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Abstract
We propose a new Q-learning variant, called 2RA
Q-learning, that addresses some weaknesses of
existing Q-learning methods in a principled man-
ner. One such weakness is an underlying esti-
mation bias which cannot be controlled and of-
ten results in poor performance. We propose
a distributionally robust estimator for the max-
imum expected value term, which allows us to
precisely control the level of estimation bias in-
troduced. The distributionally robust estimator
admits a closed-form solution such that the pro-
posed algorithm has a computational cost per it-
eration comparable to Watkins’ Q-learning. For
the tabular case, we show that 2RA Q-learning
converges to the optimal policy and analyze its
asymptotic mean-squared error. Lastly, we con-
duct numerical experiments for various settings,
which corroborate our theoretical findings and in-
dicate that 2RA Q-learning often performs better
than existing methods.

1. Introduction
The optimal policy of a Markov Decision Process (MDP) is
characterized via the dynamic programming equations intro-
duced by Bellman (1957). While these dynamic program-
ming equations critically depend on the underlying model,
model-free reinforcement learning (RL) aims to learn these
equations by interacting with the environment without any
knowledge of the underlying model (Bertsekas & Tsitsik-
lis, 1996; Sutton & Barto, 2018; Meyn, 2022). There are
two fundamentally different notions of interacting with the
unknown environment. The first one is referred to as the syn-
chronous setting, which assumes sample access to a genera-
tive model (or simulator), where the estimates are updated
simultaneously across all state-action pairs in every itera-
tion step. The second concept concerns an asynchronous
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setting, where one only has access to a single trajectory of
data generated under some fixed policy. A learning algo-
rithm then updates its estimate of a single state-action pair
using one state transition from the sampled trajectory in
every step. In this paper, we focus on the asynchronous
setting, which is the considerably more challenging task
than the synchronous setting due to the Markovian nature
of its sampling process.

One of the most popular RL algorithms is Q-learning
(Watkins, 1989; Watkins & Dayan, 1992), which iteratively
learns the value function and hence the corresponding op-
timal policy of an MDP with unknown transition kernel.
When designing an RL algorithm, there are various desir-
able properties such an algorithm should have, including
(i) convergence to an optimal policy, (ii) efficient compu-
tation, and (iii) “good” performance of the learned policy
after finitely many iterations. Watkins’ Q-learning is known
to converge to the optimal policy under relatively mild con-
ditions (Tsitsiklis, 1994) and a finite-time analysis is also
available (Even-Dar & Mansour, 2001; Beck & Srikant,
2012; Qu & Wierman, 2020). Moreover, its simple update
rule requires only one single maximization over the action
space per step. The simplicity of Watkins’ Q-learning, how-
ever, comes at the cost of introducing an overestimation bias
(Thrun & Schwartz, 1993; van Hasselt, 2010), which can
severely impede the quality of the learned policy (Szita &
Lörincz, 2008; Strehl et al., 2009; Thrun & Schwartz, 1993;
van Hasselt, 2010). It has been experimentally demonstrated
that both, overestimation and underestimation bias, may im-
prove learning performance, depending on the environment
at hand (see Sutton & Barto (2018, Chapter 6.7) and Lan
et al. (2020) for a detailed explanation). Therefore, deriv-
ing a Q-learning method equipped with the possibility to
precisely control the (over- and under-)estimation bias is
desirable.

Related Work. In the last decade, several Q-learning
variants have been proposed to improve the weakness of
Watkins’ Q-learning while aiming to admit the desirable
properties (i)-(iii). We discuss approaches that are most
relevant to our work. Double Q-learning (van Hasselt, 2010)
mitigates the overestimation bias of Watkins’ Q-learning by
introducing a double estimator for the maximum expected
value term. While Double Q-learning is known to converge
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to the optimal policy and has a similar computational cost
per iteration to Q-learning, it, unfortunately, introduces an
underestimation bias which, depending on the environment
considered, can be equally undesirable as the overestimation
bias of Watkins’ Q-learning (Lan et al., 2020).

Maxmin Q-learning (Lan et al., 2020) works with N state-
action estimates, where N denotes a parameter, and chooses
the smallest estimate to select the maximum action. Maxmin
Q-learning allows to control the estimation bias via the pa-
rameter N . However, it generally requires a large value of N
to remove the overestimation bias. Conceptually, Maxmin
Q-learning is related to our approach, where we select a max-
imum action based on the average current Q-function and
then consider a worst-case ball around this average value.
Similarly, REDQ (Chen et al., 2021) updates N Q-functions
based on a max-action, min-function step over a sampled
subset of size M out of the N Q-functions and allows to
control the over- and underestimation bias. It further incor-
porates multiple randomized update steps in each iteration
which results in good sample efficiency. REDQ performs
well in complicated non-tabular settings (including contin-
uous state/action spaces). In the tabular setting, Maxmin
Q-learning and REDQ are equipped with an asymptotic con-
vergence proof. Averaged-DQN (Anschel et al., 2017) is a
simple extension to the Deep Q-learning (DQN) algorithm
(Mnih et al., 2015), based on averaging previously learned
Q-value estimates, which leads to a more stable training pro-
cedure and typically results in an improved performance by
reducing the approximation error variance in the target val-
ues. Averaged-DQN and other regularized variants of DQN,
such as Munchausen reinforcement learning (Vieillard et al.,
2020), use a deep learning architecture and are not equipped
with any theoretical guarantees about convergence or quality
of the learned policy (Mehta & Meyn, 2020).

In general, averaging in Q-learning is a well-known vari-
ance reduction method. A specific form of variance-reduced
Q-learning is presented in Wainwright (2019), where it is
shown that the presented algorithm has minimax optimal
sample complexity. Regularized Q-learning (Lim et al.,
2022) studies a modified Q-learning algorithm that con-
verges when linear function approximation is used. It is
shown that simply adding an appropriate regularization term
ensures convergence of the algorithm in settings where the
vanilla variant does not converge due to the linear function
approximation used. A slightly different objective, when
modifying Q-learning schemes, is to robustify them against
environment shifts, i.e., settings where the environment, in
which the policy is trained, is different from the environment
in which the policy will be deployed. A popular approach
is to consider a distributionally robust Q-learning model,
where the resulting Q-function converges to the optimal Q-
value that is robust against small shifts in the environment,
see Liu et al. (2022) for KL-based ambiguity sets and for

distributionally robust formulations using the Wasserstein
distance Neufeld & Sester (2022). The recent paper from
Liu et al. (2022) presents a distributionally robust Q-learning
methodology, where the resulting Q-function converges to
the optimal Q-value that is robust against small shifts in the
environment. Mehta & Meyn (2020), Meyn (2022), Lu et al.
(2022), and Lu & Meyn (2023) have introduced a new class
of Q-learning algorithms called convex Q-learning which
exploit a convex reformulation of the Bellman equation via
the well-known linear programming approach to dynamic
programming (Hernández-Lerma & Lasserre, 1996; 1999).

Contribution. In this paper, we introduce a new Q-
learning variant called Regularized Q-learning through Ro-
bust Averaging (2RA), which combines regularization and
averaging. The proposed method has two parameters, ρ > 0
quantifying the level of robustness/regularization introduced
and N ∈ N, which describes the number of state-action esti-
mates used to form the empirical average. Centered around
this new Q-learning variant, our main contributions can be
summarized as follows:

• We present a tractable formulation of the proposed 2RA
Q-learning where the computational cost per iteration is
comparable to Watkins’ Q-learning.

• For any choice of N and for any positive sequence of regu-
larization parameters {ρn}n∈N such that limn→∞ ρn = 0,
we prove that the proposed 2RA Q-learning asymptoti-
cally converges to the true Q-function, see Theorem 3.1.

• We show how the choice of the two parameters ρ and N
allow us to control the level of estimation bias in 2RA
Q-learning, see Theorem 3.2, and show that as N → ∞
our proposed estimation scheme becomes unbiased.

• We prove that under certain technical assumptions, the
asymptotic mean-squared error of 2RA Q-learning is
equal to the asymptotic mean-squared error of Watkins’ Q-
learning, provided that we choose the learning rate of our
method N -times larger than that of Watkins’ Q-learning,
see Theorem 3.3. This theoretical insight allows practi-
tioners to start with an initial guess of the learning rate for
the proposed method that is N -times larger than that of
standard Q-learning.

• We demonstrate that the theoretical properties of 2RA can
be numerically reproduced in synthetic MDP settings. In
more practical experiments from the OpenAI gym suite
(Brockman et al., 2016) we show that, even when im-
plementations require deviations from out theoretically
required assumptions, 2RA Q-learning has good perfor-
mance and mostly outperforms other Q-learning variants.

Detailed proofs are relegated to the Appendix A.
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2. Problem Setting
Consider an MDP given by a six-tuple (S,A, P, r, γ, s0)
comprising a finite state space S = {1, . . . , S}, a finite
action space A = {1, . . . , A}, a transition kernel P : S ×
A → ∆(S), a reward-per-stage function r : S ×A → R, a
discount factor γ ∈ (0, 1), and a deterministic initial state
s0 ∈ S. Note that (S,A, P, r, γ, s0) describes a controlled
discrete-time stochastic system, where the state and the
action applied at time t are denoted as random variables
St and At, respectively. If the system is in state st ∈ S
at time t and action at ∈ A is applied, then an immediate
reward of r(st, at) is incurred, and the system moves to state
st+1 at time t + 1 with probability P (st+1|st, at). Thus,
P (·|st, at) represents the distribution of St+1 conditional
on St = st and At = at. It is often convenient to represent
the transition kernel as a matrix P ∈ RSA×S . Actions
are usually chosen according to a policy that prescribes a
random action at time t depending on the state history up to
time t and the action history up to time t− 1. Throughout
the paper, we restrict attention to stationary Markov policies,
which are described by a stochastic kernel π : S → ∆(A),
that is, π(at|st) denotes the probability of choosing action
at while being in state st. We denote by Π the space of all
stationary Markov policies. Given a stationary policy π and
an initial condition s0, it is well-known that there exists a
unique probability measure Pπ

s0 defined on the canonical
sample space Ω = (S × A)∞ equipped with its power
set σ-field F = 2Ω, such that for all t ∈ N we have (see
Hernández-Lerma & Lasserre (1996, Section 2.2) for further
details)

Pπ
s0(S0 = s0) = 1,

Pπ
s0(St+1 = st+1|St = st, At = at) = P (st+1|st, at)

∀st, st+1 ∈ S, at ∈ A,

Pπ
s0(At = at|St = st) = π(at|st) ∀st ∈ S, at ∈ A.

