
Predictive Coding beyond Correlations

Tommaso Salvatori 1 2 Luca Pinchetti 3 Amine M’Charrak 3 Beren Millidge 4 5 Thomas Lukasiewicz 2 3

Abstract
Recently, there has been extensive research on the
capabilities of biologically plausible algorithms.
In this work, we show how one of such algorithms,
called predictive coding, is able to perform causal
inference tasks. First, we show how a simple
change in the inference process of predictive cod-
ing enables to compute interventions without the
need to mutilate or redefine a causal graph. Then,
we explore applications in cases where the graph
is unknown, and has to be inferred from obser-
vational data. Empirically, we show how such
findings can be used to improve the performance
of predictive coding in image classification tasks,
and conclude that such models are able to perform
simple end-to-end causal inference tasks.

1. Introduction
Predictive coding (PC) is an influential theory of learning
and perception in the brain, with roots in Bayesian infer-
ence and signal compression (Friston, 2018). Conventional
literature primarily deals with hierarchical models relating
top-down predictions to internal states and external stim-
uli (Rao & Ballard, 1999). A recent work went beyond
this, and showed how PC can be used to perform inference
and learning on structures with any topology, called PC
graphs (Salvatori et al., 2022a). Such models are able to
perform both discriminative and generative tasks by comput-
ing conditional probabilities (i.e., correlations) on Bayesian
networks. However, their performance on discriminative
tasks are not comparable to the ones obtained by purely hier-
archical models. In this work, we first show how PC graphs
have the capabilities to go beyond the computation of corre-
lations, and model interventions and counterfactuals (Pearl,

1VERSES Research Lab, Los Angeles, CA 90016, USA
2Institute of Logic and Computation, Vienna University of Tech-
nology, Austria 3Department of Computer Science, University of
Oxford, UK 4MRC Brain Network Dynamics Unit, University of
Oxford, UK 5Zyphra, Palo Calto, CA, USA. Correspondence to:
Tommaso Salvatori <tommaso.salvatori@verses.ai>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Socio
economic

Status

Education
Level

Income
Level

Intelligence

Correlation Intervention

Figure 1. Example socio-economic graph and its structure after
conditioning and intervening on education level.

2009). Then, we show how such techniques from causal
inference can allow PC graphs reach a performance similar
to those of hierarchical models on image classification tasks.

One of the main objects of study in causal inference are inter-
ventions (or do-operations), usually performed on Bayesian
networks by computing a conditional probability on a muti-
lated graph (see Fig. 1). In Bayesian networks, the process
of mutilating the graph can be computationally expensive. A
second object of study is structure learning, where the goal
is to infer the structure of a graph underlying observational
data (Zheng et al., 2018). The goals of this work are (i)
to show both how it is possible to model interventions and
perform structure learning in a biologically plausible and
efficient fashion, and (ii) to use the developed techniques
to improve the performance of PC graphs. Our experiments
can then be divided into two categories: the first where we
use PC to tackle benchmarks in the causal inference liter-
ature, and the second where we show how interventional
queries and structure learning techniques can be used im-
prove the performance of PC graphs in image classification
tasks. Our contributions are briefly as follows:

• We introduce interventional queries, which allow to
compute interventions on PC graphs efficiently, and
without the need of mutilating the graph. Empirically,
we test our claims on PC-based structural causal mod-
els, and show that the performance is comparable to
that obtained by standard baselines. We then show how
interventionl queries can be used to improve the test
accuracy of PC graphs on MNIST and FashionMNIST.

• We show how PC graphs can perform structure learn-
ing from observational data. Empirically, we test two
techniques that can be used to learn such a structure:
using an acyclic prior (Zheng et al., 2018), or negative
examples, the second being a novel contribution. We
then show how such techniques further improve the
performance of PC graphs on classification tasks.

1

Predictive Coding beyond Correlations

2. Bayesian Networks and Predictive Coding
Assume a set of N random variables X = {x1, . . . ,xN},
with xi ∈ Rd. Relations among variables are represented by
a directed graph G = (V,E), also called Bayesian network
(BN). Every vertex vi ∈V represents a random variable xi,
and every edge (i, j) a causal relation from xi to xj . Such
a BN defines the joint distribution of the system:

p(x1, . . . ,xN) = ΠN
i=1 p(xi|par(xi)),

with par(xi) being the parent nodes of xi. As an example,
Fig. 1 shows a BN with joint probability

p(x1,x2,x3,x4) = p(x1)p(x2)p(x3 | x1,x2)p(x4 | x2,x3).

Given the graph on the left, conditional probabilities are
computed using the full graph structure. Performing an
intervention on a specific variable (x3 in the figure), on the
other hand, requires the computation of a mutilated graph
first, obtained by removing all the edges that point to v3. In
our example, this reduces to a BN with joint probability

p(x1,x2,x3,x4) = p(x1)p(x2)p(x4 | x2,x3).

More formally, consider the partition X = Xdata ∪ Xunk,
where the first represents the subset of observed variables
Sdata, while the second represents our random variables that
we want to infer. In the example, we would have Xunk =
(x1,x2,x4), and Xdata = x3. Our goal is then to infer the
posterior distribution

p(Xunk | Xdata = Sdata).

Such a computation is, however, often intractable. A stan-
dard approach to approximate this quantity, is to use vari-
ational inference with an approximate posterior q(Xunk)
restricted to belong to a family of distributions of simpler
form than the true posterior. Then, the goal is now to mini-
mize a KL-divergence between the two distributions. Since
the true posterior is not known, one solution is to instead
minimize an upper bound on this KL divergence, known as
the variational free energy:

F = Eq[log(q(Xunk))− log(p(Xunk,Xdata))]. (1)

Assumptions. We consider each edge (i, j) to be a lin-
ear map W(i,j) composed with a non-linearity f(x) (e.g.,
ReLU). This defines how every parent node influences its
child nodes. We further set the probability distribution of
every node to be a multivariate Gaussian with unitary co-
variance matrix. In detail, each variable xi is sampled from
a Gaussian distribution of mean ui and variance 1, where 1

ui =
∑

k∈par(i) W
(k,i)f(xk). (2)

1Every result naturally generalizes to the case of Gaussian
distributions with arbitrary covariance matrices Σ.

The assumption we make on the family of distributions of
the approximate posterior are (i) mean field approximation,
and (ii) Laplace approximation. The first assumes condi-
tional independence among all variables, while the second
assumes they are Gaussians. This is standard in the predic-
tive coding literature, as conditional independence allows
every variable to be updated using local information only,
while Laplace approximations allow the variational free en-
ergy to be a quadratic form (Salvatori et al., 2023; Friston,
2003; Friston et al., 2007). From such assumptions, it is
possible to derive the following variational free energy:

F =
∑

i ∥xi − ui∥2 + ln(2π). (3)

Such equation is, up to an irrelevant constant, the standard
energy function of predictive coding networks, and is what
will be used in the remaining of this work to define in-
ference (update of the random variables x) and learning
(update of the parameters W). For the exact computations
that demonstrate such result, we refer to the original work,
and to a recent review (Friston, 2003; Millidge et al., 2020).
When performing causal inference experiments, we will
always assume no hidden confounders, and when perform-
ing structure learning, we always aim to learn the causal
dependencies up to Markov equivalence classes.

2.1. Predictive Coding Graphs

As the energy function defined in Eq. (3) is a variational
free energy, conditional probabilities can be approximated
using PC graphs, a recently introduced flexible, and biologi-
cally plausible model (Salvatori et al., 2022a). Each vertex
vi of a PC graph encodes several quantities: the main one
is the value of its activity, which changes over time, and
represents a random variable. We refer to it as a value node
xi,t. This is a parameter of the model, which is updated
via gradient descent during inference. Additionally, each
vertex has a prediction ui,t of its value node, based on in-
put from value nodes of other vertices, as detailed in Eq. 2.
The error of every vertex at every time step t is then given
by the difference between its value node and its prediction,
i.e., ei,t = xi,t − ui,t. This local definition of error allows
PC graphs to learn using only local information. Here, we
review the inference phase of PC, which computes correla-
tions among data and results in an approximate Bayesian
posterior over all nodes. It is also possible to train these
models by updating the parameters W via stochastic gradi-
ent descent over a set of examples. For a detailed description
of how learning on PC graphs work, see Appendix A.

Conditional Query. Assume a data point Sdata = {si1 ,
. . . , sin}. Then, the value nodes xi1 , . . . ,xin of the corre-
sponding vertices are fixed to the entries Sdata for every
t, while the remaining ones are initialized to some random
values, and continuously updated until convergence via gra-
dient descent to minimize the energy function, following

2

Predictive Coding beyond Correlations

Unconstrained value node Error node Constrained value node Prediction information Error information

(a) Predictive coding graph (b) Conditioning

Irrelevant arrow

(c) Intervention

Figure 2. (a) PC graph with the same causal structure of that in Fig. 1. Every vertex vi is associated with a value node xi, and an error
node ei. The arrows show the influence of every node to the others: the prediction information follows the direction of the arrows of the
original graph, while the error information goes backwards. (b) Example of conditioning in PC graphs. We fix the value of x3, making
the effect of all the arrows entering v3 irrelevant, as x3 is fixed and hence ignores incoming information. This, however, does not apply to
error information going out from v3, which keeps influencing x1 and x2; this is solved in (c) Example of an intervention in PC graphs.
According to Pearl’s causal theory, the do-operator on a node (v3 in this case) removes the incoming edges, to avoid the newly introduced
information to flow backwards and influence the parent nodes. As in PC, the only information flowing opposite to the causal relations is
the error information, an intervention can be performed by removing (or setting to zero) the error node.

the rule ∆xi,t ∝ ∂Ft/∂xi,t. The unconstrained sensory
vertices will converge to a minimum of the energy given the
fixed vertices, thus computing the conditional expectation
of the latent vertices given the observed stimulus. Formally,
the inference step estimates the conditional expectation

E(XT | ∀t : (xi1,t, . . . ,xin,t) = (si1 , . . . , sin)), (4)

where XT is the matrix of all value nodes at convergence.
This computes the correlation among different parameters
of the graph. In the next section, we show how to model
interventions in PC graphs. For a neural implementation of
a PC graph, see Fig. 2a, and for the neural implementation
of a conditional query, where the value of a specific node is
fixed to a data point, see Fig. 2b.

3. Causal Inference via Predictive Coding
The main goal of causal inference is to be able to simulate in-
terventions in a process, and study the counterfactual effects
of such interventions. In statistics, interventions are denoted
by the do(−) operator (Pearl, 1995; 2009). The value of
a random variable xi when performing an intervention on
a different variable xj is denoted by p(xi | do(xj = s)).
This is equivalent to the question What would xi be in this
environment if we set xj = s? In the case of the example
in Fig. 1, the question could be What would the expected
income level be, if we change the education level of this
person? In fact, while ‘education’ and ‘income level’ may
be correlated by a hidden confounder (intelligence, in this
case), an intervention removes this correlation by changing
the education level of a randomly selected individual, re-
gardless of level of intelligence. To perform an intervention
on a Bayesian network, we first have to act on the structure
of the graph, and then query the model by conditioning on
the new graph, as shown in Fig. 1. Assume that we have a
PC graph G, and we want to know the value of xi after per-

forming an intervention on xj by fixing it to some value s.
This can be done according to the two following steps:

1. Generate a new graph G′ by removing all the in-
coming edges of vi from G.

2. Perform the conditional query E(X | xj = s) on G′.

We now show that, when dealing with predictive coding
graphs, it is possible to perform an operation that is equiva-
lent to an intervention, without the need of mutilating the
graph, that is, without performing step 1.

Interventional Query. In a PC graph, the only information
that flows in the opposite direction of an arrow is the pre-
diction error. In fact, if we have v1 → v2, the update of the
value node x1 is affected by the error e2. To avoid this and
perform an intervention p(x1 | do(x2 = s2)), we first set
(and fix) the value of e2 to zero, and then perform a condi-
tional query by setting x2 = s2. This is convenient, since it
allows us to not directly act on the structure of the graph to
perform interventions but rather perform them dynamically
‘at runtime’, which results in increased efficiency in the
case of nodes with numerous incoming edges. We assume
hard interventions over soft ones (Correa & Bareinboim,
2020), thus eliminating all parent variable effects. Hence,
the following result holds, proven in Appendix B:

Proposition 3.1. Let G be a PC graph, with structure given
by a directed acyclic graph G with variables {x1, . . . ,xN},
as defined in Sec. 2.1. Then, the distribution of the variables
obtained after the following two operations are equivalent:

• A conditional query performed by setting xj = sj of
the modified PC graph, G′, where G′ is derived from
G by the excision of all incoming edges to nodes xj .
The precise formulation of a conditional query is as
articulated in Eq. 4.

3

Predictive Coding beyond Correlations

2. Action1. Abduction 3. Prediction

InterventionExogenous variable Unconstrained nodeEndogenous variableStructural Causal Model

Socioeconomic
Status

Education
Level

Income
Level

Age

(a) Example of causal relations

(b) Causal graph (c) Inference

(d) Intervention

Figure 3. What would x4 be, had x3 been equal to s∗3 in situation U = u? This figure provides an example of the three-step process
to perform counterfactuals, using a structural causal model with four exogenous and four endogenous variables. We are given two
kinds of data: the original values of x1, . . . ,x4, which correspond to past information, here denoted by s1, . . . , s4, and the intervention
information s∗3, needed to understand the what would have happened to x4 if we had changed s3 to s∗3?. The final answer corresponds to
the node x̃4 obtained in the prediction step.

