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Abstract

Implicit representations allow to use a parametric

function that maps (spatial) coordinates to the

value that is traditionally stored in each pixel,

e.g. RGB values, instead of a discrete grid. This

has recently proven quite advantageous as an in-

ternal representation for images or scenes for deep

learning models. Yet, its potential to ensure cer-

tain properties of the solution has not yet been

fully explored. In this work, we demonstrate that

implicit representations are a powerful tool for

enforcing a variety of different geometric con-

straints in image segmentation. While convex-

ity, star-shape, path-connectedness, periodicity, or

symmetry of the (spatial or space-time) region to

be segmented are very challenging to enforce for

pixel-wise discretizations, a suitable parametriza-

tion of an implicit representation, mapping spatial

or spatio-temporal coordinates to the likeliness of

a pixel belonging to the fore- or background, al-

lows to provably ensure such constraints. Several

numerical examples demonstrate that challenging

segmentation scenarios can benefit from the inclu-

sion of application-specific constraints, e.g. when

occlusions prevent a faithful segmentation with

classical approaches.

1. Introduction

The past decade has led to tremendous advances in the field

of image segmentation via data-driven techniques, including

seminal works such as the U-net architecture (Ronneberger

et al., 2015) and, more recently, large foundation image

segmentation models such as SAM (Kirillov et al., 2023).

Yet, when training data are scarce or objects of interest are

occluded, constraints to obey certain modeling assumptions

can become crucial.
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The inclusion of modeling assumptions or constraints has

been extremely successful in common (classical) energy

minimization methods (Mumford & Shah, 1989; Vese &

Chan, 2002), and lately been combined with learning-based

approaches, e.g. by interpreting the (softmax-)output of a

neural network as the solution to a minimization problem

to which additional regularizers can be added (Liu et al.,

2022). Yet, some seemingly simple constraints, such as

the region to be segmented being convex or path-connected,

can lead to highly complex regularizers. As segmentations

of an image f ∈ R
nx×ny×3 are commonly represented as

masks m ∈ [0, 1]nx×ny , graphs with nx · ny many nodes

or (discretized) level set functions ϕ ∈ R
nx×ny to identify

the segmented region with {(i, j) | ϕi,j ≤ 0}, enforcing

geometric properties often leads to constraints that (naı̈vely)

grow quadratically in the number of pixels: For instance,

convexity means that for any two points in the segmentation

the line segment in between them is part of the segmenta-

tion; path-connectedness means that for any two points in

the segmentation there exists a path between them within

the segmentation. Thus, even relaxations of common seg-

mentation problems face great difficulties in enforcing such

properties and binary optimization approaches are typically

NP-hard (see e.g. Royer et al. (2016)). We will provide a

more detailed overview of related work on enforcing geo-

metric constraints in image segmentation in Sec. 5.

In this work, we consider a significantly simpler option for

still provably satisfying constraints: Instead of a discrete

representation of the segmentation as, for example, a binary

image (mask), we parameterize a segmentation function

mapping from the image domain Ω ⊂ R
2 to the real num-

bers implicitly via a neural network: With seminal works

such as Sitzmann et al. (2020) and Tancik et al. (2020b)

demonstrating that fully connected networks (possibly in-

cluding the computation of Fourier Features in the first

layer) are well suited for representing natural images, we

exploit such implicit representations for image segmenta-

tion. By choosing a parametric function Gν : R
2 → R to

map suitable coordinates to a segmentation likelihood such

that {x ∈ R
2 | Gν(x) ≤ 0.5} represents the segmented

region, and restricting the architecture in suitable ways, we

can provably ensure a variety of constraints, see Fig. 1.

We summarize our main contributions as follows:

1



Implicit Representations for Constrained Image Segmentation

• We prove how (star-) convexity, mirror and rota-

tion symmetry, periodicity and path-connectedness

w.r.t. the object shape can be implemented with im-

plicit representations.

• We propose enforcing these constraints in common

deep learning pipelines and variational approaches.

• We show the segmentation improvements in cases

where the assumed geometric properties of the seg-

mented regions are valid.

We detail our methodology leading to the results shown

in Fig. 1 in Sec. 2, showing the benefit of implicit repre-

sentations for enforcing convexity and path-connectedness

constraints quantitatively in Sec. 3, providing limitations in

Sec. 4, before we summarize related work on constrain-

ing segmentations in Sec. 5. Lastly, we draw conclu-

sions on the idea of implicit representations for image

segmentation in Sec. 6. Our code is available at https:

//github.com/jp-schneider/awesome.

2. Implicit Representations for Segmentation

We first detail different parametrizations for representing

segmentations as (coordinate-based) functions, before dis-

cussing different ways to benefit from such representations

in variational as well as learning-based approaches to image

segmentation.

2.1. Convexity

In case of high noise levels, little training data, or in the

presence of occlusions, the assumption that the main object

to be segmented is convex can significantly stabilize the

segmentation as shown in Fig. 1a and 1b. Although the

segmentation of a red tomato on a green plant is almost

trivial, autonomous tasks like measuring the size of the

tomato require a faithful segmentation of the whole tomato

with occlusions. While approaches working with classical

representations have to turn to computationally expensive

approaches such as orientation-based lifting (Chen et al.,

2021; 2023) or curvature penalties requiring the solution

of a fourth-order differential equation in every step of an

alternating direction method of multipliers (Luo et al., 2019),

the use of input convex neural networks (Amos et al., 2017)

for an implicit representation of the segmentation makes

such a constraint easy to include. By choosing

Gν(x) = zK , zi+1 = ReLU(νzi zi + νxi x+ bi),

νzi ≥ 0 ∀i ∈ {1, . . . ,K − 1},
(1)

as a network architecture, one can assure Gν to be convex

in x (Amos et al., 2017) such that any level set, e.g.

{x ∈ R
2 | Gν(x) ≤ 0} (2)

can be used to represent a convex segmentation1. In (1), zi
denote the activations of the i-th layer, vzi are the weights

of the i-th layer that are multiplied with the output of the

previous layer, vxi are the weights of the i-th layer that are

used in a skip-connection from the input, and bi are the

i-th layer’s bias. As we can see in Fig. 1b, the occlusions

consequently become part of the segmentation.

2.2. Star-Shape

If convexity is a too-restrictive assumption for the desired

object, an assumption of a star-shape (c.f. Fig. 1c and 1d

might still hold. A set S is called star-shaped, if there exists

an x0 ∈ S such that for every x ∈ S, it holds that the line

segment between x0 and x is part of S, i.e., αx0+(1−α)x ∈
S ∀ α ∈ [0, 1].

A simple network architecture for an implicit representation

to ensure this property is to compute

xnew(x) =x− θoff

r =∥xnew∥

v =

{

xnew

r
if r ̸= 0,

(0, 0)T otherwise.

output(x) = Gν(v, r) with Gν(v, 0) = −1 ∀v,

(3)

for a learnable center θoff ∈ R
2 and a partially input convex

neural network Gν , which is convex in r for every given v

(see Amos et al. (2017) for a suitable construction). Con-

straining the network’s output to be negative for a radius of

0, i.e., for x = θoff, can ensure a star-shape.

Proposition 2.1. If the network Gν in (3) is convex in r,

then the set

S = {x ∈ R
2 | output(x) ≤ 0}

is star-shaped with center θoff.

Proof. In a nutshell, the function (3) operates in polar co-

ordinates while being convex along the radial direction.