To keep the notation simple, in the following, we denote
Pπ
s0 by P and the corresponding expectation operator by E.

Then, the ultimate goal is to find an optimal policy π⋆ which
leads to the largest expected infinite-horizon reward, i.e.,

π⋆ ∈ argmax
π∈Π

∞∑
t=0

γtE[r(St, At)]. (1)

An optimal (deterministic) policy can be alternatively ob-
tained from the optimal Q-function as π⋆(·|s) = δa⋆(·),
where a⋆ ∈ argmaxa∈A Q⋆(s, a) and the optimal Q-
function satisfies the Bellman equation (Bertsekas & Tsit-
siklis, 1996), i.e., ∀(s, a) ∈ S ×A

Q⋆(s, a) = r(s, a)+γ
∑
s′∈S

P (s′|s, a)max
a′∈A

Q⋆(s′, a′). (2)

Solving for the Q-function via (2) requires the knowledge
of the underlying transition kernel P and reward function r,

objects which in reinforcement learning problems generally
are not known.

In this work, we focus on the so-called asynchronous
RL setting, where the Q-function is learned from a sin-
gle trajectory of data which we assume to be generated
from a fixed behavioral policy leading to state-action pairs
{(S1, A1), . . . , (Sn, An), . . . }. The standard asynchronous
Q-learning algorithm (Weng et al., 2020) can then be ex-
pressed as

Qn+1(Sn, An) = Qn(Sn, An) + αQL
n

(
r(Sn, An)

+ γmax
a′∈A

Qn(Sn+1, a
′)−Qn(Sn, An)

)
,

(3)

where αQL
n ∈ (0, 1] is the learning rate. It has been shown

(Tsitsiklis, 1994; Szepesvári, 1997; Qu & Wierman, 2020;
Lee & He, 2020) that if each state is updated infinitely often
and each action is tried an infinite number of times in each
state, convergence to the optimal Q-function can be obtained.
That is, for a learning rate satisfying

∑∞
n=0 α

QL
n = ∞ and∑∞

n=0(α
QL
n )2 < ∞, Q-learning converges P-almost surely

to an optimal solution of the Bellman equation (2), i.e.,
limn→∞ Qn = Q⋆ P-almost surely. To simplify notation,
we introduce the state-action variables Xn = (Sn, An) and
define X = S × A. As the state space in practice is of-
ten large, the Q-functions are commonly approximated via
fewer basis functions. When interpreting the Q-function as
a vector on R|X |, we use

Q⋆ ≈ Φ⊤θ⋆, θ⋆ ∈ Rd,

Φ =
(
ϕ(s1, a1), . . . , ϕ(s|S|, a|A|)

)
∈ Rd×|X|,

(4)

where with slight abuse of notation we denote by ϕ(s, a) ∈
Rd the given feature vectors associated with the pairs s = si
and a = ai for i ∈ {1, . . . |X |}. Clearly, by choos-
ing d = |X | and the canonical feature vectors ϕ(s, a) =∑|X |

i=1 ei ·1{(s,a)=(si,ai)} for i = 1, . . . , |X |, the approxima-
tion (4) is exact, which is referred to as the tabular setting.
For our convergence results that only hold in the tabular
setting, we will use this representation. In this linear func-
tion approximation formulation, the standard asynchronous
Q-learning (3) can be expressed as so-called Q(0)-learning
(Melo et al., 2008; Meyn, 2022), which is given as

θn+1 = θn + αQL
n

(
b(Xn)−A1(Xn)θn

+ E(Xn, Sn+1, θn)
)
,

(5)

where b(Xn) = ϕ(Xn)r(Xn), A1(Xn) = ϕ(Xn)ϕ(Xn)
⊤,

E(Xn, Sn+1, θn) = γϕ(Xn)maxa′∈A ϕ(Sn+1, a
′)⊤θn. It

is well-known (van Hasselt, 2010), that the term E in the
Q-learning (5) introduces an overestimation bias when com-
pared to (2), since

max
a′∈A

E[ϕ(s, a′)⊤θn] ≤ E[max
a′∈A

ϕ(s, a′)⊤θn] ∀s ∈ S, (6)
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where the expectation is with respect to the random variable
θn defined according to (5) and the inequality is due to
Jensen. A common method to mitigate this overestimation
bias is to modify Q-learning to the so-called Double Q-
learning (van Hasselt, 2010), which using the linear function
approximation, can be expressed in the form (5), where

θn =

(
θAn
θBn

)
, b(Xn) =

(
βnϕ(Xn)r(Xn)

(1− βn)ϕ(Xn)r(Xn)

)
,

A1(Xn)=

(
βnϕ(Xn)ϕ(Xn)

⊤ 0
0 (1− βn)ϕ(Xn)ϕ(Xn)

⊤

)
,

E(Xn, Sn+1, θn)

=

(
βnγϕ(Xn)ϕ(Sn+1, πθA

n
(Sn+1))

⊤θBn
(1− βn)γϕ(Xn)ϕ(Sn+1, πθB

n
(Sn+1))

⊤θAn

)
,

βn are i.i.d. Bernoulli random variables with equal proba-
bility, and πθ(s) = argmaxa∈A ϕ(s, a)⊤θ. While Double
Q-learning avoids an overestimation bias, it introduces an
underestimation bias (van Hasselt, 2010, Lemma 1), as each
component of E satisfies1

E[ϕ(s, πθA
n
(s))⊤θBn ] ≤ max

a′∈A
E[ϕ(s, a′)⊤θAn ] ∀s ∈ S.

It can be directly seen by the Jensen inequality (6) that in
the special case of θA = θB the inequality above becomes
an equality. An inherent difficulty with the overestimation
bias of standard Q-learning (resp. the underestimation bias
of Double Q-learning) is that it cannot be controlled, i.e., the
level of under-(resp. over-)estimation bias depending on the
problem considered can be significant. In the following, we
present a Q-learning method where the level of estimation
bias can be precisely adjusted via a hyperparameter.

3. Regularization through Robust Averaging
We propose the 2RA Q-learning method defined by the
update rule

θ
(i)
n+1 = θ(i)n + αnβ

(i)
n (b(Xn)−A1(Xn)θ

(i)
n

+ Eρ(Xn, Sn+1, θ̂N,n)), for i = 1, . . . , N,
(7)

where βn is a generalized i.i.d. Bernoulli random variable
on {1, . . . , N} with equal probability for each component
i, i.e., P(βn = ei) = 1/N for all i = 1, . . . , N , where
ei is the ith unit vector on RN and αn is the learning rate.
2RA Q-learning (7) is based on the estimator defined for all
x ∈ X , s′ ∈ S, θ ∈ Rd as

Eρ(x, s′, θ) = γϕ(x)max
a′∈A

min
θ′∈Bρ(θ)

ϕ(s′, a′)⊤θ′, (8)

where ρ ≥ 0 is a given parameter and the ambiguity (or
uncertainty) set Bρ(θ) is assumed to be of the form Bρ(θ) =

1Analogously we have E[ϕ(s, πθBn
(s))⊤θAn ] ≤

maxa′∈A E[ϕ(s, a′)⊤θBn ] for all s ∈ S.

{θ′ ∈ Rd : ∥θ − θ′∥22 ≤ ρ} with its center θ being the
empirical average

θ̂N,n =
1

N

N∑
i=1

θ(i)n . (9)

The intuition behind the proposed 2RA Q-learning (7) is to
mitigate the overestimation bias of Watkins’ Q-learning by
approximating the term maxa′∈A EP[ϕ(s, a

′)⊤θn], where
we consider θn as a Rd-valued random variable distributed
according to P, via the distributionally robust model

max
a′∈A

min
Q∈Bρ(P̂N,n)

EQ[ϕ(s, a
′)⊤θn], (10)

where Bρ(P̂N,n) is a set of probability measures centered
around the empirical distribution P̂N,n = 1

N

∑N
i=1 δθ(i)

n
.

When considering the ambiguity set Bρ(P̂N,n) as the ball
of all distributions that have a fixed diagonal covariance
and a 2-Wasserstein distance to P̂N,n of at most

√
ρ, then

by (Nguyen et al., 2021, Theorem 2) the distributionally
robust model (10) directly corresponds to our estimator (8).
Running the 2RA Q-learning (7) requires an evaluation of
the estimator Eρ(Xn, Sn+1, θ̂N,n) given by the optimization
problem (8), which admits a closed form expression.

Lemma 3.1 (Estimator computation). The estimator defined
in (8) is equivalently expressed as

Eρ(x, s′, θ) = γϕ(x)max
a′∈A

{
ϕ(s′, a′)⊤θ −√

ρ∥ϕ(s′, a′)∥2
}
.

Proof. According to Bertsimas & Tsitsiklis (1997,
Lemma 9.2), for any c, θ′ ∈ Rd and positive definite matrix
H ∈ Rd×d the optimization problem

min
θ∈Rd

{c⊤θ : (θ′ − θ)⊤H−1(θ′ − θ) ≤ ρ}

admits a closed-form solution

θ⋆ = θ′ −
√

ρ

c⊤Hc
Hc.

Therefore, by setting c = ϕ(s′, a′) and H to be the identity
matrix, an optimizer in (8) is

θ⋆ = θ′ −
√
ρ

∥ϕ(s′, a′)∥2
ϕ(s′, a′),

which completes the proof.

