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Abstract
Differentially private (DP) machine learning is
considered the gold-standard solution for training
a model from sensitive data while still preserv-
ing privacy. However, a major barrier to achiev-
ing this ideal is its sub-optimal privacy-accuracy
trade-off, which is particularly visible in DP repre-
sentation learning. Specifically, it has been shown
that under modest privacy budgets, most models
learn representations that are not significantly bet-
ter than hand-crafted features. In this work, we
show that effective DP representation learning
can be done via image captioning and scaling up
to internet-scale multimodal datasets. Through
a series of engineering tricks, we successfully
train a DP image captioner (DP-Cap) on a 233M
subset of LAION-2B from scratch using a rea-
sonable amount of computation, and obtaining
unprecedented high-quality image features that
can be used in a variety of downstream vision
and vision-language tasks. For example, under a
privacy budget of ε = 8 for the LAION dataset, a
linear classifier trained on top of learned DP-Cap
features attains 65.8% accuracy on ImageNet-1K,
considerably improving the previous SOTA of
56.5%. Our work challenges the prevailing sen-
timent that high-utility DP representation learn-
ing cannot be achieved by training from scratch.
Code is available at https://github.com/
facebookresearch/dpcap.

1. Introduction
Differentially private (DP; Dwork et al. (2006)) model train-
ing is an effective strategy for privacy-preserving ML on
sensitive data. For most optimization-based learning algo-
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rithms, DP-SGD (Song et al., 2013; Abadi et al., 2016) can
be readily applied to obtain models with rigorous DP guar-
antee. Regrettably, DP training has also been marred by
a sub-optimal privacy-utility trade-off, with model utility
severely lagging behind their non-private counterpart (Ja-
yaraman & Evans, 2019; Tramer & Boneh, 2020; Kurakin
et al., 2022). At the core of this unfavorable trade-off is the
difficulty of DP representation learning. Tramer & Boneh
(2020) showed that when DP training from scratch under a
low-to-moderate privacy budget, most models do not learn
useful representations, with the quality of learned repre-
sentations worse than even handcrafted features. These
observations naturally lead to the research question: “How
does one learn useful representations with DP training?”

One plausible reason for the failure of prior attempts at DP
representation learning is the lack of training data. Indeed,
DP limits the information content of each training sam-
ple via the privacy budget ε, inducing a privacy-accuracy-
sample size tradeoff; thus a substantially larger training
dataset is required to extract the same amount of information
to train the model. As the vast majority of prior work only
utilize small to moderate scale classification datasets such
as CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng
et al., 2009b), the amount of training data is simply in-
sufficient for learning high-quality representations under
DP (Tramer & Boneh, 2020). Yu et al. (2023) made par-
tial progress towards this through self-supervised learning
(SSL) on internet-scale data. By training a masked autoen-
coder (MAE; He et al. (2022)) using DP-SGD on a 233M
subset of the LAION-2B dataset (Schuhmann et al., 2022),
the model learned image representations that are on-par
with non-private AlexNet (Krizhevsky et al., 2012) trained
on ImageNet—the first deep learning model to outperform
handcrafted features and a major cornerstone for representa-
tion learning. However, the MAE objective also promotes
the model to learn extraneous details in the image that may
not be helpful for obtaining generalizable representations,
severely limiting the potential of this approach for DP.

We adopt a different approach of DP training via image cap-
tioning on internet-scale multimodal datasets. The reason
is twofold: 1. Text caption provides a concise summary
of the training image and serves as better supervision com-
pared to image-only SSL (Tschannen et al., 2023). Under
the constraint on information content from DP, we hypothe-
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(c). Captions generated by DP-Cap

(a). Few-shot learning on ImageNet (b). ARO Evaluation

A brown bear is sitting
on the grass

Cat sitting in toilet Swans swimming in the 
water

Seagull standing on the beach

Figure 1: (a) Few-shot ImageNet-1K linear probe accuracy comparison between DP-Cap (ours) and ViP (Yu et al., 2023)
(previous SOTA). DP-Cap learns better image representations using the same training data and privacy budget, and
considerably surpasses synthetic initialization (syn). The privacy budget ε is for the LAION dataset, and the linear classifiers
are trained without DP. (b) Compositional understanding evaluation on the ARO benchmark (Yuksekgonul et al., 2022).
DP-Cap performance is close to non-private Cap and outperforms non-private CLIP. (c) Captions generated by DP-Cap on
images from the MS-COCO 2017 (Lin et al., 2015) test set.

size that it provides substantially more efficient information
extraction under DP training. 2. Image captioning is well-
aligned with the prerequisites of DP-SGD such as having
an instance-separable loss. We apply this method on a
233M subset of LAION-2B to train a DP image caption-
ing model (DP-Cap), whose learned representations surpass
previous SOTA—ViP (Yu et al., 2023)—by a large margin.
As depicted in Figure 1(a), our model trained with a pri-
vacy budget of ε = 8 shows substantial improvements on
downstream tasks compared to ViP, both trained on the same
dataset. To achieve this, we also made crucial improvements
to the efficiency of the DP training pipeline, reducing the
compute cost by close to 5× on the largest model.

The image representations learned by DP-Cap also exhibit
strong performance for multimodal tasks that require align-
ment of image and text features, the first occurrence for
models trained from scratch with DP; see Figure 1(b). As a
qualitative evaluation, we also use the trained DP-Cap model
to caption several images from the MS-COCO 2017 (Lin
et al., 2015) test set in Figure 1(c) and Appendix B.3. The re-
sulting captions are grammatically correct and semantically
coherent, while (close to) accurately describing contents of
the image; this is interesting because our model has only

been exposed to language supervision from LAION, which
are far from being flawless. Our results suggest that DP train-
ing on internet-scale multimodal datasets can be a viable
approach for obtaining high-utility learned representations.

2. Background and Related Work
Vision-language pre-training. Many modern ML datasets
such as Conceptual Captions (Changpinyo et al., 2021),
LAION (Schuhmann et al., 2021) and DataComp (Gadre
et al., 2023) consist of aligned image-text pairs where the
image and text contain roughly similar semantic information.
One can leverage the aligned nature of the training data to
pre-train vision-language models (VLMs) that connect the
two modalities, whose representations perform more general
multi-modal tasks. Contrastive learning-based techniques
such as CLIP (Radford et al., 2021) and BLIP (Li et al.,
2022a) are also applicable for pre-training VLMs. Doing
so not only learns high-quality image and text representa-
tions but also introduces new multi-modal capabilities such
as cross-modal retrieval and zero-shot prediction (Radford
et al., 2021). Recent work by (Tschannen et al., 2023) shows
an image captioning approach (predicting text captions from
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images) is a viable alternative to contrastive learning and
can lead to models with robust performance.

Differential privacy (Dwork et al., 2006). In the following,
we denote by M a randomized learning algorithm, which
takes a dataset D containing N samples and produces a
machine learning model θ through the process M(D). A
randomized mechanism M is (ε, δ)-DP if, for any two ad-
jacent datasets D and D′ differing by a single sample, and
for any subset O ⊂ Im(M):

P[M(D) ∈ O] ≤ P[M(D′) ∈ O] exp(ε) + δ. (1)

We adopt the leave-one-out notion of adjacency in this work,
i.e., D = D′ ∪ {x} for some sample x or vice versa. DP
bounds the extent to which any potential adversary can
infer information about the dataset D after observing the
algorithm’s output. In the context of ML, this implies that
if we obtain the model θ through a DP training algorithm
M then its training data is provably difficult to recover or
infer (Balle et al., 2022; Guo et al., 2022; 2023).

