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Abstract

Learning dynamics from dissipative chaotic sys-
tems is notoriously difficult due to their inherent
instability, as formalized by their positive Lya-
punov exponents, which exponentially amplify
errors in the learned dynamics. However, many of
these systems exhibit ergodicity and an attractor:
a compact and highly complex manifold, to which
trajectories converge in finite-time, that supports
an invariant measure, i.e., a probability distribu-
tion that is invariant under the action of the dynam-
ics, which dictates the long-term statistical behav-
ior of the system. In this work, we leverage this
structure to propose a new framework that targets
learning the invariant measure as well as the dy-
namics, in contrast with typical methods that only
target the misfit between trajectories, which of-
ten leads to divergence as the trajectories’ length
increases. We use our framework to propose a
tractable and sample efficient objective that can
be used with any existing learning objectives. Our
Dynamics Stable Learning by Invariant Measure
(DySLIM) objective enables model training that
achieves better point-wise tracking and long-term
statistical accuracy relative to other learning objec-
tives. By targeting the distribution with a scalable
regularization term, we hope that this approach
can be extended to more complex systems exhibit-
ing slowly-variant distributions, such as weather
and climate models. Code to reproduce our exper-
iments is available here.

1Department of Computer Sciences, Cornell Tech,
New York, NY, USA 2Google Research, Mountain View,
CA, USA 3Department of Mathematics, University of
Wisconsin-Madison, WI, USA. Correspondence to: Yair
Schiff <yairschiff@cs.cornell.edu>, Leonardo Zepeda-Núñez
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1. Introduction
Building data-driven surrogate models to emulate the dy-
namics of complex time-dependent systems is a cornerstone
task in scientific machine learning (Farmer & Sidorowich,
1987), with applications ranging from fluid dynamics
(Sanchez-Gonzalez et al., 2020), weather forecasting (Lam
et al., 2022; Pathak et al., 2022; Bi et al., 2023), climate
modeling (Kochkov et al., 2023), molecular dynamics (Jia
et al., 2020; Merchant et al., 2023), quantum chemistry
(Chen et al., 2020; Zepeda-Núñez et al., 2021), and plasma
physics (Mathews et al., 2021; Anirudh et al., 2022).

Historically, various methods based on PCA (Pearson, 1901)
and Koopman theory (Koopman, 1931) have been proposed
to learn emulators by leveraging large datasets to build a
surrogate model during a, typically expensive, offline phase
(Schmid, 2010; Alexander & Giannakis, 2020; Kaiser et al.,
2021; Schmid, 2022). The learned emulator provides fast
and inexpensive inference, which is then used to accelerate
downstream tasks such as design, control, optimization, data
assimilation, and uncertainty quantification. Alas, many of
these techniques are inherently linear, which renders them
inadequate for problems with highly non-linear dynamics.

Indeed, many of the underlying physical processes driving
target applications are described by non-linear and chaotic
systems, which are characterized by strong instabilities, par-
ticularly with respect to initial conditions: trajectories with
close initial conditions diverge quickly due to the positive
Lyapunov exponents (Medio & Lines, 2001; Strogatz, 2018).
Fortunately, many of these systems are dissipative, which
implies the existence of a compact set, often called an at-
tractor, towards which all bounded sets of initial conditions
converge in finite-time (Temam, 2012). In addition, many
of these systems also empirically exhibit ergodicity, whose
main consequence translates to the existence of an attractor-
induced invariant measure, a measure that is unchanged by
the dynamics of the system, which captures the long-term
behavior of the system (Stuart & Humphries, 1998).

Recent advances in machine learning (ML) have driven the
development of several techniques for learning data-driven
surrogates for non-linear dynamics (Rajendra & Brahma-
jirao, 2020; Roy & Rana, 2021; Brunton & Kutz, 2022;
Ghadami & Epureanu, 2022; Nghiem et al., 2023). In the
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Figure 1. Improved stability with regularized DySLIM objectives in the Kuramoto–Sivashinsky (KS) and Lorenz 63 systems. (a) Sample
ground truth and predicted trajectory across models trained on the KS system using Curriculum training (Curr) and the Pushforward
trick (Pfwd) with/without regularization. The base versions showcase the blow-up issue (Curr) and wrong long-time dynamics (Pfwd).
(b) Sinkhorn Divergence (SD; ↓) between trajectories at various rollout times of the Lorenz 63 system. Each point represents a random
training seed, with the solid line indicating median values. (c) Cosine similarity (↑) over time for the Lorenz 63 system. Each line
corresponds to one of five random training seeds with bolded lines indicating median values.

context of data-driven learning, autoregressive models (the
focus of this paper) are a prevalent approach due to their
ability to infer trajectories of arbitrary length. These autore-
gressive models predict a system’s state at time t+∆t based
on its state at time t. Iterative application (unrolling) allows
for trajectory forecasting far beyond training time horizons.

However, learning chaotic dynamics using autoregressive
models in a stable manner has proven elusive. Due to mem-
ory and computational constraints, traditional ML-based
approaches focus on learning short-term dynamics by min-
imizing the mean square error (MSE) between reference
trajectories and those generated by unrolling a learned
model; commonly using recurrent neural networks (Vlachas
et al., 2018; Fan et al., 2020) or learning a projection from
a stochastic trajectory using reservoir computing (Pathak
et al., 2017; Bollt, 2021; Hara & Kokubu, 2022). Unfor-
tunately, these models usually overfit to the short-term dy-
namics to the detriment of accurately predicting long-term
behavior (Bonev et al., 2023). This manifests as trajectory
blow-up, the values of the state variables diverging to infin-
ity, or inaccurate long-term statistics during inference with
large time-horizon, as depicted in Figure 1 (a). Recent works
have focused on minimizing the misfit between increasingly
longer trajectories (Keisler, 2022). Although these methods
have been shown to attenuate the instability, the underlying
difficulty remains: due to chaotic divergence, the losses
become increasingly uninformative, which causes their gra-

dients1 to diverge, as shown by Mikhaeil et al. (2022).

A prime example of this challenge is weather and cli-
mate. While state-of-the-art ML models can learn short-
term weather patterns (Lam et al., 2022), learning long-term
climate behavior remains a very challenging open problem
(Kochkov et al., 2023; Watt-Meyer et al., 2023). Thus the
question we seek to answer becomes: How do we incor-
porate knowledge of a system’s long-term behavior into
the learning stage, so that models remain point-wise accu-
rate for short-term predictions and statistically accurate for
long-term ones.

This work addresses this challenge by leveraging the pres-
ence of attractors and their invariant measures. We propose
a framework that directly targets the learning of long-term
statistics by a measure-matching regularization loss.

Contributions The contributions of this paper are three-
fold: first, we propose a probabilistic and scalable frame-
work for learning chaotic dynamics using data-driven,
ML-based methods. Our framework introduces a system-
agnostic2 measure-matching regularization term into the

1Gradients are computed by backpropagation through the un-
rolled steps and are prone to exacerbate instabilities in the system.
This is related to the well-known issue of exploding/vanishing
gradients (Pascanu et al., 2013).

2We assume no knowledge of the systems, such as the expres-
sion of the equations driving the dynamics.
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loss that induces stable and accurate trajectories satisfy-
ing the long-term statistics while enhancing short-term pre-
dictive power. Second, we use our framework to propose
a tractable, sample and computationally-efficient3 objec-
tive that we dub Dynamics Stable Learning by Invariant
Measure (DySLIM) that can be used in conjunction with
any existing dynamical system learning objective. Third,
we demonstrate that DySLIM is capable of tackling larger
and more complex systems than competing probabilistic
methods, up to a state-dimension of 4,096 with complex
2D dynamics. Namely, we show competitive results in
three increasingly complex and higher dimensional prob-
lems: the Lorenz 63 system (Lorenz, 1963; Tucker, 1999), a
prototypical chaotic systems with the well known “butterfly”
attractor, the Kuramoto-Sivashinsky (KS) equation, a 1D
chaotic PDE, and the Kolmogorov-Flow (Obukhov, 1983),
a 2D chaotic system that is routinely used as a benchmark
for turbulent fluid dynamics (Kochkov et al., 2021). For
the largest systems, we show that DySLIM performance
remains stable even for large batch sizes and learning rates,
regimes in which the performance of other methods deteri-
orates rapidly. These capabilities are potentially useful for
accelerating the training stage by leveraging data parallelism
and large learning rates.

2. Background
We consider autonomous systems of the form

∂tu = F [u(t)], (1)

where u(t) is the state of the system at time t.

For a given fixed time-step ∆t, we discretize Equation 1
in space and time, and we define uk = u(k∆t) ∈ RD

together with the discrete dynamical system

uk+1 = S∆t(uk), (2)

where S∆t is the map obtained by integrating Equation 1 in
time by a period ∆t. In what follows, for brevity, we drop
the subscript ∆t. We can use the operator S to unroll, or
advance in time, the solution of the dynamical system,

uk = S(uk−1) = S ◦ S(uk−2) = ... = Sk(u0). (3)

Chaotic Systems A chaotic system can be loosely defined
as one whose trajectories are highly sensitive to initial condi-
tions. Let (U ,d) be an Euclidean metric space. We say that
the system given by S is chaotic if there exists ε > 0 such
that for all u0 ∈ U and δ > 0, there exists v0 ∈ Bδ(u0)
and k ∈ N, such that:

d(Sk(u0),Sk(v0)) ≥ ε, (4)

3Our regularization loss incurs an extra cost depending only
quadratically on the batch size.

where Bδ(u0) = {y | d(u0,y) < δ} is a ball of radius δ
centered at u0. Chaotic systems are also characterized by
having a positive Lyapunov exponent: small discrepancies
in the initial conditions are exaggerated exponentially over
time (Strogatz, 2018).

