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Abstract
In the past couple of years, various approaches
to representing and quantifying different types of
predictive uncertainty in machine learning, no-
tably in the setting of classification, have been
proposed on the basis of second-order probabil-
ity distributions, i.e., predictions in the form of
distributions on probability distributions. A com-
pletely conclusive solution has not yet been found,
however, as shown by recent criticisms of com-
monly used uncertainty measures associated with
second-order distributions, identifying undesir-
able theoretical properties of these measures. In
light of these criticisms, we propose a set of for-
mal criteria that meaningful uncertainty measures
for predictive uncertainty based on second-order
distributions should obey. Moreover, we provide
a general framework for developing uncertainty
measures to account for these criteria, and offer
an instantiation based on the Wasserstein distance,
for which we prove that all criteria are satisfied.

1. Introduction
The need for representing and quantifying uncertainty in
machine learning (ML) – particularly in supervised learning
scenarios – has become more and more obvious in the recent
past (Hüllermeier & Waegeman, 2021). This is largely due
to the increasing use of AI-driven systems in safety-critical
real-world applications having stringent safety requirements,
such as healthcare (Lambrou et al., 2010; Senge et al., 2014;
Yang et al., 2009) and socio-technical systems (Varshney &
Alemzadeh, 2017). Dealing appropriately with uncertainty
is a fundamental necessity in all these domains.

Broadly, uncertainties are categorized as aleatoric, stem-
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ming from inherent data variability, and epistemic, which
arises from a model’s incomplete knowledge of the data-
generating process. By its very nature, epistemic uncertainty
(EU) – often being characterized as reducible – can be de-
creased with further information. In contrast, aleatoric un-
certainty (AU), rooted in the data generating process itself,
is fixed and cannot be mitigated (Hüllermeier & Waegeman,
2021). The distinction between these uncertainty types has
been a subject of keen interest in recent ML and statisti-
cal research (Gruber et al., 2023), finding applications in
areas such as Bayesian neural networks (Kendall & Gal,
2017), adversarial attack detection mechanisms (Smith &
Gal, 2018), and data augmentation strategies in Bayesian
classification (Kapoor et al., 2022).

Arguably, predictive uncertainty is the most studied form of
uncertainty in both ML and statistics. It pertains prediction
tasks such as those in supervised learning. In the latter,
we consider a hypothesis space H, where each hypothesis
h ∈ H maps a query instance xq ∈ X to a probability
measure p on (Y, σ(Y)), where Y denotes the outcome
space, and σ(Y) a suitable σ-algebra on Y . By produc-
ing estimates of the ground-truth probability measure p∗ on
(Y, σ(Y)), this probabilistic approach encapsulates aleatoric
uncertainty about the actual outcome y ∈ Y . Since epis-
temic uncertainty is difficult to represent with conventional
probability distributions (Hüllermeier & Waegeman, 2021),
such predictions fail to capture the epistemic part of (pre-
dictive) uncertainty. In order to account for both types of
uncertainty, machine learning methods founded on more
general theories of probability such as imprecise probabili-
ties or credal sets (Walley, 1991; Augustin et al., 2014) have
been considered (Corani et al., 2012).

Another popular approach in this regard is to let the learner
map a query instance xq to a second-order distribution,
i.e., a distribution on distributions, effectively assigning
a probability to each candidate probability distribution p.
Such an approach is realized, for example, by classical
Bayesian inference (Gelman et al., 2013) or by the Eviden-
tial Deep Learning (EDL) paradigm, which has recently
become increasingly popular (Ulmer et al., 2023). In the
EDL paradigm, one essentially learns a model (usually a
deep neural network) by empirical risk minimization, whose
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Figure 1: Uncertainty awareness in multi-class classification, illustrated on the probability simplex for Y = {y1, y2, y3}.
From left to right increasing degrees of uncertainty awareness: Deterministic prediction (no uncertainty awareness),
probabilistic prediction (AU, but no EU awareness), and second-order prediction (AU and EU awareness).

output for a query instance xq are the parameters of a pa-
rameterized family of a second-order distribution.

So far, only the Dirichlet distribution has been used for
classification, while the Normal-Inverse-Gamma distribu-
tion has been applied for univariate regression (Amini et al.,
2020) and the Normal-Inverse-Wishart distribution for mul-
tivariate regression (Malinin et al., 2020; Meinert & Lavin,
2021). However, this approach is not without controversy,
as it may lead to convergence issues of the empirical risk
minimizer (Bengs et al., 2022; Meinert et al., 2023) and
the predominantly used loss functions lack some desirable
properties (Bengs et al., 2023).

Regardless of the specific design of the EDL approach,
the concrete quantification of the total uncertainty (TU),
aleatoric (AU), as well as epistemic (EU) associated with
the second-order predictive distribution plays a central role
in any case. For regression, essentially, the variances on
the different levels of the second-order distribution are used
for this purpose, while measures from information theory
are applied for classification: Shannon entropy for TU, con-
ditional entropy for AU, and mutual information for EU.
Quite recently, Wimmer et al. (2023) criticized the latter
for not complying with properties that one could naturally
expect of uncertainty measures for second-order distribu-
tions. However, the authors do not provide an alternative for
reasonable quantification either, which, of course, would be
of great importance for practical ML purposes, especially
in safety-critical applications.

Contributions. In this paper, we suggest an alternative
way to obtain uncertainty measures in classification that
overcome the drawbacks of the commonly used information-
theory-based approach. To this end, we first propose a set
of formal criteria that meaningful uncertainty measures for
predictive uncertainty based on second-order distributions
should obey. It extends the ones suggested by Wimmer
et al. (2023). Moreover, we provide a general framework

based on distances on the second-order probability level
for developing uncertainty measures to account for these
criteria. Using the Wasserstein distance, we instantiate this
framework explicitly and prove that all criteria are met.
Finally, we elaborate on these quantities when the second-
order distribution is a Dirichlet distribution. All proofs of
the theoretical statements are provided in the appendix.

2. Second-Order Uncertainty Quantification
In this section, we introduce the formal setting of supervised
learning (throughout this paper we will exclusively deal with
the case of classification) within which we establish further
results. Let (X , σ(X )) and (Y, σ(Y)) be two measurable
spaces. We will refer to X as instance (or input) space and
to Y as label space, such that | Y | = K ∈ N≥2. Further, we
call the sequence D = {(xi, yi)}ni=1 ∈ (X × Y)n training
data. For i ∈ {1, . . . , n}, the pairs (xi, yi) are realizations
of random variables (Xi, Yi), which are independent and
identically distributed (i.i.d.) according to some probability
measure p on (X × Y, σ(X × Y)). Thus, each instance
x ∈ X is associated with a conditional distribution p(· |x)
on (Y, σ(Y)), such that p(y |x) is the probability to observe
label y ∈ Y given x ∈ X .

