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Abstract
Learning in deep weight spaces (DWS), where
neural networks process the weights of other neu-
ral networks, is an emerging research direction,
with applications to 2D and 3D neural fields
(INRs, NeRFs), as well as making inferences
about other types of neural networks. Unfortu-
nately, weight space models tend to suffer from
substantial overfitting. We empirically analyze
the reasons for this overfitting and find that a key
reason is the lack of diversity in DWS datasets.
While a given object can be represented by many
different weight configurations, typical INR train-
ing sets fail to capture variability across INRs that
represent the same object. To address this, we
explore strategies for data augmentation in weight
spaces and propose a MixUp method adapted for
weight spaces. We demonstrate the effectiveness
of these methods in two setups. In classification,
they improve performance similarly to having up
to 10 times more data. In self-supervised con-
trastive learning, they yield substantial 5-10%
gains in downstream classification.

1. Introduction
Learning in deep weight spaces (DWS) is the task of training
models that take the weights of other deep neural networks
as input (Eilertsen et al., 2020; Unterthiner et al., 2020; An-
dreis et al., 2023). It provides a way to infer properties of
neural networks themselves, for tasks like ranking models
by their predicted performance without applying them to a
test set. Deep weight spaces have a complex geometrical
structure thanks to the various symmetries of the weights
and biases in deep learning models (Hecht-Nielsen, 1990).

1Bar-Ilan University 2University of Amsterdam 3Samsung -
SAIT AI Lab, Montreal 4NVIDIA Research 5Technion. Corre-
spondence to: Aviv Shamsian <aviv.shamsian@biu.ac.il>, Aviv
Navon <aviv.navon@biu.ac.il>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Architectures for weight spaces benefit significantly from
taking this complex structure into account (Navon et al.,
2023a; Zhou et al., 2023a;b; Zhang et al., 2023; Lim et al.,
2023). However, these methods often run into overfitting
and generalization issues. Standard techniques to reduce
overfitting are difficult to apply due to the complex struc-
ture, or failing to improve results entirely. Alleviating this
problem is the core goal of this paper.

To illustrate these generalization difficulties, consider the
the problem of using a deep model to process an Implicit
Neural Representation (INR) (Mescheder et al., 2019; Park
et al., 2019; Mildenhall et al., 2021) – a neural network
that represents an image or a 3D shape (Figure 2). Training
a classifier over the weights of INRs performs far worse
than training standard CNNs or MLPs on the original raw
data. As a concrete example, current state-of-the-art for 3D
shape classification by processing weights of INRs achieves
only 16% accuracy on ModelNet40 (Wu et al., 2015) (see
Figure 1), compared to 90% achieved by applying neural
networks directly to point cloud representation of the same
shapes (Atzmon et al., 2018; Wang et al., 2019). The reasons
for this performance gap are still not well understood.

Here, we study the causes for that generalization gap and
propose ways to mitigate them. We argue that typical train-
ing workflows in DWS fail to represent the variability across
different weight representations of the same object well. In
particular, a single object can be represented by a huge num-
ber of different weight space representations, which we call
neural views, but DWS datasets often only use a single view
for each object. This lack of cross-view diversity confounds
two different generalization problems that DWS learning
needs to address: generalization to new neural views and
generalization to new objects.

To address this issue, we first empirically study the effects of
neural views on generalization to new objects and gain a key
insight (Section 3): training with multiple neural views
improves generalization to unseen objects. At first look, it
appears that this insight can be leveraged by augmenting any
object with many neural views to represent it, for example
by varying weight initialization. Unfortunately, this naı̈ve
approach is not practical since it involves training a large
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Figure 1. Effect of our Alignment + MixUp augmentation on ModelNet40: MixUp without augmentation (blue) shows major signs of
overfitting from the increasing test loss, while MixUp + alignment (maroon) mitigates this overfitting and improves the DWS’s accuracy.

number of deep models for each data object.

