into epochs
and I/O operations are performed only at the start and end of each epoch. Split the cache into two pieces, one block of
size M to simulate the cache of A and one block as a buffer for I/O operations. At the start of the epoch, the simulation
considers all of the M next I/O operations, performs all read I/Os by filling the buffer. During the epoch, any I/O operation
is simulated by writing data between the two blocks of cache. Finally, at the end of the epoch, the simulation takes all
written entries in the buffer and writes them to memory. In particular, in each epoch, no I/O operations are performed so that
the algorithm only has access to only a cache of size 2M with no I/O.

Finally, in every epoch except for the last, M I/O operations are performed, so the I/O complexity of the execution A′ is at
least (T − 1)M .

Next, we give the simple lower bound of Lemma 4.5.

Lemma 4.5. Let B ≥ 0. Then, the one-way communication complexity of MatrixEntryCompressionB is at least√
B log q.

14
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Proof. Let I ⊂ [N ]2 denote any set of indices of the computed entries of QKT where |I| = B. Define RI to be the distinct
row indices in I and CI to be the distinct column indices in I so that I ⊂ RI × CI .

Without loss of generality, assume |RI | ≥ |CI |. We claim there are at least q|RI | distinct values in the entries of QKT

indexed by I . In particular, let Q,K both be matrices with non-zero values only in the first column. In K, we set every entry
in the first column to 1. In this case, each row of QKT will be the same, so we can assume the B entries are |RI | entries
in a column of QKT . Since we can arbitrarily set the entries of Q indexed by RI , we can obtain q|RI | different outputs.
Since there are at least q|RI | outputs, the message length M must be at least |RI | log q = max(|RI |, |CI |) log q in order to
unambiguously determine the correct output. Then,

B ≤ RICI ≤ max(RI , CI)
2 ≤

(
M

log q

)2

Thus, M ≥
√
B log q.

Next, we show that Vandermonde matrices satisfy the required linear independence constraints.

Lemma 4.7. There is a N × d Vandermonde matrix with entries in a finite field Fq of size q > N where every subset of d
rows is linearly independent.

Proof. Consider the N × d Vandermonde matrix,

V =


1 α1 α2

1 . . . αd−1
1

1 α2 α2
2 . . . αd−1

2
...

...
...

. . .
...

1 αN α2
N . . . αd−1

N


where α1, α2, . . . , αN are distinct elements in Fq , since we choose q > N . Then, for any subset of d rows, the determinant
of this sub-matrix is,

0 ̸=
∏

1≤i<j≤d

(αki − αkj )

where k1, . . . , kd are the indices of the d rows. Since the determinant of this matrix is non-zero, the rows are linearly
independent.

B.1. I/O Complexity via Binary Matrix Compression

In this section, we provide the omitted details for I/O complexity of attention on binary matrices. First, we state the following
standard lemma relating distance of linear codes to linear independence in the parity check matrix.

Lemma B.1. A linear code has distance d, if and only if any (d − 1) columns of the parity check matrix is linearly
independent and there exist d columns that are linearly dependent.

Proof. Consider a code C of length n, dimension k, and distance d. Suppose there is a set of (d− 1) linearly dependent
columns. Then, there is a vector x with wt(x) ≤ d− 1 such that Hx = 0, contradicting the minimum distance d of C. Since
the distance of the code is d, there exists a vector x such that Hx = 0 and wt(x) = d. In particular, there exists a subset of
d independent columns.

To prove the converse, note that the conditions on H imply there exists a codeword of weight d and no codeword of weight
less than d, so that the minimum distance of the code is exactly d.

Next, we use the fact that binary BCH codes are optimal high rate codes. Recall that a code with parity check matrix H of
dimension d×N has dimension at least N − d.

Lemma B.2. (Hocquenghem, 1959; Bose & Ray-Chaudhuri, 1960) For a length N = 2m − 1 and a distance s, there exists
a code BCH[N, s] with dimension at least N −

⌈
s−1
2

⌉
log(N + 1).

We provide the definition of BCH codes. Recall an element α ∈ F in a finite field is a primitive element if it generates the
multiplicative group F∗.
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Definition B.3 ((Hocquenghem, 1959; Bose & Ray-Chaudhuri, 1960)). For length N = 2m − 1, distance s, and primitive
element α ∈ F∗

2m , the binary BCH code is defined,

BCH[N, s] = {(c0, . . . , cN−1) s.t. c(α) = . . . = c(αs−1) = 0}

where c(X) = c0 + c1X + . . .+ cN−1X
N−1.

The proof of Lemma B.2 is a standard exercise.

Proof of Lemma B.2. To show a lower bound on the dimension of the code, we argue that the parity check matrix H does
not have too many rows. We begin with a weaker bound of N − (s − 1) log(N + 1). In particular, we show that each
constraint c can be written as m = log(N + 1) linear constraints.