DP-SGD (Song et al., 2013; Abadi et al., 2016) is predomi-
nant differentially private algorithm for training deep neural
networks (DNNs). At each gradient step k, a batch Bk is
sampled where each example from the training data is cho-
sen randomly with probability q = B/N , where B repre-
sents the average batch size. For C > 0, define the clipping
function for any X ∈ Rd by clipC(X) = C · X/∥X∥ if
∥X∥ ≥ C and clipC(X) = X otherwise. Given model pa-
rameters θk, DP-SGD defines the update θk+1 = θk−ηkg̃k

where ηk is the step size and g̃k is given by:

g̃k :=
1

B

[∑
i∈Bk

clipC (∇θℓi(θk)) +N
(
0, C2σ2I

)]
, (2)

where ℓi(θ) is the per-sample loss function evaluated at sam-
ple xi. We also use the term “DP-SGD” loosely to refer to
the category of gradient-based optimization algorithms that
operate on the noisy gradient, e.g., Adam (Kingma & Ba,
2014). The privacy analysis of DP-SGD relies on composi-
tion of multiple steps. One particularly powerful analysis
framework amenable to such compositions relies on a vari-
ant of DP called Rényi differential privacy (RDP) (Mironov,
2017). An advantage of RDP is its additive composition
property, where the privacy guarantees of a sequence of
mechanisms can be combined with amplification by sub-
sampling (Wang et al., 2019) and then translated to (ε, δ)-
DP (Balle et al., 2020; Gopi et al., 2021). In this work, we
adopt this accounting technique.

Scaling up DP-SGD training. DP training is a theoretically
and empirically proven remedy against unintended training
data memorization. Even models with large ε (e.g., ε = 100)
can empirically defend against privacy attacks (Carlini et al.,
2021; Guo et al., 2023). Despite its great appeal, DP training

also carries a significant drawback of large drop in model
utility (Abadi et al., 2016; Tramer & Boneh, 2020). For ex-
ample, the SOTA performance on ImageNet when training
from scratch with a DP guarantee of ε = 8 is 39.2% (Sander
et al., 2023); in comparison, the non-private performance on
ImageNet when training from scratch can reach 88% (Tou-
vron et al., 2022) or higher. This degradation in model utility
also translates to poorly learned representations, as Tramer
& Boneh (2020) showed that even handcrafted features can
rival ones learned through DP training.

Yu et al. (2023) made the first step towards obtaining high-
utility learned representations through scaling DP training.
They proposed self-supervised learning (SSL) on internet-
scale data as a solution for the privacy-utility trade-off in
DP representation learning. Among the numerous SSL algo-
rithms, the authors observed that the reconstruction-based
approach of masked autoencoder (MAE; He et al. (2022))
is compatible with the requirements of DP-SGD. By lever-
aging weight initialization through synthetic pre-training,
the authors were able to obtain high-utility learned repre-
sentations at a strict privacy budget of ε = 8. Compared to
ViP (Yu et al., 2023), we demonstrate that the image caption-
ing approach (see Section 3.1) learns much better image
representations by utilizing the additional text supervision.

3. Approach
We describe in detail our approach of DP representation
learning via image captioning. We first argue why image
captioning is intuitively a suitable objective for obtaining
better image representations via DP-SGD training (section
3.1). Then, we elucidate the technical challenges that we
resolved to make DP training viable and effective for image
captioning (section 3.2).

3.1. DP Representation Learning via Image Captioning

Why is vision-language pre-training suitable? Given
image-text aligned datasets, prior works (Radford et al.,
2021; Li et al., 2022a; Tschannen et al., 2023) showed that
pre-training using language supervision is an appealing op-
tion for non-private representation learning. We hypothe-
size that this is true for DP representation learning as well.
Compared to image-only supervision, language supervision
contains a more condensed summary of the image content,
allowing the model to ignore irrelevant details such as back-
ground and focus on objects of interest and their relation-
ships. This is especially helpful for DP since the model
needs to extract as much useful information as possible
from each sample given the privacy budget ε. Captioning
could thus enhance the privacy-utility-sample size trade-off
in DP, considering it requires less information per sample.

In addition, we show that vision-language pre-training sup-
ports a very large batch size, much larger than what is typi-
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cally used in image-only pre-training (Radford et al., 2021;
Li et al., 2022a; Yu et al., 2022). This subtle aspect is in fact
crucial for reducing the effective noise in DP-SGD (Li et al.,
2021), which allows the model parameters to converge to a
stable solution with lower training loss (see Section 3.2).

Vision-language pre-training via image captioning. Per-
haps the most popular approach for vision-language pre-
training is contrastive language image pre-training (CLIP;
Radford et al. (2021)) as well as its variants (Mu et al., 2022;
Li et al., 2023). However, the contrastive loss used in these
methods is not an additive function over the samples, i.e., it
cannot be written in the form

∑
i ℓi, where ℓi depends only

on the i-th sample. Thus, DP-SGD (cf. equation 2) cannot
be directly applied.

Unlike contrastive learning, the image captioning ap-
proach (Sariyildiz et al., 2020; Desai & Johnson, 2021;
Tschannen et al., 2023) aligns well with DP-SGD training.
Specifically, an image captioner is trained to predict captions
based on their corresponding images. The training objective
of the image captioner for one image-text pair [ximg, ztext] is
to minimize over θ := {θenc,θdec} the following loss:

LCap(θ) :=
1

T

T−1∑
t=0

ℓCE

(
ztext
t+1, φ

(
zimg, ztext1:t ;θdec

))
, (3)

where zimg = ψ(ximg;θenc)︸ ︷︷ ︸
image embedding

, ztext1:t = ztext
1 , . . . , ztext

t︸ ︷︷ ︸
first t tokens

.

We use ztext denotes the caption token sequence
{ztext

1 , . . . , ztext
T }, and we let ztext

1:0 = ∅. The image cap-
tioner consists of two parts: the image encoder ψ(·;θenc)
and the text decoder φ(·;θdec). The rationale behind the
design of equation 3 is that the image encoder maps the
input image ximg to an embedding vector, and the text de-
coder takes the image embedding ψ(ximg;θenc) and the first
t caption tokens {ztext

1 , . . . , ztext
t } as inputs and predicts the

next caption token ztext
t+1. Both the encoder and decoder are

trained to maximize the log-likelihood of the correct next
token. Equation 3 corresponds to the loss function for an
image-text pair [ximg, ztext]; summing over all the samples
in a batch gives the complete empirical loss in an additive
form, which is directly compatible with DP-SGD.

Interpretation of DP bound for image-text pairs. ε-DP
bounds the amount of information extracted from each train-
ing sample by ε. For DP-Cap, each sample is made of
{image + caption}, while ViP (Yu et al., 2023) utilizes
{image} only. Consequently, DP-Cap inherently offers an
equivalent or better privacy guarantee for each image. To
better understand this, we can consider membership infer-
ence attacks (Shokri et al., 2017) as an example. Suppose
ε-DP upper bounds the success rate of the membership infer-
ence attack (when given the image-text pair) against DP-Cap
as less or equal to p. Then the MIA success rate when given
only the image can be at most p since the attacker has strictly
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Figure 2: Impact of synthetic initialization on DP-Cap. The
learned image representation benefits substantially from
initializing on the Shaders21K dataset. The gap between
DP-Cap (random init) and DP-Cap (syn init) can be as large
as 24% when evaluated using linear probing on ImageNet.

less information. This is exactly the upper bound for the
success rate of a membership inference attack against ViP.