To increase the effective size of the input set without training
additional neural views, we propose new data augmentation
techniques tailored for DWS. These techniques transform
any given input (a combination of weights and biases) on-
the-fly to increase diversity while preserving the functions
represented by these input weight vectors. Data augmenta-
tion is widely applied in domains like images and text, but
it is not known yet what augmentation strategies would be
effective for learning in deep weight spaces.

To answer this question, we first categorize known augmen-
tation techniques into two groups (Section 4.1): (i) input
space augmentations which reflect transformations of the
input object, such as rotating a 3D object; (ii) data-agnostic
augmentations such as adding noise or masking. Next, we
propose a third, novel family of weight space-specific aug-
mentations that leverages architectural symmetries in neural
architectures, such as symmetries in activation functions.

Then, we present a new data augmentation scheme based
on the MixUp approach (Zhang et al., 2017) for weight
spaces (Section 4.2). Unlike MixUp for dense vectors and
images, applying MixUp directly to weight space elements
is not straightforward due to the permutation symmetries
of weight spaces. Specifically, the weights of two inde-
pendently trained models are rarely aligned, therefore di-
rectly interpolating them may not yield a meaningful model
(Ainsworth et al., 2022). We address this difficulty and
develop several variants of weight space MixUp, building
on recent weight space alignment and merging algorithms
(Ainsworth et al., 2022; Peña et al., 2023). Figure 1 illus-
trates training with and without our proposed weight space
MixUp approach, and shows that weight space MixUp sub-
stantially mitigates overfitting.

We conduct extensive experiments on three types of INR

datasets: grayscale images (FMNIST), color images (CI-
FAR10), and 3D shapes (Modelnet40). Our results indicate
that data augmentation schemes, and specifically our pro-
posed weight space MixUp variants, can enhance the accu-
racy of weight space models by up to 18%, equivalent to
using 10 times more training data. Moreover, we show the
efficacy of our augmentation schemes in a Self-Supervised
Learning (SSL) setup, where using our augmentations in
a contrastive learning framework yields substantial perfor-
mance gains of 5-10% in downstream classification.

Our key contributions are as follows: (1) We investigate the
issue of overfitting in deep neural network weight spaces
and propose mitigating this problem through weight space
data augmentation techniques. (2) We categorize existing
weight space augmentation methods and discuss their lim-
itations. (3) We introduce new families of weight space
augmentations including a novel weight space mixup ap-
proach. (4) We conduct extensive experiments analyzing the
impact of different weight space augmentations on model
generalization as well as their effectiveness in SSL setups.

2. Preliminaries
Learning in DWS could apply to various architectures. We
focus here on the multi-layer perceptron (MLPs) architec-
ture because it is a widely used architecture for INRs.

Objects and views. In this paper, we distinguish between
an original input object, such as an image or a 3D mesh,
and its neural view, which is a neural representation of that
object. Specifically, a neural view v of an object o is the set
of weights and biases of multilayer perceptrons (MLPs) that
implicitly represent that object. Importantly, since neural
models are highly over-parametrized and DWS models do
not account for all the symmetries in these models, there is a
one-to-many mapping between a given object and the many
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Figure 2. Illustration of multiview INR generation and INR classi-
fication task. The INR is trained to receive x, y coordinates and
map them to the corresponding grayscale value in the original raw
data (top panel). The trained INR is fed into the weight space
architecture to perform classification (bottom panel).

valid neural views that represent it. One can conceptualize
this mapping by defining a conditional probability distri-
bution over possible views, p(v|o), which is determined
by many factors, including the training procedure used for
training the INRs, the initialization scheme for training, the
hyperparameters selected, and so on. Therefore, it would be
important for the learning process to take this distribution
into account as well.