We choose a basis β = {β1 = 1, β2, . . . , βm} of Fm
2 as a vector space. For any x ∈ Fm

2 , consider the linear map x 7→ αx
which can be written as x 7→ Mαx for some matrix Mα ∈ Fm×m

2 where x is represented in the above basis. Then, the
constraint c(α) = 0 can be viewed as,

c0
0
...
0

+Mα


c1
0
...
0

+ . . .+MαN−1


cN−1

0
...
0

 =


0
0
...
0


Thus, each constraint c(αi) = 0 can be viewed as log(N + 1) linear constraints. Since there are s− 1 such constraints, this
ensures the parity check matrix has dimension (s− 1) log(N + 1)×N .

We now prove the improved bound. This follows from the fact that c(γ) = 0 if and only if c(γ2) = 0. In particular,
⌊
s−1
2

⌋
constraints are redundant, leaving only

⌈
s−1
2

⌉
relevant constraints.

It remains to show c(γ2) = 0 if and only if c(γ) = 0. Note that c(γ) = 0 if and only if c(γ)2 = 0. Furthermore, for
α, β ∈ Fm

2 , (α+ β)2 = α2 + β2. Then,

0 = c(γ) = c(γ)2

= c20 + (c1γ)
2 + . . .+ (cN−1γ

N−1)2

= c0 + c1γ
2 + . . . cN−1γ

2(N−1) = c(γ2)

where we have used ci = c2i for all coefficients ci ∈ F2.

We now prove the construction of the desired matrix K satisfying strong linear independence constraints.

Lemma 4.9. There exists a matrix K ∈ {0, 1}N×d such that every set of 2d
log(N+1) − 1 rows is linearly independent.

Proof. We assume without loss of generality that N = 2m − 1 for some m. If not, we at most double N by choosing the
minimum m such that 2m − 1 ≥ N and take any N -row sub-matrix.

From the construction of the code BCH[N, s], we observe that it has a parity check matrix H of dimension
⌈
s−1
2

⌉
log(N +

1) × N . Since the code has distance s, from Lemma 4.9, any set of s − 1 rows is linearly independent. In particular, if
d =

⌈
s−1
2

⌉
log(N + 1), we have,

s ≥ 2d

log(N + 1)

giving the desired bound on s− 1. Thus, we choose K = HT .

Given this matrix construction, we prove an analogue of Lemma 4.6 for the binary input case.

Lemma 4.10. Suppose Q,K are binary N × d matrices. Then, the one-way communication complexity of
MatrixEntryCompressionB is at least Ω

(
min

(
d
√
B

logN , B
))

.
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Proof. The proof follows Lemma 4.6 closely, so we only point out the necessary modifications. Again let M denote the
maximum message length in the communication protocol and I = [N ]2 denote the indices of QKT computed with B = |I|.
Define RI , CI , {Ri}Ni=1, {Cj}Nj=1 as in Lemma 4.6.

We modify LR = {i s.t. |Ri| ≥ 2d
log(N+1) − 1} and LC = {j s.t. |Cj | ≥ 2d

log(N+1) − 1} and define SR and SC as before.

We again consider first the case max(|LR|, |LC |) ≥
√

B/2 and assume |LR| ≥
√

B/2. Instead of the Vandermonde
matrix, we fix K to be the matrix guaranteed by Lemma 4.9. In particular, every subset of 2d

log(N+1) − 1 columns in KT is
linearly independent.

Following an analogous argument as Lemma 4.6, we obtain the following lower bound on the message length of the
communication protocol in order to unambiguously specify B entries,

M ≥
∑
i∈RI

min

(
|Ri|,

2d

log(N + 1)
− 1

)
≥
(

2d

log(N + 1)
− 1

)
|LR|+ |SR|

= Ω

(
d
√
B

logN

)
(2)

where the final inequality follows from our assumption on LR.

Finally, we consider the case max(|LR|, |LC |) <
√

B/2. Again following similar arguments as Lemma 4.6 and Equation
2, we have,

M ≥ max(|SR|, |SC |) ≥
B

4

so that M is at least the minimum of the two bounds.

Finally, we show a lower bound for any algorithm computing attention on binary input matrices.

Theorem 4.11. Suppose Q,K ∈ {0, 1}N×d. The I/O complexity of attention (with any matrix multiplication algorithm) is

Ω
(
min

(
N2d2

M log2 N
, N2

))
.

Proof. Following similar arguments as Theorem 4.8, we obtain,

Ω

(
min

(
d
√
B∗

logN
,B∗

))
≤ 2M

where B∗ is as defined in Theorem 4.4. In particular, the maximum number of entries of QKT computed in any epoch is at
most,

B∗ = O

(
max

(
M2 log2 N

d2
,M

))
which gives the I/O complexity lower bound,

Ω

(
min

(
N2d2

M log2 N
,N2

))
as desired.

B.2. Small Cache: Attention and Matrix Multiplication Equivalence

Finally, we prove the equivalence of Attention and Matrix Multiplication in the small cache setting.