In the tabular setting 2RA Q-learning (7) even for N = 2
is different from Double Q-learning (van Hasselt, 2010).
However, in the special case where ρ = 0 and N = 1,
our method collapses to Watkins’ Q-learning (5). In our
proposed 2RA Q-learning, we’ve made a modification to
the term E(Xn, Sn+1, θn) from Wattkins Q-learning (5).
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It is now replaced with a regularized version, denoted as
Eρ based on Lemma 3.1. This adjustment is combined
with the averaging property using θ̂N,n. The regularization
term

√
ρ∥ϕ(s′, a′)∥2 can be interpreted as negative UCB

bonus term that discourages exploration, which has been
considered for linear MDPs in (Jin et al., 2019), see also
(Qian et al., 2019).

In the remainder of this section, we theoretically investigate
2RA Q-learning (7) and, in particular, study how to choose
the two regularization parameters ρ, N , and the learning
rate αn. In Section 3.1, we show what properties the regular-
ization term ρ should satisfy such that 2RA Q-learning (7)
asymptotically converges to the optimal Q-function. This
convergence is independent of the number N of Q-function
estimates. Section 3.2 shows how the two terms ρ and N
can be exploited to control the estimation bias of the pre-
sented scheme. Finally, Section 3.3 studies the convergence
rate via the notion of the asymptotic mean squared error and,
in particular, shows how to choose the learning rate αn as
compared to Watkins’ Q-learning.

3.1. Asymptotic Convergence

The 2RA Q-learning (7) for the tabular setting actually con-
verges almost surely to the optimal Q-function satisfying
the Bellman equation (2), provided the radius ρ is chosen
appropriately.

Theorem 3.1 (Asymptotic convergence). Consider the tab-
ular setting where d = |X |, Φ is the canonical basis and let
{ρn}n∈N be a sequence of non-negative numbers such that
limn→∞ ρn = 0. Moreover, assume that

(i) The learning rates satisfy αn(s, a) ∈ (0, 1],∑∞
n=0 αn(s, a) = ∞,

∑∞
n=0 α

2
n(s, a) < ∞ and

αn(s, a) = 0 unless (s, a) = (Sn, An).

(ii) The reward r is bounded.

Then, for any N ∈ N, 2RA Q-learning (7) converges to
the optimal Q-function Q⋆, i.e., limn→∞ Φ⊤θ̂N,n = Q⋆

P-almost surely.

Note that Φ⊤θ̂N,n is our learned 2RA Q-function under the
canonical basis describing the tabular setting.

3.2. Estimation Bias

We now focus on the estimation bias of 2RA Q-learning in-
duced by the term Eρ in (8). While Watkins’ Q-learning suf-
fers from the mentioned overestimation bias, the proposed
2RA Q-learning (7) allows us to control the estimation bias
via the parameters ρ and N . We show that for ρ > 0 with
high probability, 2RA Q-learning generates an underestima-
tion bias, somewhat similar to Double Q-learning. However,

in contrast to Double Q-learning, we can control the level
of underestimation via the parameter ρ. Moreover, the sec-
ond parameter N , describing the number of action-value
estimates, further allows us to control the estimation bias.

Theorem 3.2 (Estimation bias).

(i) Consider any N,n ∈ N, ρ ≥ 0 and i ∈ {1, . . . , N}. If
E[θ(i)n ] ∈ Bρ(θ̂N,n), then the robust estimator defined
in (8) provides an underestimation where the level of
underestimation is controlled by ρ, i.e., for all x ∈
X , s′ ∈ S

0 ≤ γϕ(x)max
a′∈A

E[ϕ(s′, a′)⊤θ(i)n ]− E[Eρ(x, s′, θ̂N,n)]

≤ √
ργϕ(x)max

a′∈A
∥ϕ(s′, a′)∥2.

(ii) Let θ(i) be initialized with the same value for i =
1, . . . , N . For any ρ ≥ 0 and n ∈ N, the robust
estimator (8) satisfies for all x ∈ X , s′ ∈ S

lim
N→∞

E[Eρ(x, s′, θ̂N,n)]

= γϕ(x)max
a′∈A

{
E[ϕ(s′, a′)⊤θ(i)n ]−√

ρ∥ϕ(s′, a′)∥2
}
.

Assertion (ii) directly implies that for ρ = 0, the robust
estimator (8) is unbiased in the limit as N → ∞. We can
alternatively show this via Theorem 3.2(i). By following the
proof of Theorem 3.2, we can show that for any ρ > 0

lim
N→∞

P
(
E[θ(i)n ] ∈ Bρ(θ̂N,n)

)
= 1, (11)

i.e., for any given ρ if N is chosen large enough, we can
expect the assumption of Assertion (i) of Theorem 3.2 to
hold. To derive (11) note that in the proof of Theorem 3.2,
we show (see (23) and apply Hoelder’s inequality) that
limN→∞ E[∥θ̂N,n − E[θ(i)n ]∥] = 0. Markov’s inequality
states that for any ρ > 0

P
(
∥θ̂N,n − E[θ(i)n ]∥ >

√
ρ
)
≤ 1

√
ρ
E
[
∥θ̂N,n − E[θ(i)n ]∥

]
,

which directly implies (11).

Corollary 3.1 (Vanishing estimation bias). Under the as-
sumptions of Theorem 3.1 and a regularization sequence
{ρn}n∈N ⊂ R+ such that limn→∞ ρn = 0, for any N ∈ N
and i ∈ {1, . . . , N}

lim
n→∞

E[Eρn
(x, s′, θ̂N,n)]

= lim
n→∞

γϕ(x)max
a′∈A

E[ϕ(s′, a′)⊤θ(i)n ] ∀x ∈ X , s′ ∈ S.

Theorem 3.2 allows us to interpret the choice of regulariza-
tion {ρn}n∈N in a non-asymptotic manner.
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Remark 3.1 (Selection of parameter ρn). We have shown
in Theorem 3.1 that convergence of 2RA Q-learning (7)
requires a sequence {ρn}n∈N such that limn→∞ ρn = 0.
Theorem 3.2 provides insights into how the specific decay of
ρn determines the resulting performance of 2RA Q-learning.
More precisely, Theorem 3.2 describes the inherent trade-
off in the selection of ρn: choosing larger values of ρn
increases the probability that E[θ(i)n ] ∈ Bρn

(θ̂N,n) which
guarantees an underestimation bias. On the other hand,
choosing smaller values of ρn decrease the level of under-
estimation bias but potentially introduce an overestimation
bias as the probability that E[θ(i)n ] /∈ Bρn(θ̂N,n) increases.
We further comment on the choice of regularization ρn in
the numerical experiments, Section 4.

Remark 3.2 (Selection of parameter N ). The convergence
of 2RA Q-learning holds for any choice of N ; see Theo-
rem 3.1. Moreover, Theorem 3.2 states that increasing N
decreases the estimation bias. Choosing the parameter N
too large, however, when using a learning rate that is N -
times the learning rate of Watkins’ Q-learning (according

to Theorem 3.3) can lead to numerical instability. Therefore,
in practice, a trade-off must be made when selecting N .

3.3. Asymptotic Mean-Squared Error

We have shown in Theorem 3.1 that 2RA Q-learning (7)
asymptotically converges to the optimal Q-function. This
section investigates the convergence rate via the so-called
asymptotic mean-squared error. Throughout this section,
we consider a tabular setting and assume without loss of
generality that the optimal Q-function is such that θ⋆ = 0.
If θ⋆ ̸= 0, the results can hold by subtracting θ⋆ from the
estimators of the Q-learning, see Devraj & Meyn (2017).
Given the 2RA Q-learning and the corresponding estimator
θ̂N,n as introduced in (9), we define its asymptotic mean-
squared error (AMSE) as the limit of a scaled covariance

AMSE(θ̂N ) = lim
n→∞

nE[θ̂⊤N,nθ̂N,n] = lim
n→∞

nE[∥θ̂N,n∥22].

Our analysis also discusses the choice of the learning rate in
2RA Q-learning compared to the learning rate of Watkins’
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(b) Q-learning variants
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(c) Choice of ρ0
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(d) Choice of N

Figure 1: Baird’s Example. All Methods use an initial learning rate of α0 = 0.01, wα = 105, and γ = 0.8. All 2RA agents
additionally use wρ = 103. The reward function has values random-uniformly sampled from [−0.05, 0.05]. All results are
average over 100 consecutive experiments. (a) Baird’s example environment with the feature vectors for each state-action
pair. (b) Comparison of the AMSE of Watkins Q-learning, Double Q-learning, Maxmin Q-learning with N = 10, where
the 2RA Q-learning uses initial ρ0 = 0.5 and N = 10. (c) Comparison of the AMSE of 2RA Q-learning with N = 10 but
different initial values ρ0. (d) Experiment showing the MSE in terms of mean and standard deviation for different values of
N with ρ0 = 0.5.
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Q-learning.

Theorem 3.3 (AMSE for 2RA Q-learning). Consider a
setting where the regularization sequence {ρn}n∈N ⊂ R+

is such that limn→∞ ρn = 0 and N ∈ N. Let αQL
n = g/n

be the learning rate of Watkins’ Q-learning (5) and consider
the 2RA Q-learning (7) with learning rate αn = N · g/n,
where g is a positive constant2. Then, there exists some
g0 > 0 such that for any g > g0

AMSE(θ̂N ) = AMSE(θQL),

where {θQL
n }n∈N is a sequence generated by Watkins’ Q-

learning algorithm.

Remark 3.3 (Assumption on learning rate). As pointed out
by Weng et al. (2020) the condition g > g0 in the tabular
setting reduces to g > 1

µmin(1−γ) , where µmin denotes the
minimum entry of the stationary distribution of the state.