MLPs. Following Navon et al. (2023a;b), we define an
M -layer MLP architecture using the following equations:

f(x) = xM , xm+1 = σ(Wm+1xm + bm+1), x0 = x,
(1)

where xm ∈ Rdm , Wm ∈ Rdm×dm−1 , bm ∈ Rdm , and σ is
a pointwise activation function. We define the weight space
vector v = [w, b] = [Wm, bm]Mi=1 to be the concatenation
of weight matrices and bias vectors. An important property
of weight spaces is that they have symmetries, meaning
that they have multiple equivalent representations related
by a group element (Hecht-Nielsen, 1990). Specifically, we
notice that for any sequence of permutation matrices p =
(P1, . . . , PM ) (with appropriate dimensions) we can define
a new weight space vector v′ = [w′, b′] = [W ′

m, b′m]Mi=1 via
the following equation following the notation in Navon et al.
(2023a):

W ′
1 = P1W1,W

′
M = WMPT

M−1, and

W ′
m = PmWmPT

m−1,∀m ∈ [2,M − 1] (2)
b′1 = P1b1, b

′
M = bM , and

b′m = Pmbm,∀m ∈ [2,M − 1].

This equation, which we denote concisely by v′ = p · v
defines a group action on the weight space containing v, v′,

(a) One view (b) Ten views

Figure 3. Overfitting of weight space architectures on the FMNIST
dataset: We visualize train and test losses for DWS (Navon et al.,
2023a) on the ModelNet40 dataset with 1 or 10 trained input
networks per point cloud (views). Notably, DWS tends to overfit
early during training, even when using more data.

and a symmetry in this space since networks parameterized
by both weight vectors (v, v′) represent the same function.

3. Generalization in Weight Space
A unique aspect of training weight space models in general,
and training ones for INRs in particular, is that even after
accounting for the permutation symmetries in Equation (2)
by using equivariant architectures, multiple different views
can still represent the same raw objects. This can happen
when the equivariant architecture fails to account for certain
symmetries or when INRs represent objects that are nearly
identical but not exactly the same. Here, we design sev-
eral experiments to answer key questions in weight space
generalization which are currently unexplored: Can addi-
tional neural views improve generalization? How many are
necessary to prevent overfitting, and under what conditions?

Experiment (1): Overfitting of weight-space models.

This initial experiment is intended to demonstrate the over-
fitting problem in DWS, and how the number of views used
for training data affects it. To this end, we use two datasets
containing either 1 or 10 neural views per object and use
the standard train/test split. As shown in Figure 3, models
trained on a single view (left panel) start substantially over-
fitting after only 5− 10% of training iterations. In contrast,
models trained on 10 views per object (right panel) suffer
from less overfitting and generalize better. The results of
this first experiment suggest that DWS models suffer from
severe overfitting and that training with multiple views per
training image can be used to partially mitigate it.

Experiment (2): Comparing generalization to new neu-
ral views vs. new images.

Building on the overfitting experiment, we next evaluate
two types of generalization: (1) internal – to unseen views
of training images, and (2) external – to views of test im-
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ages. Models were trained on datasets containing multiple
views, ranging from one to nine per training image. We then
evaluate the trained models using two test sets: one with
new views of training images (internal test set), and one
with views of test images (external test set). As shown in
Figure 4, adding more training views boosts performance on
both test sets. While the performance on the internal dataset
(purple curve) is slightly better, adding additional training
views still significantly improves external generalization
(blue curve). Thus, we can deduce that training with multi-
ple views of training images provides valuable information
for generalizing to views of test images. The experiment
also revealed that one view alone is not sufficient to repre-
sent a training image – this can be observed by examining
the internal generalization curve (purple), which indicates
that additional training views improve the generalization to
new views of training images. In line with the expectation,
the generalization gain decreases slightly as the number of
views increases, but is still significant even when training
with 9 views per image.

Experiment (3): What data is more effective for training,
additional images or additional neural views?

Here, we directly compare augmenting the training set with
more views versus more objects while keeping the total
number of views fixed. Specifically, we generate several
datasets with 10K total training INRs and vary the number
of views v per object from 1 to 10 which results in train-
ing sets with 10K to 1K unique images. We observe that
training with additional views of training images is just as
effective in this setup as training with additional views of
unseen images. Specifically, our model attains on-par test
accuracy when optimized on different data variations (see
Figure 8). This implies that while the diversity in training
images is important, exposure to additional views can effec-
tively contribute to generalization, and in certain cases even
compensate for the lack of image diversity.