More formally, consider an arbitrary point x ∈ S, i.e.,

output(x) < 0. It holds that output(θoff) = −1 by defi-

nition. Now for any α ∈]0, 1[ it holds that

output(αx+ (1− α)θoff)

= Gν

(

x− θoff

∥x− θoff∥
, α∥x− θoff∥

)

≤ αGν

(

x− θoff

∥x− θoff∥
, ∥x− θoff∥

)

+ (1− α)(−1) < 0.

Thus, (αx+ (1− α)θoff) ∈ S.

1Amos et al. (2017) have shown that any network architecture
as presented in (1) is input convex as long as a convex and non-
decreasing activation function is used. For the sake of simplicity,
we have used a ReLU function.
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(a) Naı̈ve (b) Convex (c) Naı̈ve (d) Star-shaped

(e) Naı̈ve (f) Mirror Symmetric (g) Naı̈ve (h) Path-connected

Figure 1. Illustration of different constraints imposed via a suitable parametrization of the segmentation using an implicit representation.

In blue, naı̈ve unaries are illustrated, i.e., pointwise fore- and background likelihoods at each pixel. For simplicity, these were generated

by color thresholding.

Note that the same network architecture without the con-

straint Gν(v, 0) = −1 ∀v can also be of interest, leading to a

connected interval in every radial direction, while, however,

not necessarily being connected anymore.

2.3. Mirror and Rotational Symmetry

Using the same representation as in (3) (without any con-

vexity of Gν) easily allows the inclusion of rotational or

mirroring symmetries: Thanks to the representation using

polar coordinates, more precisely, the radius r and the vec-

tor v that corresponds to the sine and cosine of the polar

coordinate angle, one can easily obtain rotational symmetry

by applying a periodic function (with a suitable known or

learnable period) to v. Similarly, by manipulating the sign

of (components of) v, one obtains mirroring symmetries.

Fig. 1f shows a fitting of a butterfly with (3) and Gν being a

fully connected network that v after the mappings

(

v1
v2

)

←

(

cos(θangle) sin(θangle)
− sin(θangle) cos(θangle)

)(

v1
v2

)

(4)

(

v1
v2

)

←

(

|v1|
v2

)

(5)

instead of v itself as an input. The absolute value in Eq. 1(f)

ensures the mirror symmetry, and the rotation matrix pa-

rameterized by θangle in (4) makes the symmetry axis learn-

able. As we can see in Fig. 1e and 1f, this allows to faith-

fully segment the symmetrized shape of the butterfly despite

rather challenging likelihoods, occlusions, or smaller miss-

ing parts.

2.4. Path-Connected Regions with Genus Zero

Even more general than star-shaped regions are path-

connected (PC) regions of genus zero (i.e., connected re-

gions without holes) as illustrated in Fig. 1h. To realize

such a constraint via an implicit representation, consider the

composition Gν ◦ Dφ of an input convex neural network Gν
parameterized by ν and a diffeomorphism Dφ parameter-

ized by ϕ as e.g. frequently arising in the field of normal-

izing flows. Recall that a diffeomorphism is a continuous,

differentiable, invertible transformation whose inverse is

continuously differentiable as well. Again, we represent the

set of points we consider to be the foreground as

S = {x ∈ R
2 | (Gν ◦ Dφ)(x) ≤ t} (6)

for a suitable threshold t, e.g. t = 0.

Definition 2.2 (Path-connectedness). Recall that a set S is

called path-connected if for every two points v, w ∈ S there

exists a continuous map p : [0, 1]→ R
2 such that p(0) = v,

p(1) = w and p(s) ∈ S for all s ∈ [0, 1].

Proposition 2.3. The set S given by Eq. 6 is path-

connected2.

Proof. Let v, w ∈ S be arbitrary. Define

p(s) = D−1
φ (sDφ(w) + (1− s)Dφ(v)).

Then p is continuous becauseDφ andD−1
φ are, and it clearly

holds that p(0) = v and p(1) = w. Moreover, for any

2Note that while the same result also holds for Gν following
(3), we focus on input convex networks here as this allows us to
smoothly transfer between our experimental settings, see Sec. 4.
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s ∈ [0, 1]:

(Gν ◦ Dφ)(p(s)) = Gν(Dφ(D
−1
φ (sDφ(w) + (1− s)Dφ(v)))),

= Gν(sDφ(w) + (1− s)Dφ(v)),

Gνconvex

≤ sGν(Dφ(w)) + (1− s)Gν(Dφ(v)),

v,w∈S

≤ st+ (1− s)t

= t,

(7)

which shows that p(t) ∈ S.

Remark 2.4. Any smoothly path-connected set with genus

zero can be represented as the zero level set of the composi-

tion of a diffeomorphism and an input convex function.

As we can see in Fig. 1h, even complex (highly non-convex)

shapes such as the shape of a cat can be fitted via a suit-

able deformation of a convex set, resulting in a connected

segmentation of the cat behind the fence of the balcony.

2.5. Union of Constrained Regions

The constraints discussed above are mostly useful for seg-

menting a single foreground object from the background.

Yet, the minimum of multiple implicit representations of

any of the above forms allows forming the union of the

respective geometric constraints in the set S formed as a

lower level set of the resulting function, thus further loosen-

ing restrictions on the particular segmentation. For multiple

objects, the use of multiple implicit representations (possi-

bly along with a penalty that reduces their overlap) might,

however, be more advisable.

2.6. Periodicity

To illustrate an interesting constraint for image segmentation

that is easy to realize via implicit representations, consider

output(x) = θo +
∑

i

θ
(i)
f sin(θ(i)w x+ θ

(i)
b ). (8)

Due to the periodicity of the sine (and consequently also

of the superposition of sine waves), the above results in

a periodic function leading to the level sets also having a

periodic structure.

Shown in Fig. 2a is a perforated metal sheet and a simple

thresholding of the likelihood of holes in the metal sheet

based on brightness. The resulting segmentation is very

accurate but does not allow for any estimate of occluded

holes, e.g. under the yellow paper, or behind the magnet

or the keys. Using an implicit function parameterized via

(8) that was optimized for matching the result of Fig. 2a

only, results - for a suitable threshold - in the segmentation

shown in Fig. 2b. While the contour around each hole is less

(a) Likelihood Thresholding (b) Periodic

Figure 2. Illustrating periodicity in implicit representations.

precise, one can see that all but one hole has been identified

despite the complete occlusions of several neighboring holes

- a result that is very challenging to obtain if the frequency

and orientation of the periodic pattern is unknown (i.e.,

learnable) and not perfectly regular (due to the perspective

distortion in our example). An additional sparsity penalty

on the θ
(i)
f decreases the expressiveness, but increases the

extrapolation capabilities of the resulting segmentation.

2.7. Extensions to Higher Dimensions

All implicit representations for constraining segmentations

that we discussed above extend beyond the usual two spatial

dimensions straightforwardly. While applications are obvi-

ous for the segmentation of 3D objects, e.g. in computerized

tomography images, similar constraints can also be useful

for tracking objects utilizing a spatio-temporal implicit rep-

resentation for the segmentation of objects in a video: Fig. 3

demonstrates the use of the path-connectedness prior over

several video frames of a ball at the beach. Interestingly, the

spatio-temporal representation of the segmentation allows

evaluating the segmentation even for times, for which no

RGB-frame is available. Fig. 3b illustrates the movement

of the object’s centroid super-resolved in time as opposed

to a pixel- and framewise segmentation 3a, which shows a

significantly less smooth behavior.