Invariant Measures and Attractors We assume that the
state space is measurable (U ,A), where A is the Borel σ-
algebra on (U ,d), and we have a probability measure µ :
A → [0, 1]. If the discrete-time dynamical system map S
is measurable, then it also defines a probability distribution
S#µ : A → [0, 1] which is called the pushforward of µ
by S, with S#µ(A) = µ(S−1(A)), for all A ∈ A. We say
S preserves a measure µ, also denoted as µ is invariant4

under/to S, if:

µ(S−1(A)) = µ(A),∀A ∈ A, or equivalently S#µ = µ.

Intuitively, an attractor is a subset of the state space that
characterizes the ‘long-run’ or ‘typical’ condition of the
system. Formally, A∗ ⊆ U is an attractor if it is a minimal
set that satisfies the following properties: i) for all a ∈ A∗

and k ≥ 0, Sk(a) ∈ A∗ (i.e., A∗ is invariant under S) and
ii) there exists B ⊆ U , known as the basin of attraction, such
that for all b ∈ B and ε > 0 there exists some k⋆ > 0 such
that Sk(b) is in an ε-neighborhood of A∗, for all k ≥ k⋆.
If the basin of attraction consists of the entire state space,
then A∗ is said to be a global attractor (Stuart, 1994). As an
example, Figure 4 depicts the Lorenz 63 attractor.

3. Learning Dynamical Systems
Our goal is to find a Markovian parametric model Sθ

that governs our system in a manner consistent with the
true dynamics defined by S. To do so, we leverage pre-
viously collected data, which consists of n trajectories:
D = {(u(i)

j )ℓ
(i)

j=0}ni=1, where ℓ(i) is the length of the i-th
trajectory, whose initial conditions are sampled from an in-
variant measure supported on the attractor, i.e., {u(i)

0 }ni=1
iid∼

µ0 = µ∗. Letting µj be the distribution over states uj , i.e.,
states after j time-steps, for ergodic dissipative systems, we
have that µj := Sj

♯µ0 = Sj
♯µ

∗ = µ∗.

Sθ is trained by minimizing an empirical estimate of the mis-
match between predicted and observed trajectories. Most
of these estimates are based on MSE, e.g., the one-step
objective:

L1-step(θ) = EjEuj∼µj

[
∥Sθ(uj)− S(uj)∥2

]
, (5)

for a norm || · || induced by d in Equation 4, and where the
outer expectation Ej represents averages along trajectories.

4We note that invariant measures may not be unique. For
example, transformations with high degree of symmetries, such
as a rigid-body transformation (e.g., translation and rotation), can
have an infinite number of invariant measures.
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At inference, learned models generate trajectories by autore-
gressively unrolling predictions, as in Equation 3: starting
from a given u0, we generate ũk = Sk

θ (u0). As we unroll
for large k, the learning dynamics can become unstable, by
either diverging or converging to a different attractor.

Multi-step Objectives To attenuate this issue, two pop-
ular objectives have been introduced recently, which have
been used to train state-of-the-art models (Brandstetter et al.,
2022; Lam et al., 2022; Kochkov et al., 2023). Specifically,
we examine a generalization of L1-step, the ℓ-step objective:

Lℓ-step(θ) = EjEuj∼µj

ℓ∑
k=1

ω(k)
∥∥Sk

θ (uj)− Sk(uj)
∥∥2 ,

(6)

where ω(k) is a discount factor used to stabilize training5.
Training paradigms where ℓ starts at one and is gradually
increased are known as curriculum training (Curr; Krish-
napriyan et al. (2021); Keisler (2022)), and we denote them
as LCurr.

Alas, Lℓ-step introduces several difficulties. By the chain rule,
computing the gradient of Equation 6 requires the storage
of k intermediate evaluations for each term in the inner sum
in order to calculate the Jacobian ∇θSk

θ (u0), which can
be prohibitive unless gradient checkpointing is used (Chen
et al., 2016). Crucially, for chaotic systems, Mikhaeil et al.
(2022) proved that these gradients necessarily ‘explode’ as
the length of the trajectory grows.

To reduce computational cost and further induce stability,
one can use the pushforward trick (Pfwd), introduced in
Brandstetter et al. (2022). The pushforward trick replaces
inputs uj to the parametric model with noised states ũj

drawn from an adversarial distribution induced by the model,
e.g., ũj = sg(Sθ(uj−1)), where sg(·) represents the stop-
gradient operation. The noise can be also generated by
the repetitive application of the to-be-learned model6 Sθ,
e.g. ũj+k = sg(Sk

θ (uj)). In such cases, the pushforward
objective can be written in general form as:

LPfwd,ℓ(θ) = (7)

EjEuj∼µj
[ω(ℓ)||Sθ(sg(Sℓ−1

θ (uj)))− Sℓ(uj)||2].

This objective can either be used to replace or in addition to
those defined in Equations 5 and 6.

Sources of Instability We recast the instability of learned
dynamical models as short-term overfitting and long-term

5Since matching further rolled-out steps increases in difficulty
with k, especially for chaotic systems, we consider a monotonically
decreasing discount factor of the form ω(k) = rk−1, 0 < r < 1,
inspired by Kochkov et al. (2023).

6The pushforward trick can be re-framed in our measure-
matching framework although using a discrete Wasserstein 2 met-
ric. See Appendix A for more details.

distribution shift: parameters θ that minimize L1-step on
training data often overfit to this data and lead to Sθ#µj ̸=
µj+1. When deployed, the learned dynamical model will
accumulate errors along a predicted trajectory as the distri-
bution of predicted states veers further away from that of the
actual system. Recent techniques (including the Curr and
Pfwd training) attempt to mitigate this issue by encouraging
the model to recover from deviations caused by pushing
forward by Sθ. However, these objectives are still prone to
instabilities. For example, Figure 1 (a) depicts issues for the
chaotic KS equation. The model trained with Curr training
fails to generalize beyond the first ℓ steps on which it was
trained: the trajectory quickly enters an unstable attractor,
from which it blows up. Similarly, the model trained using
the Pfwd training is able to learn the short-term dynamics,
however, as time increases, the trajectories enter a different
attractor, one in which the dynamics are biased towards the
right. In both cases, by introducing our proposed regulariza-
tion, we are able to correct the long-term behavior.

4. Main Idea and Methods
To tackle the issue of distribution shift, we propose to fo-
cus on systems’ invariant measure preservation. Specif-
ically, many systems of interest have some measure µ∗

supported on an attractor that is invariant to the transforma-
tion S (Tucker, 2002; Weinan & Liu, 2002; Luzzatto et al.,
2005; Ferrario, 2008; Hawkins, 2021). We cast our learning
problem as finding parameters θ such that a surrogate Sθ

preserves µ∗ while approximating S locally, which defines
the following constrained optimization:

min
θ

L(θ) s.t. µ∗
θ = µ∗, (8)

where L(θ) is the short-term loss, and µ∗
θ is the invariant

measure of Sθ, i.e., (Sθ)♯µ
∗
θ = µ∗

θ , which we assume exists7.
Solving this constrained optimization inherently alleviates
the distribution shift problem. Since trivial solutions exist
for measure preservation, e.g., if Sθ is the identity, the trajec-
tory matching component L(θ) of this constrained objective
is necessary for producing useful surrogates.

The intractability of the constrained problem in Equation 8
leads us to consider a relaxed version by turning the problem
into a regularized objective of the form:

LD
λ(θ) = L(θ) + λD(µ∗, µ∗

θ), (9)

where the hyperparameter λ controls the strength of regular-
ization, and D is a measure distance / divergence.

This formulation raises three additional questions: i) which
metric to use for measuring distance between distributions,

7This is a key hypothesis in our methodology. Otherwise, this
assumption can be enforced in Sθ by adding a potential term, as
done in Li et al. (2022).
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(a) (b)

Figure 2. Regularized DySLIM objectives outperform baselines for the KS system. (a) Cosine similarity (↑) over time. Each line
corresponds to the mean over trajectories of each of five random training seeds, with bold lines indicating median values. (b) Sinkhorn
Divergence (SD; ↓) between trajectories at various rollout times. Each point represents a random training seed that remains stable, with
the solid line indicating median values.

ii) how to sample from µ∗
θ , which is unknown, and iii) how

to estimate the regularization with a finite (and potentially
small) number of samples, which is crucial for solving Equa-
tion 9 using stochastic optimization pipelines.

Measure Distance Our choice of measure distance needs
to satisfy several desiderata, namely it should: i) respect
the underlying geometry of U and support comparison be-
tween measures with non-overlapping supports, ii) admit
an unbiased, sampled-based estimator, iii) have low com-
putational complexity with respect to the system dimen-
sion and number of samples, iv) entail convergence prop-
erties on the space of measures defined on U (informally,
D(µ∗

θ, µ
∗) → 0 =⇒ µ∗

θ → µ∗), and v) enjoy parametric
rates of estimation (i.e., sampling error |D − D̂| is indepen-
dent of system dimension).

Some popular notions of distance / divergence from sta-
tistical learning theory include the Kullback-Leibler and
Hellinger. However, these do not take into account the dis-
tance metric of the space on which the distributions are
defined (Genevay et al., 2018; Feydy et al., 2019) and in
some cases are undefined for non-overlapping supports.