3.2. Strategy for Effective DP Training

Although image captioning has demonstrated impressive
representation learning capabilities in the non-private
regime, adapting it to DP training requires careful consider-
ations. To obtain a useful pre-trained model, one needs to
train for a sufficient number of steps under a low effective
noise, both of which are at odds with obtaining a strong
privacy guarantee. We detail the strategy we used to handle
this trade-off when training the image captioner.

Sufficient number of training steps. We address this
challenge via synthetic pre-training. Image representations
learned by DP-Cap (random init) outperform those of ViP
(random init) as evidenced in table 9 in Appendix B. In-
terestingly, Yu et al. (2023) and Tang et al. (2024) have
shown that synthetic images consisting of only textures can
provide a good initialization for training DP models without
any privacy risk. With this initialization in Yu et al. (2023),
the reconstruction-based model can then focus on learning
dataset-specific properties rather than low-level image prop-
erties such as edge detectors, therefore expending privacy
budget in a more optimal manner. We adapt this technique
of pre-training on the Shaders21K dataset (Baradad et al.,
2022) for initialization and observe that it is even more ef-
fective with DP-Cap compared to ViP.1 As shown in Fig. 2,
our DP-Cap (syn init) improves over DP-Cap (random init)
by more than 24% on ImageNet-1k linear probing. It also
improves over synthetic initialization alone (Syn-init) by
more than 14% on ImageNet-1k linear probing, whereas the
gain in ViP is smaller than 6%.

1For the synthetic pre-training on Shders21k in DP-Cap, we
modify the training of image captioning model such that the model
is trained to predict missing image patches, which is similar to
MAE (He et al., 2022). More details can be found in Appendix A.1.
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Figure 3: (a) We fix the effective noise σ/B = 5.6× 10−7 (corresponding to our (B, σ) = (1.3M, 0.728)) and show that the
loss is remarkably consistent across different batch sizes, allowing us to effectively scale up batch size to improve the SNR.
(b) Performance from 4 sets of parameters that provide ε = 8, with constant number of steps 5708. From batch size 98k
(used in ViP (Yu et al., 2023)), to our 1.3M batch size. In contrast to ViP, DP-Cap successfully leverages the better SNR and
learns features that achieve substantially better 10-shot accuracy on ImageNet even compared to a non-private MAE (He
et al., 2022) trained on the same dataset (see Appendix A.1).

Using extreme batch sizes to reduce effective noise. Li
et al. (2021) first showed that increasing the batch size in
DP-SGD often improves the privacy-utility trade-off. This
is because the effective noise added to the average gradient
has magnitude σ/B (cf. equation 2), and that increasing B,
rather than decreasing σ, results in better privacy guarantees
according to conventional accounting techniques (Bun &
Steinke, 2016; Dwork & Rothblum, 2016; Mironov et al.,
2019; Sander et al., 2023). However, in supervised learning,
increasing the batch size beyond a certain point may degrade
performance in both private and non-private settings (Sander
et al., 2024). Specifically, Sander et al. (2023) observed that
when training a classifier from scratch with DP-SGD on
ImageNet, at a fixed number of steps S and fixed effective
noise σ/B, the performance decreases significantly when
the batch size becomes too large: for B ∈ [128, 16384], a
drop of 10% in top-1 accuracy was observed.

Intriguingly, we find that vision-language pre-training on
internet-scale datasets can tolerate extreme batch sizes, e.g.
B = 1M. In Figure 3(a), we compare the loss behaviors
when scaling the batch size for DP-Cap. We fix the effective
noise σ/B while varying the batch size. In stark contrast
to the previous observation from (Sander et al., 2023), the
loss trajectory is identical across different batch sizes. With
this observation, we are able to successfully scale up the
batch size for DP-Cap to as large as B = 1.3M, achieving
an effective noise of 5.6 × 10−7, almost 10 times smaller
than the effective noise of ViP in Yu et al. (2023). Training
DP-Cap under such a small effective noise allows it to ex-

tract information from the training dataset more efficiently
under the DP constraint. In Figure 3, we show that with
B = 1.3M, the representation learned by DP-Cap even
outperforms non-private MAE trained on the same dataset.
From these results, we find that the DP-Cap training can
handle extreme large batches much more effectively than
ViP in the context of differentially private training. This ad-
vantage is likely independent of image captioning models’s
inherent superiority over MAE.

Improving training pipeline efficiency. DP training is
known to be computationally inefficient due to factors such
as per-sample gradient computation (Lee & Kifer, 2020;
Li et al., 2021). Training on internet-scale datasets using
extreme batch sizes further complicates this issue. For ex-
ample, a naive implementation of DP-Cap with per-sample
gradient computation using functorch would take ap-
proximately 61 days(!) on 128 NVIDIA V100 GPUs. Re-
cent studies (Li et al., 2021; Bu et al., 2023) have enhanced
this efficacy by enabling DP training without the necessity to
store per-sample gradients. We made significant efficiency
improvements to the training pipeline using two techniques:
ghost norm (Li et al., 2021) and the automatic mixed pre-
cision (AMP) package in PyTorch. Combining these two
techniques with DP-SGD requires careful considerations to
ensure both a correct DP guarantee as well as numerical
stability. We detail the implementation in Appendix A.2.

In Figure 4 we compare the compute cost of different gra-
dient computation methods: functorch, ghost norm and
ghost norm+AMP. The number of GPU hours is estimated
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Figure 4: Number of GPU hours to train DP-Cap for a single
epoch on 233M samples. For the Large model, we achieve a
close to 5× reduction.

Method Model
Tiny Small Base Large

functorch 36 20 12 5

Ghost norm 350 230 180 64

Ghost norm+AMP 420 310 225 90

Table 1: Max physical batch size under different per-
sample gradient computation methods.

on a single NVIDIA V100 GPU with 32GB memory using
100K samples. The improvement is especially notable for
our largest model: Using ghost norm+AMP, we achieve a
4.7× speedup compared to functorch and 3.3× speedup
compared to ghost norm alone, which amounts to a reduc-
tion from 61 days to 13 days when training for 32 epochs—a
large but manageable compute cost. This improvement is
due to both a more efficient forward-backward pass, as well
as enabling a larger physical batch size; see Table 1. In
addition, we adopt the TAN simulation framework (Sander
et al., 2023) to reduce the compute cost during hyperparam-
eter search. Due to the batch size scaling behavior depicted
in Figure 3, TAN simulation is ideal for DP-Cap training
and allows for rapid experimentation to identify promising
methods before launching a full training run.

4. Evaluation
We demonstrate the representation learning capabilities of
DP-Cap on both vision (V) and vision-language (V-L) down-
stream tasks. For all evaluations, the DP-Cap model is
first pre-trained using DP-SGD on a subset of LAION-
2B (Schuhmann et al., 2022), and then fine-tuned non-
privately on a downstream dataset.