• An interventional query performed by setting xj =
sj on the original PC graph with structure G, which
involves executing a conditional query on the node xj ,
while also imposing the condition ej,t = 0 for every
time step t > 0. That is,

E(XT | do(xj = s)) = E(XT | ∀t : xj,t = s, ej,t = 0 ∀t).

3.1. Structural Causal Models via PC Graphs

While interventions serve to answer questions about the
consequences of actions performed in the present, coun-
terfactuals are used to study interventions in the past, e.g.,
What would the value of xi have been if xj had been set
to s∗j , given a particular contex? This is modeled using
structural causal models (SCMs), where the context is de-
fined. An SCM is a triple (U, V, F), where V is the set
of endogenous (observable) variables corresponding to the
internal vertices of the graph, U is the set of exogenous (un-
observable) variables, denoted µi, that serve as root nodes
in the graph, and F is the set of functions that determine the
values of endogenous variables according to the structure of
G. An example of an SCM is represented in Fig. 3. Then,
counterfactual inference with an SCM involves three steps:

1. Abduction: Here, we are provided with the values
(s1, . . . , sN) of the endogenous nodes in V . We use
them to compute the values of the exogenous variables,
which we denote by ũ1, . . . , ũN . Hence, according to

E(µ1, . . . , µN | ∀t : (x1, . . . ,xN) = (s1, . . . , sN)).

2. Action: Now that we computed the values of the ex-
ogenous variables, we fix them and perform an inter-
vention on xj . Particularly, we set xj = s∗j , and we set
ej = 0, which has the effect of removing any influence
of xj on its parent nodes.

3. Prediction: We now have all the elements to compute
the counterfactual on xi, which is:

E(xi | ∀t : (µ1, . . . , µM) = (µ̃1, . . . , µ̃M), xj = s∗j , ej = 0).

3.2. Experiments
We now perform experiments that confirm the technical dis-
cussion and claims made in the previous section. To this end,
we test PC graphs in their ability to compute causal queries
on three levels of Pearl’s ladder of causation (2009), namely,
association (level 1), intervention (level 2), and counterfac-
tual (at level 3) for both linear and non-linear data. Then, we
show how interventions can be used to improve the perfor-
mance of classification tasks on fully connected models. We
conclude with an experiment showcasing the robustness of
PC graphs and their learned representations of complex data,
specifically, with respect to counterfactual interventions on
distinct attributes of images. We assume causal sufficiency
(no unobserved confounders) and compare against works
that make this assumption. The appendix contains extensive
results and details to reproduce our approach.

Causal Inference. We evaluate associational, interven-
tional, and counterfactual queries on various directed acyclic
graphs (Fig. 6) using linear and non-linear data (Table 1 Ap-
pendix D). We assume the graphs are known and the SCMs
have additive Gaussian noise. We generate synthetic obser-
vational, interventional, and counterfactual data for testing.
The observational data are generated by randomly sampling
values for the exogenous variables, u. We then use the ex-
ogenous values to compute the values of the endogenous
variables x. Interventional data are similarly generated, but
the structural equations are altered by an intervention. Fi-
nally, the counterfactual data consist of pairs, (x,x′) with x
being observational and x′ interventional data, both sharing
the same u. To perform causal inference, we fit the PC graph
to the observed data to learn the parameters of the structural
equations, including proxy noise distribution parameters.
We evaluate the learned SCM by comparing various dif-
ference metrics between true and inferred counterfactual
values. Details on all metrics are in Appendix C.

Here, we only provide results for the most interesting and
complex graph among the proposed ones, namely, the but-
terfly, represented in Fig. 4(c). We refer the reader to Ap-
pendix C for a detailed study of all the aforementioned

4

Predictive Coding beyond Correlations

0
0
0
1
0
0
0
0
0

Interventional Query

M-Graph

Butterfly-Bias

(a)

(b) Association Intervention Counterfactual

(c)

Figure 4. (a) How to compute a prediction given a data point on a fully connected PC graph, using interventional queries. (b) Left to right:
causal structure of the SCM. Convergence behavior of PC energy vs. error metric (MAE), during SCM learning for butterfly graph. Error
(by node) of interventional query estimates on x3 (yellow node). Error (by node) of counterfactual query estimates with intervention on
x3 given factual data (blue nodes). (c) Architecture used to reconstruct counterfactual images. UZ corresponds to the color of the digit, T
to the rotation angle, X to the input, Y to the colored and rotated image. The architecture represented is a predictive coding network that
resembles the architecture described in the main paper, where the clusters of neurons represent nodes. Arrows represent transformations
achieved via MLPs. The reconstructions on the right demonstrate the robustness of our model with respect to intervention to (up) rotation
angle and (down) color by transforming each input digit to the desired target.The colored digits show that our method is robust when
performing interventions on the rotation angle. The table shows that the model performance does not depend on the choice of the number
of neurons dh for the node uz . The work proposing the experiment (De Brouwer, 2022) reports an MSE of 0.001.

graphs on a large number of metrics. The experimental re-
sults show that PC graphs accurately estimate causal queries
for linear and more complex non-linear data. The plots
in Fig. 4(c) show that the model is able to correctly infer
interventional and counterfactual queries, as shown by the
converging MAE of non-intervened nodes. Finally, unlike
(Khemakhem et al., 2021), we do not reduce the graph to
its causal ordering and the performance of PC graphs re-
mains stable as causal paths get longer, an issue seen in
(Sánchez-Martin et al., 2022). More detailed results and a
discussion on the common graph causal query experiments
are in Appendix D.

Classification. In the original work on PC graphs (Sal-
vatori et al., 2022a), the authors have trained a fully con-
nected model to perform classification tasks using condi-
tional queries. The performances are poor compared to
those of hierarchical models for two reasons: first, condi-
tional queries do not impose any direction to the information
flow, making the graph learn p(y|x) as well as p(x|y), even
though we only need the first term. Similarly, the model also
learns P (x) and P (y), which is, how the prior depends on it-
self. Second, the model complexity is too high, not allowing
the model to use any kind of background knowledge, such
as hierarchical/structural information/prior, usually present
in sparser models. Here, we address the first limitation by
performing an interventional query on the input, which is
fixing the input nodes to the input values, and zeroing out
their errors. This prevents the error of the inputs to spread

in the network, and enforces a specific direction of the in-
formation flow, which goes from cause (the image) to effect
(the label). To assess the impact of such an intervention
on the test accuracy, we train a fully connected model with
2000 neurons on the MNIST and FashionMNIST datasets,
and compute the test accuracy for conditional and interven-
tional queries. We perform a large hyperparameter search
on learning rates, activation functions, and weight decay
values. In all cases, performing an intervention improves
the results. In Fig. 5(d), we present an example showcasing
the best results obtained after hyperparameter search. The
interventional query led to improvements in the final test
accuracy of almost 2% for both datasets. The experiment
details can be found in Appendix E.

Counterfactual Robustness. A recent work demonstrates
that existing deep-learning methods fail to obtain suffi-
cient robustness or performance on counterfactual queries
in certain scenarios (De Brouwer, 2022). We show that PC
surpasses current state-of-the-art results for counterfactual
queries while requiring a simpler architecture, and with-
out relying on ad hoc training techniques. We evaluate
the robustness of our model on counterfactual inference
tasks of higher dimensions, thereby examining the feasi-
bility of our method to perform causal inference on more
complex data. The dataset we consider consists of tuples
(x,uz, T ,y, T ′,y′), where x is an image from the MNIST
dataset, T is the assigned treatment, which is a rotation
angle (confounded by x). Furthermore, uz is a hidden ex-

5

Predictive Coding beyond Correlations

ogenous random variable that determines the color of the
observed outcome image y, which is added to the fourth
variable y′, a colored and rotated MNIST image represent-
ing the counterfactual response obtained when applying the
alternative treatment T ′. We consider SCMs with 4 nodes
that encode the four variables, as sketched in Fig. 4(c). Here,
every edge represents a feed-forward network of different
depth and hidden dimension 1024. A detailed explanation
of how to reproduce the results is given in Appendix F.
The results show that PC graphs improve on state-of-the-art
methods, despite the fact that we do not use convolutional
layers like in the original work. First, the generated images
have an MSE on the test set (0.0008± 0.0002) that is lower
than that reported in the original work (0.001± 0.001). The
high quality of reconstruction is also visible in the generated
images in Fig. 4(c). Compared to (De Brouwer, 2022), we
are able to generalize to rotations of 40◦ (absent in the train-
ing data), even if this introduces some noise in the generated
output. Furthermore, contrary to the original model, our
architecture is robust relative to the choice of the hyperpa-
rameter linked to uz and does not necessitate to perform a
hyperparameter sweep to find the right value. So, we con-
clude that PC graphs are able to correctly model the treat-
ment rotation in the counterfactual outcome, while keeping
the color, which is independent of rotation, unchanged.

4. Structure Learning
Learning the causal structure from observational data is a
useful process for explainability and modeling interventions.
Traditional approaches, which use combinatorial search al-
gorithms, tend to become computationally expensive and
slow as the complexity (e.g., the number of nodes) of the
graph increases (Chickering, 1996; 2002). Therefore, mod-
ern approaches focus on gradient-based learning methods
instead (Zheng et al., 2018), as they allow us to handle larger
graph structures in a computationally efficient manner. Let
us consider A to be the adjacency matrix of a graph. Ide-
ally, this matrix should be a binary matrix with the property
that ai,j = 1, if there exists an edge from vi to vj , and 0,
otherwise. From a Bayesian perspective, our method learns
the marginal of the graph edges, where A is a matrix com-
posed of continuous, learnable parameters, which assign
weights to signify importance of specific connections. To
this end, we can consider every PC graph to be fully con-
nected, where the prediction of every node xi now depends
on the entries of the adjacency matrix:

ui =
∑N

k=0 ak,ifk,i(xk),

update rule : ∆ai,j ∝ −∂F/∂ai,j = β · ei,TW⊤f(xj,T),

where β is the learning rate of the parameters ai,j . Then, the
entries of A are updated via gradient descent to minimize
the variational free energy of Eq. 3. Our goal is to learn an
acyclic, sparsely connected graph, which requires a prior

distribution that enforces these two constraints. We consider
three possible priors: a Gaussian prior, a Laplace prior,
and the acyclicity prior. The latter is equal to zero iff the
corresponding graph is acyclic (Zheng et al., 2018):

l(A) = exp(−
∑

i,j |ai,j |),
g(A) = N (0, 1),

h(A) = tr(exp(A×A))− d.

The energy function to minimize via gradient descent is
the sum of the total energy, as defined in Eq. 3, and the
three aforementioned prior distributions, each weighted by a
scaling coefficient. The first two priors effectively apply the
L1 and L2 norms to the parameters of the adjacency matrix,
and they form the elastic norm when used in conjunction.

Negative Examples. The regulariser h(A) introduces an in-
ductive bias that may be undesirable, as we know that cyclic
structures may be beneficial in several tasks (Salvatori et al.,
2022a). Without h(A), however, training converges towards
a degenerate structure, as shown on the top right of Fig. 5(c),
where each output node predicts itself, ignoring any con-
tribution of the input nodes. We solve this degeneration
behavior by introducing negative examples, which are data
points with a wrong label, into the training set. The model
is then trained in a contrastive way (Chen et al., 2020), i.e.,
by increasing the prediction error of every node for negative
examples k, and decreasing it otherwise, when the label is
correct; see Fig. 5(c). A detailed explanation of how training
with negative samples works is given in Appendix G. We
show that negative examples address the convergence issue
towards a degenerate graph by rendering the label nodes
contingent on the inputs, thus steering the model towards
adopting a hierarchical structure instead.

4.1. Experiments
We perform two different structure learning experiments.
In the first, we are provided with non-interventional data
generated by from a Bayesian network of unknown structure.
The task is to retrieve the original graph starting with a fully
connected PC graph, which is a standard problem in causal
discovery (Morales-Alvarez et al., 2022; Geffner et al., 2022;
Zheng et al., 2018). In the second experiment, we perform
classification for MNIST and FashionMNIST using a fully
connected PC graph. This time, however, we augment the
classification objective with priors to enforce sparsity and
acyclicity, and conjecture that (i) this improves the final test
accuracy, and (ii) reduces a fully connected graph to the
“correct” sparse network, i.e., the hierarchical one.

6

Predictive Coding beyond Correlations

Erdős-Rényi
s-Renyi

Free Scale

(a)

2

Data Label

7

Negative Example

Positive Example

7

Data

Training Objectives for Negative Samples

Structure Learning on 2-MNIST

Label

(d) MNIST F-MNIST

Correlation 9.87 ± 0.11 18.32 ±0.13

Intervention 7.93 ± 0.07 16.6 ± 0.1

Acyclic Prior 3.17 ± 0.10 14.08 ± 0.21

Neg. Samples 3.51 ± 0.09 13.98 ± 0.08

Causal Structure Learning
Test Errors of Different Training Methods

on Fully Connected PC Graphs

(b)

(c)

Degenerate Graphs

Figure 5. (a) Experiments on structure learning from synthetic data, generated from Erdős-Rényi and scale-free random graphs with 20
nodes. On the left, the connection strength of the true graph; on the right, the one learned by a PC graph. (b) Structure learning on the
2-MNIST dataset: the plot shows the weights of the adjacency matrix A over the number of epochs, the dotted curve the test accuracy.
The vertical lines Ci, refer to the connectivities discovered by the structure learning algorithm during training. Such connectivities are
shown on the right side of the plot, where you can see the 6 clusters of neurons, and the connections among them. For example, the blue
one (representing the direct connection), immediately goes to 1, and stays there until the second vertical line (that represents C2), and
then starts decreasing. At epoch 250, there are two curves above it: the ones of the hierarchical connections. (c) A description of the
two energy functions optimized by the PC graph when training on negative and non-negative examples. (d) Table with test error of all
experiments performed on MNIST and FashionMNIST, averaged over three seeds. The best results are obtained when augmenting the
training process with both the proposed structure learning methods.