Furthermore, particular applications could make the use of

convexity constraints in different coordinate spaces useful,

e.g. the segmentation of a plane in a depth image: The

depth values should change linearly with changing (x, y)-
coordinates (leading to a convex object in 3D but not nec-

essarily to a convex region in x and y). Fig. 4 illustrates

the results one gets when training an implicit representation

on predicting the foreground and background values, i.e., 0
and 1, on the given scribbles (marked as green and red lines

for fore- and background, respectively, in the left image)

only. We compare an unconstrained segmentation (similar

to Dröge & Moeller (2021)) with an input convex network

in (x, y, depth)-space. As we can see, suitable constraints

can help to improve the results significantly.
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(a) Naı̈ve

(b) Spatio-temporally Path-connected

Figure 3. Illustration of a spatio-temporal segmentation for the path of the segmentation’s centroid with a naive approach (a), and a

temporally super-resolved version (b) enabled by evaluating the implicit representation at intermediate time steps, leading to a significantly

smoother and more realistic path.

(a) Input Scribbles (b) Without Convexity Constraint (c) With Convexity Constraint

Figure 4. Illustrating the results of the scribble-based segmentation with input scribbles shown on the left, with (right) and without (middle)

convexity constraints in (x, y, depth)-space. In this case, we segment the ground plane to get quite an accurate segmentation.

2.8. Inclusion in Segmentation Pipelines

2.8.1. VARIATIONAL METHODS AND POSTPROCESSING

Classical methods for image segmentation design a model-

based function that computes the likelihood of each pixel

belonging to the foreground, see e.g. Vese & Chan (2002)

for a seminal classical work with very simple likelihood or

Nieuwenhuis & Cremers (2013) for an extension to spatially

varying color histograms for determining the likelihood. A

suitably scaled version of such likelihoods is subsequently

used as a data term in optimization-based approaches to

image segmentation along with a regularizer such as the

total variation (TV) to penalize the contour length. Simi-

larly, researchers have used the prediction of machine learn-

ing methods to construct a data term in optimization-based

methods with additional regularizers, see Dröge & Moeller

(2021) for exemplary work on scribble-based segmentation.

Denoting the function of pointwise unaries by g, a suitable

measure of similarity by d, and a suitable desired regularizer

(such as the TV) by R, implicit representations can easily

be incorporated into variational approaches by phrasing

min
ν

∫

Ω

d(σ(Fν(x)), g(x)) dx+R(Fν) (9)

for F denoting any of the geometrically constraining im-

plicit functions from above, ν denoting its learnable pa-

rameters, and σ denoting a suitable function to map the

function’s predictions to [0, 1], e.g. a sigmoid (although

small additional regularization such as weight decay might

be required to guarantee the existence of minimizers of (9)).

We propose to handle (9) via stochastic optimization, i.e.,

using random points to (Monte-Carlo) approximate the in-

tegral in (9) in every step of the optimization, which we

typically conduct using an ℓ2-squared loss for d, no addi-

tional regularization R and an Adam optimizer (Kingma

& Ba, 2015) for updating ν. Depending on the particular

application, a weighting between fore- and background data

consistency is used to account for occlusions or a systemati-

cally missing foreground likeliness in certain regions of g.

Naturally, a simple way of enforcing constraints on a

learning-based approach as a post-processing step is to op-
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timize (9) for g being the prediction of an (independently

trained) segmentation network.

2.8.2. NEURAL NETWORKS AND DEEP LEARNING

While the inclusion of an implicit representation in varia-

tional methods (or as post-processing) is straightforward via

(9), there are several options for directly including them in a

learning-based approach: First, one can design and train net-

works on predicting the parameters of an implicit represen-

tation (as, for instance, successfully done in (Chen & Wang,

2022)). Yet, the parameters of implicit representations are

rather unstructured and one can not directly benefit from the

large body of research on network architectures for image

segmentation that have worked with pixel-based representa-

tions. Second, one can consider the post-processing (9) as a

final layer of the network and differentiate through the corre-

sponding optimization. Yet, the training becomes a bi-level

optimization problem that is computationally challenging

to handle. Therefore, if geometric information ought to be

incorporated into a segmentation network’s training proce-

dure, we propose to use implicit representations as a soft

penalty instead.

Note that any prediction of a network Nθ working on the

pixel grid of a given image f ∈ R
ny×nx×3 can be inter-

preted as a (piecewise constant) function Nθ(f) : Ω → R.

We propose to phrase the training process on data consist-

ing of pairs of images f i and corresponding ground truth

segmentation ui mathematically as

min
θ

∑

i

(

loss(Nθ(f
i), ui) + β · dist(Nθ(f

i),M)
)

, (10)

where M denotes the set of all functions whose zero level

sets have a desired geometrically constraining property,

e.g. the set of all convex functions. dist denotes the dis-

tance of an element (z := Nθ(f)) to a set, defined as

dist(z,M) = min
g∈M
∥z − g∥, (11)

which consequently assures a projection of z to M . By

approximating the set of all functions with the desired prop-

erties with the implicit representations Fν parameterized

by ν as discussed above, we arrive at an overall training

problem of

min
θ,{νi}

∑

i

(

loss(Nθ(f
i), ui) + β · dist(Nθ(f

i),Fνi)
)

.

(12)

Although the above approach requires keeping track of one

implicit representation, i.e., one set of parameters νi per

training example, the storage overhead is almost negligible

in comparison to the images themselves. In our examples on

PC constraints below, our implicit representation consists

of the composition of a parameterized diffeomorphism with

3,936 parameters and an input convex network with 35,103

parameters, resulting in a total number of 39,043 parameters

versus an RGB-image with a lateral length of 1,000 pixels,

where three million values have to be stored.3

3. Numerical Experiments

We analyze the possible advantages of the proposed frame-

work for two of the above constraints, namely convexity

and path-connectedness, more extensively in the numerical

experiments presented below. All details of our numerical

experiments can be found in the appendix (B, C).

3.1. Convexity Constraints

To investigate the influence of implicit convex representa-

tions numerically, we exploit the scribble-based convexity

dataset (Gorelick et al., 2014). It consists of 51 images

with user scribbles, and (approximately) convex foreground

objects to be segmented.

We adopt the experimental setup of Dröge & Moeller (2021)

for single image scribble-based segmentation with neural

networks and train simple convolutional neural networks

(CNNs) or pixel-wise fully connected networks (FCNs) to

predict the correct label for the labeled (scribbled) pixels.

The input to both types of architectures are RGB values

along with spatial coordinates, semantic features from Ak-

soy et al. (2018), or a combination of both. We test both, the

sequential approach (seq.) of first training a CNN or FCN

on the scribbles, letting it predict a likelihood for each pixel

and then fitting our implicit convex representation (prior)

to the fixed likelihoods, as well as the joint approach (12)

(with a single (scribbled) image only). Table 1 summarizes

the intersection over union (IoU) obtained with the three

different types of inputs to the two different types of seg-

mentation networks (CNN and FCN) in the two cases of

sequential and joint training. The IoU is stated for both, the

original segmentation network as well as for our fitted, prov-

ably convex implicit representation (denoted by ’convex’ in

Tab. 1).

We can see that the implicitly enforced convexity assump-

tion can improve the results, with a joint unification being

superior to a sequential one. Interestingly, the impact of

the convex projection method is significantly larger when

the segmentation network does not receive any spatial infor-

mation, which leads to substantial improvements and is the

best-performing approach by far.