4.1. Downstream Tasks

Linear probing (V). We train a linear classifier on top of
learned representations and evaluate its accuracy. We con-
sider both full linear probing using the full downstream
dataset, as well as few-shot linear probing, which subsam-
ples the downstream dataset down to K samples per class.
Few-shot linear probing is especially useful for evaluating
learned representations since the model must rely heavily on
the generalizability of representations in order to perform
well under data scarcity.

Zero-shot image classification (V-L) is one of the most
widely used methodologies for evaluating vision-language
models (Radford et al., 2021). A strong zero-shot perfor-

mance suggests that the image representation aligns well to
text. We perform zero-shot classification using the DP-Cap
image encoder and text decoder by evaluating the likelihood
of captions of the form “this is a photo of a [label]”. We
enumerate over different labels and predict the class that has
the highest likelihood; see Section A.3.1 for full details.

ARO (Attribution, Relation, and Order) (V-L). The ARO
benchmark (Yuksekgonul et al., 2022) can be used to gauge
the adeptness of VLMs in understanding the compositional
relationship between objects and attributes. A strong per-
formance on ARO suggests that the learned image represen-
tation encodes semantic relationships such as “the horse is
eating the grass” vs. “the grass is eating the horse”.

4.2. Experimental Setup

We present an overview of the experimental setup; refer to
Appendix A for additional details.

Datasets. Following the approach introduced by Yu et al.
(2023), we first pre-train on the Shader21k dataset (Baradad
et al., 2022) of synthetic images. We then train with
DP-SGD on a subset comprising 233 million dedupli-
cated (using SemDeDup (Abbas et al., 2023)), NSFW-
filtered and face-blurred (using an approach similar to Yang
et al. (2021)) image-caption pairs from the (English-only)
LAION-2B dataset (Schuhmann et al., 2022). We refer to
this dataset as Dedup-LAION-233M.

We use the ImageNet-1K (Deng et al., 2009a; Rus-
sakovsky et al., 2014), CIFAR-10/100 (Krizhevsky et al.,
2009), Places-365/205 (Zhou et al., 2014) and iNaturalist-
2021 (Van Horn et al., 2021) image classification datasets
to assess the performance of learned image representations
via full linear probing, few-shot linear probing, and zero-
shot prediction. For vision-language tasks, we employ the
Visual Genome Attribution (VGA), Visual Genome Re-
lation (VGR), COCO-order (Lin et al., 2015) and Flickr-
30k (Plummer et al., 2016) datasets from the ARO bench-
mark (Yuksekgonul et al., 2022). Finally, we evaluate image
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Table 2: Linear probing evaluation on downstream classification. Results for DP-NFNet, TAN, AlexNet and SimCLR are
obtained from Yu et al. (2023). For ViP (Yu et al., 2023), we train with the same privacy parameters as for DP-Cap on the
deduplicated dataset. More details are given in Appendix A.1.

Model pretraining data DP? ImageNet-1K Places-365 Places-205 iNat-2021

DP-NFNet ImageNet-1K ✓ 45.3% 40.1% 39.2% 28.2%

TAN ImageNet-1K ✓ 49.0% 40.5% 38.2% 31.7%

AlexNet ImageNet-1K ✗ 56.5% 39.8% 35.1% 23.7%

SimCLR ImageNet-1K ✗ 67.5% 46.8% 49.3% 34.8%

Cap Dedup-LAION-233M ✗ 77.5% 56.3% 63.9% 63.9%

MAE Dedup-LAION-233M ✗ 62.5% 51.0% 54.7% 42.3%

ViP Dedup-LAION-233M ✓ 56.5% 47.7% 49.6% 38.2%

DP-Cap Dedup-LAION-233M ✓ 63.4% 51.9% 54.3% 44.5%

Table 3: Performance of DP-Cap on zero-shot classification and compositional understanding (ARO). CLIP’s zero-shot
results are obtained from Radford et al. (2021) (base model). For ARO, see Appendix A.3.2.

Model DP? Zero-shot ARO
ImageNet-1k CIFAR10 CIFAR100 VGR VGA COCO Flickr

Random Chance - 0.1% 10% 1% 50% 50% 20% 20%

CLIP ✗ 62.2% 91.3% 65.1% 62.4% 62.9% 47.8% 58.0%
Cap ✗ 25.2% 90.0% 37.4% 59.9% 87.2% 87.0% 87.4%

DP-Cap ✓ 7.8% 54.4% 16.4% 58.6% 82.4% 86.6% 87.2%

captioning using the MS-COCO 2017 (Lin et al., 2015) test
set; result is shown in Figure 1(c) and Appendix B.3.

Model and training. We use a transformer architec-
ture (Vaswani et al., 2017) for both the encoder and the
decoder of DP-Cap, where the decoder applies causal cross-
attention. We train DP-Cap model from scratch, includ-
ing the embedding layer, with vocabulary size around
32,000. See Section A.1 and Tschannen et al. (2023) for
details. For privacy accounting we use Rényi DP composi-
tion along with privacy amplification via Poisson subsam-
pling (Mironov et al., 2019), and convert to DP using Balle
et al. (2020) through the Opacus library (Yousefpour et al.,
2021), targeting δ = 1/N where N represents the number
of training samples. We refer to the non-private counterpart
of DP-Cap trained on the same dataset as “Cap”.

4.3. Main Results

Linear probing evaluation (V). We assess the performance
of the vision encoder on downstream tasks via linear probing.
In Fig 1(a), we compare the performance of DP-Cap and ViP
(Yu et al., 2023) on ImageNet-1k few-shot linear probing.
DP-Cap significantly improves over ViP, with up to ×2.5
better performance across different shots. In addition, we

evaluate the full linear probing accuracy of DP-Cap, ViP
and other baselines in Table 2. DP-Cap outperforms ViP and
other DP models, including TAN (Sander et al., 2023) and
DP-NFNet (De et al., 2022), across all tasks. DP-Cap even
outperforms non-private AlexNet (Krizhevsky et al., 2012)
and except on ImageNet, SimCLR (Chen et al., 2020) (both
were trained on ImageNet). We provide additional results
for fine-tuning on downstream datasets in Table 10 (App. B),
also showing improvements over competing methods.

Zero-shot performance (V-L). In the left three columns
of Table 3, we evaluate the zero-shot performance of
DP-Cap compared to non-private Cap and CLIP/BLIP on
ImageNet-1k and CIFAR10/100. Contrastive methods such
as CLIP and BLIP have demonstrated greater suitability
for zero-shot prediction compared to image captioning ap-
proaches (Tschannen et al., 2023), which is evident by the
disparity between the performance of Cap and CLIP/BLIP.
Nevertheless, we observe that DP-Cap achieves notewor-
thy zero-shot classification performance that is significantly
above random chance, and stands as the first DP model
to do so. This accomplishment marks a promising mile-
stone for DP training, although there remains a substantial
performance gap between DP-Cap and Cap.
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Table 4: Ablation studies on the effect of dataset size and privacy budget ε on DP-Cap (base).