Structure Learning. Here, we use synthetic data sampled
from an SCM with N ∈{10, 15, 20} nodes and {1, 2, 4}
expected edges per node. The graph structure is either an
Erdős-Rényi or a scale-free random graph. To this end, ER2
denotes an Erdős-Rényi graph with 2N expected edges, and
SF4 denotes a scale-free graph with 4N expected edges.
We vary the graph type, number of nodes and/or edges, to
test the scalability and stability of each method. We place
uniformly random edge weights onto a binary adjacency
matrix of a graph, to obtain a weighted adjacency matrix, W.
We sample observational data from a set of linear structural
equations with additive Gaussian noise.

Due to the linearity, we model each edge as a scalar. Hence,
we can set the parameters of the weighted adjacency matrix
to be the estimated model parameters Ŵ. To prune the
parameters not used in the linear structural equations that
generate the observed data, we require our model to be
sparse and acyclic. Thus, we consider the parameters to have
prior distributions h(W) and l(W). Then, the experiment
consists of training the fully connected model to fit the
dataset, and checking whether the PC graph can converge
to the random graph structure that generated the data.

The results show that PC graphs are able to infer the struc-
ture of the data generating process for arbitrary dense ran-

dom graphs of various complexities. The heatmaps in
Fig. 5(a) show that our method can estimate the true weight
adjacency matrix for dense SF4 and ER2 graphs with 20
nodes. Hence, we conclude that the learned adjacency ma-
trix, which we chose as the median performing model across
multiple seeds, is able to well capture the variable depen-
dencies of the observed data. More details on the dataset
generation, how the experiment is performed, quantitative
results for various structure learning metrics, and detailed
comparisons against other baseline methods (PC (Kalisch
& Bühlman, 2007), GES (Chickering, 2002), NOTEARS
(Zheng et al., 2018), and ICALiNGAM (Shimizu et al.,
2006)) are provided in Appendix G. The results show that
our algorithm sustains a stable performance in all ER and SF
graph setups, as validated by structural Hamming distance
(SHD), F1 score, and other metrics.

Classification. Here, we extend the experiments of Sec-
tion 3, and check whether the results can be improved by
allowing the PC graph to cut extra connections during train-
ing. Additionally, we create a new dataset, called 2-MNIST,
whose data consist of pairs (s0, s1) of MNIST images, and
the label is the label of s0. This is to check whether PC net-
works are able to understand the underlying causal structure
of the dataset, and remove connections that start from s1.
As an architecture, we consider a PC graph with 6 nodes,

7

Predictive Coding beyond Correlations

one of dimension 784, one of dimension 10, and 4 hidden
nodes of dimension d. In the case of 2-MNIST, we have
two nodes of dimension 784, and only three of dimension
d. The adjacency matrix A has then dimension 6× 6. Note
that, when the entries of A are all equal to one, then this
model is equivalent to the fully connected one of Section 3.
Here, however, we propose two techniques to augment the
training process, and let the model converge to a hierarchical
network. The first one consists of adding the three proposed
priors on the matrix A, to enforce sparsity and acyclicity
in the graph; the second one consists of augmenting the
dataset via negative examples, while enforcing sparsity via
the Laplace prior only. Note that enforcing acyclicity is fun-
damental, otherwise the circular dependencies in the graph
would make the model converge to degenerate structures,
such as the ones provided in the top right corner of Fig. 5.
More details on this can be found in Appendix E.

In the first experiment, we use the 2-MNIST dataset to test
whether the acyclic and sparse priors are able to both re-
move the out-going connections from the second image s2,
and learn a hierarchical structure, which we know to be the
best one to perform classification on MNIST. In the second
experiment, we train the same fully-connected model of
Section 3 and check whether the priors allow to increase
the classification accuracy of the model. To conclude, we
perform a classification task with the negative examples and
the Laplace prior, to test whether this method also allows
to avoid converging to degenerated graph structures. The
results on the 2-MNIST dataset show that the model imme-
diately prunes the parameters out-going from s2. In the first
100 epochs, the edge with the largest weight is the linear
one, which directly connects the input to the label. While
this shows that the model correctly learned the dependen-
cies, linear classification on MNIST and FashionMNIST
does not yield great accuracies. This problem is naturally
addressed in the later stages of the training process, where
the entry of the adjacency matrix relative to the linear map
loses weights, and hence influence on the final performance
of the model. When training finally converges, the resulting
model is hierarchical, with one hidden layer, as shown in the
plot in Fig. 5b. This shows that PC graphs are not only able
to learn the causal dependencies correctly, but also to be
able to discriminate among these structures, and converge
to a well performing one.

In the second experiment (classification on MNIST and
FashionMNIST with h(A)), the model shows a clear im-
provement over the baseline in Section 3. The same applies
for the training with negative examples (see the table in
Fig. 5d), which shows a performance comparable to these of
training with an acyclicity prior. To reach the usual results
that can be obtained via standard neural networks trained
with backpropagation (i.e., a test error < 2%), it suffices to
fine-tune the model using the newly learned structure.

5. Related Work
In the last years, there have been numerous works that
have tackled machine learning problems using PC networks.
They have been shown to perform well in classification tasks
using all kinds of architectures, such as feedforward and
convolutional models, graph neural networks, and trans-
formers (Whittington & Bogacz, 2017; Han et al., 2018;
Salvatori et al., 2022c; Byiringiro et al., 2022; Pinchetti
et al., 2022). These results are partially justified by some
similarities that PC shares with backpropagation when per-
forming supervised learning (Song et al., 2020; Millidge
et al., 2020; Salvatori et al., 2022b). Multiple works have
also applied it to image generation (Ororbia & Kifer, 2022;
Ororbia & Mali, 2019), continual learning (Ororbia et al.,
2022; Song et al., 2022), and associative memories (Salva-
tori et al., 2021; Yoo & Wood, 2022; Tang et al., 2023). We
refer to (Salvatori et al., 2023) for a comprehensive review.

Causality has found applications in problems such as treat-
ment effect estimation, time series modeling, image genera-
tion, and natural language processing, as well as enhancing
interpretability and fairness in machine learning (Shalit et al.,
2017; Runge et al., 2019; Lopez-Paz et al., 2017; Kaushik
et al., 2019; Kusner et al., 2017). Some works study the
problem of learning the causal structure from observational
data, previously done via combinatorial search (Spirtes et al.,
2000; Chickering, 2002; Shimizu et al., 2006; Kalisch &
Bühlman, 2007). However, combinatorial searches algo-
rithm grow double exponentially in complexity relative to
the dimension of the graph. To this end, recent works mostly
performing continuous optimization by using the acyclic
prior that we have also discussed in our work (Zheng et al.,
2018; Bello et al., 2022; Yu et al., 2019).

6. Conclusion
We have provided a bridge between the fields of causality
and computational neuroscience by showing that predic-
tive coding graphs have the ability of both learning the
DAG structures from observational data, and modeling as-
sociational, interventional, and counterfactual distributions
(Geffner et al., 2022; Sharma & Kiciman, 2020). This makes
our method suitable candidate for an end-to-end causality
engine, which can answer causal queries without knowing
detailed structural equations of an SCM. In detail, we have
shown how interventions can be performed by setting pre-
diction errors of nodes that we are intervening on to zero,
and how this leads to the formulation of predictive-coding-
based structural causal models. For structure learning, we
have shown how to use existing techniques to derive causal
relations from observational data.

8

Predictive Coding beyond Correlations

Acknowledgements
We thank the reviewers for their valuable feedback and
insightful discussions, which have significantly enhanced
this manuscript. Amine M’Charrak gratefully acknowledges
support from the Evangelisches Studienwerk e.V. Villigst
through a doctoral fellowship. This work was also supported
by the AXA Research Fund and by the EU TAILOR grant.

Impact Statement
In the domain of causal structure learning from observa-
tional data, it is crucial to recognize that algorithms can only
identify the causal graph within the confines of a Markov
Equivalence Class (MEC). This limitation means that vari-
ous causal graphs, each with differing implications, could
be equally supported by the observational data. Our ap-
proach does not incorporate interventional data, amplifying
the need for caution in its application for causal discovery.
The method should be used alongside further assumptions
and in consultation with subject-matter experts to minimize
the risk of affirming false causal relationships. Incorrect
usage has the potential for negative societal consequences,
such as poor or biased decision-making processes.

References
Bello, K., Aragam, B., and Ravikumar, P. DAGMA: Learn-

ing DAGs via M-matrices and a log-determinant acyclic-
ity characterization. In Advances in Neural Information
Processing Systems, 2022.

Byiringiro, B., Salvatori, T., and Lukasiewicz, T. Ro-
bust graph representation learning via predictive coding.
arXiv:2212.04656, 2022.

Chao, P., Blöbaum, P., and Kasiviswanathan, S. P. Interven-
tional and counterfactual inference with diffusion models.
arXiv:2302.00860, 2023.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A sim-
ple framework for contrastive learning of visual represen-
tations. Proceedings of the 37th International Conference
on Machine Learning, 2020.

Chickering, D. M. Learning Bayesian networks is NP-
complete. Learning from Data: Artificial Intelligence
and Statistics V, pp. 121–130, 1996.

Chickering, D. M. Optimal structure identification with
greedy search. Journal of Machine Learning Research, 3
(Nov):507–554, 2002.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast
and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289, 2015.

Correa, J. and Bareinboim, E. A calculus for stochastic
interventions: Causal effect identification and surrogate
experiments. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 10093–10100,
2020.

De Brouwer, E. Deep counterfactual estimation with cate-
gorical background variables. Advances in Neural Infor-
mation Processing Systems, 35:35213–35225, 2022.

Friston, K. Learning and inference in the brain. Neural
Networks, 16(9):1325–1352, 2003.

Friston, K. Does predictive coding have a future? Nature
neuroscience, 21(8):1019–1021, 2018.

Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J.,
and Penny, W. Variational free energy and the Laplace
approximation. Neuroimage, 2007.

Geffner, T., Antoran, J., Foster, A., Gong, W., Ma,
C., Kiciman, E., Sharma, A., Lamb, A., Kukla, M.,
Pawlowski, N., et al. Deep end-to-end causal inference.
arXiv:2202.02195, 2022.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723–773, 2012.

Han, K., Wen, H., Zhang, Y., Fu, D., Culurciello, E., and Liu,
Z. Deep predictive coding network with local recurrent
processing for object recognition. Advances in Neural
Information Processing Systems, 31, 2018.

Kalisch, M. and Bühlman, P. Estimating high-dimensional
directed acyclic graphs with the PC-algorithm. Journal
of Machine Learning Research, 8(3), 2007.

Karimi, A.-H., Von Kügelgen, J., Schölkopf, B., and Valera,
I. Algorithmic recourse under imperfect causal knowl-
edge: A probabilistic approach. Advances in Neural
Information Processing Systems, 33:265–277, 2020.

Kaushik, D., Hovy, E., and Lipton, Z. C. Learning the
difference that makes a difference with counterfactually-
augmented data. arXiv:1909.12434, 2019.

Khemakhem, I., Monti, R., Leech, R., and Hyvarinen, A.
Causal autoregressive flows. In International Conference
on Artificial Intelligence and Statistics, pp. 3520–3528.
PMLR, 2021.

Kusner, M. J., Loftus, J., Russell, C., and Silva, R. Coun-
terfactual fairness. Advances in Neural Information Pro-
cessing Systems, 30, 2017.

Lopez-Paz, D., Nishihara, R., Chintala, S., Schölkopf, B.,
and Bottou, L. Discovering causal signals in images. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6979–6987, 2017.

9

Predictive Coding beyond Correlations

Millidge, B., Tschantz, A., and Buckley, C. L. Predictive
coding approximates backprop along arbitrary computa-
tion graphs. arXiv:2006.04182, 2020.

Morales-Alvarez, P., Gong, W., Lamb, A., Woodhead, S.,
Peyton Jones, S., Pawlowski, N., Allamanis, M., and
Zhang, C. Simultaneous missing value imputation and
structure learning with groups. Advances in Neural Infor-
mation Processing Systems, 35:20011–20024, 2022.

Ororbia, A. and Kifer, D. The neural coding framework for
learning generative models. Nature Communications, 13
(1):2064, 2022.

Ororbia, A., Mali, A., Giles, C. L., and Kifer, D. Lifelong
neural predictive coding: Learning cumulatively online
without forgetting. Advances in Neural Information Pro-
cessing Systems, 35:5867–5881, 2022.

Ororbia, A. G. and Mali, A. Biologically motivated algo-
rithms for propagating local target representations. In
Proc. AAAI, volume 33, pp. 4651–4658, 2019.

Pawlowski, N., Coelho de Castro, D., and Glocker, B. Deep
structural causal models for tractable counterfactual in-
ference. Advances in Neural Information Processing
Systems, 33:857–869, 2020.