Experiment (4): Is it possible to improve DWS general-
ization by constraining model capacity?

One simple approach to prevent overfitting in deep learn-
ing is reducing the model’s capacity. Here, we evaluate
our model with a varying number of trainable parameters
and DWS layers. Specifically, we control the number of
learnable parameters by changing the hidden dimension and
number of hidden layers in the DWS model. The results
indicate that such a reduction does not help in this case – the
most expressive model (i.e. DWS with 32 hidden dim and
4 hidden layers), although still overfitting, has the best test
performance (see Figure 9). One way to interpret this result
is that the overfitting problem stems from a real lack of diver-
sity in training data, rather than from an overly expressive
architecture.

Figure 4. Internal vs. external generalization: We visualize DWS
performance on internal and external FMNIST splits with varying
a number of neural views. There is a relatively small difference
between the two types of generalization.

Discussion. In summary, our key findings are: (1) adding
views of training images significantly boosts generaliza-
tion to entirely unseen images (first two experiments); (2)
multiple views are essential for a faithful representation of
images with INRs (second experiment); (3) using more train-
ing views can yield competitive results to using additional
unseen training images (third experiment) (4) overfitting
cannot be mitigated by simply restricting the model’s rep-
resentation capacity (fourth experiment). As stated earlier,
training additional views can be time-consuming. In the sub-
sequent sections, we explore ways to generate new views
on the fly from the training views.

4. Weight space data augmentation methods
This section discusses data augmentation schemes for
weight spaces, namely methods for generating new views ef-
ficiently. We begin by classifying current weight space aug-
mentations and then present weight space mixup schemes.

4.1. A classification of data augmentation schemes

Three families of data augmentation schemes are presented
here, two of which have been described in previous papers,
and one that is entirely new.

Input space augmentations. When using INRs as inputs,
we make a distinction between the input data for our model
(i.e., the weight space inputs) and the original data that the
INRs represent (e.g., images). Input space augmentations
are transformations that can be applied to the weights of an
INR to reflect a transformation applied to the original data.
Specifically, many conventional data augmentation schemes,
like random rotations, translations, and scalings can be uti-
lized when learning with INRs. As demonstrated in Navon
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et al. (2023a), these augmentations can often be applied to
INRs by performing the relevant geometric transformations
on the INR input coordinates. For example, rotating the
object represented by an INR by a random rotation R can
be accomplished by replacing the first weight matrix W1

of the INR with W1R. While this technique generates new
views of objects and aligns with previous data augmentation
methods, one limitation is that it only affects the first layer
weights.

Data-agnostic augmentations. Data-agnostic augmen-
tation techniques are applicable to any data modality.
Schürholt et al. (2021) proposed several data-agnostic aug-
mentations which include familiar methods such as (1)
masking, which randomly nullifies a fraction of input
weights during training, and can be seen as an application
of dropout (Srivastava et al., 2014) to the input weights;
(2) threshold-based masking, which removes input weights
with magnitudes below a defined threshold; (3) random
Gaussian noise addition to the input weights. While these
schemes work well for many data modalities, their effective-
ness might be limited compared to weight space-specific
augmentations since they do not take the structure of weight
spaces into account. It is important to note that the input
weights and biases could be augmented by applying ran-
dom permutations according to Equation 2 (Langosco et al.,
2023; Schürholt et al., 2022). However, this paper does not
explore such augmentations since we employ permutation
invariant architectures (Navon et al., 2023b; Zhang et al.,
2023).

Last but not least, we present a novel family of augmenta-
tions based on the structure of neural networks.