3For simplicity, neglecting metadata and compression, we are
considering an image with one-megapixel resolution, RGB color
channels of bit depth 8 (≈ 1, 0002 ·3 bytes), which is still 4.8 times
more than storing 39,043 parameters as single-precision floating
point numbers with 4 bytes each.
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Table 1. Intersection over Union (IoU) of the foreground object w.r.t the ground truth. We report the result for sequentially fitting an

implicit convex representation to a fixed prediction of a trained network (first row) as well as the use of the implicit convexity prior as a

penalty during training using (12) (second row). All provided numbers are averages over three runs as well as all images of the convexity

dataset. For standard deviation and pixel accuracy values we refer to Tab. 3.
RGB+spatial RGB+semantic RGB+spatial+semantic

CNN / convex FCN / convex CNN / convex FCN / convex CNN / convex FCN / convex

seq. 0.697 / 0.763 0.732 / 0.711 0.726 / 0.843 0.714 / 0.851 0.778 / 0.766 0.736 / 0.746
joint 0.798 / 0.799 0.755 / 0.756 0.818 / 0.899 0.635 / 0.894 0.805 / 0.809 0.768 / 0.769

We exemplify the effect of the projection as well as the joint

training qualitatively in Fig. 5: While the original segmen-

tation Nθ is highly scattered (b), an implicit input convex

projection yields the segmentation of the main convex ob-

ject (c). Joint training allows both representations to find an

agreement leading to even more accurate contours (d).

3.2. Path-Connected Constraints

For the numerical evaluation of our path-connected (PC)

constraint or prior, we consider the problem of motion seg-

mentation and adopt the experimental setup by Kardoost

& Keuper (2021) in which sparse labels are created via a

multicut approach (Keuper et al., 2015a) on the estimated

motion of objects in a video. The resulting clusters are sub-

sequently densified using a UNet (Ronneberger et al., 2015)

on the previously found labels. We evaluate the use of im-

plicit representations for our PC prior on the sequences (18

in total) from the FBMS-59 dataset (Brox & Malik, 2010;

Ochs et al., 2013) where the baseline implementation (Kar-

doost & Keuper, 2021) segmented single objects. Similar

to the above, we study the use of a sequential fitting of the

implicit representation to precomputed labels as well as a

joint training via (12). Averaging the IoU over all frames

of all 18 videos, we find that the sequential enforcement

of PC yields a gain of about 1% in IoU, while the joint

training gains about 2% IoU over the baseline. Looking at

the results for the different videos in more detail (see Tab.

4 in the supplementary material for all 18 sequences), it is

insightful to see that in some cases, where the PC segmen-

tations have a worse IoU are due to the ground truth not

annotating occlusions as part of the object, c.f. Fig. 6.

4. Limitations and Trade-Offs

One trade-off of the continuously defined implicit represen-

tations and geometric constraints they enforce is that prop-

erties like path-connectedness can be satisfied via infinitely

thin connections that get lost when visualizing results by

evaluating the implicit representation on a discrete grid (see

Fig. 14 in the appendix). Closely related, minimizers of the

fitting costs might not exist as the minimization converges

to infinitely thin connections between regions that the costs

prefer to be unconnected. To prevent such behavior, stabi-

lizing mechanisms like the use of ℓ2-squared regularization

(weight decay) are necessary. Interestingly, a parameter-

ized diffeomorphism with all parameters being equal to zero

represents the identity, such that the corresponding weight

decay acts as a trade-off parameter between fitting even thin,

highly non-convex regions (such as legs of a horse) and

preventing unwanted thin connections between essentially

disconnected regions: Fig. 7 demonstrates that an increasing

weight decay parameter allows to smoothly transfer from

an almost arbitrary connected (expressive but fragile) to a

convex (less expressive but highly robust) region.

We proposed to use our constraints in applications where

data is scarce such that usual data-driven approaches tend

to produce undesired results. Nevertheless, a discussion

on using our approach with SOTA data-driven models on

non-binary segmentation tasks and large datasets might be

insightful. In general, our constraints can be used with any

unaries or model Nθ as described in 2.8.2. Above, we were

limiting ourselves to one object per image, e.g. one set of

parameters νi per image i, while an extension to multiple

objects is in principle straightforward. The problem of seg-

menting an image into j-many (not necessarily disjoint)

regions can be decomposed into j binary segmentation prob-

lems. Further, (12) needs to be altered by iterating over all

j binary segmentations using per object weights νi,j for the

implicit representation Fνi,j in the regularizer. If one wants

to evaluate on large segmentation datasets, the choice of

a suitable constraint is of great importance. Our proposed

constraints differ significantly in their expressivity and the

amount of objects they can adequately represent. Unfor-

tunately, the PC constraint which is the weakest but most

expressive one, can lead to less optimal results when the

ground truth in datasets is often not even connected (Fig. 6).

Thus, one can either accept this potential performance loss,

e.g. if the unaries are already scattered and thus the con-

straint still adds value (Fig. 5, 15, 18, 19), or one must

assure the constraint is valid within the examples.

5. Related Work

Discrete Perspectives on Image Segmentation In par-

allel to the continuous relaxation approaches described in

Sec. 2.8.1, discrete perspectives (typically exploiting min-

cut/max-flow algorithms (Boykov & Kolmogorov, 2004))

7
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(a) Scribbled Image (b) Segmentation (c) Sequential Convex Fitting (d) Joint Training

Figure 5. Qualitative results of a FCN segmentation, trained on scribbles (a) with RGB input and semantic features. In (b), the learned

segmentation is given, which is very scattered, due to the lack of spatial information, while its convex projection (c) fits the balloon quite

well. We get an even better segmentation using the joint training approach (d).

UNet
PC Prior
Ground Truth

Figure 6. Ground truth annotations, baseline network prediction,

and implicitly connected segmentation of one frame of the ”cats05”

sequence. In this case, the ground truth does not indicate a con-

nected object - which contradicts our PC constraint. Accordingly,

the prior with 57.8% IoU is inferior to the segmentation network

(62.3%). Despite the IoU drop of 4.5%, it is application-dependent

which of the segmentations are preferable.

were developed such as the seminal graph cuts (Boykov &

Jolly, 2001) or grab cuts (Rother et al., 2004). Their underly-

ing costs are similar to classical work (Vese & Chan, 2002)

with a stronger perspective on images as graphs and the total

variation prior typically being anisotropic. Extensions to an

unknown number of regions, for instance, involve multicut

approaches, c.f. Andres et al. (2011); Keuper et al. (2015a).

Implicit Representations Implicit representations al-

ready have many applications in computer vision after (Sitz-

mann et al., 2020; Tancik et al., 2020a) showed their effec-

tiveness. These were initially realized as fully connected

neural networks, while later works substituted these for per-

formance reasons, for example (Fridovich-Keil et al., 2022;

Kerbl et al., 2023). Notable is OmniMotion (Wang et al.,

2023) as they also use an implicit volume representation

with a diffeomorphism for their tracking, as we do for the

realization of our PC prior, but without the guarantee of

path-connectedness. Furthermore, Neural Radiance Fields

(NeRF) (Mildenhall et al., 2021) are also similar due to their

volume representation of the scene, but their area of applica-

tion is different and they do not guarantee any constraints.

There are only a few works that combine implicit represen-

tations with segmentation. Two notable exceptions exist

in the medical context for resolution-independent represen-

tations of segmentations (Stolt-Ansó et al., 2023; Khan &

Fang, 2022), but none of them use nor guarantee geometric

constraints.

Geometric Constraints on Segmentation Geometric

constraints such as path-connectedness or convexity of the

shape to be segmented have received significant attention:

Early works using segmentation representations via a poly-

gon representing the boundary of the objects such as snakes

(Marcos et al., 2018; Cheng et al., 2019) implicitly satisfy

the PC constraint, but are prone to get stuck in bad local

optima or using multicuts and being in an NP-hard formula-

tion (Royer et al., 2016). Yet, similar representations have

gained recent attention in the context of convexity priors ex-

ploiting orientation-based lifting (Chen et al., 2021; 2023).