Pearl, J. Causal diagrams for empirical research. Biometrika,
82(4):669–688, 1995.

Pearl, J. Causality. Cambridge University Press, 2009.

Peters, J., Janzing, D., and Schölkopf, B. Elements of Causal
Inference: Foundations and Learning Algorithms. MIT
Press, 2017.

Pinchetti, L., Salvatori, T., Yordanov, Y., Millidge, B., Song,
Y., and Lukasiewicz, T. Predictive coding beyond Gaus-
sian distributions. In Advances in Neural Information
Processing Systems, volume 35, 2022.

Rao, R. P. N. and Ballard, D. H. Predictive coding in the
visual cortex: A functional interpretation of some extra-
classical receptive-field effects. Nature Neuroscience, 2
(1):79–87, 1999.

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou,
D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha,
M. D., Muñoz-Marı́, J., et al. Inferring causation from
time series in earth system sciences. Nature Communica-
tions, 10(1):2553, 2019.

Salvatori, T., Song, Y., Hong, Y., Sha, L., Frieder, S., Xu, Z.,
Bogacz, R., and Lukasiewicz, T. Associative memories
via predictive coding. In Advances in Neural Information
Processing Systems, volume 34, 2021.

Salvatori, T., Pinchetti, L., Millidge, B., Song, Y.,
Bao, T., Bogacz, R., and Lukasiewicz, T. Learn-
ing on arbitrary graph topologies via predictive coding.
arXiv:2201.13180, 2022a.

Salvatori, T., Song, Y., Lukasiewicz, T., Bogacz, R., and
Xu, Z. Reverse differentiation via predictive coding. In
Proc. AAAI, 2022b.

Salvatori, T., Song, Y., Millidge, B., Xu, Z., Sha, L., Emde,
C., Bogacz, R., and Lukasiewicz, T. Incremental pre-
dictive coding: A parallel and fully automatic learning
algorithm. arXiv:2212.00720, 2022c.

Salvatori, T., Mali, A., Buckley, C. L., Lukasiewicz, T.,
Rao, R. P. N., Friston, K., and Ororbia, A. Brain-inspired
computational intelligence via predictive coding, 2023.

Sanchez, P. and Tsaftaris, S. A. Diffusion causal models
for counterfactual estimation. In Conference on Causal
Learning and Reasoning, pp. 647–668. PMLR, 2022.

Sánchez-Martin, P., Rateike, M., and Valera, I. Vaca: De-
signing variational graph autoencoders for causal queries.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 36, pp. 8159–8168, 2022.

Shalit, U., Johansson, F. D., and Sontag, D. Estimating
individual treatment effect: Generalization bounds and
algorithms. In International Conference on Machine
Learning, pp. 3076–3085. PMLR, 2017.

Sharma, A. and Kiciman, E. DoWhy: An end-to-end library
for causal inference. arXiv:2011.04216, 2020.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., Kerminen, A.,
and Jordan, M. A linear non-Gaussian acyclic model for
causal discovery. Journal of Machine Learning Research,
7(10), 2006.

Song, Y., Lukasiewicz, T., Xu, Z., and Bogacz, R. Can
the brain do backpropagation? — Exact implementa-
tion of backpropagation in predictive coding networks.
In Advances in Neural Information Processing Systems,
volume 33, 2020.

Song, Y., Millidge, B., Salvatori, T., Lukasiewicz, T., Xu,
Z., and Bogacz, R. Inferring neural activity before plas-
ticity: A foundation for learning beyond backpropagation.
bioRxiv, pp. 2022–05, 2022.

Spirtes, P., Glymour, C. N., and Scheines, R. Causation,
Prediction, and Search. MIT Press, 2000.

Tang, M., Salvatori, T., Millidge, B., Song, Y., Lukasiewicz,
T., and Bogacz, R. Recurrent predictive coding models
for associative memory employing covariance learning.
PLOS Computational Biology, 19(4):e1010719, 2023.

10

Predictive Coding beyond Correlations

Whittington, J. C. R. and Bogacz, R. An approximation
of the error backpropagation algorithm in a predictive
coding network with local Hebbian synaptic plasticity.
Neural Computation, 29(5), 2017.

Yoo, J. and Wood, F. BayesPCN: A continually learnable
predictive coding associative memory. Advances in Neu-
ral Information Processing Systems, 35:29903–29914,
2022.

Yu, Y., Chen, J., Gao, T., and Yu, M. DAG-GNN: DAG
structure learning with graph neural networks. In Interna-
tional Conference on Machine Learning, pp. 7154–7163.
PMLR, 2019.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
DAGs with no tears: Continuous optimization for struc-
ture learning. Advances in Neural Information Processing
Systems, 31, 2018.

11

Predictive Coding beyond Correlations

A. Learning on PC Graphs
Given a labeled point, two phases are needed to perform
a single weight update. The first one, called inference, is
used both in the training phase, to compute the best config-
uration of value nodes to perform a weight update, and in
the prediction phase, to compute an output when provided a
specific input. The inference phase corresponds to Query by
conditioning, as described in Section 2. During this phase,
the weights are frozen, and only the internal value nodes
are updated to minimize the free energy. The second phase
happens after the inference has converged, and hence the
’best‘ neural activities are computed. Here, the opposite
happens: all the value nodes are now frozen, and a single
weight update is performed to further minimize the same
energy function. If we are considering models with an ad-
jacency matrix A, we also update its parameters. We will
now provide a more formal description of the two phases.

Let us assume we are presented with a data point Sdata =
si1 , . . . , sin . First, the value nodes of the vertices
vi1 , . . . , vin are fixed to be equal to the entries of Sdata

for the whole duration of the training process, i.e., for ev-
ery t. Second, the variational free energy is minimized
via gradient descent on the value nodes, During this phase,
the weights are fixed, and the value nodes are updated as
follows:

∆xi,t = −γ
∂Ft

∂xi,t
= γ·(−ei,t+f ′(xi,t)

∑
k∈ch(i)ek,tWi,k),

where γ is the a positive real number that indicates a learning
rate. When the inference phase is completed, the value
nodes get fixed, and a single weight update is performed as
follows:

∆Wi,j = −α · ∂Ft

∂Wi,j
= α · ei,T f(xj,T). (5)

To conclude, the update of the entries of the adjacency
matrix (without the priors), are the following:

∆ai,j = −β
∂Ft

∂ai,j
= β · ei,TW⊤f(xj,T). (6)

We provide the pseudocode of the training process on PC
graphs in Algorithm 1.

B. Proof of Theorem 1
Proof of Theorem 1. We seek to prove:

E(xj | do(xi = s)) = E(xj,T | ∀t : xi,t = s, ei,t = 0).

Let G′ be the mutilated graph structure of the Bayesian
network G after a do-operation. Then, by definition of the
expectation of interventional distributions, we have that

E(xj | do(xi = s))G = E(xj | xi = s)G′ ,

Algorithm 1 Learning a data point Sdata = si1 , . . . , sin

Require: (xi1,t, . . . ,xin,t) is fixed to (si1 , . . . , sin) for ev-
ery t.

1: for t = 1 to T do
2: for each vertex i do
3: update xi,t to minimize Ft via Eq. (A)
4: end for
5: if t = T then
6: update every Wi,j to minimize Ft via Eq. (5).

update every ai,j to minimize Ft via Eq. (6).
7: end if
8: end for

where the expectations are computed, respectively, on graph
G and G′. We utilize the value node update rule for ∆xi,t

defined in Eq. A. Our aim is to demonstrate that the node
values in the PC graphs defined on G (with ei = 0) and G′

follow the same update dynamics and thus have identical
distributions.

Case 1: Parents of the Intervention Node xi

In G, the value node update rule for any parent xj of xi is:

∆xG
j,t = γ · (−ej,t + f ′(xj,t)

∑
k∈ch(j)

ek,tWj,k).

When ei = 0, the term involving ei is omitted, yielding:

∆xG
j,t = γ · (−ej,t + f ′(xj,t)

∑
k∈ch(j)\{i}

ek,tWj,k).

In G′, xi is removed due to the do-operation, resulting in an
identical update rule:

∆xG′

j,t = ∆xG
j,t.

Case 2: The Intervention Node xi Itself

In both G and G′, the value xi remains constant at s, making
its update rule irrelevant.

Case 3: Children of the Intervention Node xi

For a child xj of xi in G, the update rule is:

∆xG
j,t = γ · (−ej,t + f ′(xj,t)

∑
k∈ch(j)

ek,tWj,k).

This update rule remains unchanged in G′:

∆xG′

j,t = ∆xG
j,t.

By addressing all three cases, we show that value nodes in
G (with ei = 0) and G′ follow identical update dynamics.
Therefore, the distributions of remaining variables in G′ and
G (with ei = 0) are the same, completing the proof.

12

Predictive Coding beyond Correlations

C. Interventional and Counterfactual
Inference

Here, we provide a detailed discussion on the experiments
proposed in Section 3, where we test the ability of PC graphs
to model interventional and counterfactual queries. The
core of decision making is to be able to determine which
intervention/action results in an outcome of interest. As
such, being able to answer causal queries on a variety of
DAG structures and intervention nodes in a DAG is essential.
The causal inference approach that we propose only requires
knowledge of the causal structure in the form of parent-child
relationships among endogenous variables x. We assume
the parameters of the structural equations, F , to be unknown.
We make the causal sufficiency assumption, meaning that
there is no hidden confounding (Peters et al., 2017). This is
achieved by having an independent exogenous variable for
each endogenous variable.

Setup. We test the associational, interventional, and coun-
terfactual query capabilities of our method on different
common directed acyclic graph structures with N endoge-
nous nodes, namely (i) collider (N = 3), (ii) confounder
(N = 3), (iii) mediator (N = 3), (iv) chain (N = 3), (v)
fork (N = 3), (vi) M-bias (N = 5), and (vii) butterfly bias
(N = 5). Each of these structures is visualized in Fig. 6. For
every structure, we generate datasets from a linear SCM with
additive Gaussian noise and no restrictions on the location
and scale parameters. We use observational training data,
X, to fit the PC model. We learn each structural equation,
Fi, via a training scheme in which we infer the exogenous
variables, u, given observed endogenous variables, x, from
the training dataset. As such, the SCM is fitted by estimat-
ing the parameters of each exogenous variable according
to ui ∼ N (ui, σi). This way, we learn to approximate the
distribution of the SCM’s exogenous variables u. Note that
during the training process, we do not use the factual data
once the abduction step is completed. Instead, we replace
node values of factual data with inferred values, x̂, by ap-
plying the currently learned set of structural equations F̂
to the inferred exogenous node values, û. We use associa-
tional (obs), interventional (do), and counterfactual (cf) test
datasets {Xobs, Xdo, Xcf } to evaluate our method. The
interventions required for Xdo and Xcf are randomly sam-
pled from ui+σ(xi)×{−1.0,−0.5,−0.1, 0, 0.1, 0.5, 1.0}
to ensure realistic intervention values in the support of the
each observed marginal distribution. Here, ui and σ(xi),
represent the empirical mean and standard deviation of xi

from the training data. To generate an interventional or coun-
terfactual sample, we perform do-operation on individual
nodes only, one variable at a time.

For every SCM, we repeat experiments over five different
seeds, each using a different PC model initialization. We
report error metrics with mean and standard deviation, both

multiplied by 100 for clarity. The PC graph is trained with
3000 samples for 1000 epochs with a batch size of 128. We
use the vanilla stochastic gradient descent (SGD) optimizer
for the node values with a learning rate of γ = 3e − 3
and T = 8 iterations for inference of node values during
training and testing. For the weights, we use the AdamW
optimizer with a learning rate of α = 8e− 3 and a weight
decay of λw = 1e − 4. For linear data, we fit the model
using one-dimensional linear layers for each connection
between the endogenous and exogenous variables of the
SCM according to the causal structure defined given by the
adjacency matrix A. In the case of linear data, our approach
does not require the use of neural networks with many hid-
den layers. This makes our causal PC graph transparent,
efficient, and lightweight, because we only learn parame-
ters that define the structural equations F of the true data
generating SCM. For the nonlinear experiments, we do not
assume any detailed parametric knowledge about the SCMs
and our method is feasible with general MLPs as structural
equations. Hence, when learning nonlinear data, we replace
the linear layers with small MLPs. Each MLP has 2 hidden
layers with 16 neurons each and we use ELU (Clevert et al.,
2015) as activation function. Note that, despite the large
amount of epochs considered, every model converges in less
than two minutes. All results are averaged over five random
seeds.

Metrics. We now specify the metrics used to evaluate per-
formance in estimating associational, interventional, and
counterfactual distributions, as detailed in Section 3. Obser-
vational metrics are computed by comparing the true and
estimated values of exogenous variables, using the available
endogenous node data. Furthermore, note that for interven-
tions and counterfactuals only the descendants, des(xi), of
an intervened node xi are affected. Therefore, the causal
order of a DAG becomes important when assessing per-
formance on interventional and counterfactual queries. As
such, we report metrics with respect to the descendants of
the intervention node, as per the adjacency matrix. We fol-
low the works in the related literature (Sánchez-Martin et al.,
2022; Chao et al., 2023) and report the following metrics:

• mean absolute error (MAE),

• maximum mean discrepancy (MMD) (Gretton et al.,
2012),

• estimation squared error for the mean (MeanE),

• estimation squared error for standard deviation (StdE),

• mean of the squared error (MSE),

• standard deviation of the squared error (SSE).