4. Numerical Results
We numerically3 compare our presented 2RA Q-learning (7)
with Watkins’ Q-learning (3), Hasselt’s Double Q-learning
(van Hasselt, 2010), and with the Maxmin Q-learning (Lan
et al., 2020). First, we look at Baird’s Example (Baird,
1995), then we consider arbitrary, randomly generated MDP
environments with fixed rewards, and last, the CartPole
example (Barto et al., 1983; Brockman et al., 2016). In all
experiments4, we choose a step size αn = Nα0wα

n+wα
, where N

is the number of state-action estimates used in the respective
learning method, wα > 0 is a weight parameter, and α0 is
the initial step size. The decay rate for the regularization
parameter ρn, as required for convergence (see Theorem
3.1), is chosen to be either ρn=

ρ0wρ

n+wρ
or ρn=

ρ0wρ

n2+wρ
with

exact parameters given for each experiment and a more
detailed evaluation at the end of this section.

Baird’s Example. We consider the setting described in
Weng et al. (2020). The environment (Figure 1a) has six
states and two actions. Under action one, the transition
probability to any of the six states is 1/6, and action two
results in a deterministic transition to state six. These tran-
sition dynamics are independent of the state at which an
action is chosen. Therefore the trajectories on which the
methods are updated can be obtained from a random uni-
form behavioral policy that allows every state to be visited.
The features vectors ϕ(s, a) are constructed as shown in
Figure 1a where each ei ∈ R12 is the ith unit vector. In this
setting, it is known that the optimal policy is unique (Weng
et al., 2020), and our theoretical results apply. All θ(i) are

2We assume that our starting index for n is large enough such
that Ng/n < 1.

3Here: github.com/2RAQ/code
4Except for REDQ, since the learning rate would be too high

for the multiple updates per step.

initialized, as in Weng et al. (2020), uniformly at random
with values in [0, 2]. Figures 1b and 1c have a log-scaled
y-axis to emphasize the smaller differences between models
as they converge. The first important observation is that all
learning methods converge to the same AMSE, which is in
line with Theorem 3.3. An exception is Maxmin Q-learning,
for which, however, no theoretical statement regarding the
expected behavior of its AMSE is made. Higher values
for ρ increase the convergence speed in the early learning
phase, as shown in Figure 1c. However, if ρ is too large or
its relative decay too slow, learning eventually slows down
(or even temporarily worsens) as large values of ρ make
the update steps too big. For the proposed choice of ρ, our
2RA-method outperforms the other learning methods in the
first part of the learning process without getting significantly
slower in the long run. Only the AMSE of Variance Reduced
Q-Learning outperforms all other methods which appears
to be caused by the specific instance of Baird’s experiment
(compare results of the Random Environment). Our next
experiment shows that 2RA and Maxmin Q-Learning are
sensitive towards different environments which prefer over-,
under-, or no estimation bias at all. Figure 1d uses a non-
log-scaled y-axis to ensure the size of the standard errors
is comparable. It can be observed how increasing the pa-
rameter N reduces the standard error of the learning across
multiple experiments. However, it is also apparent that the
marginal utility of each additional theta decreases fast.

Random Environment. This experiment visualizes how
different learning methods, with a fixed set of hyperparame-
ters, behave under changes in the environment’s transition
dynamics. For |A| = 3 and |S| = 10, we consider a
random environment that is described by a transition
probability matrix, which, for each pair s ∈ S and a ∈ A, is
drawn from a Dirichlet distribution with uniform parameter
0.1. Analogously, we draw a distribution of the initial
states s0. Similar to Baird’s example, these MDPs are
ergodic and random uniform behavioral policies can be
used to generate trajectories based on which updates are
performed. We further consider a quadratic reward function
r(s, a) = −qs2 − pa2 for all possible environments,
where p, q ∈ R+ are such that p < q. Therefore, different
environments have the same reward function but different
transition dynamics. For our experiments, we chose
q = 0.1 and p = 0.01. Each environment of Figure 2
is randomly drawn, in sequence, from the same random
seed. The resulting dynamics vary significantly between
different environments as only one constant selection of
hyperparameters is used, but 2RA Q-learning consistently
outperforms the other methods in the early stages of
learning.

With the exception of Maxmin, the other benchmarks per-
fom similarly to Watkins’ Q-Learning. A further obser-

7
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Figure 2: Random Environment. All methods use an initial learning rate of α0 = 0.01, wα = 105, γ = 0.9, and all
θ(i) initialized as zero. Maxmin as well as 2RA Q-learning have N = 10 and 2RA agents additionally use ρ0 = 50 and
wρ = 104. The plots show the first six randomly drawn environments and all results are average over 100 consecutive
experiments. A broader plot of the first 20 random environments is provided in Figure 4 in Appendix C.

vation is that the better 2RA Q-learning performs in an
environment, the better Double Q-learning performs. This
indicates that these are environments where an underestima-
tion bias is beneficial (Lan et al., 2020), with the strength of
the effect varying with the drawn transition dynamics.

CartPole. The well-known CartPole environment (Brock-
man et al., 2016) serves as a more practical application while
still using the same linear function approximation model
from the previous experiments in combination with a dis-
cretized CartPole state space. For each timestep, in which
the agent can keep the pole within an allowed deviation
from an upright angle and the cart’s starting position along
the horizontal axis, it receives a reward of +1. An episode
ends if either one of the thresholds for allowed deviation is
broken. Since a random uniform behavioral policy would
not enable visits to all regions of the state space, the latest
updated policy combined with ϵ-greedy exploration is used
to generate the next timestep which is then used to update
the model; Updates are applied after each timestep. We com-
pare the different learning algorithms based on how many
training episodes are required to solve the CartPole task. The
task is considered to be solved if, during the evaluation, the
average reward over 100 episodes with a maximum allowed
stepcount of 210 reaches or exceeds 195. Across 1000 ex-
periments, the number of episodes until the task is solved
(hit times) is collected for each learning method. Methods
that, on average, solve the environment with fewer training
episodes are ranked higher in the performance comparison.
As CartPole benefits from a high learning rate, an initial
α0 = 0.4 is chosen and decayed per episode e, as compared
to the decay per timestep of the previous experiments, such

that αe = α0
wα

e+wα
.

Comparing the hit time distributions of the different algo-
rithms shows that the 2RA mean performance is better than
Double Q-learning, which outperforms both Watkins’ and
Maxmin Q-learning by a significant margin. CartPole ap-
pears to benefit from the underestimation bias introduced
by Double and 2RA Q-learning. This is consistent with the
previous experiments where the good performance of 2RA
Q-learning correlates with good performance of Double
Q-learning. Since this experiment has deterministically ini-
tialized θ0 as well as deterministic state transitions, REDQ
and Variance Reduced Q-Learning are not comparable in
this setting.

In Appendix C.2, we provide an additional example, where
we test 2RA Q-learning when used with neural network
Q-function approximation, applied to the LunarLander en-
vironment (Brockman et al., 2016). Also there, 2RA Q-
learning shows good performance, despite the fact, that our
theoretical results do not apply.

5. Discussion and Conclusion
In this work, we proposed 2RA Q-learning and showed that
it enables control of the estimation bias via the parameters N
and ρ while maintaining the same asymptotic convergence
guarantees as Double and Watkins’ Q-learning. In practice,
the control of the estimation bias enables faster convergence
to a good-performing policy in finitely many steps which
is caused by the intrinsic property of environments to favor
an over-, an under-, or no estimation bias at all. Therefore,
determining the optimal bias adjustment is highly dependent
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(a) Distribution of hit times

Algorithm Mean hit time
Watkins’ Q-Learning 457.35± 128.18
Double Q-Learning 401.89± 144.43
Maxmin Q-Learning 645.02± 270.01
Averaged Q-Learning 404.09± 124.19
2RA Q-Learning 386.19± 133.47

(b) Mean and std of hit times

Figure 3: Cartpole, 1000 experiments. All methods use an initial learning rate of α0 = 0.4, wα = 100, γ = 0.999 and all
θ(i) initialized as zero. Maxmin, as well as 2RA Q-learning, have N = 8. 2RA further uses ρ0 = 150 and wρ = 104. All
algorithms are evaluated after every 50 episodes and recorded if the average evaluation reward reaches or exceeds 195. (a)
Shows the distributions of each algorithm’s hit times and (b) lists the respective mean hit times and corresponding standard
deviations.

on the specific environment and rigorous analysis of envi-
ronments’ bias preferences is not yet available. To account
for this, 2RA Q-learning provides two additional tuning
parameters that can be used to fine-tune learning for these
environment preferences. This level of control, combined
with computational costs comparable to existing methods,
makes 2RA Q-learning a valuable addition to the RL tool
belt. The conducted numerical experiments for various
settings corroborate our theoretical findings and highlight
that 2RA Q-learning generally performs well and mostly
outperforms other Q-learning variants.
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A. Proofs
A.1. Asymptotic Convergence

The proof of Theorem 3.1 is based on the following technical stochastic approximation result. We denote by ∥ · ∥w a
weighted maximum norm with weight w = (w1, . . . , wd), wi > 0. If x ∈ Rd, then ∥x∥w = maxi

|xi|
wi

.

Lemma A.1. (Singh et al., 2000, Lemma 1) Consider a stochastic process {(αn,∆n, Fn)}n≥0, where αn,∆n, Fn : X → R
satisfy the equations

∆n+1(x) = (1− αn(x))∆n(x) + αn(x)Fn(x), x ∈ X , n = 0, 1, . . . (12)

Let Pn be a sequence of increasing σ-fields such that α0 and ∆0 are P0-measurable and αn,∆n and Fn−1 are Pn-
measurable for n = 1, 2, . . . . Assume the following hold

(i) the set X is finite;

(ii) αn(x) ∈ (0, 1],
∑∞

n=1 αn(x) = ∞,
∑∞

n=1 α
2
n(x) < ∞ almost surely;

(iii) ∥E[Fn(·)|Pn]∥w ≤ κ∥∆n∥w + cn, where κ ∈ [0, 1) and cn converges to zero almost surely;

(iv) Var(Fn(x)|Pn) ≤ K(1 + ∥∆n∥w)2, where K is some constant.