Neural network specific augmentations. These augmen-
tations refer to methods that rely on the exact structure or
components of the neural network that the weight space
input comes from. A major source of additional symmetries
we make use of in this paper stems from activation func-
tions 1. Notably these symmetries are much more difficult
to incorporate directly into the weight space architectures
compared to the permutation symmetries discussed in sec-
tion 2. Here, we propose two augmentations that exploit
this symmetry. When using the popular SIREN approach
(Sitzmann et al., 2020), the sinusoidal activation function
induces two symmetries. First, since the function is odd
(sin(x) = − sin(x)) we can multiply by −1 the weights
and biases of a layer and the weights of the following layer.
This gives the following new weights:

W̃i+1 = −Wi+1, W̃i = −Wi, b̃i = −bi

This is justified due to the following equality

1We note that applying permutations to input weight vectors
as in Equation (2) cannot be used as an augmentation technique
when using invariant weight space networks.

Wi+1 sin(Wix+b) = −Wi+1 sin(−Wix−b).

The second symmetry results from the shift of the phase in
an even or odd multiple of π, more formally for k ∈ Z we
define:

W̃i+1 = (−1)kWi+1, W̃i = Wi, b̃i = bi + kπ.

Again this gives functionally equivalent weights since:
Wi+1 sin(Wix + b) = (−1)kWi+1 sin(Wix + b + kπ).
We incorporate these symmetries through random data aug-
mentations and refer to them as SIREN negation and SIREN
bias respectively. We further discuss the ReLU activation
symmetry in Appendix C.1.

4.2. Weight space MixUp

In this section, we propose three weight space data augmen-
tation schemes based on the MixUp method (Zhang et al.,
2017). The main idea behind the standard MixUp method
is to merge two samples into a new sample via a convex
combination of both the inputs and the associated labels.

Direct weight space MixUp. Directly applying this idea to
two weight vectors v1 = [W 1

l , b
1
l ] and v2 = [W 2

l , b
2
l ], l =

1, . . . ,M results in what we call Direct weight space MixUp
as defined below. Formally, a sample from this MixUp
method is a weight vector v = [Wm, bm]Mm=1 defined as
follows:

Wl = λW 1
l + (1− λ)W 2

l

bl = λb1l + (1− λ)b2l

y = λy∗1 + (1− λ)y∗2 ,

(3)

where the weight parameter λ is randomly drawn from some
distribution (e.g., beta), and y∗i is the one-hot representation
of yi.

The alignment problem. A possible problem with direct
weight space mixup is that it does not take weight space
symmetries into account. Specifically, the direct convex
combination of two weight vectors might not be meaning-
ful since the models are not properly aligned, that is, their
weights and biases might not be positioned in a way that the
corresponding entries in the weight matrices of these net-
works are similar. Formally, the weight alignment (Entezari
et al., 2022; Ainsworth et al., 2022) refers to the combinato-
rial optimization problem for finding optimal permutations
p = (P1, . . . , PM−1) that minimize

∥v1 − p · v2∥2,

and p · v2 applies the permutations to the weight vector v2,
as defined in Equation 2.

Alignment-based weight space MixUp. A principled ap-
proach to deal with the aforementioned alignment problem
would be to solve it, obtain an optimal alignment, and use
it in the MixUp. As we discuss below this method can be
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nicely motivated by recent works on linear mode connectiv-
ity and model merging. Unfortunately, the alignment prob-
lem is NP-hard (Ainsworth et al., 2022) and in practice, we
need to use algorithms that approximate the optimal align-
ment. In this paper, we use the Weight Matching method
from (Ainsworth et al., 2022) 2, which is the fastest weight
alignment algorithm that we were able to find. This gives
rise to Alignment-based weight space MixUp. Formally, let
p∗(v1, v2) = (P ∗

1 , . . . , P
∗
M ) be the approximate alignment

obtained from the weight matching algorithm, we define a
new vector v = [Wm, bm]Mm=1 by the following equations:

Wl = λW 1
l + (1− λ)P ∗

l W
2
l P

∗T
l−1

bl = λb1l + (1− λ)P ∗
l b

2
l ,

(4)

where the labels are defined as in the previous equations.