In contrast, Integral Probability Metrics (IPMs; Müller
(1997)) represent a general purpose tool for comparing two
distributions. Among the class of IPMs, the Maximum
Mean Discrepancy (MMD; Gretton et al. (2012)) stands out
as it has a closed form expression and satisfies all our re-
quirements described above. Deferring several details about
the MMD to Appendix B, we define it here as,

MMD2(µ∗, µ∗
θ) = Eu,u′∼µ∗ [κ(u,u′)] (10)

+ Ev,v′∼µ∗
θ
[κ(v,v′)]− 2Eu∼µ∗,v∼µ∗

θ
[κ(u,v)],

where κ : U × U → R is a kernel.8 For two sets of n
samples {u(i)}ni=1 ∼ µ∗ and {v(i)}ni=1 ∼ µ∗

θ , Equation 10

8The choice of kernel has important practical implications (Liu
et al., 2020; Schrab et al., 2023), and many kernels κσ are con-
trolled by a bandwidth hyperparameter σ that should be tuned.

admits an unbiased estimator (Gretton et al., 2012):

M̂MD
2
(µ∗, µ∗

θ) =
1

n(n− 1)

[
n∑

i=1

n∑
j ̸=i

[κ(u(i),u(j))]

+

n∑
i=1

n∑
j ̸=i

[κ(v(i),v(j))]

]
− 2

n2

n∑
i=1

n∑
j=1

[κ(u(i),v(j))],

This estimator can be easily computed in O(n2) operations.
Additionally, the MMD entails convergence properties on
the space of measures defined on U . That is, it metrizes weak
convergence (Simon-Gabriel et al., 2023), and, for character-
istic kernels, we have MMD(µ∗, µ∗

θ) = 0 ⇐⇒ µ∗ = µ∗
θ

(Sriperumbudur et al., 2010). The MMD also enjoys para-
metric rates of estimation, with O(1/

√
n) sampling error

(Gretton et al., 2006; Tolstikhin et al., 2016). We point
out that, in practice, n is the batch size, since we employ
stochastic optimization methods.

Approximate Sampling from the Invariant Measure by
Time-stepping Even though the metric above satisfies sev-
eral desirable properties, we do not have access to samples
of µ∗

θ . Fortunately, if we assume that Sθ has an attractor,
then Sk

θ (u0) will become a sample of µ∗
θ for sufficiently

large k and u0 in the basin of attraction. Analogous to
Equation 2, we have that applying Sθ to u0 is equivalent to
stepping forward in time according to the learned dynamics,
i.e., sampling from µ∗

θ is equivalent to unrolling the trajec-
tory in time. Then we approximate the invariant measure,
µ∗
θ , associated with Sθ by time-unrolling samples of µ∗, i.e.,(
Sk
θ

)
♯
µ∗ ≈ µ∗

θ for a large k. This observation allows us to
approximate the regularization term in Equation 9 by

D(µ∗, µ∗
θ) ≈ D(µ∗,

(
Sk
θ

)
♯
µ∗). (11)

Conditional and Unconditional Regularization Using
the approximation in Equation 11 in the context of a stochas-
tic optimization pipeline requires that we estimate this term
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with a potentially small batch size. In fact, besides some
simple systems, one typically can only afford small batch
sizes, which means we may not be fully capturing both µ∗

and µ∗
θ . Although our choice of regularization loss comes

with an unbiased estimator with parametric rates of error, in
small regimes, estimation error can still diminish its effec-
tiveness at providing a meaningful signal.

We therefore manipulate the expression in Equation 9 to
obtain a different yet equivalent loss. Using the fact that
µ∗ = S♯µ

∗ = (Sk)♯µ
∗, we obtain the equivalent expres-

sions D(µ∗,
(
Sk
θ

)
♯
µ∗) and D((Sk)♯µ

∗, (Sk
θ )♯µ

∗), which
we respectively dub as the unconditional and conditional
regularization. We can easily manipulate the latter expres-
sion using Equation 10 to yield

MMD2((Sk)♯µ
∗, (Sk

θ )♯µ
∗) = Eu,v∼µ∗ [κ(Sk(u),Sk(v))

+ κ(Sk
θ (u),Sk

θ (v
′))− 2κ(Sk(u),Sk

θ (v)], (12)

which can be estimated by extracting a subset of initial con-
ditions, time-evolving them k steps, and then computing the
estimator on the time-evolved samples. We point out that
this is equivalent to conditioning the loss on the initial con-
ditions, hence the name conditional regularization. When
using samples to estimate MMD, we use a collection of
initial conditions {u(i)

0 }ni=1 for unconditional regularization
and a collection of samples time-evolved by the true system,
i.e., ones that come from later time steps in training trajecto-
ries, {u(i)

k = Sk(u
(i)
0 ))}ni=1 for conditional regularization.

Although the expressions for both regularizations are equiv-
alent, they lead to different finite-sample estimators. The
former compares initial samples with ones evolved using
Sθ, while the latter compares samples evolved using both
S and Sθ. In our experiments, we incorporate both terms
and explore different weighting schemes. Empirically, we
find that the unconditional regularization is useful when the
dynamical system’s state dimension is small, and one can
afford a large batch; but it becomes uninformative as the
dimension of the dynamical system state increases, due to
larger distances between samples and sparse coverage of the
attractor, which also becomes higher dimensional.

DySLIM Combining the elements above leads us to our
proposed objective, DySLIM:

L̂D
λ(θ) = L̂obj(θ)+λ1D̂(µ∗, (Sℓ

θ)♯µ
∗) (13)

+λ2D̂((Sℓ)♯µ
∗, (Sℓ

θ)♯µ
∗),

where ℓ depends on the type of baseline objective L̂obj(θ)
used. The second and third terms in Equation 13 corre-
spond to the unconditional and conditional regularization,
respectively. We perform a hyperparameter search over λ1

and λ2, taking λ1 ∈ {0, 1} and λ2 ∈ {1, 10, 100, 1000}.

Importantly, this objective can be used in conjunction with
any of the base losses introduced above.

For the measure distance D̂ in Equation 13, we use M̂MD
2

and define κσ as a mixture of rational quadratic kernels
(Rasmussen et al., 2006; Li et al., 2015):

κσ(u,v) =
∑
σq∈σ

κσq
(u,v) =

∑
σq∈σ

σ2
q

σ2
q + ||u− v||22

,

where we select the set σ depending on the dynamical sys-
tem, see Appendix E for details.

5. Experiments

Baselines Our baseline models are trained with L̂obj, where
obj ∈ {1-step, Curr, Pfwd} and where || · || is the L2 norm.
For each system and objective, the same model architecture,
learning rate, and optimizer hyperparameters are used. All
experiments are repeated with five different random seeds.

Evaluation We evaluate models both for their ‘short-term’
predictive ability and ‘long-run’ stability. The former is
measured by a cosine similarity statistic between true and
predicted trajectories. The latter is measured by system-
specific metrics (see Wan et al. (2023a)) capturing the distri-
butional similarity between true and generated trajectories,
along with their visual inspection. In particular, we use the
Sinkhorn Divergence (SD) (Genevay et al., 2018) between
the empirical distributions of ground truth and predicted
trajectories at various time steps to quantify distributional
overlap. We also use the mean energy log ratio (MELR),
which measures the average deviation of the energy at each
Fourier mode of the generated snapshots when compared
to the ground truth. We also consider its weighted variant
(MELRw), which up-weights modes with higher energy, in
particular the low-frequency modes. We also use the mean
of the Frobenius norm of covariance matrix (covRMSE)
that measures the spatial statistical properties of the gener-
ated samples. We additionally compute point-wise Wasser-
stein metrics. Finally, we consider a time correlation metric
(TCM) which provides a measure of temporal behavior, in
contrast to most of the metrics above, which are snapshot-
based. For more detail on and precise definitions of the
evaluation criteria, see Appendix C.

5.1. Lorenz 63

The first system we examine is the Lorenz 63 model (Lorenz,
1963), which is a simplified model of atmospheric convec-
tion and is defined by a non-linear ordinary differential
equation. Our models use a simple MLP network, due to the
low-dimensional nature of the problem. For more details
about this differential equation and the experimental setup
for this system, see Appendix E.1.
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Figure 1 (b) and (c) demonstrate the improved stability
from adding invariant measure regularization to the different
training objectives considered in this paper. In particular,
Figure 1 (b) demonstrates improved long-term statistics, as
the distribution of points for models trained with DySLIM
are closer to that of ground truth trajectories compared to
those from models trained with unregularized objectives. In
addition, Figure 1 (c) shows that with DySLIM we obtain the
added benefits of improving the short-term model prediction,
with longer de-correlation times. For further results with
different metrics, see Appendix F.1.

5.2. Kuramoto-Sivashinsky

We next experiment in the more difficult setting of the high-
order PDE known as the Kuramoto-Sivashinsky (KS) equa-
tion, which is discussed, along with the experimental setup,
in Appendix E.2. For this experiment, the 1-step objective
proved to be too unstable, even when regularization was
applied, so we focus only on Curr and Pfwd objectives.

In Figure 2, we observe better short-term predictions and
improved long-term stability, as measured by lower SD be-
tween ground truth and predicted trajectory distributions. In
Figure 1 (a), we see example trajectories that highlight the
difference between models trained with and without regular-
ized objectives. For the Curr objective, models often diverge
and produce numerical instability, while for the Pfwd ob-
jective, models deviate from the attractor. In contrast, the
regularized versions of these objectives yield more stable
models that remain on the correct attractor manifold.

5.3. Kolmogorov Flow

Finally, we study chaotic 2D fluid flow defined by the
Navier-Stokes equations with Kolmogorov forcing. Infor-
mation about the PDE and experiment setups is available
in Appendix E.3. For this system, the SD becomes non-
discriminative due to the high-dimension of the state space,
so we rely on the other metrics outlined above.

Figure 3 (left) shows typical behavior of the unrolled trained
models for a given initial condition: the baselines be-
come highly dissipative and quickly veer towards the mean,
whereas DySLIM greatly improves long-term behavior. Fig-
ure 3 (right) shows a similar results to those in the other
experiments: the short-term behavior of the solution is en-
hanced by the regularization (see Figure 8 for further com-
parisons). We find that curriculum training is often worse
due to more stringent memory requirements that prevent us
from unrolling for longer time-horizons during training.

As an ablation, we sweep over different batch sizes and
learning rates (see Appendix E.3 for the specific details.)
The results are summarized in Table 1, which shows that
models trained with DySLIM either have an edge or remain

competitive across the spectrum of different learning rates
and batch sizes considered. However, as batch size and
learning rate increase, the behavior of the model trained with
DySLM remains consistent, whereas the models trained
only using the original objective deteriorate quickly.