ε σ # Data # Steps B ImageNet-1K ARO (V-L)

0-shot (V-L) 1-shot (V) 2-shot (V) 10-shot (V) VGR VGA COCO Flickr

+∞ 0 233M 60,000 40,960 25.2% 27.0% 37.2% 57.9% 59.9% 87.2% 87.0% 87.4%

8.0 0.728 233M 5708 1.3M 7.8% 10.3% 15.6% 31.8% 58.6% 82.4% 86.6% 87.2%

2.0 1.18 233M 2854 1.3M 3.2% 7.0% 10.8% 23.9% 58.5% 79.7% 85.3% 86.6%

1.0 1.5 233M 1427 1.3M 1.1% 5.2% 8.2% 19.9% 58.3% 75.6% 83.9% 85.3%

8.0 0.728 23M 5708 130K 0.7% 3.4% 5.3% 13.3% 58.3% 76.2% 84.9% 85.9%

8.0 0.728 2.3M 5708 13K 0.1% 1.8% 2.9% 8.1% 57.6% 66.4% 79.5% 82.0%

Table 5: Ablation studies on the effect of model size. We compare ViP and DP-Cap’s number of encoder parameters. More
details about the DP-Cap models can be found in Table 6.

Model Config # parameters ImageNet-1K (Vision) ARO (Vision-Language)

1-shot 2-shot 5-shot 10-shot LP VGR VGA COCO Flickr

ViP Base 86.6M 2.5% 4.2% 8.5% 14.3% 56.5% / / / /

DP-Cap Tiny 22.0M 7.9% 12.1% 18.7% 25.2% 57.5% 58.6% 79.1% 85.7% 87.1%

DP-Cap Small 49.0M 9.0% 14.0% 21.6% 28.9% 61.1% 59.1% 80.5% 86.0% 86.6%

DP-Cap Base 86.6M 10.3% 15.6% 24.2% 31.8% 63.4% 58.6% 82.4% 86.6% 87.2%

DP-Cap Large 407.3M 11.8% 17.5% 26.2% 34.0% 65.8% 59.5% 80.1% 86.6% 86.5%

Attribution, Relation, and Order (ARO) evaluation (V-
L). Contrastive-based methods such as CLIP often exhibit
behavior akin to bag-of-words models (Yuksekgonul et al.,
2022; Tejankar et al., 2021; Basu et al., 2023), making
them less adept at performing well on the ARO benchmark.
Remarkably, DP-Cap significantly outperforms non-private
CLIP in this context (see Fig 1(b) and Table 3), and even
achieves performance close to that of non-private Cap. Our
result shows that DP training can be particularly effective
for learning complex compositional relationships.

4.4. Ablation Studies

We perform ablation studies on the scaling behavior of DP-
Cap with respect to the dataset size, privacy budget and
model size. In Appendix B, we show additional results on
image captioning and on the impact of compute budget.

Scaling dataset size. We show that dataset scaling is cru-
cial for effectively training DP-Cap as it results in better
SNR under the same privacy budget (see Figure 5). We
randomly subsample 1% and 10% of the Dedup-LAION-
233M dataset, which is used for training our default DP-Cap-
Base model in Table 2 (denoted by Dedup-LAION-2M and
Dedup-LAION-23M). We set the batch size to B/100 for
Dedup-LAION-2M and B/10 for Dedup-LAION-23M, re-
spectively. This allows the model to be trained for the same
number of steps across the different datasets, although at a
much larger effective noise level. As shown in Table 4, the
number of training samples is critical for achieving strong

performance for DP-Cap models: the zero-shot performance
of our model trained on 1% of the dataset achieves random
zero-shot performance on ImageNet and much worse accu-
racy across the board on ARO.

Impact of the privacy budget ε. We also investigate the
performance of DP-Cap under lower privacy budgets (ε = 1
and ε = 2), employing the same batch size of 1.3 million.
The outcomes of these experiments are presented in Table 4.
As anticipated, the utility of our model does exhibit a decline
with decreasing ε. However, the performance degradation is
relatively minor for the learned representation, with 10-shot
ImageNet performance decreasing from 31.8% (ε = 8) to
19.9% (ε = 1). More surprisingly, the performance impact
on ARO is nearly negligible. It is noteworthy that both
models continue to outperform previous state-of-the-art DP
models trained with ε = 8 (see Figure 1). This phenomenon
can be attributed to the relatively small effective noise result-
ing from the extreme batch size, which for ε = 1 remains
five times smaller than that used in (Yu et al., 2023).

Scaling model size. Scaling up the model size is one of
the most effective approaches for training better non-private
foundation models (Brown et al., 2020; Bommasani et al.,
2021; Touvron et al., 2023). However, an intuitive under-
standing of DP-SGD 2 suggests that scaling up model size

2This is because the added noise has L2 norm ≈ σC
√
d/B,

where d is the number of model parameters, whereas the gradient
norm is constrained to C regardless of model size.
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does not improve utility in DP training since more model
parameters will lead to lower signal-to-noise ratio, espe-
cially when training large DP models from scratch. Recent
work (Li et al., 2022b) demonstrates that during DP fine-
tuning, gradients occupy a lower effective dimensional sub-
space, and larger networks can enhance the performance of
DP-SGD. To test this hypothesis in pre-training, we train DP-
Cap with different model sizes (Tiny, Small, Base, Large)
using the same hyperparameters and evaluate their perfor-
mance in Table 5,11; see Table 6 for details about different
model sizes. We observe consistent improvements when
scaling up the model from DP-Cap-Tiny to DP-Cap-Large.
Our observation suggests that DP-Cap has strong model
scaling behavior even with DP-SGD training.

5. Discussion and Future Work
We demonstrated that DP representation learning via image
captioning is viable. In particular, image captioning is an
ideal objective that supports both per-sample loss and large
batch training—two critical ingredients in DP-SGD. When
applied to the Dedup-LAION-233M dataset, the trained
model learns useful image representations for downstream
tasks and exhibits strong multi-modal capabilities.

Through our study we also identify three open problems
in the general direction of DP pre-training of large-scale
foundation models that are difficult to handle with existing
techniques:

1. Scaling up the batch size to extreme levels is crucial
for reducing the effective noise and facilitating model
convergence. Is there a fundamental reason why image
captioning can support extremely large batch training?
When the model does not scale well with batch size, is
it due to poor optimization or is it inherent to the model
and/or task? Answers to these question can help identify
other successful training recipes that further improve the
quality of DP-learned representations.

2. Scaling up the model size is typically beneficial in non-
private representation learning, but can be ineffective in
DP training due to a decrease in gradient SNR. While we
have observed a performance improvement from Tiny
to Large, we anticipate that deterioration could occur
when scaling up to a much larger model size, especially
when the signal-to-noise ratio (SNR) undergoes a certain
threshold. Does this threshold exist? Can this trade-off
be resolved through parameter-efficient architectures?

3. Contrastive learning offers unique advantages compared
to other multi-modal learning objectives such as learn-
ing image and text representations that are semantically
aligned, but is not compatible with standard DP-SGD
training. What techniques can enable differentially pri-
vate contrastive learning?
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Differentially Private Representation Learning via Image Captioning

A. Implementation Details
A.1. Training Details

DP accounting. We use RDP accounting with subsampling from the Opacus library (Yousefpour et al., 2021). Let Dα

denote the Rényi divergence of order α (Rényi, 1961), and let

gα(σ, q) := Dα((1− q)N (0, σ2) + qN (1, σ2) ∥N (0, σ2)). (4)

Then, from Mironov et al. (2019), performing S steps of DP-SGD satisfies (ε, δ)-DP with:

ε := min
α

{
S · gα(σ, q) +

log(1/δ)

α− 1

}
. (5)

The quantity gα(σ, q) can be upper bounded mathematically or derived numerically: we use the Opacus (Yousefpour et al.,
2021) library for accounting in our work.