We use MAE as a generic metric to assess the error be-
tween the estimated query and the ground truth query. The

13

Predictive Coding beyond Correlations

(a) Causal graph: fork

(e) Causal graph: mediator(d) Causal graph: chain

(b) Causal graph: collider (c) Causal graph: confounder

(f) Causal graph: M-bias

Figure 6. Additional graph structures used in experiments of Section 3. White nodes are endogenous variables and observed. Shaded
nodes denote independent, exogenous variables for which we do not observe data unless they have no parents in which case xi := ui.

MMD metric is a sample-based distance measure between
distributions. We use MMD to assess the match between
the estimated distribution and the true distribution. The
idea is to compare the means of both samples, X̂ and X,
in a higher-dimensional feature space defined by a kernel
function k.

For a pair of samples from each distribution, we compute
the MMD as follows:

MMD(X, X̂) =

∥∥∥∥∥ 1

M

M∑
i=1

ϕ(xi)− 1

M

M∑
i=1

ϕ(x̂i)

∥∥∥∥∥
2

=
1

M2

M∑
i=1

M∑
j=1

k(x̂i, x̂j)− 2

M2

M∑
i=1

M∑
j=1

k(xi, x̂j)+

+
1

M2

M∑
i=1

M∑
j=1

k(xi,xj).

Here, ϕ is the feature map of the kernel function k, and
xi and x̂i are the i-th samples from the ground truth and
the inferred data, respectively. Each x̂i and xi is a vector
of N features, one for each endogenous node in the DAG.
The kernel function k measures the similarity between data
points in the feature space. In our implementation, we use a
mixture of RBF (Gaussian) kernels with varying bandwidth
parameters (Gretton et al., 2012).

We use MeanE and StdE to assess the estimated interven-
tional distributions. MeanE and StdE measure the average
squared error between the true and estimated mean and stan-

dard deviation of an interventional distribution, respectively.
Both metrics are computed as averages across a set of inter-
vention indices, I , that correspond to nodes in the DAG that
have descendants and thus are not leaf nodes.

Given the empirical means, E [xi|do(xj)] and
E [x̂i|do(xj)], and the empirical standard deviations,
SD [xi|do(xj)] and SD [x̂i|do(xj)], for node, xi, with
intervention on node, xj , with index j, the MeanE and StdE
are computed in the following way:

MeanE = (7)
1

|I|
∑
j∈I

1

|des(j)|
∑

i∈des(j)

(E [xi|do(xj)]− E [x̂i|do(xj)])
2
,

(8)

StdE = (9)
1

|I|
∑
j∈I

1

|des(j)|
∑

i∈des(j)

(SD [xi|do(xj)]− SD [x̂i|do(xj)])
2
.

(10)

We denote the number of intervention nodes in the DAG as
|I|, and des(j) is the the set of descendants of the interven-
tion node with index j. Finally, to assess the performance for
the counterfactuals, we report the MSE and SSE for the de-
scendants of an intervention node with index j. Both metrics
are computed as averages across all intervention nodes in I.
We use the Frobenius norm, Tj = ∥xdes(j) − x̂des(j)∥F , to

14

Predictive Coding beyond Correlations

measure the difference between true and estimated values
of a counterfactual query with intervention on node index j.
Defining the average of the empirical mean of Tj as E [Tj]
and the average of the empirical standard deviation of Tj as
SD [Tj], we retrieve the MSE and SSE metrics as:

MSE =
∑
j∈I

1

|des(j)|
E [Tj] , (11)

SSE =
∑
j∈I

1

|des(j)|
SD [Tj] . (12)

To summarize, for associational inference, we report MMD
on the observational test set. For interventional inference,
we report MMD, MeanE, and StdE. For counterfactual infer-
ence, we report MSE and SSE. Additionally, we report MAE
on the associational and interventional inference as well as
MSE and SSE for our method’s estimates of exogenous
noise distributions, which are inferred in the abduction step
while performing counterfactual inference. While not all the
above metrics are required to evaluate a model’s causal infer-
ence performance, we still include them for benchmark com-
parison against state-of-the-art methods (Sánchez-Martin
et al., 2022; Khemakhem et al., 2021; Karimi et al., 2020).
Across all metrics, lower values indicate better performance.

D. Experiments on Common Graphs
To generate data from a directed acyclic graph, we first
sample a value for each of the N exogenous variables that
follow ui ∼ N (µi, σi). Then, we use the deterministic
structural equation, Fi, of node xi to compute its value
as xi := Fi(par(xi),ui). Each Fi is a linear equation
with additive noise of the form Fi =

∑
j∈par(xi)

wjixj +

ui, where par(xi) denotes the direct parents of node xi

according to the graph structures provided in Fig. 6. We
follow the same procedure for the non-linear SCM, however,
instead of using linear structural equations, Fi, we use non-
linear structural equations with additive noise. The non-
linear structural equations used to generate the non-linear
SCM data are shown in Table 1.

For the causal inference experiments with the common
graphs in Fig. 6 as well as the butterfly graph presented
in the main body of the paper, we focused on performing
interventions on nodes that are interesting. By interesting
we mean that we want to show experimental results for inter-
ventions and counterfactuals on nodes that are neither root
nodes nor leaf nodes. The reason being that interventions
on such nodes either correspond to (a) regular conditional
(associational) queries, as is the case with interventions on
root nodes or (b) counterfactual queries that are not dif-
ferentiable from interventional queries, as is the case for

interventions on leaf nodes. Consequently, we provide re-
sults for the following causal inference scenarios: (i) chain
graph with intervention on the node x2, (ii) confounder
graph with intervention on node x2, (iii) collider graph with
intervention on root node x1, (iv) fork graph with interven-
tion on node x1, (v) mediator graph with intervention on
node x2, (vi) M-bias graph with intervention on node x1,
and (vii) butterfly bias graph with intervention on node x3.
The x3 intervention in the butterfly graph is interesting and
challenging because x3 is a collider and confounder at the
same time. Finally, to provide a better understanding of the
datasets, what an intervention entails, and how the associa-
tional, interventional, and counterfactual distributions differ
from each other for each of the graphs depicted in Fig. 6, we
provide the histograms of each graph-intervention scenario
for the linear data regime in Figs. 7 to 13. The distribution
of each exogenous variable is depicted in the first row as ui.
The histograms show the difference between observational
distribution (second row), interventional distribution (third
row), and counterfactual distribution (last row), which are
denoted as xobs, xdo(xj)

i , xxi
′

i , respectively (for the purpose
of these figures).

Results. The experiments in this section display that our
method is able to infer correctly associational, interven-
tional, and counterfactual distributions. More specifically,
we show how we can (1) learn the parameters of the SCM
(structural equations and exogenous distributions) and (2)
deploy the error nodes of a fitted PC model in such a way
that allows us to manipulate a structural equation to answer
causal queries. First, in Figs. 14 and 15, we show the con-
vergence of our predictive coding network while learning
the parameters of the SCM for all three and five node graphs.
In the left column, we can see that our method converges for
all graph structures and that we do not overfit the training
data. Moreover, we observed that a low free energy does
not correspond to a converged model. The MAE continues
to decrease, while the energy changes minimally after 50
epochs. The right column shows that the convergence is
stable and smooth among all nodes in the graph. We show
the free energy by node for all exogenous and endogenous
variables. Second, in Figs. 16 and 17, we show the causal in-
ference performance of our method by tracking the MAE for
associational, interventional, and counterfactual test queries
throughout the SCM learning process. We perform interven-
tions on all types of nodes to show that our model is able to
correctly infer causal queries on: root nodes with no parents,
intermediate nodes with parents and children, and leaf nodes
with no children. Note that the left column represents the
associational inference error on the exogenous nodes only
because during training we are provided with data of the
endogenous variables. Third, in Figs. 18 and 19, we plot
the MAE metric for test interventions and counterfactuals
during the SCM learning process. We choose intervention

15

Predictive Coding beyond Correlations

Graph F1 := X1 F2 := X2 F3 := X3 F4 := X4 F5 := X5

Fork U1 −1 + 3
1+exp (−2X1)

+ U2 0.25X2
1 + U3 - -

Collider U1 U2 0.05X1 + 0.25X2
2 + U3 - -

Confounder U1 −1 + 3
1+exp (−2X1)

+ U2 X1 + 0.25X2
2 + U3 - -

Chain U1 −1 + 3
1+exp (−2X1)

+ U2 0.25X2
2 + U3 - -

Mediator U1 1− cosh (0.5X1) + U2 X1 + 0.25X2
2 + U3 - -

M-bias U1 U2 0.5X2
1 −X2 + U3 X1 + 0.5X2

1 + U4 −1.5X2
2 + U5

Butterfly U1 U2 0.5X2
1 −X2 + U3 X1 + 0.5X2

1 − 0.25X2
3 + U4 −1.5X2

2 + 0.25X2
3 + U5

Table 1. Structural equations for non-linear SCM data generation.

nodes that are non-trivial by selecting, wherever available,
intervention nodes that are neither root nor leaf nodes.

Discussion. Our proposed method does not require more
parameters than the number of parameters that define the
true structural equations of the SCM. As such, our model
is lightweight and simple to train. Having explored various
hyperparameters, we found that our model is not prone
to overfitting nor does it require hyperparameter tuning
or model selection to infer causal distributions. Further
experiments with varied Gaussian distribution parameters
for all exogenous variables confirm the robustness of our
causal inference method to these variations. Finally, we do
not rely on complex approximators, such as GNN, VAE,
gradient boosted regressor or normalizing flow models that
require extensive hyperparameter tuning, to learn causal
relationships between the observed variables.

E. Classification Experiments
Here, we provide all the information needed to reproduce
the results of the classification experiments provided in the
main body of the paper. Furthermore, we also provide a
more detailed study on how the results are affected when
changing the parameters of the model.

Setup. The primary focus of our experiments is on the
training of fully-connected neural network models with
2000 neurons on two datasets: MNIST and FashionMNIST.
The chosen architecture for the models is a simple fully
connected PC graph. For the models, we conducted an ex-
haustive hyperparameter search. We opted for a grid search
approach, examining several combinations of learning rates
for the weights and the latent variables, and subsequently
training the models for each combination. The chosen learn-
ing rates for the weights were {0.0001, 0.00005, 0.00001}.
As for the latent variables, the learning rates tested were
{1, 0.5}, and every batch of 128 examples was observed
for T ∈ {3, 5, 7} iterations. To optimize the weights of our
models, we have used the Adam optimizer; for the value
nodes, we have used SGD; as an activation function, ReLU.
To conclude, have also tested incremental predictive coding
(iPC), a variation of PC that updates the weight parameters
at every time step t. This method has been shown to improve
both the performance and the stability of predictive coding
models (Salvatori et al., 2022c). Training was performed
for 20 epochs for each combination of learning rates in the
grid search. It is important to note that training always con-
verged before the 20th epoch, ensuring a stable model for
each hyperparameter combination. At every epoch of the
training process, we have computed the test accuracy using
both interventional queries and conditional queries.

Results. The results of our experiments showed a clear
pattern: regardless of the combination of hyperparameters,
interventional queries consistently outperformed conditional
queries. This pattern was observed across all models and
datasets, suggesting that interventional queries might be a
more effective tool for PC graphs. The best results were

16

Predictive Coding beyond Correlations

0 2 4 60

100

200

300

D
en

si
ty

U1
U1

0 2 4 60

100

200

300

U2
U2

0 2 4 60

100

200

300

U3
U3

0 2 4 60

100

200

300

D
en

si
ty

X1obs

X1

2 4 6 8 100

100

200

300

X2obs

X2

5.0 7.5 10.0 12.50

100

200

300
X3obs

X3

0 2 4 60

100

200

300

D
en

si
ty

X1do(X2)

X1

5 6 70

100

200

300

400

X2do(X2)

X2

8 9 100

100

200

300

400

X3do(X2)

X3

0 2 4 60

100

200

300

D
en

si
ty

X1X2′

X1

5 6 70

100

200

300

400

X2X2′

X2

6 8 10 120

100

200

300

X3X2′

X3

Chain

Figure 7. Causal hierarchy of distributions for chain SCM with intervention on x2. Data generation: linear. First row: Exogenous
distribution. Second row: Associational distribution. Third row: Interventional distribution. Last row: Counterfactual distribution.

17

Predictive Coding beyond Correlations

0 2 4 60

100

200

300

D
en

si
ty

U1
U1

0 2 4 60

100

200

300

U2
U2

0 2 4 60

100

200

300

U3
U3

0 2 4 60

100

200

300

D
en

si
ty

X1obs

X1

2 4 6 8 100

100

200

300

X2obs

X2

5 10 15 200

100

200

300

X3obs

X3

0 2 4 60

100

200

300

D
en

si
ty

X1do(X2)

X1

5 6 70

100

200

300

400

X2do(X2)

X2

8 10 12 14 160

100

200

300
X3do(X2)

X3

0 2 4 60

100

200

300

D
en

si
ty

X1X2′

X1

5 6 70

100

200

300

400

X2X2′

X2

7.5 10.0 12.5 15.0 17.50

100

200

300
X3X2′

X3

Confounder

Figure 8. Causal hierarchy of distributions for confounder SCM with intervention on x2. Data generation: linear. First row: Exogenous
distribution. Second row: Associational distribution. Third row: Interventional distribution. Last row: Counterfactual distribution.