6. Related Work
ROM Methods Classical reduced order model (ROM)
methods build surrogates by identifying low-dimensional
linear approximation spaces tailored to representing target
system states. Such spaces are usually derived from data
samples (Aubry et al., 1988; Barrault et al., 2004; Chinesta
et al., 2011; Amsallem et al., 2012), and ROMs are obtained
by projecting the system equations onto the approximation
space (Galerkin, 1915). Although these methods inherently
leverage the linear behavior of underlying dynamics, they
have been recently extended to handle mildly non-linear
dynamics (Willcox, 2006; Astrid et al., 2008; Chaturantabut
& Sorensen, 2010; Ayed et al., 2019; Geelen et al., 2022).
However, their performance deteriorates rapidly for highly
non-linear advection-dominated systems, such as KS and
Kolmogorov flow (Peherstorfer, 2022)

Hybrid Physics-ML More recent methods hybridize clas-
sical numerical methods with contemporary data-driven
deep learning techniques (Mishra, 2018; Bar-Sinai et al.,
2019; Bruno et al., 2021; Kochkov et al., 2021; List et al.,
2022; Frezat et al., 2022; Dresdner et al., 2022; Boral et al.,
2023). These approaches learn corrections to numerical
schemes from high-resolution simulation data, resulting in
fast, low-resolution methods with high-accuracy. However,
they require knowledge of the underlying PDE.

Pure ML-surrogates and Stabilization Techniques Re-
cent works have focused on short-term training trajectories
using recurrent networks (Vlachas et al., 2018) and reser-
voir computing techniques (Vlachas et al., 2020; Platt et al.,
2021). Other approaches seek to regularize the training stage
by leveraging properties of the systems. Such stabilization
can be achieved by incorporating noise (Sanchez-Gonzalez
et al., 2020), which can be induced by the learned model
(Brandstetter et al., 2022); by back-propagating the gradi-
ent along many time steps (Um et al., 2020), and learning
the dynamics on a latent space (Stachenfeld et al., 2022;
Serrano et al., 2023), while promoting smoothness in the
latent space (Wan et al., 2023b). Or by using a generative
teacher network (Lamb et al., 2016), or leveraging an ap-
proximate inertial form (Lu et al., 2017). Related to the
Curriculum training baseline, Hess et al. (2023) use states
that interpolate between model predicted and ground truth
states to mitigate gradient explosion. Finally, a somewhat re-
lated stabilization method, introduced in Wang et al. (2014);
Blonigan et al. (2018), develops a shadowing technique for
sensitivity analysis of long-term averaged gradients.
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Figure 3. (Left) Sample reference and predicted trajectory across models trained on the Kolmogorov Flow data using the Curr and Pfwd
objectives, together with the regularized versions. (Right) Evolution of the cosine similarity over time for Curr and Pfwd objectives with
and without regularization. The solid line is the median among 160 runs (32 trajectories for each of the 5 random seeds), and the shaded
regions correspond to the second and third quartile. (λ1 = 0, λ2 = 100, batch size = 128 and learning rate = 5e−4).

Table 1. Kolmogorov flow: Metrics for 1-step, curriculum, and pushforward objectives without and with regularization (λ1 = 0,
λ2 = 100). Boldface numbers indicate that the metric is improved by our regularization. All values displayed are in units of ×10−2.

Batch size LR MELR (↓) MELRw (↓) covRMSE (↓) Wass1 (↓) TCM (↓)
Base DySLIM Base DySLIM Base DySLIM Base DySLIM Base DySLIM

1-step 64 5e-4 2.77 1.84 0.44 0.85 7.93 7.30 16.2 5.55 5.39 2.45
Curr 64 5e-4 5.35 1.64 0.95 0.45 8.13 6.95 9.66 4.76 3.50 2.83
Pfwd 128 1e-4 3.19 2.46 0.53 0.53 6.81 6.69 4.64 4.51 3.68 0.72

Table 2. Complexities for each objective, with d denoting state
dimension, |θ| number of parameters, which is implementation
dependent, NN complexity of the neural network for one applica-
tion, nb batch size, and nt number of maximum rollout steps.

Objective Cost O(·) Memory footprint O(·)
1-step nbd+ nbNN nbd+ nb|θ|
+ DySLIM n2

bd+ nbNN n2
bd+ nb|θ|

Curr ntnbd+ ntnbNN ntnbd+ ntnb|θ|
+ DySLIM ntn

2
bd+ nbNN (n2

b + nb)ntd+ ntnb|θ|
Pfwd nbd+ nbNN nbd+ nb|θ|
+ DySLIM n2

bd+ nbNN n2
bd+ nb|θ|

Operator Learning Neural operators seek to learn the
integro-differential operators directly, without explicit PDE-
informed components.These methods often leverage clas-
sical fast-methods (Fan et al., 2019; Li et al., 2020; 2021;
Tran et al., 2021), or approximation-theoretic structures (Lu
et al., 2021) to achieve computational efficiency. Some of
these techniques have been extended to handle dissipative
systems (Li et al., 2022) by hard-coding a dissipative term
at both training and inference time.

Learning Invariant Measures Botvinick-Greenhouse
et al. (2023) use an Eulerian approach to learn dynamics
on invariant measures for low-dimension ODEs using the
Feynman-Kac formula coupled with PDE-constrained op-
timization. In recent work, Jiang et al. (2023) use neural
operators and optimal transport to match the distribution of
system-specific summary statistics, which are built using
knowledge of the underlying equation driving the system
dynamics. However, the approach was only applied to small
systems with low-dimensional attractors, and it is not clear
how well it scales to high-dimensional problems, such as the
Kolmogorov flow. Similarly, Platt et al. (2023) regularize
using other invariants, such as the Lyapunov spectrum.

Our proposed method sits between stabilization techniques
and learning invariant measures. In particular, we stabilize
the training by implicitly learning the invariant measure of
the system along the short-term dynamics. While our work
elects to use the MMD, we note that using other Optimal
Transport-based metrics for measure matching, such as the
Sinkhorn Divergence, as in (Jiang et al., 2023), is a rea-
sonable choice when the system state is small, and batch

8
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Table 3. Median execution times (rounded to the hour) for 5 train-
ing runs (720k steps) on Kolmogorov flow using the PushFwd
(max rollout of 10) and Curr (max rollout of 5).

Batch size Pfwd Curr
Base DYSLIM Base DYSLIM

32 40 40 48 48
64 74 76 161 163
128 145 146 OOM OOM

size is large, as shown in Appendix G. However, as sys-
tem size increases and batch sizes decrease (due to memory
constraints), we find that the models trained using SD in
the regularization perform worse compared to those trained
using MMD.

MMD in Generative Modeling MMD-based regulariza-
tion has been used in the context of generative modeling,
e.g., the MMD has been used to distinguish between sam-
ples of the generated and true distributions (Li et al., 2015;
Dziugaite et al., 2015; Li et al., 2017; Bińkowski et al.,
2018) within the framework of generative adversarial net-
work (Goodfellow et al., 2020). Additionally, drawing
on the close connection between the MMD and a related
proper scoring rule (Gneiting & Raftery, 2007; Ramdas
et al., 2017), Si et al. (2021; 2023) use the energy distance
(Baringhaus & Franz, 2004; Székely et al., 2004), a special
case of the MMD (Sejdinovic et al., 2013), to train normal-
izing flow generative models (Rezende & Mohamed, 2015;
Papamakarios et al., 2021).

Complexity Our methodology incurs relatively small over-
head compared to the baselines. Table 2 shows that our
methodology adds an extra cost depending only quadrati-
cally on the batch size and linearly on state dimension. We
see this empirically in Table 3: wall-clock times are roughly
equal with and without our regularization.

7. Conclusion
In this work, we have presented a tractable, scalable, and
system-agnostic regularized training objective, DySLIM,
that leverages a key property of many dynamical systems
of interest in order to produce more stable learned mod-
els. Specifically, by pushing learned system models to
preserve the invariant measure of an underlying dynami-
cal system, we demonstrated that both short-term predictive
capabilities and long-term stability can be improved across
a range of well-studied systems, e.g., Lorenz 63, KS, and
Kolmogorov Flows. We hope that the principles of invariant
measure preservation introduced in our work, coupled with
a tractable and scalable formulation, can serve to stabilize
real-world dynamical system models with slowly varying
measures, such as those used in global weather prediction.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A., and Peyré, G. Interpolating between optimal transport
and MMD using sinkhorn divergences. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 2681–2690. PMLR, 2019.

Frezat, H., Le Sommer, J., Fablet, R., Balarac, G., and
Lguensat, R. A posteriori learning for quasi-geostrophic
turbulence parametrization. arXiv, April 2022.

Galerkin, B. G. Series occurring in various questions con-
cerning the elastic equilibrium of rods and plates. Vestnik
Inzhenernov i Tekhnikov, 19:897–908, 1915.

Geelen, R., Wright, S., and Willcox, K. Operator inference
for non-intrusive model reduction with nonlinear mani-
folds. arXiv:2205.02304 [math.NA], May 2022. URL
https://arxiv.org/abs/2205.02304. arXiv:
2205.02304.
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Kutta, W. Beitrag zur näherungsweisen Integration totaler
Differentialgleichungen. Teubner, 1901.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-
Rosen, Z., Hu, W., et al. Graphcast: Learning skillful
medium-range global weather forecasting. arXiv preprint
arXiv:2212.12794, 2022.