Level-set functions have been made topology-preserving

by preventing local changes that would alter the topology

(Han et al., 2003), yet consequently also have difficulties

overcoming local minima. Alternative approaches for the

convexity of a level-set-based segmentation are curvature-

based penalties that are incorporated into a minimization

based on the alternating direction method of multipliers

(ADMM) (Luo et al., 2019).

More recent approaches work on discretizations of the vari-

ational method (Vese & Chan, 2002), e.g. using a heuristic

for projecting onto convex sets characterized via a certain

condition about the convolution with circular kernels (Liu

et al., 2020), or characterizing the numerical computability

of convex shape priors (Luo et al., 2023).

The property of an object being star-convex is frequently

discussed in cell detection, segmentation, and accurate vol-

ume calculation, e.g. the StarDist (Schmidt et al., 2018;

Weigert et al., 2020), and further enhanced by addressing

overlapping objects (Walter et al., 2021). To overcome the

lack of labeled samples in the microscopy domain, (Dey

8
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(a) α = 1 · 10−6 (b) α = 5 · 10−4 (c) α = 5 · 10−3

Figure 7. PC prior with different weight-decay penalties α on the diffeomorphism.

et al., 2024) proposed a framework to generate synthetic

data for star-convex 3D instance segmentation networks.

The mirror symmetry constraint has been used in combi-

nation with segmentation models, for example, in the re-

cent SymmNeRF (Li et al., 2022) or SymmSLIC (Nagar

& Raman, 2017) which is an extension of the superpixel

segmentation approach SLIC (Achanta et al., 2012). Both

approaches were able to achieve improvements compared to

their baseline insofar as their symmetry condition applies.

The use of a PC constraint in image segmentation has been

studied in various domains - like medical (Rempfler et al.,

2016) or robotics (Milioto et al., 2019) - and in combina-

tion with various models. Early works as (Andres et al.,

2011), later extended in (Keuper et al., 2015b; Levinkov

et al., 2017) using probabilistic models or rely on graph cut

segmentations, e.g. in Isack et al. (2016; 2018), which were

also proven to be NP-hard.

Naturally, PC constraints also occur in the area of object

tracking, often addressed with disjoint path models (Hor-

nakova et al., 2020). The constraint proves to be benefi-

cial, as it prevents label flipping and thus enables more

stable tracking. In the area of scribble-based segmentation

(Shen et al., 2020) and panoptic segmentation (Shen et al.,

2022), the path-connectedness combined with a superpixel

approach was implemented, leading to a more robust ap-

proach.

Constraints in the Era of Foundation Models Recent

foundation models such as SAM (Kirillov et al., 2023) or

SEEM (Zou et al., 2024) have considerably improved the

image segmentation task due to their data-driven approaches.

In some cases, however, they may fail or not be the appro-

priate method of choice4. Suppose one considers a volume-

preserving segmentation, as in Fig. 8a where we try to seg-

ment a tomato occluded by its leaf petioles with a single

point prompt (green) using SAM. In such case, occlusions

should be part of the segmentation, while SAM divides it.

Opposingly, the convex projection (Fig. 8b) of the SAM

4Two further challenging scenarios are given in appendix A.

unaries leads to a better segmentation. From a robustness

perspective, SAM may yield a scattered segmentation. For

illustration, we prompted SAM on the clean image of a

globe (Fig. 8c) producing already a scattered segmentation

(blue), which becomes even worse when we apply a small

brightness corruption of severity 1 (Hendrycks & Dietterich,

2018) as shown in Fig. 8d. The convex projection (orange)

yields a better, connected segmentation in both cases. While

both problems may be solved by human supervision and

suitable prompt selection, geometric constraints can be es-

sential in their absence.

(a) SAM (b) Convex

(c) Clean Image (d) Corrupted Image

Figure 8. Segmentation of SAM and its convex projection in an

occlusion and corruption scenario.

6. Conclusions

This work is the first to study the use of implicit representa-

tions in image segmentation to (provably) enforce geometric

constraints. We highlighted the versatility of the approach,

provided different architecture templates for different con-

straints, and evaluated the (small but systematic) benefits of

enforcing constraints in several numeric experiments, which

suggest that the direct inclusion of constraints into the net-

works’ training has advantages over a sequential fitting.

9
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Supplementary Material

The supplementary material will go into more detail about our Motivation A and the experiments we conducted. As we

mainly carried out our experiments concerning the convexity and path-connectedness, we will have a detailed discussion

in the sections B and C respectively. The code used for all experiments is provided at https://github.com/

jp-schneider/awesome.

(a) Convex Representation (b) Path-connected Representation

Figure 9. Super-sampled implicit convex and path-connected representation. The output of Fν without sigmoid is displayed as a surface,

the intersection with the image represents the segmented foreground.

A. Challenging Scenarios for SOTA Segmentation Models

As discussed in Sec. 5, foundation models like SAM may produce unwanted results or fail in occlusion and corruption

scenarios. Further problems are out-of-distribution prompts and prompt ambiguity. If one has user scribbles at hand, like the

ones proposed in the convexity dataset (Gorelick et al., 2014) (Fig. 10a) they can not be used to prompt SAM directly, as

SAM will produce a scattered result (Fig. 10b). This is most likely due to an out-of-distribution prompt.

The automatic selection of one or more points from the scribble set is also difficult due to the ambiguity of the point prompts.

Clicking on a country on the globe may mean only one country in conjunction with the entire globe (Fig. 10c), whereby two

clicks without human supervision do not necessarily lead to a segmentation of the whole globe (Fig. 10d).

A prior known constraint as the globe is round (or convex) that is enforced on the segmentation may lead to a reduction in

ambiguity and an increase in segmentation performance.

We have already introduced the problem of SAM in a corruption setting in Sec. 5. To analyze this quantitatively, we query

SAM with a random foreground-scribbled point as a prompt, due to its failure when using full scribbles. Yet, even using

the corruptions proposed in (Hendrycks & Dietterich, 2018) on the convexity dataset yields challenging cases for SAM.

Projecting the results onto our implicit convex representation yields a small but systematic improvement as shown in Tab. 2.

Interestingly, even without corruptions, using a foreground-scribbled point as a prompt in SAM cannot compete with a joint

training of a simple network with semantic features and our implicit convex representation (Tab. 1).
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(a) Globe image and user scribbles (b) SAM result, when prompted with scribbles in (a)

(c) SAM result with one positive click-prompt (green) (d) SAM result with two positive click-prompts (green)

Figure 10. Out-of-distribution and non-well-defined prompts lead to unintended results in SAM.

Table 2. IoU for SAM (first row) and the convex projection (second row) in the case of additional corruptions (Hendrycks & Dietterich,

2018). A severity value of 5 is used to corrupt the images. Results are averaged across three random seeds.
Model Clean Spatter Contrast Brightness Impulse Shot Noise Gaussian Noise Defocus Blur Glass Blur

SAM 0.7275 0.5627 0.6489 0.6456 0.5330 0.6298 0.6246 0.7333 0.7187
proj

S
(SAM) 0.7407 0.5817 0.6597 0.6516 0.5504 0.6371 0.6357 0.7426 0.7321

B. Convexity Prior

We conducted the numerical experiments mainly on the convexity dataset (Gorelick et al., 2014)5, where we trained the

non-convex predictor Nθ using inference learning, e.g. having a separate set of parameters ν for every training example

also for our Nθ. For a training example, we can refer to Fig. 9a, which also contains the implicit representation of the prior

network Gν . The architectures used, including our training scheme, are described below.

B.1. Architectures

We evaluate two different segmentation networks Nθ proposed by Dröge & Moeller (2021), i.e., a fully connected neural

network (FCN) and a convolutional neural network (CNN).