18

Predictive Coding beyond Correlations

0 2 4 60

100

200

300

D
en

si
ty

U1
U1

0 2 4 60

100

200

300

U2
U2

0 2 4 60

100

200

300

U3
U3

0 2 4 60

100

200

300

D
en

si
ty

X1obs

X1

0 2 4 60

100

200

300

X2obs

X2

5.0 7.5 10.0 12.50

100

200

300
X3obs

X3

2.0 2.5 3.0 3.5 4.00

100

200

300

400

D
en

si
ty

X1do(X1)

X1

0 2 4 60

100

200

300

X2do(X1)

X2

6 8 10 120

100

200

300

X3do(X1)

X3

2.0 2.5 3.0 3.5 4.00

100

200

300

400

D
en

si
ty

X1X1′

X1

0 2 4 60

100

200

300

X2X1′

X2

6 8 10 12 140

100

200

300
X3X1′

X3

Collider

Figure 9. Causal hierarchy of distributions for collider SCM with intervention on x1. Data generation: linear. First row: Exogenous
distribution. Second row: Associational distribution. Third row: Interventional distribution. Last row: Counterfactual distribution.

19

Predictive Coding beyond Correlations

0 2 4 60

100

200

300

D
en

si
ty

U1
U1

0 2 4 60

100

200

300

U2
U2

0 2 4 60

100

200

300

U3
U3

0 2 4 60

100

200

300

D
en

si
ty

X1obs

X1

2 4 6 8 100

100

200

300

X2obs

X2

2 4 6 8 100

100

200

300

X3obs

X3

2.0 2.5 3.0 3.5 4.00

100

200

300

400

D
en

si
ty

X1do(X1)

X1

5.0 5.5 6.0 6.5 7.00

100

200

300

400

X2do(X1)

X2

5.0 5.5 6.0 6.5 7.00

100

200

300

400

X3do(X1)

X3

2.0 2.5 3.0 3.5 4.00

100

200

300

400

D
en

si
ty

X1X1′

X1

2 4 6 8 100

100

200

300

X2X1′

X2

4 6 8 100

100

200

300

X3X1′

X3

Fork

Figure 10. Causal hierarchy of distributions for fork SCM with intervention on x1. Data generation: linear. First row: Exogenous
distribution. Second row: Associational distribution. Third row: Interventional distribution. Last row: Counterfactual distribution.

20

Predictive Coding beyond Correlations

0 2 4 60

100

200

300

D
en

si
ty

U1
U1

0 2 4 60

100

200

300

U2
U2

0 2 4 60

100

200

300

U3
U3

0 2 4 60

100

200

300

D
en

si
ty

X1obs

X1

2 4 6 8 100

100

200

300

X2obs

X2

5 10 15 200

100

200

300

X3obs

X3

0 2 4 60

100

200

300

D
en

si
ty

X1do(X2)

X1

5 6 70

100

200

300

400

X2do(X2)

X2

8 10 12 14 160

100

200

300
X3do(X2)

X3

0 2 4 60

100

200

300

D
en

si
ty

X1X2′

X1

5 6 70

100

200

300

400

X2X2′

X2

7.5 10.0 12.5 15.0 17.50

100

200

300
X3X2′

X3

Mediator

Figure 11. Causal hierarchy of distributions for mediator SCM with intervention on x2. Data generation: linear. First row: Exogenous
distribution. Second row: Associational distribution. Third row: Interventional distribution. Last row: Counterfactual distribution.

21

Predictive Coding beyond Correlations

0 2 4 60

100

200

300

D
en

si
ty

U1
U1

0 2 4 60

100

200

300

U2
U2

0 2 4 60

100

200

300

U3
U3

0 2 4 60

100

200

300

400
U4

U4

0 2 4 60

100

200

300

400
U5

U5

0 2 4 60

100

200

300

D
en

si
ty

X1obs

X1

0 2 4 60

100

200

300

X2obs

X2

2.5 5.0 7.5 10.0 12.5 15.00

100

200

300

X3obs

X3

2.5 5.0 7.5 10.0 12.50

100

200

300

400
X4obs

X4

2 4 6 8 100

100

200

300
X5obs

X5

2.0 2.5 3.0 3.5 4.00

100

200

300

400

D
en

si
ty

X1do(X1)

X1

0 2 4 60

100

200

300

X2do(X1)

X2

6 8 10 120

100

200

300

X3do(X1)

X3

5.0 5.5 6.0 6.5 7.00

100

200

300

400

X4do(X1)

X4

2 4 6 80

100

200

300

X5do(X1)

X5

2.0 2.5 3.0 3.5 4.00

100

200

300

400

D
en

si
ty

X1X1′

X1

0 2 4 60

100

200

300

X2X1′

X2

5.0 7.5 10.0 12.5 15.00

100

200

300

X3X1′

X3

2 4 6 8 100

100

200

300

400
X4X1′

X4

2 4 6 8 100

100

200

300
X5X1′

X5

M

Figure 12. Causal hierarchy of distributions for M-bias SCM with intervention on x1. Data generation: linear. First row: Exogenous
distribution. Second row: Associational distribution. Third row: Interventional distribution. Last row: Counterfactual distribution.

0 2 4 60

100

200

300

D
en

si
ty

U1
U1

0 2 4 60

100

200

300

U2
U2

0 2 4 60

100

200

300

U3
U3

0 2 4 60

100

200

300

400
U4

U4

0 2 4 60

100

200

300

400
U5

U5

0 2 4 60

100

200

300

D
en

si
ty

X1obs

X1

0 2 4 60

100

200

300

X2obs

X2

2.5 5.0 7.5 10.0 12.5 15.00

100

200

300

X3obs

X3

5 10 15 20 250

100

200

300

X4obs

X4

5 10 15 200

100

200

300

X5obs

X5

0 2 4 60

100

200

300

D
en

si
ty

X1do(X3)

X1

0 2 4 60

100

200

300

X2do(X3)

X2

8 9 100

100

200

300

400

X3do(X3)

X3

10 12 14 16 18 200

100

200

300
X4do(X3)

X4

10 12 14 16 180

100

200

300
X5do(X3)

X5

0 2 4 60

100

200

300

D
en

si
ty

X1X3′

X1

0 2 4 60

100

200

300

X2X3′

X2

8 9 100

100

200

300

400

X3X3′

X3

10.0 12.5 15.0 17.5 20.00

100

200

300

X4X3′

X4

10.0 12.5 15.0 17.5 20.00

100

200

300
X5X3′

X5

Butterfly

Figure 13. Causal hierarchy of distributions for butterfly SCM with intervention on x3. Data generation: linear. First row: Exogenous
distribution. Second row: Associational distribution. Third row: Interventional distribution. Last row: Counterfactual distribution.

22

Predictive Coding beyond Correlations

(a)
Chain

(b)
Confounder

(c)
Collider

(d)
Fork

(e)
Mediator

Figure 14. Convergence of energy and MAE by node for causal graphs with five nodes. Left column: Convergence of total train and test
MAE in comparison to free energy. Right column: Energy by node. Linear data regime. Causal Hierarchy: First level (association query).

23

Predictive Coding beyond Correlations

Figure 15. Convergence of energy and MAE by node for causal graphs with three nodes. Left column: Convergence of total train and test
MAE in comparison to free energy. Right column: Energy by node. Linear data regime. Causal Hierarchy: First level (association query).

24

Predictive Coding beyond Correlations

(a) Chain

(b) Confounder

(c) Collider

(d) Fork

(e) Mediator

Figure 16. Causal inference performance throughout SCM learning process for linear data regime. We track MAE for all interventions of
all three node graphs. For association query (left column), inference is performed on exogenous nodes given factual test data. Center
column: Intervention query. Right column: Counterfactual query.

25

Predictive Coding beyond Correlations

(a) M-bias

(b) Butterfly bias

Figure 17. Causal inference performance throughout SCM learning process for linear data regime. We track MAE for all interventions
of all five node graphs. For association query (left column), inference is performed on exogenous nodes given factual test data. Center
column: Intervention query. Right column: Counterfactual query.

26

Predictive Coding beyond Correlations

Figure 18. Performance of interventional and counterfactual inference throughout SCM learning process for linear data regime. For each
three node graph we choose a single intervention node, if available a node that is neither root nor leaf node, and track MAE by node. Left
column: Intervention. Right column: Counterfactual.

27

Predictive Coding beyond Correlations

Figure 19. Performance of interventional and counterfactual inference throughout SCM learning process for linear data regime. For each
five node graph we choose a single intervention node, if available a node that is neither root nor leaf node, and track MAE by node. Left
column: Intervention. Right column: Counterfactual.

FashionMNIST MNIST

PC iPCiPCPC

Figure 20. Difference in performance and stability of iPC and PC on classification tasks.

28

Predictive Coding beyond Correlations

obtained using a learning rate of the value nodes of 0.5,
and T = 3. The learning rate of the parameters slightly
affected the performance, unless we consider values outside
the proposed range. As a learning algorithm, we observe
that iPC is indeed more performing and stable, as shown in
Figure 20.

Figure 21. Each line represents digits generated by our predic-
tive coding network when performing two intervention simulta-
neously (i.e., rotation and color). Rotation angles are, in order,
T ∈ {0, 10, 20, 30, 40}. Colors are defined by taking ≊z from
the network’s state computed for random digits.

F. Robustness Experiments
Recent work has shown that available deep-learning-based
methods fail to obtain sufficient performance on coun-
terfactual queries under specific circumstances, and pro-
posed novel techniques to overcome this shortcoming
(De Brouwer, 2022). Here, we show that predictive coding
achieves the same state-of-the-art results, while requiring
a simpler architecture with no ad hoc training techniques.
To do so, we test PC graphs on the colored-MNIST dataset
introduced in (De Brouwer, 2022). The dataset consists of
tuples (x,uz, T ,y, T ′,y′), where x is the original MNIST
image, T is the assigned treatment, uz is a hidden exoge-
nous random variable that determines the color of the ob-
served outcome image y, and y′ is the counterfactual re-
sponse obtained when applying the alternative treatment T ′.

Setup. To replicate the experiment, we have used a PC
graph with a structure that is equivalent to the 4-nodes SCM
used in the original work, and trained it with Algorithm 1.
We used nodes with the ground truth number of dimensions
(i.e., 784, 1, and 784 respectively) to represent the observed
variables x, T , and y. Instead, we left the dimension of
the remaining hidden node h as a hyperparameter dh as
the value uz is never observed by the model. The edges
between the nodes in the PC graph represent feedforward
networks. Figure 4(c) summarizes the architecture used.
We experimented with different depths, widths, and activa-
tion functions, without experiencing any unexpected results
(e.g., deeper and wider networks would have slightly better
performance). The architecture can be seen as an encoder-
decoder structure. The nodes x, T , and uz are encoded
using respectively 3, 1, and 1 fully connected layers with a
hidden dimensions of 1024 and tanh as activation function.
Then, the embedding is decoded into y using 3 other fully
connected layers with the same hidden dimension of 1024.
The experiment was conducted as follows:

• During training, we fix the nodes x, T , and y to the
corresponding observed variables and we initialize h
to 0. We train for 128 epochs with a batch size of 256.
We train using iPC and T = 16. We set the nodes

29

Predictive Coding beyond Correlations

learning rate to γ = 0.005 and the weights learning
rate to α = 0.00005. We use the SGD optimizer for
the nodes and the Adamw optimizer for the weights.
Consequently, the model has never direct access to any
of uz , T ′, or y′.

• The inference process is divided in two phases. Firstly,
we repeat the same procedure as above, while setting
α = 0.0, so that the weights of the model are not
changed. This allows the network to adapt to the pro-
vided y by storing its extra information (i.e., the color,
in this instance) in the hidden node uz . Secondly, for
each sample in a batch, after T = 16 steps, we replace
T with T ′ to compute the counterfactual y′ and com-
pare it with the ground truth image. To obtain y′, we
simply forward through the network the information
stored in the nodes x, T , and uz during the first phase.
To produce the digits in Fig. 4(c), we fixed the node T
to each angle ∈ {0◦, 10◦, 20◦, 30◦, 40◦}. Furthermore,
in the main body we show that our model is able to
produce counterfactual not only by modifying the ro-
tation T , but also the color encoded by uz . To show
this, we take the value of the node uz computed for
the a sample and use it to generate all the remaining
y′ in the batch. In Figure 21, we show that our model
is robust also to two complementary interventions, by
specifying both rotation and color (acting on variables
T and uz respectively) for each digit in the sequence.

Results. We obtain results comparable with the ones in
(De Brouwer, 2022). Our method has the advantage of us-
ing a straightforward multi-layer perceptron architecture
trained with an unmodified version of the predictive coding
learning algorithm. This shows the capability and versatility
of predictive coding to work in various tasks in which other
deep-learning techniques tend to fail, such as Diff-SCM
(Sanchez & Tsaftaris, 2022), Deep-SCM (Pawlowski et al.,
2020), and Deep-ITE (Shalit et al., 2017). Figure 4(c) in
the main body shows a magnified example of counterfac-
tual reconstructions that demonstrate that our method is
robust with respect to interventions on either rotation or
color. Compared to (De Brouwer, 2022), we are able to gen-
eralize to rotations of 40◦, even if this introduces some noise
in the generated output. Furthermore, contrary to the model
presented in (De Brouwer, 2022), our architecture is robust
with respect to the choice of the hyperparameter linked to
uz and does not necessitate to perform a hyperparameter
sweep to find the right value.