Lamb, A. M., ALIAS PARTH GOYAL, A. G., Zhang, Y.,
Zhang, S., Courville, A. C., and Bengio, Y. Professor
forcing: A new algorithm for training recurrent networks.
Advances in neural information processing systems, 29,
2016.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos,
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J., Sha, F., and Zepeda-Núñez, L. Debias coarsely, sample
conditionally: Statistical downscaling through optimal
transport and probabilistic diffusion models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023a. URL https://openreview.net/
forum?id=5NxJuc0T1P.
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A. Relation to the Pushforward trick
We note that the pushforward trick (Brandstetter et al., 2022) can be reformulated using our framework as a weak measure
fitting loss. A finite-sample approximation of Eu0∼µ∗ [||Sθ(sg(Sk−1

θ (u0))) − uk||2] is an upper bound of the discrete
Wasserstein-2 distance between µ⋆ and the approximation of µ⋆

θ . Formally, we have that

LPfwd(θ) = Eu0∼µ∗ [||Sθ(sg(Sk−1
θ (u0)))− uk||2] ≳ W2(µ, µ

∗
θ) := inf

γ∈Γ(µ∗,µ∗
θ)

∫
∥u− v∥2 dγ(u,v), (14)

where Γ(µ∗, µ∗
θ) is the set of all couplings between µ∗ and µ∗

θ .

By relying on an estimate of the loss, we have that for a given set of initial conditions {u(i)}ni=1 ∼ µ∗,

L̂Pfwd(θ) := n−1Σn
i=1∥Sθ(sg(Sk−1

θ (u(i))))− Sk(u(i))∥2 = n−1Σn
i=1∥Sk

θ (u
(i))− Sk(u(i))∥2, (15)

which can be lower bounded by the following

n−1Σn
i=1∥Sk

θ (u
(i))− Sk(u(i))∥2 ≥ n−1 min

π
Σn

i=1∥Sk(u(i))− Sk
θ (u

(π(i)))∥2,

where π is a permutation operator. Given that we are in the discrete setting where the Monge and Kantorovich problems are
equivalent (Brezis, 2018), we have that

n−1 min
π

Σn
i=1∥Sk(u(i))− Sk

θ (u
(π(i)))∥2 = inf

T∈Π
Σi,jTi,jCi,j := Ŵ2((Sk

θ )♯µ
∗, (Sk)♯µ

∗), (16)

where Π is the set of all valid discrete transport maps (i.e., matrices that satisfy Ti,j ≥ 0,
∑

j Ti,j =
∑

i Ti,j = 1), C is the

quadratic cost function (Ci,j = ∥Sk(u(i))− Sk
θ (u

(j))∥2), and Ŵ2 is a discrete estimate of the Wasserstein-2 metric.

We can further refine this expression using the same approximation as in Equation 11, i.e., Sk
θ (u

(i)) ∼ µ∗
θ for large k and

Sk(u(i)) ∼ µ∗, we have that

Ŵ2((Sk
θ )♯µ

∗, (Sk)♯µ
∗) ≈ Ŵ2(µ

∗
θ, µ

∗). (17)

Therefore, in summary we have that

L̂Pfwd(θ) ≳ Ŵ2(µ
∗
θ, µ

∗) ≈ inf
γ∈Γ(µ∗,µ∗

θ)

∫
∥u− v∥2 dγ(u,v) = W2(µ, µ

∗
θ). (18)

Thus one can argue that minimizing the Pfwd objective also induces a minimization of the discrete Wasserstein-2 metric
between the two invariant measures.

B. Maximum Mean Discrepancy
In this section, we provide additional information and context about the Maximum Mean Discrepancy (MMD). The MMD
is an instance of an integral probability metric (IPM; Müller (1997), which is a useful construction that allows us to measure
distance between distributions. For any two distributions µ and ν, IPMs are defined with a function class G as:

IPM(µ, ν) = sup
g∈G

∣∣∣Eu∼µ[g(u)]− Eu∼ν [g(u)]
∣∣∣. (19)

Given that we seek our model Sθ to preserve µ∗, we can use an IPM as the distance D in Equation 9, since, for a rich enough
function class G, IPM(µ∗,Sθ#µ

∗) → 0 implies Sθ#µ
∗ → µ∗.

One instance of an IPM is when G is the space of functions with bounded norm in a reproducing kernel Hilbert space Hκ,
i.e., G = {g : ||g||Hκ

≤ 1}, in which case, Equation 19 coincides with the Maximum Mean Discrepancy (MMD) (Gretton
et al., 2012; Sriperumbudur et al., 2009), where κ is the reproduced kernel. Using the reproducing property of Hκ and the
Riesz representation theorem, we have that the MMD can be expressed as follows:

MMD2 = ||Eµ∗ [κ(u, ·)]− Eν [κ(v, ·)]||2Hκ
, (20)
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where Eµ[κ(u, ·)] is the mean embedding of µ (Gretton et al., 2012). Applying the reproducing property of Hκ again allows
us to equivalently write Equation 20 as in Equation 10 (Gretton et al., 2012).

As described in Section 5, we use a rational quadratic kernel. While other works that use MMD for distribution matching, such
as Li et al. (2015) and Dziugaite et al. (2015), also explored the squared exponential kernel, κσ(u,v) = exp(−1

2σ ||u− v||22),
they found that careful tuning of the bandwidth parameter was required. In contrast, other than the highest dimension
Kolmogorov flow experiments, we found that the mixture of bandwidths used in our rational kernel was comparatively
robust and did not require a comprehensive hyperparameter search. We therefore rely on this kernel and do not explore the
more sensitive squared exponential kernel.

C. Evaluation Criteria
In this section, we provide further detail about the evaluation criteria used in Section 5.

C.1. Cosine Similarity

Letting {u(i)
tk
}ni=1 and {ũ(i)

tk
}ni=1 be the ground truth and predicted states (respectively) at time tk, for k = 1, ..., N , across

test set trajectories, the cosine similarity at each time step is defined as:

avg. cosine sim(tk) =
1

n

n∑
i=1

(u
(i)
tk

− ūtk)
⊤(ũ

(i)
tk

− ūtk)

||(u(i)
tk

− ūtk)|| · ||(ũ
(i)
tk

− ūtk)||
,

where ūtk = 1
n

∑n
i=1 utk is the mean of the ground truth trajectories at each time step. Here tk = k ·∆t refers to number

of discrete time steps multiplied by the time resolution of the trajectories. Intuitively this metric provides the angle between
the different trajectories, i.e., it measures if the snapshots are “pointing” in the same direction.

C.2. Sinkhorn Divergence

Popular metrics used to measure distance between distributions include Optimal Transport (OT) based metrics, such as
the Sinkhorn divergence, which we describe below. The field of OT is concerned with transforming (or transporting) one
distribution into another, i.e., finding a map between them, in an optimal manner with respect to a pre-defined cost. The
cost of the minimal (or optimal) transformation, often called the cost of the OT map, can then be used to define distances
between distributions that ‘lifts’ the underlying metric d defined on U to one over the space of probability measures P(U)
(Santambrogio, 2015).

In this context, we define the Kantorovich formulation of the OT cost (Kantorovich, 1942) as

W(µ, ν) = min
γ∈Γ(µ,ν)

∫
U×U

c(u,v)dγ(u,v),

where c : U × U → R+ is an arbitrary cost function for transporting a unit of mass from u to v, and Γ is the set of joint
distributions defined on U × U with correct marginals, i.e.,

Γ(µ, ν) = {γ ∈ P(U × U) | P1#γ = µ, P2#γ = ν},

with P1(u,v) = u and P2(u,v) = v being simple projection operators. When c(u,v) = d(u,v)p with p ≥ 1, then W1/p

is known as a Wasserstein-p distance.

Practically, finding OT maps is a computationally expensive procedure. We therefore use entropic regularized versions
of OT costs, which are amenable to efficient implementation on computational accelerators, by means of the Sinkhorn
algorithm (Cuturi, 2013; Peyré et al., 2019):

Wε(µ, ν) = min
γ∈Γ(µ,ν)

W +KL(γ||µ⊗ ν), (21)

where KL is the Kullback-Leibler divergence, and µ⊗ ν is the product of the marginal distributions. This gives rise to the
Sinkhorn Divergence (SD):

SD(µ, ν) = 2Wε(µ, ν)−Wε(µ, µ)−Wε(ν, ν),
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which alleviates the entropic bias present in Equation 21, i.e. Wε(µ, µ) ̸= 0. Of note, the SD can be shown to interpolate
between a pure OT cost W (as ε → 0) and a MMD (as ε → ∞) (Ramachandran et al., 2018; Genevay et al., 2018; Feydy
et al., 2019).

In Section 5, the SD was used to compare empirical version of the ground truth and predicted distributions of trajectories.
We use the Optimal Transport Tools library (Cuturi et al., 2022) with its default hyperparameters to perform this computation.
We also explored using the Sinkhorn Divergence as the measure distance in Equation 13. However, especially in higher
dimension experiments, we found this divergence to be less informative in guiding training, likely owing to its less favorable
estimation properties compared to the MMD, particularly in the high-dimensional regime, see Appendix G for more details.

C.3. Radially Averaged Energy Spectrum

The energy spectrum is one of the main metrics to quantitatively assess generated samples (Wan et al., 2023a). In a nutshell,
the energy spectrum measures the energy in each Fourier mode, thereby providing insights into the similarity between the
generated and reference samples.

The energy spectrum is defined9 as

E(K) =
∑

|K|=K

|û(K)|2 =
∑

|K|=K

∣∣∣∣∣∣
∑
i,j

u(xi,j) exp(−j2πK · xi,j/L)

∣∣∣∣∣∣
2

(22)

where u is a snapshot system state, K is the magnitude of the wave-number (wave-vector in 2D) K, and xi,j is the
underlying (possibly 2D) spatial grid. To assess the overall consistency of the spectrum between the generated and reference
samples using a single scalar measure, we consider the mean energy log ratio (MELR):

MELR =
∑
K

wK |log (Epred(K)/Eref(K))| , (23)

where wK represents the weight assigned to each K. We further define wunweighted
K = 1/card(K) and wweighted

K =
Eref(K)/

∑
K Eref(K). The latter skews more towards high-energy/low-frequency modes.