Then, ∆n converges to zero almost surely as n → ∞.

Proof of Theorem 3.1. The proof builds up on the convergence results of SARSA (Singh et al., 2000), Double Q-learning
(van Hasselt, 2010) and uses Lemma A.1 as a key ingredient. For the convenience of notation, we carry out the proof in the
Q-function notation. That is, in the tabular setting, where no function approximation is applied, by invoking Lemma 3.1, the
proposed 2RA Q-learning (7) is expressed as

Q
(i)
n+1(Sn, An) = Q(i)

n (Sn, An)

+ αnβ
(i)
n

(
r(Sn, An) + γ(max

a′∈A
Q̂N,n(Sn+1, a

′)−√
ρn)−Q(i)

n (Sn, An)
)
,

(13)

where Q̂N,n(s, a) = 1
N

∑N
i=1 Q

(i)
n (s, a) for s ∈ S, a ∈ A. In the following, we fix an arbitrary index i ∈ {1, . . . , N}

and with regard to Lemma A.1, we define Pn as the σ-field generated by {Sn, An, αn, . . . , S0, A0, α0, Q
(1)
0 , . . . , Q

(N)
0 },

X = S ×A, ∆n = Q
(i)
n −Q⋆ and Fn(Sn, An) = r(Sn, An)+γ(maxa′∈A Q̂N,n(Sn+1, a

′)−√
ρn)−Q⋆(Sn, An). Then,

2RA Q-learning (7) can be expressed as an instance of (12). To apply Lemma A.1, we need to ensure its assumptions are
satisfied. Assumption (i) and (ii) clearly hold.

To show Assumption (iii), we note that the term Fn can be alternatively expressed as

Fn(Sn, An) = FQ(i)

n (Sn, An) + γ

(
max
a′∈A

Q̂N,n(Sn+1, a
′)−max

a′∈A
Q(i)

n (Sn+1, a
′)−√

ρn

)
, (14)

with
FQ(i)

n (Sn, An) = r(Sn, An) + γmax
a′∈A

Q(i)
n (Sn+1, a

′)−Q⋆(Sn, An), (15)

where the term FQ(i)

n (Sn, An) corresponds to Watkins’ Q-learning for Q(i)
n . Therefore, it is well-known (Jaakkola et al.,

1994, Theorem 2) that ∥E[FQ(i)

n (·)|Pn]∥w ≤ γ∥∆n∥, which via (14) implies that ∥E[Fn(·)|Pn]∥w ≤ γ∥∆n∥+ cn, where

cn = γE
[
max
a′∈A

Q̂N,n(Sn+1, a
′)−max

a′∈A
Q(i)

n (Sn+1, a
′)−√

ρn | Pn

]
. (16)

It remains to show that cn converges to zero almost surely. Recall that by assumption limn→∞ ρn = 0. We define

δ(i)n (s, a) = Q(i)
n (s, a)− Q̂N,n(s, a)

12
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and will show that limn→∞ ∥δ(i)n (·, ·)∥ = 0 almost surely. The reverse triangle inequality applied to the ∞-norm implies
that P-almost surely

lim
n→∞

(
max
a′∈A

Q(i)
n (Sn+1, a

′)−max
a′∈A

Q̂N,n(Sn+1, a
′)

)
= 0

and hence that cn converges to zero almost surely.

We distinguish two cases. First, we consider an update on component i, then by (13)

δ
(i)
n+1(s, a) = Q

(i)
n+1(s, a)− Q̂N,n+1(s, a)

= Q(i)
n (s, a) + αn

(
r(s, a) + γmax

a′∈A
Q̂N,n(s

′, a′)− γ
√
ρn −Q(i)

n (s, a)

)
− Q̂N,n(s, a)

− 1

N

(
Q

(i)
n+1(s, a)−Q(i)

n (s, a)
)

= δ(i)n (s, a) +
(
αn − αn

N

)(
r(s, a) + γmax

a′∈A
Q̂N,n(s

′, a′)− γ
√
ρn −Q(i)

n (s, a)

)
,

where the second equality follows from the decomposition 1
N

∑N
j=1 Q

(j)
n+1(s, a) = 1

N (
∑

j ̸=i Q
(j)
n + Q

(i)
n+1). The third

equality then uses our proposed Q-learning update formula (13) given as Q
(i)
n+1(s, a) = Q

(i)
n (s, a) + αn(r(s, a) +

γmaxa′∈A Q̂N,n(s
′, a′) − γ

√
ρn − Q

(i)
n (s, a)). On the other hand, if the update is performed on component j ̸= i,

then

δ
(i)
n+1(s, a) = Q

(i)
n+1(s, a)− Q̂N,n+1(s, a)

= Q(i)
n (s, a)− Q̂N,n(s, a)−

1

N
(Q

(j)
n+1(s, a)−Q(j)

n (s, a))

= δ(i)n (s, a)− αn

N
(r(s, a) + γmax

a′∈A
Q̂N,n(s

′, a′)− γ
√
ρn −Q(j)

n (s, a)).

Hence, in total, we get

E[δ(i)n+1(s, a)|Pn]

=
1

N
E
[
δ(i)n (s, a) +

N − 1

N
αn(r(s, a) + γmax

a′∈A
Q̂N,n(s

′, a′)− γ
√
ρn −Q(i)

n (s, a))|Pn

]
+

1

N

∑
j ̸=i

E
[
δ(i)n (s, a)− αn

N
(r(s, a) + γmax

a′∈A
Q̂N,n(s

′, a′)− γ
√
ρn −Q(j)

n (s, a))|Pn

]
= E

[
(1− αn

N
)δ(i)n (s, a)|Pn

]
= (1− αn

N
)E
[
δ(i)n (s, a)|Pn−1

]
,

where the second equality follows from the observation that
∑

j ̸=i Q
(j)
n = NQ̂N,n − Q

(i)
n . Recall that δ(i)n (s, a) =

E[δ(i)n (s, a)|Pn−1] for any n. Hence, we have derived the update rule

δ
(i)
n+1(s, a) = (1− αn

N
)δ(i)n (s, a), (17)

which directly implies that limn→∞ δ
(i)
n (s, a) = 0 almost surely for all (s, a) ∈ S × A. Since S and A are finite sets

this implies that limn→∞ ∥δ(i)n ∥ = 0 almost surely as desired. Hence, limn→∞ cn = 0 almost surely, which ensures
Assumption (iii).

We finally show that Assumption (iv) holds. Again we use the decomposition (14). Since the reward r is assumed to be
bounded, it is known (Singh et al., 2000) that

Var(FQ(i)

n (x)|Pn) ≤ K(1 + ∥∆n∥w)2, (18)

13
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where again ∆n = Q
(i)
n −Q⋆. We next show that there exists a constant K2 such that

Var

(
max
a′∈A

Q̂N,n(Sn+1, a
′)−max

a′∈A
Q(i)

n (Sn+1, a
′)|Pn

)
≤ K2(1 + ∥∆n∥w)2. (19)

By the Cauchy-Schwarz inequality (18) and (19) imply Assumption (iv). To establish (19), we show that the Q-functions
Q

(i)
n are bounded for any n and any i. Such results are well-known for classical Q-learning, see (Gosavi, 2006). For our

modified Q-learning, we can show it via a simple contradiction argument. Suppose for the sake of contradiction there is
an index i such that limn→∞ ∥Q(i)

n ∥ = ∞. We first consider the setting, where there is an s′ ∈ S and a′ ∈ A such that
limn→∞ Q

(i)
n (s′, a′) = ∞. So there exists n̄ ∈ N such that for all n ≥ n̄ we have Q

(j)
n (s′, a) ≤ Q

(i)
n (s′, a′) for all a ∈ A

and for all j = 1, . . . , N . Therefore, maxā∈A Q̂N,n(s
′, ā) ≤ Q

(i)
n (s′, a′) ≤ maxā∈A Q

(i)
n (s′, ā), which implies

Q
(i)
n+1(s, a) = Q(i)

n (s, a) + αn(r(s, a) + γmax
a′∈A

Q̂N,n(s
′, a′)−Q(i)

n (s, a)) (20a)

≤ Q(i)
n (s, a) + αn(r(s, a) + γmax

a′∈A
Q(i)

n (s′, a′)−Q(i)
n (s, a)), (20b)

for any s ∈ S and a ∈ A. When considering Sn = s, An = a and Sn+1 = s′, we see that the upper bound (20b) is Watkins’
Q-learning which leads to a bounded Q-function, so Q

(i)
n+1(s, a) needs to be bounded for all s, a which is a contradiction.

The case where there is an s′ ∈ S and a′ ∈ A such that limn→∞ Q
(i)
n (s′, a′) = −∞ follows analogously. Consequently,

the Q-functions Q(i)
n for any n and any i are bounded and (19) indeed holds, which implies Assumption (iv).

A.2. Estimation Bias

Proof of Theorem 3.2 (Estimation Bias). To prove Assertion (i), note that according to the definition of the robust estimator
(8) for any E[θ(i)n ] ∈ Bρ(θ̂N,n) it must hold that

Eρ(x, s′, θ̂N,n) ≤ γϕ(x)max
a′∈A

ϕ(s′, a′)⊤E[θ(i)n ] = γϕ(x)max
a′∈A

E[ϕ(s′, a′)⊤θ(i)n ] ∀x ∈ X , s′ ∈ S,

which implies

E[Eρ(x, s′, θ̂N,n)] ≤ γϕ(x)max
a′∈A

E[ϕ(s′, a′)⊤θ(i)n ] ∀x ∈ X , s′ ∈ S. (21)

A lower bound can be derived as for all x ∈ X , s′ ∈ S

E[Eρ(x, s′, θ̂N,n)] = γϕ(x)E
[
max
a′∈A

{
ϕ(s′, a′)⊤θ̂N,n −√

ρ∥ϕ(s′, a′)∥2
}]

(22a)

≥ γϕ(x)E
[
max
a′∈A

ϕ(s′, a′)⊤θ̂N,n

]
−√

ργϕ(x)max
a′∈A

∥ϕ(s′, a′)∥2 (22b)

≥ γϕ(x)max
a′∈A

E
[
ϕ(s′, a′)⊤θ̂N,n

]
−√

ργϕ(x)max
a′∈A

∥ϕ(s′, a′)∥2 (22c)

= γϕ(x)max
a′∈A

E
[
ϕ(s′, a′)⊤θ(i)n

]
−√

ργϕ(x)max
a′∈A

∥ϕ(s′, a′)∥2, (22d)

where the first equality is due to Lemma 3.1. The first inequality follows from splitting the maximization or reverse triangle
inequality. The second inequality follows from a Jensen step as explained in (6). The second equality uses the fact that all
θ
(i)
n follow the same distribution. Combining (21) and (22) implies Assertion (i).