G. Structure Learning
G.1. Experiments on Random Graphs
In this section, we show results on the convergence behav-
ior of structure learning with a PC graph to understand the
relationship between variational free energy and the approx-
imation error of the weighted adjacency matrix. Further-
more, we describe in detail the metrics used to evaluate the
estimated weighted adjacency matrix as well as accuracy
metrics for assessing the learned relationships and direc-
tions of the adjacency matrix. We also provide all details
on the model and training parameters used to reproduce our
structure learning experiments. Finally, we compare our
method against established structure learning algorithms for
random graphs of various types and complexities.

Setup. Our causal structure learning method only requires
observational data as input. The two types of random graphs
that we consider for our experiments are (1) Erdős-Rényi
(ER) with either 1 or 2 expected edges per node, denoted as
ER1 and ER2, and (2) scale-free (SF) graphs with either 2
or 4 expected edges per node, denoted as SF2 and SF4, re-
spectively. We use graphs with N ∈ {10, 15, 20} nodes and
generate datasets with 2000 samples. These two graph types
are selected to demonstrate the versatility and robustness of
our method in handling various graph structures.

We generate synthetic data by first sampling a binary ad-
jacency matrix, A, for a DAG. Next, we place uniformly
random edge weights onto the binary adjacency matrix, to
obtain a weighted adjacency matrix, W. Finally, we sample
observational data based on a set of linear structural equa-
tions with additive Gaussian noise, u ∼ N (0, IN), such
that

x = WTx+ u ∈ RN .

To fit the PC model to the observational data, we use the
stochastic gradient descent (SGD) optimizer for the node
values with a learning rate of γ = 1e− 4 and T = 16. For
the weights, we use the Adamw optimizer with a learning
rate of α = 5e − 3. We enforce two penalties onto our
learning algorithm. First, a DAG penalty to ensure that the
discovered graph is acyclic and directed, as proposed in
(Zheng et al., 2018). Second, an L1 penalty that encourages
the PC network to find a causal structure that is sparse.
We add both penalties into the predictive coding objective.
The penalties are each weighted by λL1 = 5e − 6 and
λDAG = 200, for L1 and DAG penalty, respectively.

Structure learning metrics Here, we describe the metrics
used to evaluate the performance for estimating graph struc-
tures in the experiments of Section 4. First, for the weighted
adjacency matrix of a DAG with N nodes, we report the
mean absolute error (MAE) between the true, W, and the
estimated, Ŵ, weighted adjacency matrix as the average of
the absolute differences between corresponding entries in

30

Predictive Coding beyond Correlations

the two matrices:

MAE(W,Ŵ) =
1

N2

N∑
i=1

N∑
j=1

|Wij − Ŵij |. (13)

Second, to evaluate the correctness of the learned edge
directions and the adjacency relationships in the graph, we
report metrics on the estimated binary adjacency matrix, Â,
that is obtained via thresholding as follows:

Âij =

{
1 if Ŵij > ω

0 otherwise.

We use the same data as proposed in (Zheng et al., 2018),
and we follow their procedure and use ω = 0.3 in all exper-
iments. We report the following graph metrics: (i) F-score
(F1), (ii) structural Hamming distance (SHD), (iii) false dis-
covery rate (FDR), (iv) true positive rate (TPR), (iv) false
positive rate (FPR), and (v) number of directed edges dis-
covered (NNZ). Each metric is computed between the true
adjacency matrix, A, and the estimated adjacency matrix,
Â. To compute each metric, we first need the following
quantities:

• true positive (TP): a discovered edge, with correct di-
rection,

• reverse (R): a discovered edge, with incorrect direction,

• false positive (FP): a discovered edge, not present in
A,

• true negative (TN): a non-discovered edge, not present
in A,

• false negative (FN): a non-discovered edge, present in
A,

• missing (M): a non-discovered edge, present in A.

Based on these quantities, each metric is computed as fol-
lows:

• F1 = 2TP
2TP+FP+FN ,

• SHD = R + M + FP =
∑N

i=1

∑N
j=1 |Aij − Âij |,

• FDR = FP+R
FP+TP ,

• FPR = FP+R
FP+TN ,

• TPR = TP
TP+FN ,

• NNZ = TP + FP.

Results. First, we show results on learning the causal
structure for the two most difficult graphs of our experi-
ments, namely, ER2 and SF4 graphs, each with N = 20. We
see that PC graphs are able to learn good approximations of
the ground truth weighted adjacency matrix of complex ran-
dom graphs. This is depicted in the left columns of Figs. 22
and 23, respectively. The right columns in Figs. 22 and 23
shows how the MAE decreases as the predictive coding ob-
jective converges. In all cases, we observe that while the
energy converges early on, the causal discovery performance
(MAE) keeps improving. Second, in Table 2, we compare
our method against established and recent causal discovery
algorithms. In contrast to the baselines, our method con-
sistently exhibits a good performance across various graph
structures and does not deteriorate strongly for graphs of
varying complexity by maintaining its causal structure learn-
ing abilities despite irregular node degree distributions and
an increasing number of edges and nodes. This is reflected
in the high accuracy metrics (F1) and low structural ham-
ming distance (SHD) obtained with our method. From our
experiments, we observed that our method performs very
well on scale-free graphs different to most of the bench-
marks, which struggle on such random graphs. To conclude,
the causal structure learning experiments conducted demon-
strate that our method can learn arbitrary DAG structures
of varying characteristics and levels of complexity. The
complexity is determined by factors such as the number
of nodes in the graph and the degree distribution of each
node. Furthermore, our method demonstrates a robust per-
formance even in the face of challenges such as increasingly
uneven degree distributions and growing node cardinality.
This distinguishes our approach from the baseline meth-
ods, thereby further highlighting the effectiveness of our
predictive coding framework for causal structure learning.

31

Predictive Coding beyond Correlations

(a) ER2 10 nodes

(b) ER2 15 nodes

(c) ER2 20 nodes

Figure 22. Learned structures and convergence behavior (energy vs. MAE) for ER2 graphs of various complexity.

32

Predictive Coding beyond Correlations

G.2. Classification
In the main body of this work, we showed that pruning
unnecessary connections in a complete graph results in a
hierarchical structure with improved performance. In this
section, we provide further details to reproduce our results.

The classification experiments are performed on the MNIST,
FashionMNIST, and 2-MNIST datasets. The latter is ob-
tained by pairing the image x̂ in each sample (x̂, ŷ) of the
MNIST dataset with a new digit image x̂′ sampled uni-
formly from the dataset (while maintaining the train and test
splitting intact). Thus, a data point of the 2-MNIST dataset
consists of the tuple (x̂, x̂′, ŷ).

We consider a predictive coding graph with 6 nodes, one
of dimension 784 (input dimension), one of dimension 10
(output dimension), and 4 hidden nodes of dimension d. In
the case of 2-MNIST, we have two nodes of dimension 784,
and only three of dimension d. The results reported in this
work were obtained with d = 128. During training, we used
a batch size of 512 and T = 32. To start from a complete
graph, as the one defined in Section 3, we define a fully
connected layer fi,j , with gelu activation function, going
from node i to node j for each ordered pair of nodes (i, j).
The output of each layer fi,j is then multiplied by a scaling
factor ai,j that determines the strength of the connection
from node i to node j. Together, the factors ai,j determine
the adjacency matrix A. To enforce sparse connectivity
and prune unnecessary edges, we add to the matrix A the
L1 regularizer l(A). Consequently, the loss function to
optimize becomes L = F +ω · l(A), where ω is a weighting
factor.

Degenerate Example. We start our discussion by showing
a degenerate example, which arises when we do not use
either negative examples, or a prior that forces an acyclic
structure, but only the prior l(A) which enforces sparsity.
In this case, the modes is unable to learn the causal depen-
dency between input and output, and converges towards a
degenerate structure, where each output node predicts itself
via a cyclic structure, which can be a self loop, or a closed
loop with length larger than one. As each node either pre-
dicts itself or is unused, the total variational free energy of
the network is going to be close to 0, despite the network
being randomly guessing the output. An example of such
structures is provided in Fig. 5. This shows the importance
of additional methods, that force the network to be aware
of the causal dependency between the input and the output.
We now test the two proposed methods: the acyclic prior,
and the use of negative examples.

To overcome this, we propose two different methods:

1. force an acyclic structure, by adding to the loss func-
tion the regulariser h(A) = tr(exp(A × A)) intro-
duced in (Zheng et al., 2018). We weight h(A) by a

scalar η.

2. force a connection between input nodes and output
nodes, by introducing negative samples in the training
dataset: with probability pns we sample randomly a
new label ŷns. We modify the energy function:

F̂ =
∑

i̸=iy
∥xi−µi∥2+(∥xiy −µiy∥2−k)2, (14)

where iy is the index of the node fixed to ŷ and k
the new energy target. We set k = 0 for positive
samples and k > 0 for negative samples. With negative
samples, the output node cannot simply learn to predict
itself, as the energy would be non-zero for negative
samples, for which the energy target is k > 0.

Discussion. Both methods produce hierarchical structures
that achieve a better performance than the original complete
graph. Method (1) has the disadvantage of introducing an
inductive bias in the architecture by completely removing
loops and requiring a complex balance between the ω and
η parameters, as they affect each other. On the other hand,
method (2), despite overcoming these issues, seems more
brittle with respect of the choice of hyperparameters and
produces a smaller variety of networks. The value of ω de-
termines the overall network structure. For method (1), we
observed a wide range of possible output structures (e.g., us-
ing zero or multiple hidden-nodes, in parallel or in sequence,
with and with-out skip connections) depending on the cho-
sen ω. The best accuracy, however, was always achieved
with a structure equivalent to a hierarchical neural network
with two fully connected layers as shown in Figure 5. For
method (2), instead, the only non-degenerate possibilities
were either a complete graph (for low ω values), the optimal
2-layer network, or a network with no edges (for high ω val-
ues). A possible future research direction could be aiming
at combining the two methods to overcome their respective
limitations. Table 3 reports the best hyperparameters for
each method and dataset.

H. End-to-end Causal Learning
The goal of the presented experiments so far was to show
that a causal predictive coding network can solve both tasks
of causality:

• Given observational data, perform unsupervised causal
structure learning of the (weighted) adjacency matrix
that represents the data generating SCM.

• Given observational data and causal structure, perform
inference of associational, interventional, and counter-
factual distributions to answer causal queries.

Therefore, this section is motivated by studying the capa-
bility of our proposed method to combine both tasks into

33

Predictive Coding beyond Correlations

(a) SF4 10 nodes

(b) SF4 15 nodes

(c) SF4 20 nodes

Figure 23. Learned structures and convergence behavior (energy vs. MAE) for SF4 graphs of various complexity.

34

Predictive Coding beyond Correlations

model N graph FDR ↓ TPR ↑ FPR ↓ SHD ↓ NNZ - F1 ↑
Ours 0.08 ± 0.04 0.92 ± 0.04 0.02 ± 0.01 0.80 ± 0.45 10.00 ± 0.00 0.92 ± 0.04
GES 0.22 ± 0.08 0.88 ± 0.11 0.07 ± 0.03 3.00 ± 1.41 11.20 ± 0.45 0.68 ± 0.09
PC 10 ER1 0.13 ± 0.04 0.82 ± 0.04 0.03 ± 0.01 2.20 ± 0.45 9.40 ± 0.55 0.77 ± 0.03

ICALiNGAM 0.25 ± 0.15 0.86 ± 0.11 0.09 ± 0.05 3.20 ± 2.05 11.60 ± 1.14 0.80 ± 0.13
NOTEARS 0.08 ± 0.08 0.90 ± 0.07 0.02 ± 0.02 1.20 ± 0.84 9.80 ± 0.84 0.91 ± 0.07

Ours 0.02 ± 0.04 0.94 ± 0.04 0.02 ± 0.04 1.40 ± 0.89 19.20 ± 1.30 0.96 ± 0.03
GES 0.86 ± 0.03 0.26 ± 0.05 1.30 ± 0.02 33.60 ± 0.55 37.60 ± 1.14 0.17 ± 0.03
PC 10 ER2 0.47 ± 0.09 0.45 ± 0.08 0.32 ± 0.06 13.20 ± 1.48 17.00 ± 0.71 0.47 ± 0.08

ICALiNGAM 0.31 ± 0.14 0.74 ± 0.12 0.27 ± 0.13 9.20 ± 4.76 21.60 ± 1.14 0.71 ± 0.13
NOTEARS 0.14 ± 0.00 0.90 ± 0.00 0.12 ± 0.00 4.00 ± 0.00 21.00 ± 0.00 0.88 ± 0.00

Ours 0.03 ± 0.04 0.99 ± 0.03 0.00 ± 0.01 0.60 ± 0.89 15.20 ± 0.45 0.98 ± 0.03
GES 0.22 ± 0.14 0.83 ± 0.10 0.04 ± 0.03 5.00 ± 3.00 16.00 ± 1.00 0.80 ± 0.12
PC 15 ER1 0.16 ± 0.05 0.85 ± 0.03 0.03 ± 0.01 3.40 ± 0.89 15.20 ± 0.45 0.78 ± 0.03

ICALiNGAM 0.30 ± 0.06 0.77 ± 0.09 0.06 ± 0.01 5.40 ± 1.14 16.60 ± 1.52 0.73 ± 0.07
NOTEARS 0.06 ± 0.08 0.89 ± 0.10 0.01 ± 0.01 2.00 ± 2.00 14.20 ± 0.84 0.92 ± 0.09