To ease the notation, we will denote by P(Y) the set of all
probability measures on the measurable space (Y, σ(Y)).
Similarly, we write Q(Y) for the set of all probability mea-
sures on (P(Y), σ(P(Y)); we refer to Q ∈ Q(Y) as a
second-order distribution.1 While usually upper-case let-
ters denote probability measures and lower-case letters their
pdf/pmf, in this paper we use capital letters for second-
order and lower-case letters for first-order distributions. The
Dirac measure at y ∈ Y is denoted by δy ∈ P(Y); likewise,
δp ∈ Q(Y) denotes the Dirac measure at p ∈ P(Y), where

1There is no general consensus on terminology, as terms such as
level-2 or type-2 distributions are also encountered in the literature.
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the underlying space of the Dirac measure should be clear
from the context. Finally, Unif(Y) denotes the uniform
distribution on Y .

Given an instance x ∈ X , let Q ∈ Q(Y) denote the
learner’s current probabilistic belief2 about p, i.e., Q(p)
is the probability (density) of p ∈ P(Y). See Figure 1 for
an illustration of the different degrees of uncertainty-aware
predictions. As already mentioned in the introduction, there
are two popular ways of obtaining such a second-order (pre-
dictive) distribution: by means of Bayesian inference or via
Evidential Deep Learning. Throughout the rest of this paper,
we assume such a second-order predictive distribution Q
has been provided by a learner (though without being inter-
ested in how the prediction has been obtained). We raise the
question of how to quantify the total amount of uncertainty
(TU), as well as the aleatoric (AU) and epistemic (EU)
uncertainties associated with Q.

2.1. Default Measures of Uncertainty

We begin by revisiting the arguably most common
information-theoretic approach in machine learning for mea-
suring predictive uncertainty in classification tasks. This
approach exploits (Shannon) entropy and its link to mutual
information and conditional entropy for specifying explicit
quantities for the total (TU), aleatoric (AU), and epistemic
(EU) uncertainties associated with a predictive second-order
distributions Q ∈ Q(Y) (Houlsby et al., 2011; Gal, 2016;
Depeweg et al., 2018; Mobiny et al., 2021).

The (Shannon) entropy (Shannon, 1948) of p ∈ P(Y) is
defined as

H(p) := −
∑

y∈Y
p(y) log2 p(y). (1)

We can analogously define the entropy of a (discrete) ran-
dom variable Y : Ω −→ Y by

H(Y ) := −
∑

y∈Y
pY (y) log2 pY (y), (2)

where pY ∈ P(Y) is the corresponding push-forward mea-
sure on the measurable space (Y, 2Y). The Shannon entropy
has established itself as a standard measure of uncertainty
due to its appealing theoretical properties and intuitive inter-
pretation. Specifically, it measures the degree of uniformity
of the distribution pY of a random variable Y , and corre-
sponds to the log-loss of pY as a prediction of Y .

In the following, we assume pR ∼ Q, i.e., pR : Ω′ → P(Y)
is a random first-order distribution distributed according
to a second-order distribution Q and consequently taking
values in the (K − 1)-dimensional probability simplex. For
ω′ ∈ Ω′, we denote by p = pR(ω

′) the realization of pR,
respectively.

2Although it would be more precise to let Q depend on x, for
ease of notation we will simply write Q.

The core idea for obtaining uncertainty measures for a given
second-order distribution Q is to consider the expectation
of pR with respect to Q given by

p = EQ[pR] =

∫
P(Y)

pdQ(p) , (3)

which yields a probability measure p on (Y, σ(Y)), i.e., a
first-order distribution.

With this, it seems natural to define the measure of total
uncertainty as the entropy (1) of p ∈ P(Y). More precisely,
total uncertainty associated with a second-order distribution
Q ∈ Q(Y) can be computed as

TU(Q) = H (EQ[pR]) . (4)

In a similar fashion, one defines aleatoric uncertainty as
conditional entropy

AU(Q) = EQ[H(Y |pR)] =
∫
P(Y)

H(p) dQ(p). (5)

Further, the measure of epistemic uncertainty is in particular
motivated by the well-known additive decomposition of
entropy into conditional entropy and mutual information
(Cover & Thomas, 1999, Equation (2.40)), i.e.,

H(Y ) = H(Y | pR) + I(Y, pR). (6)

By rearranging (6) we get a measure of epistemic uncer-
tainty

EU(Q) = I(Y, pR) = EQ[DKL(pR ∥ p)], (7)

where DKL(· ∥ ·) denotes the Kullback-Leibler (KL) diver-
gence (Kullback & Leibler, 1951).

Even though the individual measures, i.e., entropy, condi-
tional entropy, and mutual information, have reasonable
interpretations in terms of quantifying the respective uncer-
tainty, which are particularly useful when applied to first-
order predictive distributions, a different picture emerges
for the above approach to second-order predictive distri-
butions. Some issues regarding the quantification of the
respective uncertainties have recently been intensively dis-
cussed by Wimmer et al. (2023), which we will take up
and elaborate on in the following section. Essentially, the
problem stems from TU in (4) and EU in (7) depending
on the second-order predictive distribution Q only through
their expectation p in (3).

2.2. Alternatives for the Default Measures

Recently, a variant of the above approach was pro-
posed, which attempts to overcome the issues mentioned
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(Schweighofer et al., 2023). For this purpose, the total un-
certainty in (4) is rewritten as

TU(Q) = EQ[CE(pR, p̃)],

where CE(·, ·) is the cross-entropy, i.e.,

CE(p, q) := −
∑

y∈Y
p(y) log2 q(y)

for p, q ∈ P(Y). Then, the alternative measure for total
uncertainty suggested by the authors is

TU(Q) = EQ,Q′ [CE(pR, p
′
R)], (8)

where Q′ is an i.i.d. copy of Q and p′R ∼ Q′. Using again
the decomposition in (6) and the resulting components as
measures for aleatoric and epistemic uncertainty, one ob-
tains the same aleatoric uncertainty measure as in (5), but
the epistemic uncertainty measure changes to

EU(Q) = EQ,Q′ [DKL(pR ∥ p′R)]. (9)

Thus, the proposed measures do not assume that the
Bayesian model average predictive distribution is equiva-
lent to the predictive distribution of the true data-generating
process.

3. Novel Uncertainty Measures
3.1. Axiomatic Foundations

The criticism of the previous approach raised by Wimmer
et al. (2023) is grounded in the postulation of criteria that
measures of total, aleatoric, and epistemic uncertainties
should naturally satisfy when used for quantifying predictive
uncertainty associated with second-order distributions. This
is similar to the literature on uncertainty quantification for
other methods of representing uncertainty, such as belief
functions or credal sets (Bronevich & Klir, 2008; Pal et al.,
1993; Sale et al., 2023a). In the following, we build on –
and extend – the criteria presented by Wimmer et al. (2023).