Lemma 4.12. For all M ,
QAtt(M) = O

(
QM(N,d,N)(M) +QM(N,N,d)(M)

)
17
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Proof. First, we use the given algorithm for rectangular matrix multiplication to compute QKT with QM(N,d,N) I/O
operations. Then, note that computing softmax(QKT ) can be done in O(N2) time and therefore O(N2) I/O complexity as
each operation can be performed with O(1) I/O operations. Finally, we use the given algorithm to compute softmax(QKT )V
with QM(N,N,d). Then, the overall I/O complexity is,

QAtt(M) = O
(
QM(N,d,N) +N2 +QM(N,N,d)

)
= O

(
QM(N,d,N) +QM(N,N,d)

)
since the I/O complexity of both matrix products is at least N2, as either the input or output has size N2.

Lemma 4.13. Let M ≤ d2. Then, QAtt(M) = Ω
(
QM(N,d,N)(M)

)
.

Proof. First, consider any two input matrices Q,KT . We simulate the attention algorithm with the following modification:
whenever an entry (QKT )ij is computed for the first time, we write this entry to memory. Our modified algorithm
successfully computes the matrix product QKT using at most O

(
QAtt(M) +N2

)
I/O operations. From Theorem 4.8,

we have that whenever M ≤ d2, QAtt(M) = Ω(N2). As a result, we compute Attention with O (QAtt(M)) I/O
complexity.

C. The Red-Blue Pebble Game
Inspired by the pebble game often used to model space-bounded computation, (Hong & Kung, 1981) develops the Red-Blue
Pebble Game to model I/O complexity. As with the standard pebble game, the Red-Blue Pebble Game is played on a directed
acyclic graph, where nodes represent computations and edges represent dependencies. Throughout the game, pebbles can be
added to, removed from, or recolored between red and blue in the graph, where red pebbles represent data in cache and blue
pebbles represent data in slow memory. Given an upper bound on the number of red pebbles (cache size), the goal is to
minimize the number of pebble recolorings (I/O operations) over the course of a computation. The game is defined formally
below.

Definition 2.1. [Red-Blue Pebble Game (Hong & Kung, 1981)] Let G be a directed acyclic graph with a set of input vertices
containing all vertices with no parents, and a set of output vertices containing all vertices with no children. A configuration
is a pair of (not necessarily disjoint) subsets of vertices, one containing all vertices with red pebbles, and the other containing
all vertices with blue pebbles.

The initial (resp. terminal) configuration is one in which only input (resp. output) vertices contain pebbles, and all of these
pebbles are blue. The rules of the red-blue pebble game are as follows:

R1 (Input) A red pebble may be placed on any vertex with a blue pebble.

R2 (Output) A blue pebble may be placed on any vertex with a red pebble.

R3 (Compute) A red pebble may be placed on a vertex if all its parents have red pebbles.

R4 (Delete) A pebble may be removed from any vertex.

A transition is an ordered pair of configurations where the second can be obtained from the first following one of the above
rules. A calculation is a sequence of configurations, where each successive pair forms a transition. A complete calculation
is a calculation that begins with the initial configuration and ends with the terminal configuration.

In typical instances, including our paper, the input and output vertices are disjoint. Furthermore, the input vertices are
typically exactly those with no parents, while the output vertices are exactly those with no children. To model bounded
cache, we assume that there are at most M red pebbles on the graph at any given time, while any number of blue pebbles
can be placed on the graph.

The key idea is that any complete calculation implies an 2M -partition of the computational graph G.

Definition 2.5. [M -partition (Hong & Kung, 1981)] Let G be a directed acyclic graph. A family of subsets {Vi}hi=1 is a
M -partition of G if the following properties hold:
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P1 (Partition) The sets Vi are disjoint and V =
⋃h

i=1 Vi.

P2 (Dominator) For each Vi, there exists a dominator set Di of size at most M .

P3 (Minimum) For each Vi, the set of minimum vertices Mi has size at most M .

P4 (Acyclic) There is no cyclic dependence among vertex sets {Vi}hi=1 (Definition C.1).

We give the missing definition of vertex subset dependence below.

Definition C.1 (Vertex Subset Dependence). Let S, T ⊂ V be disjoint subsets. T depends on S if there exists an edge
(s, t) ∈ E with s ∈ S, t ∈ T .

Specifically, by showing a lower bound on the size of any 2M -partition, we may immediately obtain a lower bound on the
I/O complexity of the algorithm represented by G.

Lemma C.2 (Theorem 3.1 of (Hong & Kung, 1981)). Let G be a directed acyclic graph. Any complete calculation of the
Red-Blue Pebble Game on G, using at most M red pebbles, is associated with a 2M -partition of G such that,

M · h ≥ Q(G,M) ≥M · (h− 1)

where h is the number of vertex subsets in the 2M -partition.

Roughly speaking, a M -partition partitions the vertex set such that each part can be computed completely using only 2M
I/O operations. In particular, every node in a single part V ′ can be reached by placing red pebbles at the dominator vertices.
This can be thought of as the initial state of the cache at some point, and without any further reads from memory, every node
on V ′ can be computed. Then, after the computation, the values at the minimum vertices can be written to memory. This
corresponds to at most M write operations.
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