The FCN performs its segmentation pixel-wise, with an input of shape R
(nx·ny)×nc , whereby nc contains RGB values and

further pixel information, based on the selected input feature setting; nc = 5, for RGB and spatial information ω, the same

for RGB and semantic information ξ (Aksoy et al., 2018), and further nc = 7, for RGB with spatial as well as semantic

information. The FCN consists of 5 linear layers, with ReLU activations, respectively, and a width of 16.

5The convexity dataset is available at https://vision.cs.uwaterloo.ca/data/.
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On the other hand, the CNN operates on the full image of size R
nx×ny×nc , consisting of 4 convolutional layers with kernel

size 3, width 16, and Leaky ReLU activation function.

Our input convex neural network Gν (Amos et al., 2017) is defined by 3 linear layers with a width of 130 and ReLU

activations, and using pixel-wise spatial coordinates as input ω ∈ R
2. We additionally incorporate linear layer skip-

connections (without bias), whose outputs are added in a point-wise manner to the respective output of the Gν layer outputs.

Lastly, to ensure the positivity of the output of each layer, which is crucial to form a convex region, the weights of the layers

are altered using a ReLU function after each optimization step.

B.2. Training Variants

We divide the training schemes into two sections, the joint training in which we train Nθ and Gν simultaneously and the

sequential training in which Nθ is projected onto Gν by fitting Gν to unaries given by Nθ.

Joint Training For the training of our networks in a joint fashion, we use a binary cross entropy loss as a data term for Nθ

and our proposed convexity regularizer (12). As data in the convexity dataset (Gorelick et al., 2014) is scarce, e.g. the set of

scribbled pixels s ∈ [0, 1] in one image (f ), whereby 0 denotes foreground and 1 background, one can evaluate the data

term only within these. Yet, this could lead to an optimum of the smallest convex region around the foreground scribbles. To

prevent this, we evaluate our regularizer on random pixels r in the case of FCN and on all pixels of the image when using

the CNN. Preliminary work (Dröge & Moeller, 2021) has shown that an additional regularization concerning the RGB color

channels (c), or spatial inputs can be beneficial. Therefore, we consider for the CNN a mean gradient regularization of these

input parts for the sum of our segmentation network output (e.g. segmentation u), resulting in a combined cost function (13),

with f concatenating all information, i.e., c, ω, ξ. Note: We will omit writing σ(Nθ) and σ(Gν), for σ being the sigmoid

function, for all occurrences of Nθ and Gν for better readability.

Ljoint = argmin
θ,ν

BCE(Nθ(fs), s) + BCE(Gν(ωs), s) + α ·MSE(Gν(ωr),Nθ(fr))

+β

P
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∥

∥

∂Nθ

∂ωi

(cs,r, ωs,r, ξs,r)

∥

∥

∥

∥

,

(13)

with α being an additional hyperparameter for our proposed convexity regularization method. The additional hyperparameter

β influences the decision boundary for the RGB information, γ is the penalizer for the spatial decision boundaries. The

networks were trained using Adam optimizer with a learning rate of 0.02 for 3,000 optimization steps per image. For the

first 200 steps, we set α = 0, to train both networks, Nθ,Gν , individually without regularization effects. This allows the

networks to first individually predict stable segmentation before further joint optimization. Also with the start of joint

training, we decrease the learning rate to 0.002. We set β and γ to 0.01. The joint loss function (13), is defined with the

training for RGB, spatial and semantic features (Aksoy et al., 2018). Following Dröge & Moeller (2021), we also performed

training runs with RGB and spatial, as well as RGB and semantic features, respectively. If spatial features are not used for

optimization, the corresponding regularization term is omitted (γ = 0). For the FCN, we only use the joint regularization

term but no gradient regularization (β = 0, γ = 0); the other parameters are also consistent.

Sequential Training For the sequential training, we use the same models and parameters as for joint training. The

difference to the previously mentioned joint training is that the segmentation model is trained first and afterward its output

is projected onto the convex set by fitting the convex network. We use Lseq (14) and Lcvx (15) as loss functions for the

respective networks, similar to the one stated in (13). The training procedure is also the same, except that we are keeping the

learning rate constant over the whole training time.

Lseq = argmin
θ

BCE(Nθ(fs), s) + β
1

p
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(14)
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Lcvx = argmin
ν

BCE(Gν(ωs), s) + α ·MSE(Gν(ωr),Nθ(fr)). (15)

B.3. Extended Experimental Results

In addition, to the results presented in Tab. 1, we report these again in an extended form. Tab. 3 lists also the standard

deviation and the pixel accuracy for the various input types and networks. Furthermore, we have visualized the training

results in Fig. 11.

FCN
semantic

FCN
spatial

+ semantic

CNN
semantic

CNN
spatial

+ semantic

0.0

0.2

0.4

0.6

0.8

Io
U

Seg.

Convex Seg.

Joint Seg.

Joint Convex Seg.

Figure 11. Experimental results w.r.t different input schemes. The convex segmentation outperforms the normal segmentation when using

semantic features. In all cases, joint training with the convex segmentation (dashed orange bar) works best. All numerical results of these

experiments are also listed in Table 3.
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Table 3. Segmentation results using different network types and their convex projection, as well as joint training of segmentation and input

convex neural network. We report the mean, as well as the standard deviation, over three differently seeded runs. The intersection over

union (IoU) as well as the pixel accuracy (Acc.) are calculated as the mean over each foreground object within the images in the used

dataset. See also Fig. 11 for a bar plot.

Training Type Segmentation Model Additional Input IoU ↑ Acc. ↑

Individually Trained

Predicted Seg.

CNN

spatial 0.697 ± 0.066 0.903 ± 0.028

semantic 0.726 ± 0.014 0.929 ± 0.006

spatial and semantic 0.778 ± 0.019 0.937 ± 0.005

FCN

spatial 0.732 ± 0.010 0.928 ± 0.003

semantic 0.714 ± 0.010 0.929 ± 0.003

spatial and semantic 0.736 ± 0.009 0.928 ± 0.003

Convex Seg.

CNN

spatial 0.763 ± 0.013 0.934 ± 0.006

semantic 0.843 ± 0.012 0.965 ± 0.004

spatial and semantic 0.766 ± 0.022 0.935 ± 0.007

FCN

spatial 0.711 ± 0.019 0.921 ± 0.006

semantic 0.851 ± 0.008 0.967 ± 0.002

spatial and semantic 0.746 ± 0.021 0.931 ± 0.005

Jointly Trained

Predicted Seg.

CNN

spatial 0.798 ± 0.004 0.943 ± 0.001

semantic 0.818 ± 0.012 0.957 ± 0.003

spatial and semantic 0.805 ± 0.014 0.946 ± 0.003

FCN

spatial 0.755 ± 0.013 0.931 ± 0.004

semantic 0.635 ± 0.008 0.898 ± 0.006

spatial and semantic 0.768 ± 0.003 0.935 ± 0.002

Convex Seg.

CNN

spatial 0.799 ± 0.005 0.944 ± 0.001

semantic 0.899 ± 0.002 0.978 ± 0.000

spatial and semantic 0.809 ± 0.015 0.948 ± 0.004

FCN

spatial 0.756 ± 0.006 0.932 ± 0.001

semantic 0.894 ± 0.013 0.977 ± 0.002

spatial and semantic 0.769 ± 0.010 0.936 ± 0.003

B.4. Convexity Comparison Method

In the main part of our manuscript, we did not mention a quantitative comparison method for the convexity prior. For a

comparable method in getting convex segmentations that made us their code available (Chen et al., 2021), we retrieved par-

tially non-convex results. The authors also report this behavior in a subsequent manuscript (Chen et al., 2023). Accordingly,

we did not include this method in the comparison with our provably convex method. In Fig. 12 we state some non-convex

results, generated by the method of Chen et al. (2021) (right) in comparison to our convexity projection method (left). The

non-convex parts are indicated by a blue dashed line whereas our method achieves the expected provable convex result.
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Figure 12. Comparison of our convex segmentation prior (left) vs. the convex segmentation proposed by (Chen et al., 2021) (right). Within

these images, we illustrate paths that are violating the convexity in blue.