We begin by recalling some mathematical definitions (see
also Wimmer et al. (2023) and Sale et al. (2023b, p.4)).
Definition 3.1. Let X ∼ Q, X ′ ∼ Q′ be two random
vectors, where we have that Q,Q′ ∈ Q(Y). Denote by
σ(X) the σ-algebra generated by the random vector X .
Then we call Q′

(i) a mean-preserving spread of Q, iff X ′ d
= X + Z, for

some random vector Z with E[Z |σ(X)] = 0 almost
surely (a.s.) and maxk Var(Zk) > 0.

(ii) a spread-preserving location shift of Q, iff X ′ d
= X+z,

where z ̸= 0 is a constant.
(iii) a spread-preserving center-shift of Q, iff it is a spread-

preserving location shift with E[X ′] = λE[X] + (1−
λ)(1/K, . . . , 1/K)⊤ for some λ ∈ (0, 1).

For (ii) and (iii) it should be ensured that the shifted proba-
bility distribution Q′ remains valid within its support.

In the following, we let TU, AU, and EU denote, respec-
tively, measures Q(Y) → R≥0 of total, aleatoric, and epis-
temic uncertainties associated with a second-order uncer-
tainty representation Q ∈ Q(Y). If Y1 and Y2 are partitions
of Y and Q ∈ Q(Y), then we denote by Q| Yi

the marginal-
ized distribution on Yi. In the same spirit, we define TUYi

.

A0 TU, AU, and EU are non-negative.
A1 AU(δUnif(Y)) ≥ AU(δp) ≥ AU(δδy ) = 0 holds for

any y ∈ Y and any p ∈ P(Y) .
A2 EU(Q) ≥ EU(δp) = 0 holds for any Q ∈ Q(Y),

and any p ∈ P(Y). Further, for any Q ∈ Q(Y) with
AU(Q) = 0 we have EU(Q′) ≥ EU(Q), where Q′ is
such that Q′(δy) =

1
K for all y ∈ Y .

A3 AU(Q) ≤ TU(Q) and EU(Q) ≤ TU(Q) holds for
any Q ∈ Q(Y) .

A4 TU(Q) is maximal for Q being the continuous second-
order uniform distribution.

A5 If Q′ is a mean-preserving spread of Q, then EU(Q′) ≥
EU(Q) (weak version) or EU(Q′) > EU(Q) (strict
version).

A6 If Q′ is a spread-preserving location shift of Q, then
EU(Q′) = EU(Q).

A7 TUY(Q) ≤ TUY1
(Q| Y1

) + TUY2
(Q| Y2

).
A8 TUY(Q| Y1

⊗Q| Y2
) = TUY1

(Q| Y1
)+TUY2

(Q| Y2
),

where ⊗ denotes the product measure.

Before discussing each criterion3, we first start with a joint
and more in-depth discussion of A1 and A2, since they play
a central role in the discussion of most of the other criteria.

A1 and A2: Since we are interested in second-order dis-
tributions Q for the purpose of predictive uncertainty, it is
natural to speak of a state of absence of epistemic uncer-
tainty if Q corresponds to a point mass of second order. This
is reflected by the lower bound in A2 and is also a view-
point shared in the literature (Bengs et al., 2022; Wimmer
et al., 2023). Moreover, there is agreement in the literature
that (i) the uniform distribution of first order, i.e. Unif(Y),
represents the case of highest outcome uncertainty, (ii) a
degenerated first-order distribution, i.e., a Dirac measure
on a point y ∈ Y, represents the case of lowest outcome
uncertainty, and (iii) first-order distributions between these
extreme cases correspond to an outcome uncertainty that
lays somewhere “in-between”. In the absence of epistemic
uncertainty in the second-order distribution, this should be
reflected by the measure of aleatoric uncertainty (⇝ A1).

If the uncertainty is only epistemic in nature, that is, if ac-
cording to A1 only first-order Dirac measures remain as
possible candidates, then the epistemic uncertainty should

3A0 is a trivial property and therefore not discussed.
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be maximal when the ambiguity around the Diracs is max-
imal. This happens when the second-order distribution Q
is a discrete uniform distribution on the first-order Dirac
measures on the elements of Y (⇝ A2). Note that this view
differs from that of Wimmer et al. (2023), which demands
maximum epistemic and total uncertainties for the continu-
ous second-order uniform distribution. However, our criteria
are consistent w.r.t. the maximal total uncertainty (⇝ A4).

A3: As discussed in detail by Wimmer et al. (2023, Section
4.4), the aleatoric and epistemic uncertainties of a second-
order predictive distribution are closely intertwined. Since
total uncertainty subsumes both types of uncertainty simul-
taneously, it should be always an upper bound for AU and
EU, respectively.

A5 and A6: These properties are again inspired by Wimmer
et al. (2023). If two second-order distributions have the
same expectation but differ in their dispersion or spread,
the distribution with higher dispersion should be assigned
higher epistemic uncertainty (⇝ A5). Similarly, with equal
dispersion, epistemic uncertainty should be the same in all
cases. Thus, if Q and Q′ only differ in their respective
means, epistemic uncertainty should be the same in both
cases (⇝ A6).

A7 and A8: These criteria are inspired by those underlying
Shannon entropy. Specifically, these properties aim to en-
sure that the total uncertainty of a second-order predictive
distribution does not exceed the total uncertainties over all
its possible marginalizations with respect to the label space
Y . Thus, a subadditivity property should also hold here (⇝
A7), with equality achieved when the marginalizations are
independent (⇝ A8).

As shown by Wimmer et al. (2023), the measures for total,
aleatoric, and epistemic uncertainties in (4-7) fail to satisfy
A5 and A6 when it comes to second-order distributions.
For the alternative version of these measures suggested by
Schweighofer et al. (2023) it is not shown whether these
properties are fulfilled or not. However, total uncertainty in
(8) will not be maximal for Q being the continuous second-
order distribution, but for Q′ as in A2, so violating A4. In
addition, it is apparent from the definition that both TU and
EU in (8) and (9) can go to infinity. Thus, the measures are
not naturally restricted to an interpretable range.

3.2. Distance-based Measures

We now introduce a general framework for deriving suitable
measures for total, aleatoric, and epistemic uncertainties
associated with a second-order distribution Q ∈ Q(Y). The
main constituents of the framework are (i) a (suitable) dis-
tance d2(·, ·) on Q(Y) and (ii) specific reference sets of
second-order distributions representative for TU, AU or
EU, respectively, each lacking one or both types of un-

certainties. Roughly speaking, each uncertainty measure
(i.e.,TU, AU or EU) of Q is defined as the minimal distance
of Q to the corresponding reference set. This approach is
inspired by the field of optimal transport (Villani, 2009;
2021) and guided by the following question: “How much
do we need to move Q to arrive at the nearest second-order
distribution of the respective reference set for TU, AU or
EU?” While the distance function – according to which Q
moves in the space Q(Y) – is intentionally kept flexible in
our framework, the reference sets are fixed and should natu-
rally lead to the fulfillment of A0–A8, ideally for a broad
class of distances.