To prove Assertion (ii), we first claim that for any n ∈ N

lim
N→∞

θ̂N,n = E[θ(i)n ], (23)

where the convergence is in mean square, i.e., limN→∞ E[∥θ̂N,n − E[θ(i)n ]∥2] = 0. This in particular implies that θ̂N,n

converges to E[θ(i)] in distribution. Our second claim states that for any x ∈ X and s′ ∈ S, the function Eρ(x, s′, θ′) is

14
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uniformly continuous in θ′. Equipped with these two claims,

lim
N→∞

E[Eρ(x, s′, θ̂N,n)] = E[Eρ(x, s′,E[θ(i)n ])] (24a)

= Eρ(x, s′,E[θ(i)n ]) (24b)

= γϕ(x)max
a′∈A

{
E[ϕ(s′, a′)⊤θ(i)n ]−√

ρ∥ϕ(s′, a′)∥2
}
, (24c)

where the first equality holds due to the Portmanteau Theorem (Billingsley, 1999, Theorem 2.1), since θ̂N,n converges to
E[θ(i)n ] in distribution and the function Eρ(x, s′, θ′) is uniformly continuous in θ′. The second equality is true as the function
Eρ is deterministic, and the last equality is implied by Lemma 3.1.

It, therefore, remains to show the two claims. To show (23), we recall that by definition

θ̂N,n =
1

N

N∑
i=1

θ(i)n .

By symmetry of the 2RA Q-learning (7) the variables θ
(i)
n for all i ∈ {1, . . . , N} have the same distribution, but are

correlated. We can exploit the weak correlations via the following result.

Lemma A.2. (Brockwell, 1991, Theorem 7.1.1) Let {Y (i)} be a stationary process with mean µ and autocovariance function
γ(·) defined as γ(N) = cov(Y (i+N), Y (i)) for any i ∈ N. Then,

lim
N→∞

E

( 1

N

N−1∑
i=0

Y (i) − µ

)2
 = 0 if lim

N→∞
γ(N) = 0.

The 2RA Q-learning (7) is given as

θ
(i)
n+1=(1−αnβ

(i)
n A1(Xn))θ

(i)
n +γαnβ

(i)
n ϕ(Xn)max

a′∈A

{
ϕ(Sn+1, a

′)⊤θ̂N,n−
√
ρ∥ϕ(Sn+1, a

′)∥2
}

+ αnβ
(i)
n b(Xn), i = 1, . . . , N.

(25)

We claim that for any s, t ∈ {1, 2, . . . , N} and for any n ∈ N0

cov(θ(s)n , θ(t)n ) ≤ C · O(1/N), (26)

where C ∈ Rd×d is some constant matrix. Then, according to Lemma A.2, we obtain (23). It, therefore, remains to show
(26), which we do by induction over n.

The initial condition θ
(i)
0 = θ0 is assumed to be some deterministic value for all i, then by using the update rule (25) and

recalling that θ̂N,0 = θ0

cov(θ
(s)
1 , θ

(t)
1 ) = cov(v + β

(s)
1 w, v + β

(t)
1 w)

= cov(β
(s)
1 w, β

(t)
1 w)

= E[β(s)
1 β

(t)
1 ww⊤]− E[β(s)

1 w]E[β(t)
1 w]

= E[β(s)
1 β

(t)
1 ]E[ww⊤]− E[β(s)

1 ]E[w]E[β(s)
1 ]E[w]⊤

= − 1

N2
E[w]E[w]⊤

≤ C · O(1/N),

where v = θ0, w = αn

(
−A1(X0)θ0+γϕ(X0)maxa′∈A{ϕ(S1, a

′)⊤θ0−
√
ρ∥ϕ(S1, a

′)∥2}+b(X0)
)

and we use the fact
that E[β(s)

1 β
(t)
1 ] = 0 and E[β(s)

1 ] = 1
N . Moreover, we use C = E[w]E[w]⊤. To proceed with the induction step, assume that

for any k, ℓ ∈ {1, 2, . . . , N} we have cov(θ
(k)
n , θ

(ℓ)
n ) = C · O(1/N) and show that for any k, ℓ ∈ {1, 2, . . . , N}

cov(θ
(k)
n+1, θ

(ℓ)
n+1) ≤ C · O(1/N). (27)
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Applying the update rule (25) leads to

cov(θ
(k)
n+1, θ

(ℓ)
n+1)

= cov

(
(1− αnβ

(k)
n A1(Xn))θ

(k)
n + β(k)

n αn

(
γϕ(Xn)Mn + b(Xn)

)
,

(1− αnβ
(ℓ)
n A1(Xn))θ

(ℓ)
n + β(ℓ)

n αn

(
γϕ(Xn)Mn + b(Xn)

))
= cov

(
(1− αnβ

(k)
n A1(Xn))θ

(k)
n , (1− αnβ

(ℓ)
n A1(Xn))θ

(ℓ)
n

)
+ cov

(
(1− αnβ

(k)
n A1(Xn))θ

(k)
n , β(ℓ)

n αn (γϕ(Xn)Mn + b(Xn))

)
+ cov

(
(1− αnβ

(ℓ)
n A1(Xn))θ

(ℓ)
n , β(k)

n αn (γϕ(Xn)Mn + b(Xn))

)
+ cov

(
β(k)
n αn (γϕ(Xn)Mn + b(Xn)) , β

(ℓ)
n αn (γϕ(Xn)Mn + b(Xn))

)
,

(28)

where Mn = maxa′∈A{ϕ(Sn+1, a
′)⊤θ̂N,n −√

ρ∥ϕ(Sn+1, a
′)∥2}. We can show that each covariance term from above is

of the order O(1/N). For this, we recall that the properties of βn and its independence with respect to Xn ensure that

cov(β(ℓ)
n , β(k)

n ) = O(1/N) and cov(β(ℓ)
n , f(Xn)) = 0 (29a)

for any bounded function f : X → R. Moreover, for any k ̸= ℓ

cov(β(ℓ)
n f(Xn), β

(k)
n f(Xn)) = E[β(ℓ)

n β(k)
n f(Xn)f(Xn)

⊤]− E[β(k)
n f(Xn)]E[β(ℓ)

n f(Xn)
⊤]

= − 1

N2
∥E[f(Xn)]∥22 ≤ O(1/N).

(29b)

For any other bounded function g : X → R, we get

cov(β(ℓ)
n f(Xn), g(Xn)) = E[β(ℓ)

n f(Xn)g(Xn)]− E[β(ℓ)
n f(Xn)]E[g(Xn)]

=
1

N
E[f(Xn)g(Xn)]−

1

N
E[f(Xn)]E[g(Xn)] = O(1/N).

(29c)

Similarly, we obtain for any s, t ∈ {1, 2, . . . , N}

cov(θ(k)n , β(ℓ)
n f(Xn)) = C · O(1/N), (29d)

and

cov(θ(k)n , g(Xn)θ̂N,n) =
1

N

N∑
ℓ=1

cov(θ(k)n , g(Xn)θ
(ℓ)
n ),

whereby by using the results of Bohrnstedt & Goldberger (1969), we can show that cov(θ(k)n , g(Xn)θ
(ℓ)
n ) = C · O(1/N).

Therefore,
cov(θ(k)n , g(Xn)θ̂N,n) = C · O(1/N). (29e)

Finally, equipped with (27) and (29) by exploiting the results of Bohrnstedt & Goldberger (1969) and continuing with (28),
we show

cov(θ
(k)
n+1, θ

(ℓ)
n+1) = C · O(1/N),

which completes the induction step. We, therefore, have shown (26) and hence (23). Regarding our second claim, we show
that for any x ∈ X and s′ ∈ S, the function Eρ(x, s′, θ) is uniformly continuous in θ. For any fixed x ∈ X and s′ ∈ S the
the function Eρ(x, s′, θ) can be expressed as

Eρ(x, s′, θ) = γϕ(x)max
a′∈A

{
ϕ(s′, a′)⊤θ −√

ρ∥ϕ(s′, a′)∥2
}
= γϕ(x)φ(θ, s′),
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where φ(θ, s′) = maxa′∈A
{
ϕ(s′, a′)⊤θ −√

ρ∥ϕ(s′, a′)∥2
}

. To show that Eρ(x, s′, θ) is uniformly continuous in θ, it
remains to show that φ is uniformly continuous in θ. Clearly, φ is Lipschtiz continuous in θ, as max{·} − max{·} ≤
max{·− ·}, which is the reversed triangle inequality for the ∞-norm. This implies the desired uniform continuity and hence
hence Eρ(x, s′, θ) is uniformly continuous in θ. Having shown both claims completes the proof.