Regarding the DP guarantee, ε-DP bounds the amount of information extracted from each training sample by ε. Notably, for
DP-Cap, each sample is made of {image + caption}, while ViP utilizes {image} only. Consequently, DP-Cap inherently
offers an equivalent or better privacy guarantee for each image. One way to see it is to note that DP provides protection
against membership inference attacks (Shokri et al., 2017). Suppose ε-DP upper bounds the success rate of a membership
inference attack (when given the image-text pair) against DP-Cap as ≤ p. Then the MIA success rate when given only the
image can be at most p since the attacker has strictly less information. This is exactly the upper bound for the success rate of
a membership inference attack against ViP. In other words, any attacker that can attack the image+caption model (such as
DP-Cap) can also attack the image-only model (such as ViP).

On the other hand, since the {image+caption} models utilize the caption, the privacy leakage from the text part of the
image-caption pair is non-zero for ε > 0. It is worth noting that in our set up since we use DP, we protect the captions with
the same ε-DP guarantee. Thus, the privacy protection for DP-Cap is neither strictly stronger nor strictly weaker than that
for ViP, so the two privacy notions are not directly comparable.

Model details and task description. We utilize a transformer architecture (Vaswani et al., 2017) DP-Cap. This captioning
model uses a text decoder that generates captions in an auto-regressive manner, utilizing a full attention mechanism on the
vision encoder’s output, as well as causal attention on the text. This architecture is closely aligned with the Cap architecture
introduced in (Tschannen et al., 2023). See Table 6 for details about the transformer architecture for different sizes. All
results utilize the base model with the exception of the comparison in Table 6.

Hyperparameters. Our choice of gradient clipping factor is C = 1, as we did not observe any performance improvement
with other values. We always use AdamW (Loshchilov & Hutter, 2018) for training. We use a learning rate of 5.12× 10−4.
The learning rate is kept constant across batch sizes for TAN simulations and for the performance comparison in Figure 3 as
the effective noise is kept constant in these cases (Sander et al., 2023). We use a maximum length of 40 tokens to process
the LAION captions. We use a linear schedule, with 40% of warm-up iterations, and 2× the entire training as decay horizon.
As opposed to what was previously observed (De et al., 2022; Sander et al., 2023), the learning rate schedule played an
important role for us with DP-SGD training. We use a weight decay of 0.05. These choices come from hyperparameter
search using TAN simulation with our base model. Following the standard practice (Berrada et al., 2023; De et al., 2022; Li
et al., 2021; Yu et al., 2023; Sander et al., 2023), we do not count hyperparameter search within our privacy budget. (Liu &
Talwar, 2019) have shown that hyperparameter search might not incur observable privacy loss.

Pre-training DP-Cap on the synthetic dataset. Compared to the encoder and decoder architecture design used in masked
autoencoders (MAE) (He et al., 2022), the two main differences of the image captioning model used in this paper are:
(1) The output of the encoder is fed into the decoder via cross-attention (Vaswani et al., 2017) in Cap; and (2) The self-
attention used in the Cap decoder is causal self-attention. Similar to Yu et al. (2023), we apply the synthetic image dataset,
Shaders21K (Baradad et al., 2022), to pre-train the DP-Cap model via MAE-based training. We follow most of the training
setups used in ViP synthetic pre-training (Yu et al., 2023), except that we feed the output of the encoder to the decoder via
cross-attention. The training loss of the synthetic pre-training in this paper is still the reconstruction loss used in MAE (He
et al., 2022), and we did not leverage real-world text data for pre-training. After the model is pre-trained on Shaders21K, we
change the self-attention to causal self-attention in the decoder, and replace the final layer (for pixel-wise reconstruction) of
the decoder with the (randomly initialized) decoding layer for next word prediction. After making these modifications, we
apply DP-SGD to pre-train our DP-Cap model with standard image captioning training objectives (see Section 3.1).
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Table 6: Details of transformer backbone variants used in DP-Cap.

Model Encoder depth Encoder width Decoder depth Decoder width # parameters (encoder & decoder)

DP-Cap-Tiny 12 384 6 384 59M

DP-Cap-Small 12 576 6 576 115M

DP-Cap-Base 12 768 6 768 190M

DP-Cap-Large 24 1024 6 768 407M

Pre-training ViP. To conduct a comparison with training on an identical datasets, we follow the methodology outlined in
(Yu et al., 2023) to train with DP-SGD a MAE-based model, but with a change in the training data from LAION-233M to
Dedup-LAION-223M, and use the same encoder’s synthetic initialization as for DP-Cap. We further examine the linear
probing performance on ImageNet and observe a 2% between the original model and the one trained on the deduplicated
dataset. In addition, to corroborate the observation made in Figure 3, which suggests that the MAE-based method struggles
to effectively harness massive batch sizes for achieving low effective noise in DP-SGD, we also train ViP models with larger
batches, up to using the exact privacy parameters employed for DP-Cap (under ε = 8) with a notably large batch size of 1.3
million, and showcase the results in Table 7. For full linear probing, we observe only a small improvement over the original
ViP model that was trained with batch size 98k. The success of DP-Cap is not solely attributed to its appropriate privacy
parameters but is also a consequence of its remarkable ability to leverage the small effective noised induced by extremely
large batch sizes.

A.2. Computation cost

Mixed Precision Package & Ghost Norm DP-SGD introduces additional computational overhead compared to non-
private training, primarily due to the computation of per-sample gradient norms. By employing the ghost norm technique
of Li et al. (2021), we have successfully reduced the computational cost by up to one third with the Large Model (see
Figure 4) compared to using functorch. The torch.amp package offers convenient methods for mixed precision,
significantly speeding up operations like linear layers. However, it often leads to NaNs due to low precision handling
of extreme values. While one can skip a step that led to NaNs in normal training, combining AMP with Ghost Norm is
more complex. Ghost Norm requires two backward passes. In the first pass, per-sample gradient norms are computed. If
one gradient norm is NaN, it contaminates the entire batch, leading to a NaN in the second backward pass. This issue is
particularly prevalent in our setting with a batch size of 1.3M, as even a minuscule proportion of computations leading to
NaNs can cause problems. To address this, we propose two solutions:

• Loss Scaler: We employ a similar trick to the standard use of AMP to reduce the number of NaNs. This involves
dynamically upscaling and downscaling the loss with torch.cuda.amp.GradScaler. The same factor is used
before the first and the second backward, and is updated based on the outputs of the second backward only.

• Clipping to 0: If any per-sample gradient norm computation results in a NaN value after the first backward, we set
its clipping coefficient (the multiplicative coefficient in front of the corresponding per-sample loss for the second
backward, as detailed in Li et al. (2021)) to 0 for the second backward. In this case, we do not update the loss scaling
factor.

It’s worth noting that the second solution is entirely valid for DP: instead of clipping the per-sample gradient to a norm
C, it clips it to 0 in cases where computation results in a NaN value. This approach effectively mitigates the issue of NaN
contamination in large batches. Overall, We have successfully reduced the computational cost by a factor 5 for the Large
Model compared to functorch.