Total uncertainty. For the total uncertainty we suggest to
use all second-order Dirac measures on the set of first-order
Dirac measures as the reference set. More specifically, total
uncertainty is defined as

TU(Q) := miny∈Y d2(Q, δδy ). (10)

This choice of the reference set is natural as each element
in this reference set represents the case of an absolutely cer-
tain prediction/decision, i.e., there is neither aleatoric (first-
order) nor epistemic (second-order) uncertainty present.
Thus, the farther Q is from such an element, the farther
one is from making a decision without any kind of uncer-
tainty, which is reflected by (10).

Aleatoric uncertainty. The reference set for aleatoric un-
certainty should be the set of all mixtures of second-order
Dirac measures on first-order Dirac measures, i.e.,

∆δm =
{
δm ∈Q(Y) :

δm =
∑

y∈Y
λy · δδy ,

∑
y∈Y

λy = 1
}
.

If we agree on A0–A8, each element in this set has no
aleatoric uncertainty, so the assessment of a second-order
distribution Q is solely in terms of its amount of aleatoric un-
certainty. Accordingly, the measure of aleatoric uncertainty
is defined as

AU(Q) := minδm∈∆δm
d2(Q, δm). (11)

Epistemic uncertainty. In the same spirit as (11), we want
to assess Q solely in terms of its amount of epistemic uncer-
tainty. Again, by agreeing on A0–A8, we naturally obtain
as reference set the collection of all second-order Dirac
measures on the probability simplex, since these have no
epistemic uncertainty. If we denote the latter by ∆δp , we
obtain for the measure of epistemic uncertainty

EU(Q) := minδp∈∆δp
d2(Q, δp). (12)

It is worth noting that the entropy-based uncertainty mea-
sures in Section 2.1 can also be considered from the perspec-
tive of our distance-based framework. Indeed, the entropy
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of a (discrete) distribution is related to the negative KL di-
vergence (or KL distance) between the distribution and the
uniform distribution (on the respective domain) (Cover &
Thomas, 1999, Equation (2.107)). Thus, we could rewrite
(4), (5), and (7) as

TU(Q) = logK −DKL(EQ[pR] ∥Unif(Y)),

AU(Q) = logK − EQ[DKL(pR ∥Unif(Y))],

EU(Q) = EQ[DKL(pR ∥ p)].
(13)

With this representation, we see that the EU measure (7)
has similarities to ours. More specifically, it is obtained as
a special case of (12) with d2(·, ·) being the expected KL
divergence (for which the minimum is obtained by δp = p̄).
Note, however, that the expected KL divergence is not a
proper distance on Q(Y), wherefore (7) is not a special case
of our framework in a strict sense. Moreover, the interpre-
tation of the measures TU and AU is different from our
measures (10) and (11), as both are measuring similarity
(through the negated KL divergence) to the case of maxi-
mal uncertainty, namely the first-order uniform distribution,
instead of dissimilarity to a reference set of least uncertain
distributions.

The alternative version (8–9) suggested by Schweighofer
et al. (2023) does not have such an interpretation, except for
the aleatoric uncertainty which remains the same. This is
due to the lack of a reference set for TU and EU, so that
both measures are more interpretable as a measure of the
diversity of the second-order distribution. On a high level,
the approach also follows the idea of including the entire
characteristics of Q (first- and second-order) in the respec-
tive uncertainty assessment, instead of narrowing down to
the expected value p in (3) like the default case.

4. Wasserstein Instantiation
4.1. General Case

So far, we did not specify the distance d2 : Q(Y) ×
Q(Y) → R≥0 on Q(Y). In the following, we will mo-
tivate one specific choice, namely the Wasserstein distance
(or Kantorovich–Rubinstein metric). For our discussion, we
first recall the concept of coupling, a term that is central to
optimal transport theory (Villani, 2009, Chapter 1). Note
that the definition used in this paper is an adaptation of the
standard one, as our focus is on second-order distributions.
Definition 4.1. We call the probability measure γ on
(P(Y)×P(Y), σ(P(Y)×P(Y))) coupling of P,Q ∈
Q(Y) iff for all A,B ∈ σ(P(Y)) one has

γ[A× P(Y)] = Q[A], and γ[P(Y)×B] = P [B].

Thus, γ admits marginals P and Q.

Let (P(Y), d1) be a metric space, where Y is defined as
before, and d1 is a suitable metric on the space P(Y) (again,

equipped with a suitable σ-algebra). Then, for p ∈ [1,∞]
the (second-order) p-Wasserstein distance between two prob-
ability measures P,Q ∈ Q(Y) is defined as

Wp(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
P(Y)×P(Y)

d1(p, q)
p dγ(p, q)

) 1
p

(14)

where Γ(P,Q) denotes the set of all couplings between the
probability measures P and Q (see Definition 4.1).

The choice of this metric for our purposes is quite natural
based on its interpretation: The Wasserstein metric quanti-
fies how much mass has to be moved around and how far
in order to convert one distribution into another. This is
perfectly in line with our view for the uncertainty measures
in Section 3.2. In accordance with the literature, we will
be exclusively concerned with the case p = 1 and omit in
the following the subscript in Wp(·, ·). First, we show that
W(·, ·) is indeed a well-defined metric on Q(Y).
Lemma 4.2. The second-order Wasserstein distance W :
Q(Y)×Q(Y) → R≥0 is a well-defined metric on Q(Y).

Since in both (10) and (12) second-order Dirac measures are
involved, we show now that the optimal coupling between
a second-order distribution Q ∈ Q(Y) and a second-order
Dirac measure δp, where p ∈ P(Y), is trivially given by the
respective product measure. This simplifies corresponding
computations.
Proposition 4.3. For any second-order Dirac measure δp ∈
Q(Y), p ∈ P(Y), and any second-order distribution Q ∈
Q(Y), the optimal coupling between δp and Q is the product
measure γ = Q⊗ δp.

This coupling is also frequently referred to as trivial cou-
pling (Villani, 2009). Let us elaborate on the choice of the
metric d1 : P(Y)× P(Y) → R≥0 in (14). We will define
this as the Wasserstein metric between two first-order dis-
tributions induced by the trivial distance on the label space
Y . Note that this is not fixed by design, and without loss of
generality other metrics on the label space (depending on
the specific problem at hand) can be considered. The trivial
distance on Y is given for any y, y′ ∈ Y by

d0(y, y
′) = 1{y ̸=y′}. (15)

With the choice of the distance (15), for p, q ∈ P(Y) we
obtain the following induced4 first-order distance d1:

d1(p, q) = infγ∈Γ(p,q)

∫
Y ×Y

d0(y, y
′) dγ(y, y′)

= infγ∈Γ(p,q)

∑
y,y′∈Y
y ̸=y′

γ(y, y′)

4Using the first-order Wasserstein distance on P(Y)× P(Y).
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= infγ∈Γ(p,q)

{
1−

∑
y∈Y

γ(y, y)
}
. (16)

Regarding the optimal coupling in (16), we can show the
following.