C.4. Covariance RMSE (covRMSE)

The covariance root mean squared error quantifies the difference in the long-term spatial correlation structure between the
prediction and the reference. It involves first computing the (empirical) covariance on a long rollout:

Cov(u) =
1

N · n

n∑
i=1

N∑
k=1

(u
(i)
tk

− ū)(u
(i)
tk

− ū)T , ū =
1

N · n

n∑
i=1

N∑
k=1

u
(i)
tk
, (24)

where u
(i)
tk

are realizations of the multi-dimensional random variable U (in this case, they are just the snapshots of the
trajectory i at time steps tk.) For 2D Kolmogorov flow, we leverage the translation invariance in the system to compute the
covariance on slices with fixed x-coordinate. The error is then given by:

covRMSE =
∥Covpred − Covref∥

∥Covref∥
, (25)

where ∥ · ∥ is taken to be the Frobenious norm.

C.5. Time Correlation Metric (TCM)

The quantities introduced above, such as the energy spectrum, are single-time quantities. Compared to single-time quantities,
examining multiple-time statistics can provide a better view of more complex temporal behavior.

We leverage the spatial homogeneity and compute pointwise statistics for a scalar time series u, then average over space.
Assuming stationarity, one definition of the autocorrelation function is ρ(t) = C(t)/C(0), where

C(ti) =
1

N

N∑
k=1

(utk − ū)(utk−i
− ū), ū =

1

N

N∑
k=1

utk (26)

9This definition is applied to each sample and averaged to obtain the metric (same for MELR).
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The autocorrelation time τ , which is defined as

τ = ∆t

(
1 + 2

∞∑
i=1

ρ(ti)

)
, (27)

can be interpreted as the time for the signal to forget its past. We compute the average pixel-wise τ for ground truth as well
as prediction rollouts and take their absolute difference to form a metric.

D. Regularization
For better reproducibility of our work, we provide explicit formulas for the regularized objective functions. We reproduce
Equation 13 from Section 5

L̂D
λ(θ) = L̂obj(θ) + λ1D̂(µ∗, (Sℓ

θ)♯µ
∗) + λ2D̂((Sℓ)♯µ

∗, (Sℓ
θ)♯µ

∗).

For each type of objective the training schedule is slightly different, namely:

• When L̂obj(θ) corresponds to the 1-step objective, L̂1-step(θ), then ℓ = 1.

• When L̂obj(θ) corresponds to the Curr objective, L̂Curr(θ), then we gradually increase ℓ from 1 to some maximum
rollout value according to a schedule determined by the number of training steps, as described in Appendix E.1,
Appendix E.2, and Appendix E.3, below.

• When L̂obj(θ) corresponds to the Pfwd objective, we use the same schedule as in Curriculum training, but randomly
sample the rollout length up to ℓ for each batch, following the implementation provided by Brandstetter et al. (2022)10.

For the Curr objectives, we have the following formulas for the regularization terms. Suppose that {u(i)}ni=1 ∼ µ∗ is a
mini-batch of size n sampled from the invariant measure, then using the sample-based MMD estimator, the estimate of the
term D̂(µ∗, (Sℓ

θ)♯µ
∗) in Equation 13, i.e., the unconditional regularization term, can be written as

M̂MD
2
(µ∗, (Sk

θ )♯µ
∗) =

1

n2

∑
i,j

κ(u(i),u(j)) +
1

n2

∑
i,j

κ(Sk
θ (u

(i)),Sk
θ (u

(j)))− 2

n2

∑
i,j

κ(u(i),Sk
θ (u

(j))). (28)

The last term in Equation 13, i.e., the conditional regularization term given by D̂((Sℓ)♯µ
∗, (Sℓ

θ)♯µ
∗), can be written as

M̂MD
2
((Sk)♯µ

∗, (Sk
θ )♯µ

∗) =
1

n2

∑
i,j

κ(Sk(u(i)),Sk(u(j))) +
1

n2

∑
i,j

κ(Sk
θ (u

(i)),Sk
θ (u

(j)))

− 2

n2

∑
i,j

κ(Sk(u(i)),Sk
θ (u

(j))).

(29)

Similar formulas are also presented for the Pfwd objectives, although they introduce a stop gradient in the second to last
unrolling step, namely

M̂MD
2
(µ∗, (Sk

θ )♯µ
∗) =

1

n2

∑
i,j

κ(u(i),u(j)) +
1

n2

∑
i,j

κ(Sθ(sg(Sk−1
θ (u(i))),Sθ(sg(Sk−1

θ (u(j))))

− 2

n2

∑
i,j

κ(u(i),Sθ(sg(Sk−1
θ (u(j)))),

(30)

and

M̂MD
2
((Sk)♯µ

∗, (Sk
θ )♯µ

∗) =
1

n2

∑
i,j

κ(Sk(u(i)),Sk(u(j))) +
1

n2

∑
i,j

κ(Sθ(sg(Sk−1
θ (u(i)))),Sθ(sg(Sk−1

θ (u(j)))))

− 2

n2

∑
i,j

κ(Sk(u(i)),Sθ(sg(Sk−1
θ (u(j))))).

(31)
10See https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers for more details.
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E. Experimental Setup
Below, we provide information about each dynamical system from Section 5 and their corresponding experimental setup. In
Table 4, we give an overview of the model, learning rate, and number of training steps used in each experiment.

Table 4. Model, learning rate, and number of training steps for each experiment in Section 5.

System Sθ LR Training steps

Lorenz 63 MLP w/residual connection to input 1e−4 500k
Kuramoto–Sivashinsky Dilated convolutional network (Stachenfeld et al., 2022) 5e−4 300k
Kolmogorov Flow Dilated convolutional network (Stachenfeld et al., 2022) 5e−4 720k

E.1. Lorenz 63

The Lorenz 63 model (Lorenz, 1963) is defined on a 3-dimensional state space by the following non-linear ordinary
differential equation u̇ = f(u):

ẋ = σ(y − x)

ẏ = ρx− y − xz

ż = xy − βz

(32)

The Lorenz 63 system is typically associated to parameter values of σ = 10, ρ = 28, and β = 8/3 and is known to be
chaotic with an attractor that supports an ergodic measure (Tucker, 2002; Luzzatto et al., 2005).

Training and evaluation data were generated using a 4th order Runge-Kutta numerical integrator (Runge, 1895; Kutta, 1901)
with time scale ∆t = 0.001. We first selected random initial conditions. Trajectories were then rolled out for 100,000
warm-up steps to ensure that points were sampled from the the invariant measure supported on the Lorenz attractor. These
warm-up steps were subsequently discarded. Starting from initial conditions sampled from µ∗, we generate 5,000 training
trajectories each of length 100,000 steps and 20,000 test trajectories of length 1,000,000 steps. At training and evaluation
time these trajectories are down-sampled along the temporal dimension by a factor of 400, so that the effective time scale
was ∆t = 0.4. Data were normalized to have roughly zero mean and unit variance based on statistics of the training set
During training we randomly sample batches of size 2,048 that consist of 10 step windows in the training trajectories.

We define Sθ as a one-step finite difference model: ũk+1 = Sθ(uk) = uk +∆tfθ(uk), where fθ is a parametric model
of the continuous time dynamics. We parameterize fθ by a multi-layer perceptron (MLP) with two hidden layers each of
dimension 32 and use the ReLU activation function. We trained with an ADAM optimizer (Kingma & Ba, 2014) with
learning rate 1e−4.

Models were trained for 500,000 steps. For the curriculum training (and its regularized counterpart), we increase ℓ by one
every 50,000 training steps, and hence by the end of training Sθ is predicting trajectories of length 10. For curriculum
training, we weight rollout loss using a geometric weighting ω(k) = max(0.1k−1, 1e−7). For pushforward training we
use the same rollout schedule as in curriculum training, but the rollout loss weight is ω(k) = max(0.1k−1, 1e−4). These
weighting schemes were chosen empirically to ensure that training loss was of the same order of magnitude throughout
training, even as rollout length increased. The MMD bandwidth values used were σ = {0.2, 0.5, 0.9, 1.3}.

E.2. Kuramoto–Sivashinsky

The non-linear PDE known as the Kuramoto–Sivashinsky equation (KS) (Kuramoto, 1978; Sivashinsky, 1988), has the
following form:

∂tu+ u∂xu+ ν∂xxu− ν∂xxxxu = 0 in [0, L]× R+, (33)

with periodic boundary conditions, and L = 64. Here the domain is re-scaled in order to balance the diffusion and
anti-diffusion components so the solutions are chaotic (Dresdner et al., 2022).

The KS system is known to be chaotic (Papageorgiou & Smyrlis, 1991) and, when stochastically forced, ergodic with an
invariant measure (Weinan & Liu, 2002; Ferrario, 2008). We generate data for this system using a spectral solver (Dresdner
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et al., 2022) on a spatial grid [0, 64] with 512 equally-spaced points and a 4th-order implicit-explicit Crack-Nicolson
Runge-Kutta scheme (Canuto et al., 2007), with a time resolution of ∆t = 0.001. For each trajectory, we start with a
randomly generated initial condition given by

u0(x) =

nc∑
j=1

aj sin(ωj ∗ x+ ϕj), (34)

where ωj is chosen randomly from {2π/L, 4π/L, 6π/L}, aj is sampled from a uniform distribution on [−0.5, 0.5], and
phase ϕj follows a uniform distribution on [0, 2π]. We use nc = 30. We let the system “warm up” for 20 units of time,
before recording the trajectories. The training dataset consists of 800 trajectories of 1,200 steps with a time sampling rate
∆t = 0.2 time units, from which we randomly sample batches of size 128 and trajectory length of 10 steps. Our evaluation
set consists of 100 trajectories of length 1,000 steps.