TAN simulation Crucially, to achieve a favorable privacy-utility trade-off, DP-SGD necessitates training with massive
batches over a substantial number of steps to achieve a good privacy-utility trade-off, as elaborated in Section 3.2. All our
hyperparameter search were performed using the TAN simulation (Sander et al., 2023) for one epoch on our Dedup-LAION-
233M. For our ε = 8 models, we limited training to 32 epochs, a process that took 5 days utilizing 128 V100 GPUs for the
Base model.
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Table 7: Set-ups for our training for ViP, MAE (He et al., 2022) and DP-Cap: ImageNet-1k linear probing.

Model pretraining data (B, σ, S) ImageNet-1K
1-shot 2-shot 5-shot 10-shot full

ViP (Yu et al., 2023) LAION-233M (98k, 0.48, 6000) 2.5% 4.1% 8.5% 14.2% 55.7%

ViP Dedup-LAION-233M (98k, 0.474, 5708) 2.3% 3.9% 8.0% 13.6% 53.4%

ViP Dedup-LAION-233M (200k, 0.513, 5708) 2.5% 4.1% 8.3% 14.1% 54.0%

ViP Dedup-LAION-233M (400k, 0.564, 5708) 2.5% 4.2% 8.7% 14.7% 55.2%

ViP Dedup-LAION-233M (1.3M, 0.728, 5708) 2.7% 4.6% 9.4% 15.7% 56.5%

MAE (Non private) Dedup-LAION-233M (40960, 0, 40000) 3.4% 5.8% 11.8% 19.5% 62.5%

DP-Cap Dedup-LAION-233M (98k, 0.474, 5708) 4.2% 6.9% 11.4% 17.2% 50.6%

DP-Cap Dedup-LAION-233M (200k, 0.513, 5708) 5.6% 8.9% 14.5% 20.2% 54.2%

DP-Cap Dedup-LAION-233M (400k, 0.564, 5708) 7.6% 11.5% 18.5% 25.3% 59.1%

DP-Cap Dedup-LAION-233M (1.3M, 0.728, 5708) 10.3% 15.6% 24.2% 31.8% 63.4%

While we have tried to reduced it as much as possible, training DP-Cap imposed a considerable energy consumption,
resulting in elevated CO2 emissions. Our intention in releasing these models is to contribute to the mitigation of future
carbon emissions, as the training has already been completed.

A.3. Evaluation Details

A.3.1. DETAILS ABOUT ZERO-SHOT IMAGE CLASSIFICATION

While methods employing contrastive learning, such as CLIP, excel in this task, captioning methods exhibit comparatively
lower performance, and with greater computational demands during evaluation. To evaluate a captioning model’s zero-shot
performance, we employ two distinct strategies:

• Tree-based search: We initiate caption generation with a prompt like “this is a photo of a,” and greedily select the most
likely next token among those that lead to valid completions within the true label set. The process continues until an End
of Sentence (EOS) token is reached. For instance, if there are only two labels starting with “car”: “car [EOS]” and “carpet
[EOS]”, and the initial predicted token is “car”. Then the text decoder will predict the next token among “[EOS]” and
“pet”. If, among these two, “[EOS]” is chosen, and “car [EOS]” corresponds to the true label, then the zero-shot prediction
is deemed correct.

• Loss-based classification: We assess, for each image, the probability of various captions that begin with “this is a photo
of a [...]” where “[...]” is substituted with all feasible labels. Subsequently, we select the label that yields the most probable
caption.

The “loss-based classification” comes with significantly higher computation costs as all the different captions have to be
evaluated for each image (there representations is conditional to the image). For ImageNet, it implies 1000 forwards through
the decoder for each image. We thus employ the tree-based search for presenting our findings in Table 3, although its greedy
character with no backtracking is not optimal. Surprisingly, our preliminary experiments suggest the tree-based search gives
comparable results.

A.3.2. DETAILS ABOUT ARO EVALUATION

We adhered to the protocol and code base established in (Yuksekgonul et al., 2022) for re-evaluating CLIP’s performance,
and we observe slightly different results (see Table 8). For our captioning models, our approach involved computing the
cross-entropy loss for all possible captions associated with each image and subsequently selecting the one with the lowest
loss.
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Table 8: Compositional understanding (ARO): Results for CLIP (base) in Yuksekgonul et al. (2022) compared to our
evaluation.

Model ARO
VGR VGA COCO Flickr

CLIP (eval from Yuksekgonul et al. (2022)) 59% 63% 46% 60%
CLIP (our eval) 62.4% 62.9% 47.8% 58.0%

Table 9: Training from random initialization: Superiority of DP-Cap over ViP, both trained from random initialization.

Model ImageNet-1K
1-shot 2-shot 10-shot full

ViP (ε = 8) 0.1% 1.7% 6.1% 23.9%
DP-Cap (ε = 8) 5.6% 8.5% 18.8% 47.0%

Table 10: Fine-tuning evaluation on few-shot downstream classification.

Model Aircraft Caltech-101 CIFAR-100
10-shot 20-shot 30-shot 5-shot 10-shot 30-shot 5-shot 10-shot 30-shot

AlexNet 23.3% 34.4% 41.4% 64.7% 73.6% 81.4% 29.7% 36.3% 49.3%

SimCLR 38.8% 56.9% 64.9% 81.7% 89.1% 94.5% 49.9% 60.2% 71.8%

TAN 22.8% 37.9% 46.0% 49.3% 66.4% 77.9% 21.3% 27.8% 42.4%

ViP 31.6% 53.1% 64.3% 68.1% 79.0% 88.9% 30.7% 41.0% 57.5%

DP-Cap 37.5% 57.9% 66.7% 70.3% 81.3% 90.0% 36.3% 46.3% 62.1%

A.3.3. DETAILS ABOUT LINEAR PROBING AND FINE-TUNING EVALUATION.

Few-shot linear probing is accomplished using the Cyanure library (Mairal, 2019). We use the same hyper parameters
as in Assran et al. (2022). We adapted the MAE (He et al., 2022) code base for full linear probing, and we use the same
hyperparameters as in (Yu et al., 2023) (extract 12 layers of the image encoder, LARS optimizer (You et al., 2017) with base
learning rate of 0.1, no weight decay and batch size of 16384).

B. Additional Results
B.1. Additional experiments

Impact of the initialization (V). Our synthetic initialization for DP-Cap achieves less favorable results than the one from
ViP reaches 50% (Yu et al., 2023); for instance, for full linear probing on ImageNet, they achieve 44% (Figure 2) and 50%
respectively. However we have demonstrated that training with DP on top of synthetic initialization leads to significantly
better results for DP-Cap compared to ViP for all the metrics; see Table 2, Table 10 and Figure 1. We observe that this
superiority also appears when the models are trained from random initialization: as shown in Table 9, the improvement over
ViP is even larger when training without synthetic initialization.

Fine-tuning (V). In Table 10, we present DP-Cap’s performance in fine-tuning for few-shot evaluation. In contrast to the
linear probing results shown in Table 2, the network is completely unfrozen. Therefore, we assess DP-Cap’s capabilities
primarily as a network initialization. Similarly to the linear probing results, we note a significant improvement in all metrics
compared to previous DP vision backbones. Note that, similarly to linear probing comparison in Figure 1, we compare
to non-private model performance which provides information about the performance gap between private models and
non-private models. For fair comparison, we evaluate on the same same datasets than Yu et al. (2023).

Captioning task (V-L). We evaluate the image captioning performance of DP-Cap in comparison to non-private Cap. In
Fig. 1(c), we present some (randomly chosen) captions generated by DP-Cap; more examples for DP-Cap and Cap can be
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Table 11: Ablation studies on the effect of model size for zero-shot prediction.