Proposition 4.4. The coupling γ ∈ Γ(p, q) minimizing the
expression (16) is such that γ(y, y) = min{p(y), q(y)}.

Proposition 4.4 yields

d1(p, q) = 1−
∑

y∈Y
min{p(y), q(y)}

= 1
2

∑
y∈Y

max{p(y), q(y)} −min{p(y), q(y)}

= 1
2

∑
y∈Y

|p(y)− q(y)| =: 1
2∥p− q∥1.

In the context of usual probability measures, Proposition
4.4 is well-known in transportation theory, establishing a
connection between the Wasserstein metric and the total
variation distance. With this, the proposed uncertainty mea-
sures for Q ∈ Q(Y) in Section 3.2 simplify as follows.

Proposition 4.5. Using d1(·, ·) as above, the measures of
uncertainty in (10), (11), and (12) simplify to

TU(Q) = 1−maxy∈Y EQy [p(y)], (17)

AU(Q) = 1− EQ [maxy∈Y p(y)] , (18)

EU(Q) = 1
2 minq∈P(Y) Ep∼Q[∥p− q∥1]. (19)

Here, Qy denotes the marginal distribution associated with
Q ∈ Q(Y) for some y ∈ Y .

The following proposition elaborates on the ranges of the
proposed measures of uncertainty. Although the results
appear natural, they yield interesting findings from an un-
certainty quantification perspective.

Proposition 4.6. With the choice of d1(·, ·) as distance on
P(Y), we have that for all Q ∈ Q(Y) it holds that

i.) TU(Q) ≤ K−1
K , where the upper bound is reached

for Q′ ∈ Q(Y) such that EQ′ [p] = Unif(Y).
ii.) AU(Q) ≤ K−1

K , where the upper bound is reached
for Q′ = δUnif(Y).

iii.) EU(Q) ≤ K−1
K , where the upper bound is reached

for any Q′ ∈ Q(Y) such that Q′(δy) = 1
K , for all

y ∈ Y .

The property from Proposition 4.6 is desirable for two rea-
sons. On the one hand, the value range grows with increas-
ing complexity of the classification problem in terms of
the number of labels K. This is similar to the entropy, see
(13). On the other hand, the value ranges are “normalizing
themselves” with increasing complexity. More precisely,
for K → ∞, the maximum of the uncertainty measures con-
verges (with respect to the standard Euclidean metric on R)

to 1. Needless to say, the upper bounds of the value ranges
can also be used to normalize the uncertainty measures a
priori by multiplying them with K/(K − 1).

A direct consequence of Proposition 4.6 is that maximum
epistemic uncertainty can be achieved only when there is no
aleatoric uncertainty and vice versa.

Corollary 4.7. For any Q ∈ Q(Y), it holds that EU(Q) =
K

K−1 if and only if AU(Q) = 0.

Finally, we show that the proposed uncertainty measures
with the Wasserstein distance instantiations fulfill the criteria
specified in Section 3.1.

Theorem 4.8. Uncertainty measures (10-12) with the
Wasserstein distance instantiation satisfy Axioms A0 – A8.

4.2. Dirichlet Distribution

Owing to its key role as a conjugate prior for a categorical
distribution, the Dirichlet distribution is arguably the most
important family of parameterized (second-order) distribu-
tions employed in various areas of theoretical and applied
research. In Bayesian inference and Evidential Deep Learn-
ing, the Dirichlet distribution has become the gold standard.
Accordingly, in this section we focus on the computation
of the proposed uncertainty measures with the Wasserstein
distance initialization for the case of Dirichlet distributions.
We start with a brief introduction to the Dirichlet distribu-
tion and identify without loss of generality each element in
the label space Y with an integer, i.e., Y = {1, 2, . . . ,K}.

Let π denote a K-dimensional probability vector, and as-
sume it is distributed according to a Dirichlet distribution,
that is, π ∼ Dir(α). The Dirichlet distribution Dir(α) is
supported on the (K − 1)-dimensional unit simplex, and it
is parameterized by α = (a1, . . . , aK)⊤, a K-dimensional
vector whose entries are such that αj > 0, for all j ∈ Y . Its
probability density function (pdf) is given by

1
B(α) ·

∏K
j=1 π

αj−1
j ,

where B(·) denotes the multivariate Beta function. We
can interpret the j-th entry αj of α as pseudo-counts: αj

represents the virtual observations that we have for label j.
It captures the agent’s (i.e., machine learning algorithm’s)
knowledge around label j that comes e.g. from previous or
similar experiments. The expected value of π ∼ Dir(α) is
given by E(πj) = αj/

∑
j αj , j ∈ Y , and it expresses the

belief that j is the “true label”. This is due to the fact that
the marginals πj of the Dirichlet distribution are distributed
according to a Beta distribution with parameters αj and
α0 − αj , with α0 =

∑K
i=1 αi.

Dirichlet distributions are second-order distributions since
their support is the (K−1)-dimensional simplex, i.e. P(Y).
That is, they can be thought of as distributions over the

7
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actual probability measures that generated the data.

In the following, we assume that our current probabilistic
knowledge is given by Q ∼ Dir(α), so that the marginal
distributions are Beta distributions, i.e., Qi ∼ Beta(αi, α0−
αi) with α0 =

∑K
j=1 αj for each i ∈ Y . Using the closed-

form for the expectation of the marginals, we obtain

TU(Q) = 1−maxy∈Y
αy

α0
(20)

for the total uncertainty in (17). Unfortunately, it is difficult
to derive a closed form for the expression in (18). However,
the expected value is easily approachable through Monte
Carlo simulations.

Finally, for EU in (19), we are dealing with a constrained op-
timization problem, which, however, has appealing proper-
ties. Indeed, given a Dirichlet distribution, we seek to solve
the following constraint optimization problem for (19):

minimize
q∈(0,1)K

h(q) := 1
2

∑K

i=1
Epi∼Qi [ |pi − qi| ] (21)

subject to c(q) :=
∑K

i=1
qi − 1 = 0 (22)

By further evaluation of the sum of expectations involved
in (21) and using the method of Lagrange multipliers, we
obtain the following result.
Proposition 4.9. The convex constrained optimization prob-
lem (21–22) has a unique solution.

Accordingly, EU for a given Dirichlet distribution can be
computed quickly using a common optimization method.