We parameterize Sθ as a dilated convolution neural network with residual connections, as described in (Stachenfeld et al.,
2022). In contrast to the Lorenz 63 model, we do not involve the time step ∆t directly in the computation of the update,
instead we use ũk+1 = Sθ(uk). The architecture consists of an encoder convolutional module, four dilated convolutional
blocks, and a decoder convolutional module. There exists a residual connection from the encoder to the output of the first
dilated convolution block and from the input to the decoder output. The intermediate representations have 48 channels. The
encoder, decoder, and intermediate dilated convolutions use kernels of width 5. Within each dilated convolution block,
there are four dilated convolutional layers followed by ReLU non-linear activations, with dilation factor increasing by a
multiple of 2 for each layer. Each block has a residual connection to the previous one. The model has a total of 324,433
parameters. The model was trained using the ADAM optimizer and an initial learning rate of 5e−4. A staircase exponential
decay learning rate scheduler was used with a decay factor of 0.5 and decay transitions every 60,000 steps.

Models were trained for 300,000 steps with the rollout increased every 60,000 steps, and hence by the end of training Sθ is
predicting trajectories of length 5. For both the Curr and Pfwd objectives we use the same rollout schedule and rollout loss
weight: ω(k) = max(0.9k−1, 1e−3). The MMD bandwidth values used were σ = {0.2, 0.5, 0.9, 1.3}.

E.3. Kolmogorov Flow

We also consider the Navier-Stokes equation with Kolmogorov forcing given by

∂u

∂t
= −∇ · (u⊗ u) + ν∇2 − 1

ρ
∇p+ f in Ω, (35)

∇ · u = 0 in Ω, (36)

where Ω = [0, 2π]2, u(x, y) = (ux,uy) is the field, ρ is the density, p is the pressure, and f is the forcing term given by

f =

(
0

sin(k0y)

)
+ 0.1u, (37)

where k0 = 4. The forcing only acts in the y coordinate. Following Kochkov et al. (2021), we add a small drag term to
dissipate energy. An equivalent problem is given by its vorticity formulation

∂tω = −u · ∇ω + ν∇2ω − αω + f, (38)

where ω := ∂xuy − ∂yux, which we use for spectral method which avoids the need to separately enforce the incompress-
ibility condition ∇ · v = 0. The initial conditions are the same as the ones proposed in Kochkov et al. (2021).

Pseudo-Spectral Discretization Equations 33 and 38 were discretized using a pseudo-spectral discretization, to avoid
issues stemming from dispersion errors. Pseudo-spectral methods are known to be dispersion free, due to the exact evaluation
of the derivatives in Fourier space, while possessing excellent approximation guarantees (Trefethen, 2000). We use the
jax-cfd spectral elements tool box (Dresdner et al., 2022). Learning to correct spectral methods for simulating turbulent
flows, which leverages the Fast Fourier Transform (Cooley & Tukey, 1965) to compute the Fourier transform in space of the
field u(x, t), denoted by û(t), allows for a very efficient computation of spatial derivatives by diagonal rescaling following
∂xûK = iKûK , where K is the wave number. This renders the application and inversion of linear differential operators
trivial, since they are simply element-wise operations (Trefethen, 2000).
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This procedure transforms Equation 33 and Equation 35 to a system in Fourier domain of the form

∂tû(t) = Dû(t) +N(û(t)), (39)

where D denotes the linear differential operators in the Fourier domain and is often a diagonal matrix whose entries only
depend on the wave number K and N denotes the nonlinear part. These non-linear terms are computed in real space.

Equation 38 was discretized with spatial discretization nx = ny = 256 and a 4th order implicit-explicit Crack-Nicolson
Runge-Kutta scheme (Canuto et al., 2007), where we treat the linear part implicitly and the nonlinear one explicitly with
∆t = 0.001 using jax-cfd.

For each trajectory, we let the solver “warm up” for 50 units of time, in order for the trajectory to reach the attractor.
We further evolve the equation for 120 units of time, and we sample the trajectories at a rate of ∆t = 0.1. Finally, we
downsample the trajectories by a factor 4 in each spatial direction. We repeated the process 128 times to obtain the training
data, and 32 times for both the validation and test data.

E.3.1. KOLMOGOROV FLOW EXPERIMENTS FOR EACH OBJECTIVE.

We set the learning rate to be 5e−4, and we vary the batch size from 32 to 512 (depending of the experiment) in in-
crements of power to two. We use an exponential learning rate scheduler, which halves the learning rate every 72,000
iterations. We trained the models for up to 720,000 iterations. Unless otherwise stated the MMD bandwidth used was
σ = {2, 5, 9, 13, 20, 50, 90, 120}. This value was found after a quick hyperparameter tuning on a small dataset.

We parametrize Sθ using a two-dimensional dilated convolutional neural network with residual connections and periodic
boundary conditions following (Stachenfeld et al., 2022) the total number of parameters is 6,458,785. We follow the same
unrolling scheme as in the KS system, i.e., ũk+1 = S(uk).

One-step For this objective, we use the same set up as experiments above. We halved the learning rate every 72,000
iterations and the models were trained for 720,000 iterations while keeping ℓ constant and equal to one.

Pushforward For Pfwd training, we consider a rollout schedule that follows the learning rate schedule: every 72,000
iterations we increase the number of unrolling steps ℓ by one, where ℓ increases from 1 to 10. The effective number of
unrolling step at each training step is sampled uniformly from 1 to ℓ.

Curriculum Given the higher memory requirement, we decrease the number of maximum unrolling steps from 10 to
just 5. Also, depending on the batch size, we further decrease the maximum number of unrolling steps. In particular, for
large batch sizes, we cannot afford unrolling more than 2 time steps. All the other parameters were kept constant relative to
Pushfoward experiments.

F. Further Results
F.1. Lorenz 63

Figure 4 depicts the attractor for the Lorenz 63 system for an ensemble of trajectories (with randomly chosen initial
conditions close to the attractor) at time t = 400. We observe that DySLIM regularization provides some extra symmetry to
the attractor, as evidenced by a better defined right-wing.

In addition, we provide several other metrics to showcase the advantage of our methodology. Figure 5 shows the behavior of
the MMD metric for much longer horizons to the ones used for training. We can observe that DySLIM outperforms all the
baselines. We also, studied the Wasserstein-1 distance of different features involved in the ground truth dynamics shown in
Equation 32. In this case, Figure 6 shows that the distribution of each of the components is better captured in the models
trained with DySLIM.

F.2. Kuramoto-Sivashinsky

In addition to the results shown in the main text, Figure 7 shows the improved stability from DySLIM by comparing the
distribution of first order (ux) and second order (uxx) spatial derivatives for ground truth and predicted trajectories, which
are relevant quantities that appear in the PDE that defines this system in Equation 33. We use finite difference methods to
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Figure 4. Histograms of trajectories at rollout time t = 400 for one of the random training seeds. We showcase the well known “butterfly”
attractor.

Figure 5. Values of the MMD metric for the baselines and the DySLIM regularization. Each point represents a random training seed that
remains stable, with the solid line indicating median values.

compute ux and uxx at each point in time for each trajectory in the test set. At each point in time, we thus have a distribution
for these derivatives across test set trajectories and spatial grid. We use the Wasserstein-1 distance to compare ground truth
and predicted distributions and find that models trained with regularized objectives better match the distribution of ground
truth spatial derivatives. In summary, Figure 7 shows that by regularizing the loss, we obtain a closer distribution on the
derivatives than when using the unregularized loss. In fact, for some cases of the curriculum training, the Wasserstein-1
matrix explodes as the trajectories are highly unstable.

F.3. Kolmogorov Flow

In this section, we provide ablation results and additional trajectory samples.

Table 5 compiles additional results for the model trained with and without regularization following the description in
Appendix E.3.1. This table shows that using DySLIM either improves or roughly maintains values for all metrics. We point
out that for curriculum training, the error tends to increase with batch size due to the lower number of rollout steps during
training, which is a direct consequence of the higher memory footprint required for curriculum training.

Figure 9 provides additional samples of the trajectories presented in Figure 3 for the training with the pushforward objective.
From Figure 9, we observe that models trained with the unregularized objectives remain highly dissipative despite using
different random seeds. For this configuration of parameters, we were able obtain only one stable model trained without the
regularization among the random seeds, which we present in Figure 10. In this case, even though the trajectories are visually
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Table 5. Metrics for pushforward, curriculum and 1-step baselines with (λ1 = 0, λ2 = 100) and without regularization under various
batch sizes and learning rates for the Kolmogorov flow. Boldface numbers indicate that the metric is improved by our regularizations. The
best-performing run shown in Table 1 is highlighted in green.