C. Path-Connected Prior

As already mentioned in section 3.2, we evaluate the path-connected (PC) prior on a subset of the FBMS-59 dataset, on

sequences for which we have received both the multicut trajectories with uncertainties and pretrained UNet models from

Kardoost & Keuper (2021) An illustration of the PC prior on one image of the horses01 sequence can be seen in Fig. 9b.

C.1. Architectures

Since we use the implementation from Kardoost & Keuper (2021) as the segmentation network Nθ, we focus on describing

the details of the diffeomorphism Dφ in combination with the convex network Gν resulting in the path-connected prior Pφ,ν .

In addition, we use a learnable and linear transformation Tφ, which allows us to easily shift the implicit representation.

Accordingly, since the linear transformation does not affect (7), the PC prior can be expressed as a composition Pφ,ν(ω) =
Gν ◦Dφ ◦Tφ. For Gν we stick to the implementation in B.1 and Tφ can be implemented using an invertible 1 x 1 convolution.

The input ω ∈ R
2 are the normalized spatial coordinates of the image pixels.

As diffeomorphisms are used within the area of normalizing flows, Real NVP (Dinh et al., 2017; Stimper et al., 2023) is a

straightforward architecture choice. The multi-layer perceptrons for scale and translation mapping are configured with a

width of 32, a hidden layer, leaky-relu activation, tanh as an output function, and zero initialization. Other settings were kept

to the library defaults (Stimper et al., 2023). After every flow block, we use the data-dependent ActNorm layer, as described

in Glow (Kingma & Dhariwal, 2018), to normalize the block output. We repeat this combination of Real NVP block and

ActNorm 12 times, alternately transforming our input dimensions ω, respectively the x and y pixel coordinates.

C.2. Training Variants

Similar to B.2, we also specify the two training variants below. However, we do not train the segmentation UNet Nθ for the

sequential fitting ourselves but use the pretrained models provided. But, unlike to B.1, Kardoost & Keuper (2021) used an

RGB image in combination with an edge mask as input f ∈ R
4.

Sequential Training The training of the PC prior for the first image within a sequence can be divided into three steps.

Firstly, we need to ensure that Dφ approximately represents the identity transformation.

Secondly, we optimize Pφ,ν only for ν using the Adam optimizer with a learning rate of 1 · 10−3 and 1,000 optimization
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steps on Lpc seqc. This results in a Pφ,ν with an approximately convex fit on the unaries.

Thirdly, we optimize Pφ,ν for ν and φ together, but now with an Adamax optimizer, a learning rate of 1 · 10−3 and a weight

decay of 1 · 10−5 on Dφ for 4,000 optimization steps on Lpc seqp
6. This results in a good fit of the prior to the first frame of

a sequence Fig. 19. We can now simplify the creation of priors for the remaining images in the sequence.

The difference between two consecutive images is usually very small and predominantly a rigid transformation of the object

with minor small, non-rigid transformations. Therefore, it is useful to initialize with the previously generated weights (φ, ν)

for every new image. We then train only 400 optimization steps on Lpc seqp for each subsequent image, which is sufficient

to learn the rigid motion and encode also slight non-rigid transformations, and generate a good fit over the entire sequence.

Likewise, this approach allows us to control how many non-rigid transformations we tolerate within each image, as the linear

transformation Tφ of the coordinate system (rigid transformation) is much faster to learn than a non-rigid transformation

that has to be represented by Dφ.

Lpc seqc = argmin
ν

MSE(Pφ,ν(ω),Nθ(f))

Lpc seqp = argmin
φ, ν

MSE(Pφ,ν(ω),Nθ(f))
(16)

Note: We also omitted and will further omit writing σ(Nθ) and σ(Pφ,ν), for σ being the sigmoid function, for all occurrences

of Nθ and Pφ,ν for better readability.

Joint Training We assume for the joint training that our models Pφ,ν and Nθ have already performed the sequential

training or have pretrained weights. Therefore, we assume that a representation of the object already exists in both networks

and that we only need to fine-tune the representations. To address this, we define a loss based on a weighted combination of

our path-connected projection, and the loss function in Kardoost & Keuper (2021) which we denote now as Lmulticut
7 (17).

Lpc joint = argmin
φ, ν, θ

Lmulticut(Nθ(fs), s) + α ·MSE(Pφ,ν(ω),Nθ(f))

α =

{

Lmulticut(... )
MSE(... ) if (MSE(. . . ) > Lmulticut(. . . ))

1 else

(17)

Whereby the α parameter is used to implement soft clipping, e.g. dynamically weighting the MSE projection loss to a

maximum of the actual weak label loss, so that the latter will be the dominant factor. Using (17) we finetuned the UNet and

our prior using the Adam optimizer for 15 epochs with a learning rate of 1 · 10−4.

It should be noted that for training a network jointly over several images, as usual in normal deep learning pipelines and

frameworks, the prior weights must be adjusted in each case. Before each forward pass of the model, the corresponding

implicit representation must therefore be loaded and saved again after an optimization step so that the next image can be

evaluated. This creates an overhead whose effects must be evaluated in future work. We also limit ourselves to a batch size

of 1, although a representation of several implicit representations is technically possible.

C.3. Extended Experimental Results

C.3.1. QUALITATIVE AND QUANTITATIVE EXAMPLES

As we have seen in Fig. 6 the ground truth annotations of a partly-occluded object can result in a lower IoU using our

proposed PC prior on image segmentation, which by definition includes the occlusion into the segmentation. Therefore, it is

important to evaluate and analyze the resulting segmentations individually.

6The use of the Adamax optimizer with infinity norm and weight decay proved to be suitably robust to us and still were able to fit
complex shapes reasonably well. Without the infinity norm and weight decay, the training was much less stable (Fig. 7).

7
Lmulticut can be described as a specially weighted BCE loss, which only evaluates on pixels that are covered by a multicut trajectory

s ∈ [0, 1] denoting foreground or background. These are acting as weak labels in this setting, similar to the scribbles in B.2.
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Table 4. Results on all 18 sequences from the FBMS-59 dataset with and without our proposed PC prior in both, a sequential and joint

training approach. We report the mean over 3 training runs.