Figure 2 displays, for | Y | = 3, some exemplary Dirichlet
distributions with different α parameters over a 2-simplex,
along with their corresponding normalized5 values for TU,
AU, and EU in (10-12). We observe that the desired proper-
ties are captured as follows: First, AU and respectively EU
is always smaller or equal to TU. Moreover, TU is maximal
for the uniform distribution, as shown in Fig. 2a. TU also
attains its maximum under other parameter conditions, but
with varying aleatoric and epistemic contributions: This can
occur with a high AU value, stemming from a high concen-
tration around the first-order uniform distribution (see Fig.
2b, c). Alternatively, a high EU value can drive this, due
to a strong similarity to the discrete uniform distribution
on the first-order Dirac measures, namely the vertices (see
Fig. 2f). Additionally, we observe that EU strictly increases
for mean-preserving spreads (Fig. 2b, c). Fig. 2e depicts a
Dirichlet distribution which is quite confident about one of
the actual outcomes. This is reflected accordingly in low val-
ues of the uncertainty measures. These observations based
on Dirichlet distributions align with our theoretical analysis
of the proposed distance-based uncertainty measures.

5The values are normalized by multiplying them with K/(K−
1), see discussion after Proposition 4.6.

Figure 2: Dirichlet distributions with different choices of α
with normalized values for TU,AU, and EU.

Finally, we also consider the same exemplary second-order
distributions Q used by Wimmer et al. (2023) to illustrate
the issues of the entropy-based uncertainty measure (Figure
3 in Appendix B). In line with our theoretical results, our
Wasserstein metric-induced measures behave as desired with
respect to the axioms.

5. Conclusion
Recent criticisms have pointed to limitations in widely ac-
cepted uncertainty measures for second-order distributions,
primarily due to certain unfavorable theoretical properties.
Responding to this criticism, we presented a set of formal
criteria that any uncertainty measure should fulfill. Addi-
tionally, we introduced a distance-based approach to obtain
uncertainty measures for total, aleatoric, and epistemic un-
certainties tailored towards obeying the criteria. On the
basis of the Wasserstein metric, we demonstrated that this
approach is fruitful and practical, especially for the often-
used Dirichlet distributions.

The motivation for adopting a distance-based method for
uncertainty quantification stems from the intuitive and ge-
ometric interpretation of uncertainty in probability spaces.
Traditionally, uncertainty measures such as entropy-based

8
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ones provide insight into the spread or unpredictability of
a distribution. However, they do not always capture sub-
tleties of second-order distributions effectively. We address
this gap by leveraging a method that quantifies the distance
between probabilistic beliefs (represented by second-order
distributions). Our approach also closely aligns with a sta-
tistical viewpoint: In statistics it is quite natural to assess
the discrepancy between probability distributions using dis-
tances. Such distances are well-established for (first-order)
probability distributions, with prominent examples includ-
ing the Wasserstein distance and the Kullback-Leibler diver-
gence, among others.

Our results open several venues for future work. First, it
would be interesting to instantiate the proposed uncertainty
measures with metrics on probability measures other than
the Wasserstein metric and verify that the proposed criteria
are met. In that respect, it would be interesting to work out
general properties that a metric must satisfy in order for the
criteria to be met. Although the focus of our work is on
the theoretical aspects of uncertainty measures, a systematic
experimental comparison in the context of evidential deep
learning would be intriguing.
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A. Proofs
Proof of Lemma 4.2

Since Y = {y1, . . . , yK} is finite, this means that a probability measure p ∈ P(Y) can be seen as a K-dimensional
probability vector. In symbols, p ≃ (p(y1), . . . , p(yK))⊤. The latter is a vector belonging to the (K − 1)-unit simplex
∆K−1. As a consequence, a second-order distribution on P(Y) can be seen as a first-order distribution on the (K − 1)-unit
simplex ∆K−1. In symbols, Q(Y) ≃ P(∆K−1). This, together with the first-order Wasserstein distance being a well-
defined metric on P(Y) (Villani, 2009; 2021), allows us to conclude that the second-order Wasserstein distance is itself a
well-defined metric.

Proof of Proposition 4.3

Let δp ∈ Q(Y) be a second-order Dirac measure, where p ∈ P(Y), and Q ∈ Q(Y) a second-order distribution. We show
that any coupling γ ∈ (P(Y)×P(Y), σ(P(Y)×P(Y))) has to be necessarily given by γ = Q⊗ δp.

Thus, for any A,B ∈ σ(P(Y)) we show that

γ(A,B) =

{
Q(A), if p ∈ B,

0, else.

Let p ∈ B, then we have γ(A × Bc) = 0. Hence, this implies γ(A × B) = γ(A × P(Y)) − γ(A × Bc) = Q(A). This
shows the first case. Assume p /∈ B, then γ(A×B) ≤ γ(P(Y)×B) = δp(B) = 0, showing the second case.

Proof of Proposition 4.4

Let p, q ∈ P(Y). Note that γ(y, y) = min{p(y), q(y)} is trivially a coupling, hence γ ∈ Γ(p, q). For the corre-
sponding marginals we have p(y) =

∑
y′∈Y γ(y, y′) and q(y) =

∑
y′∈Y γ(y′, y), thus γ(y, y) ≤ min{p(y), q(y)}.

This implies directly that min{p(y), q(y)} maximizes
∑

y∈Y γ(y, y), and therefore minimizes the distance d1(p, q) =

infγ∈Γ(p,q)

{
1−

∑
y∈Y γ(y, y)

}
.

Proof of Proposition 4.5

Let the distance on P(Y) be given by d1(p, q) =
1
2∥p− q∥1, where p, q ∈ P(Y). Now, for any Q ∈ Q(Y) the proposed

uncertainty measures simplify as follows:

TU(Q) = min
y∈Y

W(Q, δδy ) = min
y∈Y

Ep∼Q

[
1

2
∥p− δy∥1

]
(23)

= min
y∈Y

Ep∼Q [1− p(y)] (24)

= 1−max
y∈Y

Ep∼Qy
[p(y)]. (25)

Note that for (24) we used the fact that 1
2∥p− δy∥1 = 1

2 (1− p(y) +
∑

y′ ̸=y p(y
′)) = 1− p(y).