Proof of Corollay 3.1. Recall that according to Theorem 3.1 for any i ∈ {1, . . . , N} we have limn→∞ θ
(i)
n = θ⋆ almost

surely and accordingly limn→∞ θ̂N,n = θ⋆ almost surely. By the definition of Eρn in (8)

γϕ(x)max
a′∈A

E[ϕ(s′, a′)⊤θ⋆] = E[E0(x, s′, θ⋆)] ∀x ∈ X , s′ ∈ S. (30)

Therefore, for all x ∈ X , s′ ∈ S

lim
n→∞

E
[
Eρn

(x, s′, θ̂N,n)
]
= E

[
lim
n→∞

Eρn
(x, s′, θ̂N,n)

]
(31a)

= E
[
lim
n→∞

γϕ(x)max
a′∈A

{
ϕ(s′, a′)⊤θ̂N,n −√

ρn∥ϕ(s′, a′)∥2
}]

(31b)

= E
[
γϕ(x)max

a′∈A

{
ϕ(s′, a′)⊤θ⋆

}]
(31c)

= E [E0(x, s′, θ⋆)] (31d)

= γϕ(x)max
a′∈A

E[ϕ(s′, a′)⊤θ⋆] (31e)

= γϕ(x)max
a′∈A

lim
n→∞

E
[
ϕ(s′, a′)⊤θ(i)n

]
(31f)

= lim
n→∞

γϕ(x)max
a′∈A

E
[
ϕ(s′, a′)⊤θ(i)n

]
, (31g)

where the equality (31a) follows from the bounded convergence theorem. The equality (31b) is due to Lemma 3.1. In (31c),
we use the fact that the limit and maximum can be interchanged as the maximum is over a finite set and that θ̂N,n converges
to θ⋆ due to Theorem 3.1. The step (31d) uses the definition of E0. The equality (31e) is due to (30) and (31f) uses that θ(i)n

converges to θ⋆ due to Theorem 3.1 together with the bounded convergence theorem. Finally, (31g) uses again the fact that
the limit and maximum can be interchanged as the maximum is over a finite set.

A.3. Asymptotic Mean-Squared Error

Proof of Theorem 3.3 (AMSE for 2RA Q-learning). Our proof is inspired by the recent treatment of Double Q-learning
(Weng et al., 2020) and by Devraj & Meyn (2017) analyzing the asymptotic properties of Q-learning. The key idea is to
recall that from the proof of Theorem 3.1, we know that θ(i)n → θ⋆ = 0 as n → ∞ for any i ∈ {1, 2, . . . , N}. Hence, we
can express the AMSE of θ(i) alternatively as

AMSE(θ(i)) = lim
n→∞

nE[θ(i)n

⊤
θ(i)n ] = tr

(
lim
n→∞

nE[θ(i)n θ(i)n

⊤
]
)
= tr (V ) ,

where the matrix V = limn→∞ nE[θ(i)n θ
(i)
n

⊤
] is called the asymptotic covariance. It has been shown in Devraj & Meyn

(2017) that the asymptotic covariance of Watkins’ Q-learning (5) can be studied via the linearized counterpart, given as

θQL
n+1 = θQL

n + αQL
n ϕ(Xn)(r(Xn) + γϕ(Sn+1, π

⋆(Sn+1))
⊤θQL

n − ϕ(Xn)
⊤θQL

n ),

where π⋆ is the optimal policy based on θ⋆. Using similar arguments from Devraj & Meyn (2017) and Weng et al. (2020),
we can show that the asymptotic variance of 2RA Q-learning (7), which is defined as limn→∞ nE[θ̂N,nθ̂

⊤
N,n], can be studied

by considering the linearized recursion with ρn = 0, given as

θ
(i)
n+1 = θ(i)n + αnβ

(i)
n (b(Xn)−A1(Xn)θ

(i)
n + γϕ(Xn)ϕ(Sn+1, π

⋆(Sn+1))
⊤︸ ︷︷ ︸

=A2(Zn)

θ̂N,n), i = 1, . . . , N,
(32)
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where Zn = (Xn, Sn+1), b(Xn) = ϕ(Xn)r(Xn) and A1(Xn) = ϕ(Xn)ϕ(Xn)
⊤. We formally justify this linearization

argument in Lemma B.1. Using a more compact notation where θn = (θ
(1)⊤
n , . . . , θ

(N)⊤
n )⊤ and βn = (β

(1)
n , . . . , β

(N)
n )⊤

and choosing the learning rate αn = αQL
n ·N , the update equation (32) can be expressed in a standard form as

θn+1 = θn + αQL
n (b(Xn) + A2(Zn)θn − A1(Xn)θn), (33)

where
A1(Xn) = N · diag(β(1)

n A1(Xn), . . . , β
(N)
n A1(Xn)),

A2(Zn) =


β
(1)
n A2(Zn) . . . β

(1)
n A2(Zn)

β
(2)
n A2(Zn) . . . β

(2)
n A2(Zn)

...
. . .

...
β
(N)
n A2(Zn) . . . β

(N)
n A2(Zn)

 , b(Xn) =


Nβ

(1)
n · b(Xn)

...
Nβ

(N)
n · b(Xn)

 .
(34)

Let µ denote the invariant distribution of the Markov chain {Xn}n∈N and let D be a diagonal matrix with entries Dii = µi

for all i = 1, . . . , |X |. Then, when considering X∞ as a random variable under the stationary distribution, we introduce

Ā1 = E[A1(X∞)] = ΦDΦ⊤, Ā2 = E[A2(Z∞)] = γΦDPSπ⋆Φ⊤,

Ā1 = E[A1(X∞)], Ā2 = E[A2(Z∞)],
(35)

where Sπ⋆ is the action selection matrix of the optimal policy π⋆ such that Sπ⋆(s, (s, π⋆(s))) = 1 for s ∈ S and Φ is
defined in (4). With these variables at hand, we define Ā = Ā2 − Ā1, i.e.,

Ā =


1
N Ā2 − Ā1

1
N Ā2

1
N Ā2 . . . 1

N Ā2
1
N Ā2

1
N Ā2 − Ā1

1
N Ā2 . . . 1

N Ā2

...
...

...
. . .

...
1
N Ā2

1
N Ā2

1
N Ā2 . . . 1

N Ā2 − Ā1

 .

Moreover, we introduce

Σb = E[b(X0)b(X0)
⊤] +

∑
n≥1

E[b(Xn)b(X0)
⊤ + b(X0)b(Xn)

⊤].

According to the definition of b, we get the block-diagonal structure

E[b(X0)b(X0)
⊤] = N · diag(E[b(X0)b(X0)

⊤], . . . ,E[b(X0)b(X0)
⊤]),

where the expectation is in steady-state. Moreover,

E[b(Xn)b(X0)
⊤] =

E[b(Xn)b(X0)
⊤] . . . E[b(Xn)b(X0)

⊤]
...

...
E[b(Xn)b(X0)

⊤] . . . E[b(Xn)b(X0)
⊤]

 ,

which eventually leads to a matrix of the form

Σb=


NE[b(X0)b(X0)

⊤]+2B2 2B2 . . . 2B2

2B2 NE[b(X0)b(X0)
⊤]+2B2 . . . 2B2

...
...

. . .
...

2B2 2B2 . . . NE[b(X0)b(X0)
⊤]+2B2

, (36)

where we introduce the variables B2 = 1
2

∑
n≥1 E[b(Xn)b(X0)

⊤ + b(X0)b(Xn)
⊤] and B1 = E[b(X0)b(X0)

⊤] +B2.

We define g0 = inf{g ≥ 0 : gmax{λmax(Ā), λmax(Ā)} < −1} and note that g0 exists, since both Ā and Ā are Hurwitz
as the corresponding Q-learning variants converge (Theorem 3.1). As a result for any g > g0 the matrix 1

2I + gĀ is Hurwitz
and hence the Lyapunov equation

Σ∞

(
1

2
I + gĀ⊤

)
+

(
1

2
I + gĀ

)
Σ∞ + g2Σb = 0 (37)

18



Regularized Q-learning through Robust Averaging

has a unique solution, which describes AMSE of our proposed method (see Chen et al. (2020) and Weng et al. (2020,
Theorem 1)), i.e., Σ∞ = limn→∞ nE[θnθ⊤n ]. Due to the symmetry of the proposed scheme, the matrix Σ∞ will consist
of diagonal elements equal to V = limn→∞ nE[θ(i)n θ

(i)⊤
n ] and off-diagonal entries C = limn→∞ nE[θ(i)n θ

(j)⊤
n ] for i ̸= j.

Therefore, summing the first row of matrices in (37) and using (36) leads to

V + (N − 1)C + g(V + (N − 1)C)(Ā2 − Ā1)
⊤ + g(Ā2 − Ā1)(V + (N − 1)C) + g2N(B1 +B2) = 0. (38)

Due to the definition of g0, the matrix 1
2I + gĀ is Hurwitz and hence the Lyapunov equation

ΣQL
∞

(
1

2
I + g(Ā2 − Ā1)

⊤
)
+

(
1

2
I + g(Ā2 − Ā1)

)
ΣQL

∞ + g2 (B1 +B2) = 0 (39)

has a unique solution, which is denoted by ΣQL
∞ and describes the AMSE of Watkins’ Q-learning, i.e., ΣQL

∞ =
limn→∞ E[θQL

n θQL⊤
n ], see Weng et al. (2020).

By comparing (39) with (38) and recalling that the solutions are unique, we obtain ΣQL
∞ = V+(N−1)C

N . Finally,

AMSE(θ̂N ) = lim
n→∞

nE


 1

N

N∑
j=1

θ(j)n

⊤(
1

N

N∑
i=1

θ(i)n

) (40a)

=
1

N2
lim
n→∞

nE

 N∑
j=1

θ(j)⊤n

( N∑
i=1

θ(i)n

) (40b)

=
1

N2
(Ntr (V ) +N(N − 1)tr (C)) (40c)

= tr

(
V + (N − 1)C

N

)
(40d)

= tr
(
ΣQL

∞
)

(40e)

= AMSE(θQL). (40f)
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B. Linearization results
The proof of Theorem 3.3 uses a key result, stating that the asymptotic mean-squared error of the proposed 2RA Q-learning
method (7) can be alternatively characterized by the linearized recursion (32). This result is a modification of the analysis
for Double Q-learning derived in (Weng et al., 2020, Appendix A). To derive a formal statement, we introduce the key tool
to analyze the linearization (32), which is the ODE counterpart of the 2RA Q-learning scheme (7) given as

θ̇(i)(t) = lim
n→∞

gE[ϕ(Xn)
(
r(Xn)− ϕ(Xn)

⊤θ(i)(t)
)
+ γϕ(Xn)(max

a′
ϕ(Sn+1, a

′)θ̂N (t))], (41)

where θ̂N (t) = 1
N

∑N
i=1 θ

(i)(t) and where we have used limn→∞ ρn = 0. With the help of the ODE (41) we can justify
why working with the linearized system (32) allows us to quantify the AMSE for the 2RA Q-learning (7). This justification
requires the following Assumption. We use the vectorized notation θ = (θ(1)

⊤
, . . . , θ(N)⊤)⊤ and θ⋆ = (θ⋆⊤, . . . , θ⋆⊤)⊤

where θ⋆ ∈ Rd is the optimal solution to the underlying MDP.
Assumption B.1 (Linearization). We stipulate that for any N ∈ N

(i) The process θ(i)(t) described by the ODE (41) has a globally asymptotically stable equilibrium θ̄(i) for any i =
1, . . . , N .