Lastly, we present another variant of the Weight space
MixUp:

Randomized weight space MixUp. Another, simpler ap-
proach to partially address the alignment problem is to ran-
domly apply permutations to the second weight vector. This
gives rise to Randomized weight space MixUp which is de-
fined as the mixup of a weight vector v1 with a randomly
permuted version of v2. More formally, given a random se-
quence of permutations p = (P1, . . . , PM−1) sampled from
some distribution, the new weight vector v = [Wm, bm]Mm=1

is defined as follows:

Wl = λW 1
l + (1− λ)PlW

2
l P

T
l−1

bl = λb1l + (1− λ)Plb
2
l ,

(5)

and the labels are defined as in the previous equation.

Discussion. Recent work (Entezari et al., 2022; Ainsworth
et al., 2022; Peña et al., 2023; Navon et al., 2023b) has
shown that neural network weight vectors trained on the
same loss function demonstrate a property called linear
mode connectivity. Specifically, interpolating between a
weight vector v1 and an optimally permuted version of an-
other weight vector p · v2 results in intermediate weight
vectors that maintain low loss values. In contrast, directly in-
terpolating between v1 and v2 typically yields much higher
loss values for the intermediate weights. This phenomenon
suggests that linearly mixing aligned weight vectors pre-
serves certain functional properties that lead to low loss
values. We note that when it comes to INRs, the loss men-
tioned above refers to the loss used when fitting the INRs.
Therefore, when interpolating between INRs representing
similar images, intermediate interpolation weights preserv-
ing the low loss should also represent a similar image. This
might give additional motivation to use the alignment-based
version of the weight space mixup.

2The algorithm iteratively solves simplified linear assignment
problems based on the weight alignment functional.

Relation to MixUp methods for other data types. In the
last few years, MixUp was successfully generalized to sev-
eral data types such as point clouds (Chen et al., 2020b;
Achituve et al., 2021) and graphs (Han et al., 2022; Ling
et al., 2023). There are some similarities in concept between
these works and the alignment-based MixUp variant we pro-
pose, as point clouds and graphs both possess symmetries
and alignment can be used to define an effective MixUp
method for these data modalities as well.

5. Experiments
We evaluate the various weight space augmentations
we described on different datasets, learning setups,
and weight space architectures. To support fu-
ture research and the reproducibility of our results,
we made our source code and datasets publicly
available at: https://github.com/AvivSham/
deep-weight-space-augmentations.

We report the average accuracy and standard deviations for
3 random seeds. Additional experimental results and details
including the data generation processes are provided in the
Appendix.

Weight space architectures. In the following sections, we
examine the effect of weight space augmentations on the
performance of two leading weight space architectures.

DWS (Navon et al., 2023a) is a weight space architecture
that is equivariant to permutation symmetries imposed by
neural weights. This architecture is composed of a series of
permutation equivariant layers, interleaved with pointwise
non-linear activations.

GNN (Zhang et al., 2023) transforms the input neural net-
work into a graph that preserves the symmetries in the
weight space. It comes with the advantage that we can
directly leverage existing strong architectures for graphs
like Principal Neighbourhood Aggregation (Corso et al.,
2020) and transformers using Relational Attention (Diao &
Loynd, 2023).

In all experiments, both DWS and GNN are equipped with
weight decay and dropout for regularization. We use the
values mentioned in the original papers.

Augmentations. We compare the augmentations presented
in Sections 4.1 and 4.2 to training without augmentations.
These include: (1) Translate – translating the image space
data through the weight space. (2) SIREN negation – ex-
ploiting the natural symmetry of sin(x) = − sin(−x).
(3) MixUp – applying MixUp directly on a pair of weights
and biases vectors. (4) MixUp + random permutation –
applying random permutation before performing MixUp.
(5) Alignment + MixUp – aligning the weights and biases
vectors prior to MixUp. (6) Masking – randomly zero out
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Table 1. INR classification: test accuracy results for varying views.