Model Config # parameters DP? Zero-shot
ImageNet-1k CIFAR10 CIFAR100

Random Chance - - - 0.1% 10% 1%

Cap Base 86.6M ✗ 25.2% 90.0% 37.4%

DP-Cap Tiny 22.0M ✓ 5.0% 46.5% 11.1%
DP-Cap Small 49.0M ✓ 6.9% 53.6% 17.1%
DP-Cap Base 86.6M ✓ 7.8% 54.4% 16.4%
DP-Cap Large 407.3M ✓ 9.2% 62.1% 24.0%

Table 12: Captioning evaluation on the MS-COCO test set of Cap and DP-Cap. For “fine-tuned”, the model’s decoder is
fine-tuned for one epoch on the MS-COCO train set (with the image encoder frozen).

Model CIDEr score
original fine-tuned

Cap 29.9 79.2

DP-Cap 15.7 51.3

found in Appendix B.3. Qualitatively, DP-Cap seems to generate reasonably good captions, similar to the ones generated
by Cap. We also compare the two models quantitatively using the CIDEr metric (Vedantam et al., 2015) to evaluate the
generated captions on the MS-COCO test set, and the results are summarized in the last column of Table 3. As DP-Cap and
Cap are only trained on noisy captions from LAION, the CIDEr metric on MS-COCO is relatively low for both models.
Moreover, despite the similar performance between DP-Cap and Cap on ARO, the gap is much more significant for the
captioning evaluation. Given these results, it is plausible that even though DP-Cap attains remarkably compositional
understanding capabilities, its ability to generate text is still limited.

We also fine-tune Cap and DP-Cap’s decoders (while freezing the encoder) for one epoch on the MS-COCO train set, and
assess the improvement in CIDEr scores in Table 12 to showcase the quality of the image representations and decoder
initialization from the pre-training stage. The captions in Figure 1 and Appendix B.3 are generated using models that were
not trained on MS-COCO.

What can we do with more compute budget? We restricted training the DP-Cap model for a compute budget of 32 epochs
on the Dedup-LAION-233M dataset for each of our models with ε = 8. To fit the privacy budget while utilizing a batch size
of 1.3 million and training for 32 epochs, RDP analysis yields σ = 0.728. However, we anticipate that further increasing the
compute budget can yield even better models up to a certain limit: With the same ε and batch size, doubling the compute to
64 epochs only necessitates a 12% increase in σ. This increase enables twice as many steps to be performed with only a
marginal increase in effective noise, potentially allowing the model to converge to a better solution.

In the absence of necessary compute for running this experiment, we partially validate this hypothesis through the Total
Amount of Noise (TAN) simulation, training for the same number of gradient steps and with the same SNR per step, but
using a ×32 smaller batch size and ×32 smaller σ to simulate at ×32 lower compute. Our results in Table 13 indicate a
significant performance improvement of 5% in 10-shot accuracy on ImageNet (compared to a similar simulation of the 32
epochs training). However, increasing the budget further to 128 epochs does not seem to enhance performance compared to
the 64 epoch counterpart. Intuitively, the lower gradient SNR and larger number of gradient steps have opposite effects
on optimization, and pushing past the “sweet spot” of training for 64 epochs at σ = 0.81 results in noisy steps that are
unproductive for model convergence. To surpass the performance of the 64-epoch, 1.3-million batch size DP-Cap model,
training with an even larger batch size appears necessary. We emphasize again that this result is derived through TAN
simulation, and actual, compute-intensive training is required to fully validate this assertion.
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Table 13: TAN simulation of the impact of the compute budget on the performance at fixed B.

σ
0.81 0.95

Epochs 64 (×2) 128 (×4)
Effective noise σ/B ×1.12 ×1.32
Predicted Final loss −0.2 −0.2

Predicted 10-shot ImageNet +5% +5%

Figure 5: At fixed (B, σ, S), ε drastically reduces with the dataset size.

B.2. More on the Impact of dataset size and privacy parameters

Dataset size. We emphasize here (again) the importance of having enough training data to achieve a good privacy-utility
trade-off with DP-SGD. As depicted in Figure 5, increasing the number of training samples N while keeping the same
number of equivalent DP-SGD steps (i.e., keeping batch sizeB, noise σ, and number of update steps S constant) considerably
reduces the privacy budget ε. Equivalently, having more data allows for an increase in the number of equivalent DP-SGD
steps at fixed ε. Similar observations were also made by Tramer & Boneh (2020); McMahan et al. (2017). The abundance of
pre-training data available for training foundation models thus proves highly compatible with DP requirements.

Batch size and σ. We wish to underscore the influence of batch size and σ on both the computational budget and model
performance. As highlighted in Section 3.2, for a given target ε, elevating σ beyond 0.5 allows training for significantly
more steps. In Figure 6, the blue, orange and green lines show the batch size (B) vs. compute trade-off (E) at a given σ. The
lines are monotonically decreasing with B, signifying that the number of epochs E decreases when increasing B. When
maintaining a fixed privacy budget ε = 8, even a marginal increase in σ from 0.48 to 0.728 (from blue to orange) translates
to a remarkable increase ranging from 100 (for small batch sizes) to 100,000 (for very large batch sizes) times more gradient
steps. Thus it is favorable to increase σ and B at the same time for better model convergence.

Meanwhile, doing so also incurs a higher computational cost: Under a 32-epoch budget on Dedup-LAION-233M with a
batch size of 1.3 million, we had to cut the red curve in Figure 6, with σ = 0.728. As outlined in Section 4.4, with twice
this budget, we could have raised σ to 0.81 (green curve), with simulations indicating that this would have substantially
improved performance. Additionally, Section 3.2 underscores that increasing the batch size is pivotal for achieving a high
SNR while maintaining reasonable privacy guarantees. It is also crucial to note that at fixed ε, the compute budget is
inversely proportional to the batch size. Therefore, increasing the batch size is beneficial for both SNR and computational
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Figure 6: All points correspond to ε = 8 for a dataset of size N = 233M. At fixed ε and σ, the number of epochs decreases
as the batch size increases.

efficiency. However, an excessively large batch size leads to fewer epochs and consequently a very limited number of
training steps, which is detrimental to the training process (in addition to the difficulties of large batch training). For optimal
privacy-utility-compute trade-off, a balance must be struck between computational resources, feasible batch size, and a
reasonable number of training steps.

B.3. Image Caption Examples

In Figures 7 and 8, we show images from the MS-COCO 2017 test set and their corresponding captions generated by human
annotator, Cap, and DP-Cap. Images in Figure 7 are selected randomly, whereas images in Figure 8 are randomly selected
from the top 10% CIDEr score examples for DP-Cap. Qualitatively, the human-generated captions are more precise, whereas
the captions generated by Cap and DP-Cap are more generic and sometimes contain factual errors. This is to be expected
since Cap and DP-Cap are trained on LAION with much noisier text description and were not fine-tuned on MS-COCO.
Nevertheless, DP-Cap still generates grammatically correct and (mostly) semantically coherent captions for unseen images.
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Figure 7: Captions of randomly selected images from the MS-COCO 2017 test set.
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Figure 8: Captions of images (randomly picked among the top 10% CIDEr score of DP-Cap) from the MS-COCO 2017 test
set.
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