MELR (↓)
(×10−2)

MELRw (↓)
(×10−2)

covRMSE (↓)
(×10−2)

Wass1 (↓)
(×10−2)

TCM (↓)
(×10−2)Batch

size
Learning

rate Base DySLIM Base DySLIM Base DySLIM Base DySLIM Base DySLIM

Pushforward

5e-4 17.2 2.65 9.87 0.66 23.6 7.41 69.3 5.20 83.5 3.90
1e-4 3.16 3.13 0.49 0.77 6.27 7.28 5.96 5.04 1.17 3.15
5e-5 4.37 4.05 0.61 0.82 6.74 6.57 5.89 4.99 2.75 2.62

32

1e-5 11.2 9.11 1.29 0.99 9.00 8.32 8.33 7.86 4.80 3.98

5e-4 18.3 2.40 9.81 0.66 22.6 7.33 68.6 4.49 85.6 2.07
1e-4 3.19 2.95 0.54 0.70 6.90 6.91 5.09 5.15 1.62 3.30
5e-5 4.52 3.71 0.71 0.82 7.02 6.66 5.81 5.21 4.12 4.59

64

1e-5 10.6 8.27 1.22 0.91 7.94 7.52 9.44 6.61 4.58 3.75

5e-4 73.2 2.35 61.3 0.60 80.2 7.27 26.3 5.30 33.4 2.28
1e-4 3.19 2.46 0.53 0.53 6.81 6.69 4.64 4.51 3.68 0.72
5e-5 4.18 3.53 0.55 0.71 6.73 7.55 5.20 5.33 1.69 3.55

128

1e-5 9.66 7.54 1.09 0.75 8.71 8.10 8.59 6.06 4.59 3.00

Curriculum

32 5e-4 5.14 2.21 0.74 0.74 8.12 7.41 13.6 4.42 4.60 2.45
64 5e-4 5.35 1.64 0.95 0.45 8.13 6.95 9.66 4.76 3.50 2.83
128 5e-4 6.80 3.06 1.19 1.47 8.60 8.13 70.5 8.77 27.4 3.50
256 5e-4 42.8 3.35 31.3 1.53 diverge 8.91 89.1 19.7 817 65.0
512 5e-4 25.8 4.42 23.1 1.78 diverge 9.31 166 21.4 819 7.53

1-step

32 5e-4 3.11 2.05 0.45 0.98 7.30 8.20 8.17 4.87 2.58 3.76
64 5e-4 2.77 1.84 0.44 0.85 7.93 7.30 16.2 5.55 5.39 2.45
128 5e-4 1.47 1.80 0.28 0.89 7.03 7.02 6.65 5.92 2.66 3.82
256 5e-4 30.5 1.90 24.7 0.88 116 7.04 30.4 18.4 347 4.10

more realistic, if we consider the metrics used for evaluation, Table 7 shows that the models trained with the DySLIM
regularization still provide better statistics.

We point out that these highly dissipative models are also present as we increase the batch size. For example, Figures 11 and
12 show the same phenomenon for trajectories learned without regularization for batch sizes of 256 and 512.

In addition, Table 6 shows the statistics of models trained with much longer time-horizons (40 time steps instead of 10) for
the Kolmogorov flow. The baseline in this case becomes completely uninformative, whereas the regularized version still
provides models with reasonable statistics.

G. Sinkhorn Divergence for Measure Matching
In this section we provide an ablation for using SD in place of MMD as the measure distance regularizer D.

Lorenz 63 Ablation From Figures 13, 14, and 15, we can observe that using SD to regularize the objectives provides
some benefits. For the short term behavior in Figure 13, we see that the gains are very similar between using SD or MMD in
place of D. For the measure matching metrics, we see that both measure-matching metrics stabilize the trajectories. This
can be further be seen in Figures 16 and 17, which show that SD does stabilize some of the summary metrics. We point out
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Table 6. Kolmogorov flow: metrics for pushforward training for 40 time steps. (λ1 = 0, λ2 = 100). Boldface numbers indicate that the
metric is improved by our regularization.

Batch
size

Learning
rate

MELR (↓)
(×10−2)

MELRw (↓)
(×10−2)

covRMSE (↓)
(×10−2)

Wass1 (↓)
(×10−2)

TCM (↓)
(×10−2)

Base DySLIM Base DySLIM Base DySLIM Base DySLIM Base DySLIM
Pushforward 128 5e-4 62.22 8.51 24.01 1.65 42.6 8.07 175 11.34 161 4.3

Table 7. Metrics of the best model using the unregularized pushforward loss versus the average of the models trained using the regularized
pushforward loss, for batch size = 128 and learning rate = 5e-5.

MELR (↓) (×10−2) MELRw (↓) (×10−2) covRMSE (↓) (×10−2)

Pfwd 4.10 0.670 8.10
+DySLIM 2.34 0.588 7.89

that even though the performance is competitive, using MMD still seems to have an edge, albeit fairly small.

Kuramoto–Sivashinsky Ablation In Figure 18, we find evidence that using SD as the regularizer for the KS system
does improve stability, but performance with respect to using MMD starts to deteriorate. In Figure 18 (a), we see that there
is indeed a better performance when using MMD as opposed to SD. In Figure 18 (b) we find that even though the SD
regularization helps, many of the trajectories still diverge particularly for curriculum training.

The conclusion from this ablation is that while SD is compatible with our DySLIM framework and does provide increased
stability, we find that using MMD in the regularizer leads to superior performance, especially for systems with larger
dimension, e.g., KS.

H. Assets
H.1. Software and Libraries

In Table 8, we list relevant open-source software, and corresponding licenses, used in this work:

Table 8. Open source libraries used in this work, with corresponding licenses.

Library License

Flax (Heek et al., 2023) Apache 2.0
Jax (Bradbury et al., 2018) Apache 2.0
Jax-CFD (Dresdner et al., 2022) Apache 2.0
NumPy (Harris et al., 2020) NumPy license
Matplotlib (Hunter, 2007) Matplotib license
ML Collections Apache 2.0
Optax Apache 2.0
Orbax Apache 2.0
OTT-Jax (Cuturi et al., 2022) Apache 2.0
Pandas (pandas development team, 2020) BSD 3-Clause “New” or “Revised”
SciPy (Virtanen et al., 2020) SciPy license
Seaborn (Waskom, 2021) BSD 3-Clause “New” or “Revised”
Swirl Dynamics (Wan et al., 2023b) Apache 2.0
TensorFlow (Abadi et al., 2015) Apache 2.0
Xarray (Hoyer & Hamman, 2017) Apache 2.0

25

https://numpy.org/doc/stable/license.html
https://matplotlib.org/stable/users/project/license.html
https://projects.scipy.org/scipylib/license.html


Dynamics Stable Learning by Invariant Measure for Chaotic Systems

Table 9. Computational resources by experiment.

Experiment Hardware

Lorenz 63 1 V100 GPU, 16 GB
Kuramoto–Sivashinsky 1 V100/A100 GPU, 16/40GB
Kolmogorov Flow 1 A100 GPU, 40GB

H.2. Computational Resources

Experiments were submitted as resource-restricted jobs to a shared compute cluster. Computational resources used in each
dynamical system experiment are listed in Table 9.
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Figure 6. Wasserstein-1 distance (↓) between the different components of the forcing in Equation 32 at different unrolling times. From top
to bottom, x, y, z, and the crossed products xy and xz. Each point represents a random training seed that remains stable, with the solid
line indicating median values.
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Figure 7. Wasserstein-1 distance (↓) on distribution of first order (Top) and second order (Bottom) spatial derivatives across time. Values
greater than 3 are not shown on the plot. Each line corresponds to one of five random training seeds with bolded lines indicating median
values (excluding trajectories that produce NaN values). The solid black line corresponds to statistics calculated from the distribution of
initial conditions.
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(a) (b) (c)

Figure 8. Evolution of the cosine similarity (↑) overt time for trajectories trained with both regularized and unregularized objectives for
different batch sizes of (a) 32, (b) 64, and (c) 128. The solid line is the median among 160 runs, and the shaded regions corresponds
second and third quartile. (λ1 = 0, λ2 = 100, batch size = 128 and learning rate= 5e−4).
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Figure 9. Additional samples of reference trajectories of Navier Stokes system with Kolmogorov forcing and predicted trajectory generated
with models trained using the pushforward objective, with and without regularization. (λ1 = 0, λ2 = 100, batch size = 128 and learning
rate= 5e−4).
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Figure 10. Samples of reference trajectories of Navier Stokes system with Kolmogorov forcing and predicted trajectory generated with
models trained the pushforward loss, with and without regularization. In this case, we show samples of the random seed with the best
results for the unregularized training. (λ1 = 0, λ2 = 100, batch size = 128 and learning rate= 5e-4).
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Figure 11. Samples of reference trajectories of Navier Stokes system with Kolmogorov forcing and predicted trajectory generated with
models trained the pushforward loss, with and without regularization with a batch size of 256 for the same random seed. (λ1 = 0,
λ2 = 100, and learning rate = 5e−4).
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Figure 12. Samples of reference trajectories of Navier Stokes system with Kolmogorov forcing and predicted trajectory generated with
models trained the pushforward loss, with and without regularization with a batch size of 512 for the same random seed. (λ1 = 0,
λ2 = 100, and learning rate = 5e−4).
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Figure 13. Cosine similarity metric (↑) for test trajectories at various rollout times of the Lorenz 63 system using MMD and SD for
measure matching during training. Each line corresponds to the mean over trajectories of each of five random training seeds, with bold
lines indicating median values.

(a)

(b)

Figure 14. Sinkhorn Divergence (SD; ↓) between trajectories at various rollout times of the Lorenz 63 system. (a) Values when using
MMD for measure matching at training. (b) Values when using SD for measure matching at training. Each point represents a random
training seed that remains stable, with the solid line indicating median values.
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(a)

(b)

Figure 15. Maximum Mean Discrepancy (MMD; ↓) between trajectories at various rollout times of the Lorenz 63 system. (a) Values
when using MMD for measure matching at training. (b) Values when using SD for measure matching at training. Each point represents a
random training seed that remains stable, with the solid line indicating median values.

(a)

(b)

Figure 16. Wasserstein-1 metric (↓) for the xz values between trajectories at various rollout times of the Lorenz 63 system. (a) Values
when using MMD for measure matching at training. (b) Values when using SD for measure matching at training. Each point represents a
random training seed that remains stable, with the solid line indicating median values.
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(a)

(b)

Figure 17. Wasserstein-1 metric (↓) for the xy coordinates between trajectories at various rollout times of the Lorenz 63 system. (a)
Values when using MMD for measure matching at training. (b) Values when using SD for measure matching at training. Each point
represents a random training seed that remains stable, with the solid line indicating median values.

(a)

(b) (c)

Figure 18. Metrics for KS system. (a) Cosine Similarity (↑) between the different trajectories. Each line corresponds to the mean over
trajectories of each of five random training seeds, with bold lines indicating median values. (b) Sinkhorn Divergence (SD; ↓) between
trajectories at various rollout times when using MMD for measure matching at training. (c) SD between trajectories at various rollout
times when using SD for measure matching at training. Each point represents a random training seed that remains stable, with the solid
line indicating median values.
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