Augmentation type Model ModelNet40-INR FMNIST-INR CIFAR10-INR

1 View 10 View 1 View 10 View 1 View 5 View

No augmentation DWS 16.17 ± 0.25 30.25 ± 0.95 68.30 ± 0.62 76.01 ± 1.20 39.42 ± 1.11 40.64 ± 0.22
No augmentation GNN 8.82 ± 1.08 34.51 ± 1.24 68.84 ± 0.41 79.58 ± 3.01 38.10 ± 0.66 46.52 ± 1.53

Translate DWS 18.18 ± 0.97 31.17 ± 0.02 67.90 ± 0.24 77.61 ± 0.36 38.76 ± 0.77 40.95 ± 0.39
SIREN negation DWS 20.14 ± 0.98 32.31 ± 0.70 71.40 ± 0.29 77.71 ± 1.38 31.03 ± 0.66 29.15 ± 0.67
Masking DWS 11.43 ± 2.44 14.71 ± 1.14 68.48 ± 0.14 75.57 ± 1.91 36.48 ± 0.89 37.11 ± 0.78
Gaussian noise DWS 14.10 ± 0.71 25.31 ± 1.78 68.53 ± 0.09 77.60 ± 0.13 38.36 ± 0.05 38.54 ± 0.57
Translate GNN 8.17 ± 0.81 34.93 ± 1.31 70.17 ± 1.26 83.83 ± 0.25 38.06 ± 0.81 46.48 ± 0.38
SIREN negation GNN 11.41 ± 3.22 37.93 ± 2.26 72.74 ± 4.29 82.36 ± 3.66 35.80 ± 1.02 36.37 ± 1.59
Masking GNN 8.10 ± 0.43 18.04 ± 1.24 68.55 ± 1.21 79.72 ± 1.35 36.49 ± 1.45 42.69 ± 0.29
Gaussian noise GNN 9.06 ± 0.27 32.82 ± 1.14 77.55 ± 0.33 81.28 ± 0.50 45.66 ± 0.35 44.88 ± 1.14

MixUp DWS 26.96 ± 0.91 31.92 ± 0.37 74.36 ± 1.17 78.58 ± 0.20 41.23 ± 0.47 40.94 ± 0.26
MixUp + random perm. DWS 26.62 ± 0.18 33.55 ± 1.40 73.89 ± 0.89 78.04 ± 1.02 38.34 ± 0.54 40.78 ± 0.24
Alignment + MixUp DWS 27.40 ± 0.97 33.33 ± 0.43 75.67 ± 0.36 79.41 ± 0.56 42.76 ± 0.12 43.36 ± 0.40
MixUp GNN 20.45 ± 3.82 42.25 ± 3.83 80.18 ± 0.59 82.20 ± 0.52 47.49 ± 1.18 47.96 ± 0.86
MixUp + random perm. GNN 24.46 ± 2.92 41.67 ± 4.55 78.45 ± 2.29 82.24 ± 0.68 44.01 ± 1.17 45.36 ± 0.67
Alignment + MixUp GNN 26.88 ± 1.75 42.83 ± 4.18 78.80 ± 2.12 82.94 ± 0.31 46.60 ± 0.68 48.50 ± 0.55

elements in the neural view. (7) Gaussian Noise – adding
gaussian distributed random noise to the neural view. We
present extended results with additional augmentations in
Appendix E.1.

5.1. INR classification

We evaluate the aforementioned weight space augmenta-
tions on implicit neural representation (INR) classification
tasks. Specifically, we create INR datasets for ModelNet40
(3D point clouds), FMNIST (2D greyscale images), and CI-
FAR10 (2D RGB images). For each instance in the original
dataset, we generate multiple views by sampling different
weight initializations. We generate 10, 10, and 5 views for
FMNIST, ModelNet40, and CIFAR10 respectively. Table
1 demonstrates the effectiveness of on-the-fly weight space
data augmentation schemes. Notably, MixUp augmenta-
tions with a single view are comparable to training with
5–10x more data across the INR datasets: ModelNet40, FM-
NIST, and CIFAR10. Furthermore, data augmentation is
still effective when training with 10 views. Figure 1 depicts
a training curve with and without the use of our alignment-
based MixUp technique. It is evident that MixUp mitigates
overfitting and improves performance. Overall, the effec-
tiveness of input space and data-agnostic augmentations
varies between models and datasets and is not as significant
as the improvements from using weight space MixUp.