Further, we have

AU(Q) = min
δm∈∆δm

W(Q, δm) (26)

= min
δm∈∆δm

inf
γ∈Γ(Q,δm)

∫
P(Y)×P(Y)

d1(p, q) dγ(p, q) (27)

= min
δm∈∆δm

inf
γ∈Γ(Q,δm)

∫
P(Y)×∆δy

1− p(y) dγ(p, q) (28)

≥
∫
P(Y)

1−max
y∈Y

p(y) dQ(p) (29)
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= Ep∼Q[1−max
y

p(y)], (30)

where we used y = argmaxy′∈Y q(y′). Equality in (29) is reached for the Dirac mixture with δ∗m ∈ ∆δm with δ∗m(δy) =
Q(y = argmaxy′∈Y p(y′)). Thus, we have the following:

AU(Q) = inf
γ∈Γ(Q,δ∗m)

∫
P(Y)×∆δy

1−
∑
y∈Y

p(y)q(y) dγ(p, q)

= inf
γ∈Γ(Q,δ∗m)

∫
P(Y)

∑
q∈∆δy

{1−
∑
y∈Y

p(y)q(y)}γ(q|p) dQ(p)

= inf
γ∈Γ(Q,δ∗m)

∫
P(Y)

∑
y∈Y

{1− p(y)}γ(δy|p) dQ(p)

=

∫
P(Y)

1−max
y∈Y

p(y) dQ(p).

The conditional probability measure γ(δy|p) = 1{y=argmaxy′∈Y p(y′)} is valid, since

δ∗m(δy) =

∫
P(Y)

γ(δy|p) dQ(p) = Q(y = argmax
y′∈Y

p(y′)).

Finally, we also have the following:

EU(Q) = min
δp∈∆δp

W(Q, δp)

= min
δp∈∆δp

∫
P(Y)

∫
P(Y)

d1(p, q) dδp(p) dQ(q)

=
1

2
min

p∈P(Y)

∫
P(Y)

∥q − p∥1 dQ(q)

=
1

2
min

p∈P(Y)
Eq∼Q[∥q − p∥1].

This concludes the proof.

Proof of Proposition 4.6

Let Q ∈ Q(Y), then we have:

i.) TU(Q) = 1−maxy∈Y EQ[p(y)] ≤ 1− 1
K = K−1

K , where the inequality is a direct consequence of
∑

y∈Y p(y) = 1
for any p ∈ P(Y) which implies that maxy∈Y p(y) ≥ 1/K. It is clear that this upper bound is reached for Q′ ∈ Q(Y)
such that EQ′ [p] = Unif(Y).

ii.) AU(Q) = 1 − EQ[maxy∈Y p(y)] ≤ 1 − 1
K = K−1

K . Clearly the upper bound is reached for Q′ ∈ Q(Y) such that
Q′ = δUnif(Y).

iii.) For EU(Q) we obtain

EU(Q) =
1

2
min

p∈P(Y)
Eq∼Q[∥q − p∥1] (31)

≤ 1

2
Eq∼Q[∥q − EQ[p]∥1] (32)

≤ 1

2
Eq∼δm [∥q − EQ[p]∥1] (33)
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=
∑
y∈Y

EQ[p(y)](1− EQ[p(y)]) (34)

= 1−
∑
y∈Y

EQ[p(y)]
2 (35)

≤ 1− 1

K
=

K − 1

K
, (36)

where (33) follows from the Dirac mixture δm ∈ ∆δm being a mean-preserving spread of Q. Inequality (36) is a
consequence of the Cauchy-Schwarz inequality and the linearity of expectation. The upper bound is reached for Q′,
which is such that Q′(δy) =

1
K for all y ∈ Y .

This concludes the proof.

Proof of Corollary 4.7

Corollary 4.7 is an immediate consequence of Proposition 4.6.

Proof of Theorem 4.8

We show that the Wasserstein distance instantiated measures (10) - (12) satisfy Axioms A0 - A8 discussed in Section 3.1.

A0: Since the proposed measures are distance-based this property holds trivially true.

A1: Let p ∈ P(Y) and y ∈ Y , then we have

AU(δUnif(Y)) = 1−max
y∈Y

Unif(Y)(y)

=
K − 1

K
≥ 1−max

y∈Y
p(y)

= AU(δp)

≥ 0

= 1−max
y′∈Y

δy(y
′)

= AU(δδy ).

The first inequality is a direct consequence of Proposition 4.6.

A2: For p ∈ P(Y) and Q ∈ Q(Y) we have immediately by definition EU(Q) ≥ EU(δp) = 0. The other inequality in this
axiom follows directly from Proposition 4.6 iii.).

A3: Since
⋃

y∈Y{δδy} ⊂ ∆δp , it follows EU(Q) = minδp∈∆δp
W(Q, δp) ≤ miny∈Y W(Q, δδy ) = TU(Q), for any Q ∈

Q(Y). Similarly, since
⋃

y∈Y{δδy} ⊂ ∆δm we obtain AU(Q) = minδp∈∆δm
W(Q, δm) ≤ miny∈Y W(Q, δδy ) =

TU(Q), for any Q ∈ Q(Y).

A4: This follows from Proposition 4.6, since we have EQ[p] = Unif(Y) for Q being the continuous second-order uniform
distribution.

A5: Further, let Q′ ∈ Q(Y) be a mean-preserving spread of Q ∈ Q(Y), i.e., let X ∼ Q,X ′ ∼ Q′ be two random variables
such that X ′ d

= X + Z, for some random variable Z with E[Z|X = x] = 0, for all x in the support of X . Then, we
have

EU(Q′) =
1

2
min

p∈P(Y)
E[∥(X + Z)− p∥1]

=
1

2
min

p∈P(Y)

K∑
i=1

E(|Xi + Zi − pi|),
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where X1, . . . , XK are the marginals of X and Z1, . . . , ZK the marginals of Z, respectively. From this, we further
infer that for any p = (p1, . . . , pk) ∈ P(Y) and any x in the support of X that

EU(Q′) ≥ 1

2
min

p∈P(Y)

K∑
i=1

E(|Xi − pi|+ Zi(1Xi>pi − 1Xi<pi)

=
1

2
min

p∈P(Y)

K∑
i=1

EQi
(EZi

(|Xi − pi|+ Zi(1Xi>pi
− 1Xi<pi

) |Xi = xi))

=
1

2
min

p∈P(Y)

K∑
i=1

EQi
(|Xi − pi|+ E(Zi |Xi = xi)(1Xi>pi

− 1Xi<pi
))

=
1

2
min

p∈P(Y)

K∑
i=1

EQi
(|Xi − pi|)

= EU(Q).

A6: Let Q be a second-order distribution with mean p ∈ P(Y). Assume that Q′ ∈ Q(Y) is a spread-preserving shift of Q,
shifted along the vector z with

∑K
i=1 zi = 0. Then, we obtain

EU(Q′) =
1

2
min

(p+z)∈P(Y)
Eq∼Q′ [∥q − (p+ z)∥1]

=
1

2
min

(p+z)∈P(Y)
Eq∼Q[∥(q + z)− (p+ z)∥1]

=
1

2
min

p∈P(Y)
Eq∼Q[∥q − p∥1]

= EU(Q).