Ours 0.20 ± 0.06 0.89 ± 0.04 0.09 ± 0.03 8.80 ± 3.11 33.60 ± 1.52 0.84 ± 0.05
GES 0.56 ± 0.08 0.77 ± 0.07 0.40 ± 0.10 31.60 ± 7.70 52.80 ± 5.72 0.54 ± 0.08
PC 15 ER2 0.62 ± 0.07 0.37 ± 0.06 0.24 ± 0.03 33.40 ± 3.05 28.80 ± 1.48 0.37 ± 0.07

ICALiNGAM 0.38 ± 0.08 0.75 ± 0.08 0.18 ± 0.04 17.60 ± 3.65 36.20 ± 2.49 0.68 ± 0.07
NOTEARS 0.17 ± 0.03 0.79 ± 0.02 0.07 ± 0.01 9.80 ± 0.84 28.60 ± 0.89 0.81 ± 0.02

Ours 0.25 ± 0.04 0.99 ± 0.02 0.04 ± 0.01 6.80 ± 1.48 26.60 ± 1.14 0.80 ± 0.04
GES 0.43 ± 0.12 0.74 ± 0.13 0.07 ± 0.02 14.90 ± 6.47 26.30 ± 1.95 0.65 ± 0.13
PC 20 ER1 0.43 ± 0.08 0.61 ± 0.07 0.06 ± 0.01 13.80 ± 1.92 21.60 ± 1.14 0.54 ± 0.07

ICALiNGAM 0.47 ± 0.05 0.72 ± 0.06 0.08 ± 0.01 14.60 ± 2.19 27.20 ± 1.92 0.61 ± 0.05
NOTEARS 0.23 ± 0.08 0.79 ± 0.07 0.03 ± 0.01 8.80 ± 2.86 20.60 ± 0.55 0.78 ± 0.07

Ours 0.12 ± 0.08 0.94 ± 0.02 0.04 ± 0.02 6.20 ± 3.83 43.00 ± 2.83 0.91 ± 0.05
GES 0.70 ± 0.07 0.64 ± 0.11 0.42 ± 0.10 65.80 ± 13.57 88.80 ± 11.90 0.40 ± 0.09
PC 20 ER2 0.65 ± 0.04 0.37 ± 0.06 0.18 ± 0.01 44.00 ± 1.41 41.80 ± 2.39 0.36 ± 0.05

ICALINGAM 0.34 ± 0.10 0.80 ± 0.06 0.11 ± 0.04 19.60 ± 6.47 49.20 ± 4.21 0.72 ± 0.08
NOTEARS 0.15 ± 0.05 0.91 ± 0.02 0.04 ± 0.02 9.40 ± 1.95 42.80 ± 2.59 0.88 ± 0.03

Table 2. Comparison against established structure learning algorithms on various accuracy metrics for ER/SF graphs of increasing
complexity. Mean and standard deviation calculated over 10 seeds.

35

Predictive Coding beyond Correlations

model N graph FDR ↓ TPR ↑ FPR ↓ SHD ↓ NNZ - F1 ↑
Ours 0.03 ± 0.09 0.99 ± 0.04 0.02 ± 0.07 0.70 ± 2.21 17.40 ± 1.26 0.98 ± 0.07
GES 0.39 ± 0.02 0.89 ± 0.03 0.35 ± 0.05 9.80 ± 1.30 25.00 ± 1.73 0.69 ± 0.02
PC 10 SF2 0.24 ± 0.03 0.69 ± 0.03 0.14 ± 0.02 7.40 ± 0.55 15.60 ± 0.55 0.72 ± 0.02

ICALiNGAM 0.40 ± 0.09 0.79 ± 0.07 0.33 ± 0.09 10.80 ± 2.77 22.60 ± 1.67 0.68 ± 0.08
NOTEARS 0.00 ± 0.00 0.82 ± 0.00 0.00 ± 0.00 3.00 ± 0.00 14.00 ± 0.00 0.90 ± 0.00

Ours 0.08 ± 0.08 0.94 ± 0.06 0.17 ± 0.19 3.50 ± 3.78 30.80 ± 1.87 0.93 ± 0.07
GES 0.60 ± 0.05 0.56 ± 0.07 1.69 ± 0.12 27.00 ± 2.35 42.20 ± 0.45 0.44 ± 0.05
PC 10 SF4 0.18 ± 0.08 0.59 ± 0.06 0.25 ± 0.12 14.60 ± 2.41 21.40 ± 1.52 0.68 ± 0.06

ICALiNGAM 0.21 ± 0.06 0.83 ± 0.05 0.45 ± 0.15 9.40 ± 3.21 31.80 ± 1.64 0.81 ± 0.06
NOTEARS 0.03 ± 0.05 0.83 ± 0.09 0.05 ± 0.07 5.40 ± 3.29 25.80 ± 1.64 0.89 ± 0.07

Ours 0.02 ± 0.02 0.98 ± 0.02 0.01 ± 0.01 0.60 ± 0.55 27.00 ± 0.00 0.98 ± 0.02
GES 0.27 ± 0.02 0.99 ± 0.02 0.13 ± 0.01 10.00 ± 1.00 36.80 ± 0.84 0.79 ± 0.01
PC 15 SF2 0.15 ± 0.08 0.76 ± 0.03 0.05 ± 0.03 9.40 ± 2.70 24.00 ± 1.41 0.77 ± 0.04

ICALiNGAM 0.36 ± 0.11 0.87 ± 0.07 0.17 ± 0.07 15.20 ± 7.26 37.20 ± 3.83 0.74 ± 0.10
NOTEARS 0.02 ± 0.02 0.97 ± 0.02 0.01 ± 0.01 1.40 ± 0.89 26.80 ± 0.45 0.97 ± 0.02

Ours 0.10 ± 0.06 0.94 ± 0.05 0.09 ± 0.06 7.20 ± 4.55 52.20 ± 1.79 0.92 ± 0.05
GES 0.47 ± 0.09 0.82 ± 0.10 0.67 ± 0.16 39.40 ± 11.04 77.60 ± 4.39 0.62 ± 0.09
PC 15 SF4 0.52 ± 0.06 0.29 ± 0.04 0.28 ± 0.03 45.40 ± 2.51 30.00 ± 0.71 0.36 ± 0.05

ICALiNGAM 0.44 ± 0.09 0.69 ± 0.09 0.50 ± 0.11 36.40 ± 7.83 62.00 ± 3.39 0.62 ± 0.09
NOTEARS 0.12 ± 0.03 0.83 ± 0.08 0.11 ± 0.02 13.20 ± 4.92 47.40 ± 2.79 0.85 ± 0.06

Ours 0.10 ± 0.14 0.96 ± 0.05 0.03 ± 0.04 5.40 ± 7.40 40.20 ± 4.38 0.93 ± 0.10
GES 0.30 ± 0.12 0.96 ± 0.02 0.10 ± 0.05 16.00 ± 7.28 51.20 ± 6.98 0.77 ± 0.08
PC 20 SF2 0.26 ± 0.07 0.70 ± 0.06 0.06 ± 0.02 17.80 ± 4.38 34.80 ± 1.48 0.68 ± 0.06

ICALiNGAM 0.34 ± 0.17 0.87 ± 0.06 0.12 ± 0.08 19.80 ± 13.01 50.80 ± 9.88 0.75 ± 0.13
NOTEARS 0.23 ± 0.07 0.88 ± 0.04 0.06 ± 0.02 12.80 ± 5.76 42.20 ± 2.28 0.82 ± 0.05

Ours 0.06 ± 0.05 0.98 ± 0.03 0.04 ± 0.03 5.60 ± 5.50 73.00 ± 1.73 0.96 ± 0.04
GES 0.28 ± 0.03 0.94 ± 0.04 0.21 ± 0.02 26.60 ± 3.13 91.40 ± 1.52 0.79 ± 0.03
PC 20 SF4 0.38 ± 0.04 0.34 ± 0.02 0.12 ± 0.01 54.60 ± 2.70 38.80 ± 1.30 0.44 ± 0.03

ICALiNGAM 0.37 ± 0.13 0.73 ± 0.05 0.27 ± 0.13 45.20 ± 17.25 83.40 ± 12.46 0.67 ± 0.10
NOTEARS 0.18 ± 0.01 0.81 ± 0.02 0.10 ± 0.01 22.80 ± 1.64 69.40 ± 0.55 0.82 ± 0.02

Table 2. Comparison against established structure learning algorithms on various accuracy metrics for ER/SF graphs of increasing
complexity. Mean and standard deviation calculated over 10 seeds. (cont.)

36

Predictive Coding beyond Correlations

Dataset Method γ α β ω η pns

MNIST DAG 0.5 4e− 05 2e− 05 8e−4 40.0 -
Fashion-MNIST DAG 0.3 3e− 05 5e− 05 1e− 3 20.0 -

2-MNIST DAG 0.5 4e− 05 2e− 05 8e− 4 40.0 -

MNIST NS 0.8 1e− 04 8e− 05 0.05 - 0.1
Fashion-MNIST NS 0.5 1e− 04 8e− 05 0.05 - 0.2

2-MNIST NS 0.8 1e− 04 8e− 05 0.05 - 0.1

Table 3. Hyperparameters used to obtain the results reported in Fig. 5. DAG (directed acyclic graphs) refers to method (1), while NS
(negative samples) to method (2). The accuracy obtained on 2-MNIST is similar to the one obtained for MNIST. k was set to 1.0 for
negative samples. A weight decay of 0.001 was applied to the node values during the NS experiments.

Figure 24. Examples of degenerate networks, where the label pre-
dicts itself either via self loops, or via cycles.

a single framework. We use the same PC graph to conduct
structure learning for the common graphs used in the causal
inference experiments (chain, collider, confounder, fork,
mediator, butterfly bias, M-bias) using only observational
data generated by the corresponding SCM. Given that our
method is able to (i) discover complex causal structures for
random DAGs in Section 4 and (ii) correctly answer causal
queries for common DAG structures in Section 3, we hy-
pothesize that our method should be able to discover graph
structures used in Section 3 without prior knowledge. The
motivation behind this approach is that in the real-world,
true causal structures are rarely known and often only ob-
servational data from an unknown SCM is available. In
the following, we perform causal structure learning for the
graphs used in the causal inference experiments of Section 3.
The procedure is as follows: First, given observational data,
we learn the causal structure of the underlying SCM that
generated the observed data. More specifically, we start
with a fully connected PC graph and prune unnecessary
node connections using sparsity and acyclicity constraints
with subsequent thresholding as described in Appendix D.
Second, given the observational data and the discovered
causal structure, we learn the SCM parameters including an
approximation of the parameters of each node’s exogenous
distribution ui. To be more specific, once the causal struc-

ture is discovered, we modify the PC graph by including one
exogenous node, ui, for each endogenous variable, xi, into
our PC graph. Augmenting the PC graph with exogenous
nodes enables us to learn the distribution of each exogenous
node, which is crucial in the SCM framework, as exoge-
nous variables are essential for conducting counterfactual
inference. This procedure provides us with a simple and
closed form end-to-end causal inference engine. Using a
single PC model with no pipelines, enables us to (1) dis-
cover the adjacency matrix of the SCM and to (2) answer
causal queries on any of the three levels of Pearl’s ladder of
causation (2009). We report results for the structure learning
step in Table 4.

Despite the graphs being very different, the experimental
results show that our method performs well in causal dis-
covery for most common graphs despite using the same hy-
perparameters and no hyperparameter search, even though
the graphs are very different. We do not show the causal
inference results again, because the results for learning as-
sociational, interventional, and counterfactual distributions
and the distribution of the exogenous noise variables in SCM
remained the same. The discovered causal structures are
consistent with the adjacency matrices used as prior knowl-
edge in Section 3. Our method is able to solve both causality
tasks without prior knowledge of any graph structures. We
showed how our causal predictive coding framework can be
used in an end-to-end unsupervised causal inference pipeline
similar to (Geffner et al., 2022) but without the need of com-
plex neural networks. Thus, our proposed causal predictive
coding maintains transparency and interpretability despite
good performance.

37

Predictive Coding beyond Correlations

graph N MAE ↓ FDR ↓ TPR ↑ FPR ↓ SHD ↓ NNZ - F1 ↑
butterfly 5 0.02 ± 0.01 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 6.00 ± 0.00 1.00 ± 0.00

M 5 0.03 ± 0.01 0.04 ± 0.09 1.00 ± 0.00 0.03 ± 0.07 0.20 ± 0.45 4.20 ± 0.45 0.98 ± 0.05
chain 3 0.01 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.00 ± 0.00 1.00 ± 0.00

confounder 3 0.22 ± 0.12 0.27 ± 0.15 0.73 ± 0.15 0.80 ± 0.45 0.80 ± 0.45 3.00 ± 0.00 0.73 ± 0.15
collider 3 0.01 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.00 ± 0.00 1.00 ± 0.00

fork 3 0.01 ± 0.01 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.00 ± 0.00 1.00 ± 0.00
mediator 3 0.46 ± 0.33 0.27 ± 0.15 0.73 ± 0.15 0.80 ± 0.45 0.80 ± 0.45 3.00 ± 0.00 0.73 ± 0.15

Table 4. End-to-end causality engine: Causal predictive coding for discovery of DAGs based on observational data only. Numbers are
reported over 5 different runs.

38