Sequential Joint

IoU ↑ Acc. ↑ IoU ↑ Acc. ↑

Sequence UNet Prior UNet Prior UNet Prior UNet Prior

bear01 0.840 0.834 0.988 0.988 0.838 0.820 0.988 0.987

bear02 0.803 0.802 0.968 0.968 0.758 0.804 0.951 0.968

cars2 0.559 0.572 0.964 0.967 0.606 0.617 0.970 0.973

cars3 0.779 0.880 0.986 0.992 0.885 0.887 0.992 0.993

cars6 0.718 0.766 0.990 0.992 0.791 0.808 0.993 0.994

cars7 0.691 0.693 0.988 0.988 0.775 0.751 0.992 0.991

cars8 0.771 0.770 0.977 0.977 0.793 0.784 0.980 0.979

cats04 0.714 0.763 0.991 0.992 0.769 0.760 0.995 0.993

cats05 0.607 0.571 0.971 0.969 0.406 0.534 0.964 0.969

horses01 0.872 0.849 0.990 0.989 0.856 0.845 0.988 0.988

horses03 0.737 0.744 0.941 0.941 0.728 0.761 0.937 0.947

marple1 0.709 0.710 0.873 0.872 0.705 0.733 0.868 0.887

marple10 0.014 0.020 0.261 0.253 0.023 0.020 0.452 0.222

marple11 0.732 0.800 0.987 0.990 0.742 0.774 0.989 0.990

marple5 0.615 0.615 0.945 0.945 0.688 0.622 0.962 0.946

meerkats01 0.616 0.617 0.980 0.980 0.546 0.656 0.978 0.983

people04 0.843 0.843 0.992 0.992 0.834 0.845 0.993 0.992

rabbits01 0.816 0.806 0.991 0.990 0.816 0.791 0.993 0.988

On the other hand, it is possible that our PC prior indeed segments the non-occluded parts but also generates a thin line

between these segments due to the path-connectedness assumption. Figure 13 shows a frame of the cats05 sequence in

which this behavior is visualized. Further, we state in Fig. 14 that the diffeomorphisms can become unconnected in discrete

R
2.

UNet
PC Prior
Ground Truth

Figure 13. Ground truth annotations, baseline network prediction, and implicitly connected segmentation of one frame of the cats05

sequence, after a sequential fit (left) and joint training (right). In this case, the ground truth does not indicate a connected object - which

contradicts our path-connected constraint. Accordingly, the prior with 72.3% IoU is inferior to the segmentation network (73.8%).

We further exemplify in Fig. 15 the importance of a reasonable prior for a good segmentation. The left plot shows the

sequential fit, where the car in the background is also segmented, though having a background label. The right plot shows

the improvement in segmenting the as foreground labeled car, i.e., the white car, when we jointly train the UNet and our PC

prior. Also note here, that we improve the segmentation noticeably (≈ 11% over baseline), especially in the car sequences

(see Tab. 4 cars sequences). One reason is that the segmentation network produces a non-path-connected segmentation in

some cases of several objects (here cars), although only one car needs to be segmented. This is illustrated in Fig. 19.

20



Implicit Representations for Constrained Image Segmentation

UNet
PC Prior

Figure 14. As our PC prior is only path-connected in continuous R2 this may not hold for discrete R
2, visible as the orange prior outline

is unconnected.

UNet
PC Prior
Ground Truth

Figure 15. Example of positive impact of the PC prior on the cars3 sequence, showing the sequential fit (left) and the joint training result

(right).

C.3.2. VISUALIZING DIFFEOMORPHISM DEFORMATIONS

Since the composition of Dφ, representing a deformation of the coordinate system, and the convex network Gν , presents a

path-connected region, we will also visualize what this transformation looks like. In Fig. 16 we present several visualizations

of a sequentially fitted frame of the horses01 sequence.

In (a) we evaluated the convex prior on a regular grid, without shifting or deforming it through the diffeomorphism.

Accordingly, this is what the Gν learns to represent; a convex shape of the horse. We furthermore plotted grey gridlines

every 10 pixels and colored these on the image edges, to visualize the relation of the image dimensions and the underlying

regular coordinate system. Using these gridlines, we can further illustrate how the Dφ in (b) stretches the regular coordinate

system and deforms it both globally and locally, after joint training. To better illustrate which regions in the convex output

with regular grid belong to the output of Pφ,ν , we have colored the foreground according to semantic parts (c) and displayed

these regions by in-painting in (d)8.

8Since the diffeomorphism can scale the output, the displayed mapping may be scattered. Although we could overcome this since our
model is resolution invariant, we preserve the deformations in this visualization since they also represent the applied deformations.
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(a) Output of Gν on a non-deformed grid
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(b) Grid deformation of the diffeomorphism Dφ

(c) Semantically colorized foreground (d) Semantically colorized foreground inpainted in the non-deformed
output of Gν

Figure 16. The diffeomorphism deforms the regular input grid (a) intensely (b) to fit the given explicit segmentation. For a better

illustration of the deformation, we generated semantic masks of the predicted foreground in (c) and inpainted their corresponding location

within the output of Gν in (d).
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C.3.3. SPATIO-TEMPORAL PATH-CONNECTED PRIOR

Figure 17. Spatio-temporal PC prior along a sequence of images, when super-resolving the prior in time. t on the z-axis is annotated as

the frame index of existing images within the sequence.

We illustrated the ability to use the PC prior over several frames in Sec. 2.7, Fig. 3b. The prior can also be applied in the

context of the FBMS-59 motion segmentation dataset, to represent the spatio-temporal connectedness of an object like a car

from the sequence cars3. We use the sequential approach as described in C.2, and add the (normalized) time t to our input

ω ∈ R
3. Correspondingly, the parameter ν usage changes from one set of parameters per image to one set of parameters for

an image sequence.

We also change the combination of masks for the scale and translation mapping of each Real NVP block (within our

diffeomorphism network Dφ) in order to transform each combination of the three dimensions the same number of times.

This will enable the PC prior to learn rigid and non-rigid motion, in space and time. Further, we can super-resolve time

frames with the prior, by running inference on intermediate (or past and future) time stamps for unseen t.

We visualized this prior-based interpolation in Fig. 17. The prior was trained on the UNet unaries for the 19 images within

the sequence, the intermediate steps are super-resolved. As time passes, the rigid motion of the car to the right of the image

is clearly visible, ending at frame 11. Afterwards, the camera tilts significantly to the right, following the car, which is

visualized as a slight movement to the left. Also mentionable is the non-rigid transformation caused by the increasing

occlusion of the truck by another car.

C.3.4. BENEFITS OF A SPATIO-TEMPORAL PATH-CONNECTED PRIOR

The question may arise: What kind of benefit lies in using a PC prior which is also spatio-temporal?

One assumption for a spatio-temporal prior could be, that it is more robust to noisy frames on some training examples.

To this end, we experimented on the cars3 sequence to investigate the extent to which such a prior can be influenced by

replacing some unaries with complete noise. Accordingly, we created 6 scenarios in which we replaced 0 to 60 % of the

unaries, i.e., synthetic outputs of Nθ, with random noise and trained a prior as described above.

The results are stated in Tab. 5. If the amount of noisy frames is rather small, up to 20 % corresponding to 4 frames within
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the 19 frames sequence, the prior can still keep the shape on noisy frames well, resulting in a decrease of just 3 % IoU. With

a larger amount of noise, the IoU drops significantly.

Table 5. Spatio-temporal PC prior trained on scenarios with different amounts of labels replaced by pure noise. We state the IoU against

the actual non-noisy unaries to indicate the fitting as a mean over three runs.

Label Noise IoU ↑

0 % 0.826

10 % 0.799

20 % 0.796

30 % 0.527

40 % 0.514

50 % 0.186

60 % 0.189

In Fig. 18 we visualize the 20 % noisy setting of the actual frames 10 to 15 and also super-resolve the frames in between.

The noisy frames are in this case 5, 12, 13, and 16. Accordingly, 12 and 13 are displayed in the figure. Yet, we can see that

the prior is still able to perform a reasonable fit to the car, despite being fitted to the noisy unaries, and also performing a

reasonable super-resolution in time in between.
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Figure 18. Spatio-temporal PC prior, when trained on unaries which partially (20 %) replaced by pure noise. The frames shown are index

10 to 15 of the cars3 sequence, with the white images showing a temporal super-resolution based on the prior between those frames.
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UNet
PC Prior
Ground Truth

Figure 19. All ground truth frames of the cars3 sequence with UNet segmentation and PC prior.
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