(ii) The optimal policy π⋆ of the underlying MDP is unique.

(iii) The sequence of random variables {n∥θn − θ⋆∥22, n ≥ 1} is uniformly integrable.

Sufficient conditions for Assumption (i), when using linear function approximation and in the setting N = 1, are studied
in Melo et al. (2008); Lee & He (2020). Assumption (ii) is standard in many theoretical treatments of Q-learning and
Assumption (iii) for N = 1 has been established, see Durrett (2010, Theorem 5.5.2), Devraj & Meyn (2017).
Lemma B.1 (Linearization). Let {θn}n∈N be a sequence generated by the 2RA Q-learning (7) and let {θ̄n}n∈N be a
sequence generated by its linearized counterpart (32). Under Assumption B.1, we have

lim
n→∞

nE[∥θn − θ⋆∥22] = lim
n→∞

nE[∥θ̄n − θ⋆∥22].

Proof. In a first step, we show that the ODE (41) for any i = 1, . . . , N has a unique globally asymptotically stable
equilibrium given as θ̄(i) = θ⋆, where θ⋆ is the the limit of Watkins’ Q-learning (Weng et al., 2020, Equation (22)). Note
that by Assumption B.1(i), the ODE (41) has a unique globally asymptotically stable equilibrium that we denote as θ̄(i) for
all i = 1, . . . , N . By symmetry, any perturbation of it is a globally asymptotically equilibrium too. Hence, by uniqueness
we must have θ̄(i) = θ̄(j) for all i, j ∈ {1, . . . , N}. Since all equilibrium points are identical, we recover the equilibrium
point of the ODE describing Watkins’ Q-learning, i.e., θ̄(i) = θ⋆ for all i = 1, . . . , N .

Next, in order to apply (Weng et al., 2020, Theorem 3) with respect to the ODE (41) we define for any i = 1, . . . , N

w(i)(θ(t)) = lim
n→∞

gE[ϕ(Xn)
(
r(Xn)− ϕ(Xn)

⊤θ(i)(t)
)
+ γϕ(Xn)(max

a′
ϕ(Sn+1, a

′)θ̂N (t))].

With the vector notation w(θ) = (w(1)(θ)⊤, . . . , w(N)(θ)⊤)⊤ and by plugging in the globally asymptotically stable
equilibrium from above we obtain

w(θ⋆) = gb̄+ g(Ā2 − Ā1)θ
⋆, (42)

where b̄, Ā1 and Ā2 have been introduced in (35). Note that (42) corresponds to the ODE of the linearized 2RA Q-learning
(32) at the point θ⋆. We aim to show that ∇θw(θ

⋆) = g(Ā2 − Ā1). This result follows from observing that there exists
ε > 0 such that for any θ such that ∥θ − θ⋆∥∞ ≤ ε it holds w(i)(θ) = gb̄+ g(Ā2 − Ā1)θ. To see why this is the case, by
following Weng et al. (2020), note that for the optimal policy π⋆ corresponding to θ⋆ we can define

ω = min
(s,a)∈X :a̸=π⋆(s)

{ϕ(s, π⋆(s))⊤θ⋆ − π(s, a)⊤θ⋆} > 0,

where the strict positivity follows from the uniqueness of π⋆. Choose ε = ω
3∥Φ∥1

and consider any θ(i) ∈ Rd such that

∥θ(i) − θ⋆∥∞ ≤ ε. Then, for any s ∈ S and a ∈ A with a ̸= π⋆(s), it holds

ϕ(s, π⋆(s))⊤θ(i) − ϕ(s, a)⊤θ(i) ≥ ϕ(s, π⋆(s))⊤θ⋆ − ϕ(s, a)⊤θ⋆ − 2∥Φ⊤(θ(i) − θ⋆)∥∞ ≥ ω − 2ω

3
> 0,
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which implies π⋆ = πθ, i.e., for any θ such that ∥θ − θ⋆∥∞ ≤ ε, the corresponding greedy policy πθ⋆ is optimal. Since
∥θ(i) − θ⋆∥∞ ≤ ∥θ − θ⋆∥∞, it indeed holds for any θ such that ∥θ − θ⋆∥∞ ≤ ε that w(i)(θ) = gb̄+ g(Ā2 − Ā1)θ. So we
have shown

∇θw(θ
⋆) = g(Ā2 − Ā1). (43)

In the final step, we define

W (i)(Zn) = E[ϕ(Xn)
(
r(Xn)− ϕ(Xn)

⊤θ⋆
)
+ γϕ(Xn)(max

a′
ϕ(Sn+1, a

′)θ⋆)],

with the notation from (34) and denote its vectorized version in a compact form as W(Zn) =
(W (1)(Zn)

⊤, . . . ,W (N)(Zn)
⊤)⊤. We then note that

W(Zn) = b(Zn) + (A2(Zn)− A1(Zn))θ
⋆.

Then, by definition of the asymptotic covariance

Cθ(θ
⋆) =

∞∑
n=−∞

E[(gW(Zn)− w(θ⋆)(gW(Z1)− w(θ⋆)⊤]

= g2
∞∑

n=−∞
E[W(Zn)W(Z1)

⊤]

= b2Σb.

(44)

From the two results (43) and (44) by invoking (Weng et al., 2020, Theorem 3) we obtain

√
n(θn − θ⋆)

d→ N (0,Σ), (45)

where Σ is the unique solution to the Lyapunov equation (37). By applying the Continuous Mapping Theorem to (45) we get

n∥θn − θ⋆∥22
d→ ∥X∥22, X ∼ N (0,Σ). (46)

Finally, combining (46) with Assumption B.1(iii) according to (Durrett, 2010, Theorem 5.5.2) ensures that

lim
n→∞

nE[∥θn − θ⋆∥22] = E[∥X∥22] = tr (Σ) .

When considering the linearization (7) instead of the 2RA Q-learning, by following the same lines without the need to
linearize, we obtain

lim
n→∞

nE[∥θ̄n − θ⋆∥22] = E[∥X∥22] = tr (Σ) ,

where again P is the unique solution to the Lyapunov equation (37). This completes the proof.
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C. Additional Numerical Results
C.1. Additional Plots for Random Environment Experiment

We provide some additional plots of the random experiment described in Section 4.
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Figure 4: Random Environment. All methods use an initial learning rate of α0 = 0.01, wα = 105, γ = 0.9, and all
θ(i) initialized as zero. Maxmin as well as 2RA Q-learning have N = 10 and 2RA agents additionally use ρ0 = 50 and
wρ = 104. The plots show the first 20 randomly drawn environments.

C.2. Neural Network Function Approximation

As an additional experiment, to test 2RA Q-learning when used with neural network Q-function approximation implemented
in Tensorflow (Abadi et al., 2015), the LunarLander environment (Brockman et al., 2016) is chosen. A lander receives a
large positive reward for landing in a designated area, a large negative reward for crashing, and a small negative reward for
firing a thruster. Similar to the CartPole experiment, the latest updated policy with ϵ-greedy exploration is used to generate
the next timestep on which the model is updated since not all states may be reached by a random uniform policy. The
environment is considered to be solved if the average reward over 100 episodes, during evaluation, reaches or exceeds 200.
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(a) Distribution of hit times

Algorithm Mean hit time
Watkins’ Q-Learning 785± 281.38
Double Q-Learning 791± 268.64
Maxmin Q-Learning 770± 252.19
2RA Q-Learning 767± 276.24

(b) Mean and std of hit times

Figure 5: LunarLander, 100 experiments. All methods use a learning rate of α = 0.0002 and a decay factor of γ = 0.99.
Maxmin, as well as 2RA Q-learning, have N = 5. 2RA further uses ρ0 = 25 and wρ = 104. All algorithms are evaluated
every 50 episodes and recorded if the average evaluation reward reaches or exceeds 200. (a) Shows the distributions of each
algorithm’s hit times and (b) lists the respective mean hit times and corresponding standard deviations.

Analogue to the CartPole experiment, different algorithms are compared based on how many training episodes are required
to solve the LunarLander environment where fewer average timesteps, until the environment is solved, result in a higher
performance ranking for the corresponding model. Instead of the θ(i) a small neural network with two hidden ReLU (He
et al., 2015) layers and N sets of weights are used. Averaging operations that were performed on the θi in the linear function
approximation scenarios are now performed on sets of weights for the neural network. All models are trained with a Huber
loss (Huber, 1964) and the Adam optimizer (Kingma & Ba, 2015) using a learning rate of α0 = 0.0002. The different
learning methods are implemented as plain and close to the theory as possible. Updates are therefore applied after every
timestep and on that single timestep.

Comparing the hit times shows only little difference between all learning methods with Maxmin and 2RA Q-learning leading
the field by a small margin. Future work could aim to implement and test the method with more contemporary training
pipelines, such as the incorporation of experience replay etc., to analyse whether such optimizations amplify the differences
in performance or just apply a uniform shift to all learning methods.
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