A7: Let Y1 and Y2 be partitions of Y and Q ∈ Q(Y). Further, denote by Q| Yi
the marginalized distribution on Yi. First,

we observe that EQ[p] = (EQ| Y1
[p],EQ| Y2

[p])⊤. This observations yields

TU(Q) = 1−max
y∈Y

Ep∼Qy
[p(y)]

= 1−max

(
max
y1∈Y1

EQ| Y1
[p(y1)] , max

y2∈Y2

EQ| Y2
[p(y2)]

)
.

From this, we immediately see that

TU(Q) ≤ 1− max
y1∈Y1

EQ| Y1
[p(y1)] = TUY1

(Q| Y1
)

as well as

TU(Q) ≤ 1− max
y2∈Y2

EQ| Y2
[p(y2)] = TUY2

(Q| Y2
).

This implies TU(Q) ≤ TUY1
(Q| Y1

) + TUY2
(Q| Y2

) as asserted.

A8: This property follows immediately, since TU only depends on the mean of the respective second-order distribution
Q ∈ Q(Y).

This concludes the proof.
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Proof of Proposition 4.9

Assume that Q ∈ Q(Y) is given by a Dirichlet distribution Dir(α), so that the marginal distributions are Beta distributions,
i.e., Qi ∼ Beta(αi, α0 − αi) with α0 =

∑K
j=1 αj for each i ∈ Y . Hence, we seek to solve the following constraint

optimization problem:

minimize
q∈(0,1)K

h(q) :=
1

2

∑K

i=1
Epi∼Qi

[ |pi − qi| ] (37)

subject to c(q) :=
∑K

i=1
qi − 1 = 0 (38)

Further evaluation of the terms in the objective function yields:

EQi
(|pi − qi|) =

∫ 1

0

|pi − qi|f(pi) dpi

=

∫ 1

qi

(pi − qi)f(pi) dpi +

∫ qi

0

(qi − pi)f(pi) dpi

=

∫ 1

qi

pif(pi) dpi −
∫ qi

0

pif(pi) dpi + qi

∫ qi

0

f(pi) dpi − qi

∫ 1

pi

f(pi) dpi

=

∫ 1

qi

pif(pi) dpi −
∫ qi

0

pif(pi) dpi + qiF (qi)− qi(1− F (qi))

=

∫ 1

qi

pif(pi) dpi −
∫ qi

0

pif(pi) dpi + qi(2F (qi)− 1).

It is easy to evaluate the involved integrals, since we know∫ b

a

pif(pi) dpi =
1

B(α, β)

∫ b

a

pαi (1− pi)
β−1 dpi

=
B(α+ 1, β)

B(α, β)

∫ b

a

1

B(α+ 1, β)
p
(α+1)−1
i (1− pi)

β−1 dpi

=
α

α+ β
Pα+1,β(a ≤ pi ≤ b).

Together, this yields

EU(Q) =
1

2
EQ(∥p− q∥1)

=
1

2

K∑
i=1

EQi(|pi − qi|)

=
1

2

K∑
i=1

[
αi

α0
(1− 2Fαi+1,α0

(qi)) + qi(2Fαi,α0
(qi)− 1)

]
.

Further, the Lagrangian function is given by

L(q, λ) = h(q) + λ c(q), (39)

where λ ∈ R. The extreme points of the Lagrangian (39) are the solutions of the equations

∇h(q) = −λ∇c(q) (40)
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i=1
qi − 1 = 0. (41)

The solution to (40) is given by

Fαi,α0
(qi)−

1

2
= −λ ∀i ∈ {1, . . . ,K}

⇔ qi = F−1
αi,α0

(
1

2
− λ) ∀i ∈ {1, . . . ,K}.

Since the cdf is strictly monotone increasing, there can be no more than one solution under the constraint (38). The quantile
function is continuous and for λ → 0.5 it becomes 0 and for λ → −0.5 it goes towards 1, hence there must be exactly one
λ ∈ R such that both equations (37) and (38) are fulfilled. Clearly, the bordered Hessian is given by:

H(q, λ) =


0 1 . . . 1
1 fα1,α0(q1) . . . 0
...

...
. . .

...
1 0 . . . fαK ,α0

(qK)

 (42)

Consequently, for the determinant of the bordered Hessian we get

det(H(q, λ)) = −
∏

i fαi,α0(qi)∑
i fαi,α0(qi)

.

Since there is only one solution and the determinant of the bordered Hessian is negative, we conclude that the minimum is
unique. Thus, the constraint optimization problem has a unique solution.

Computational aspects

Here, we briefly discuss the computational aspects of the proposed uncertainty measures. Notably, the computational
challenges typically associated with traditional optimal transport problems do not apply in this context because:

• TU, Eq. (17): All it takes here is to calculate the mean of the Dirichlet Distribution, which has an analytical solution.

• AU, Eq. (18): The expected value of the maximum of a Dirichlet distribution does not have an analytical solution.
However, it can be easily estimated using Monte Carlo samples, which is computationally efficient and straightforward.

• EU, Eq. (19): To solve Eqs. (40) and (41) of the optimization problem, λ must lie between −1/2 and 1/2. By solving
qi for all i ∈ {1, . . . ,K} in terms of λ, we observe that (41) is strictly monotonically decreasing in λ. Therefore,
starting with λ = 0, we can iteratively evaluate the left side of Eq. (41) to determine whether it is greater or less than 1,
thereby halving the search space for λ. In the worst case, it will take only 30 iterations to get λ within 10−10 of its true
value. We can terminate the procedure when (41) is sufficiently close to 0.

In conclusion, although we cannot speak for other instantiations of our proposed uncertainty measures, the specific
instantiation we present does not exhibit any computational limitations.
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B. Numerical Results
In the following, we present additional numerical results.6 The examples we use were recently employed in Wimmer
et al. (2023) to illustrate some theoretical shortcomings of the entropy-based uncertainty measures discussed in Section
2.1. In Figure 3, we calculate and compare entropy-based total, aleatoric, and epistemic uncertainty measures with the
distance-based measures proposed in this paper. In accordance with our theoretical findings, the measures derived from our
Wasserstein metric align well with the axioms, behaving as anticipated. Comparing (b) and (d), we see that both types of
measures increase in epistemic uncertainty (in accordance to the mean-preserving spread property A5). The comparison
between (d) and (e) reveals that the entropy-based approach violates the spread-preserving location shift property (i.e., A6)
due to an increased epistemic uncertainty, while the distance-based approach preserves the amount of epistemic uncertainty.

(a) Unif[0, 1] (b) N (0.5, 0.1) (c) Beta(8, 2)

(d) Unif[0.3, 0.7] (e) Unif[0.6, 1.0] (f) 1
2
δ0 +

1
2
δ1

Figure 3: Second-order distributions over the parameter θ of a (first-order) Bernoulli distribution with the corresponding
(entropy-based / distance-based) uncertainty measures.

6The code to replicate our numerical results is available in a public repository (https://github.com/YSale/uq-distance).
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