Comparison of Mixup variants. All variants of the weight
space MixUp provide consistent improvements, with the
alignment-based version frequently outperforming other
MixUp variants by 1-3%. For DWS, the alignment-based
MixUp is the best among all augmentation types in five out
of six setups in Table 1 and comparable in the last setup. For
GNNs, the alignment-based MixUp is the best in three out
of six cases, where interestingly the direct MixUp variant
provides strong competition. The randomized mixup ver-

sion is worse than the other approaches in many cases. We
note that this somewhat underwhelming advantage of the
alignment-based MixUp is surprising. One possible reason
is that our weight alignment algorithm might produce subop-
timal alignments. This can be due to the algorithm’s inability
to produce good permutation alignments, and also since it
only considers permutation symmetries and overlooks the
additional symmetries such as activation symmetries. We
anticipate that employing a higher-quality alignment method
that respects both permutations and negations symmetries
would address this issue and consequently lead to improved
performance. One possible way to obtain such an alignment
method is to learn it directly from data (Navon et al., 2023b).
We conducted complementary experiments that compare
MixUp variants with feature MixUp, in addition to an ab-
lation study assessing the contribution of the key elements
of MixUp, namely label smoothing and input averaging.
The detailed results of these experiments can be found in
Appendix E.4, E.5.

5.2. Representation learning in weight spaces

While we have shown the utility of weight space augmenta-
tions for supervised learning, they may also prove beneficial
for other paradigms like unsupervised representation learn-
ing. To test this, we conduct an experiment where we use
contrastive learning to pre-train a weight space model and
evaluate the learned representations on downstream INR
classification tasks. Specifically, in the training stage, we
use the SimCLR contrastive learning framework (Chen et al.,
2020a) where positive examples are generated by applying a
sequence of augmentations including translation, Gaussian
noise, quantile masking, SIREN negation, and alignment +
MixUp. After training, we evaluate the model by adding
an MLP classification head to the pre-trained model and
fine-tuning the whole model end-to-end on a small labeled
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Table 2. Semi supervised classification: test accuracy results across different levels of labeled data.
FMNIST CIFAR10

5% 10% 15% 20% 5% 10% 15% 20%

DWS 48.55 ± 0.59 54.01 ± 0.61 59.27 ± 0.56 57.60 ± 0.74 22.95 ± 0.82 25.48 ± 0.96 26.36 ± 0.55 28.30 ± 0.58
DWS + SSL 59.49 ± 0.69 61.68 ± 0.15 63.34 ± 0.44 64.67 ± 0.54 27.63 ± 1.13 30.08 ± 1.29 31.75 ± 1.10 32.75 ± 0.36

GNN 47.43 ± 2.44 57.58 ± 1.51 59.76 ± 1.14 61.56 ± 0.84 21.07 ± 1.29 23.51 ± 0.58 25.67 ± 0.22 27.52 ± 0.85
GNN + SSL 55.58 ± 1.81 60.18 ± 0.67 62.09 ± 0.59 62.84 ± 0.82 26.93 ± 1.08 30.05 ± 0.49 30.96 ± 0.66 32.69 ± 0.85

subset of the training data. Experiments are performed on
FMNIST and CIFAR10 INR datasets. We compare against
a natural baseline trained directly and only on the labeled
data. The fraction of labeled examples used for fine-tuning
is varied from 5% to 20% of the full training set.

The results are presented in Table 2. We show that us-
ing weight space augmentations for pre-training weight
space architectures with contrastive learning improves the
model’s performance. The pre-trained models, DWS+SSL
and GNN+SSL consistently outperform their fine-tune-only
versions across all datasets as well as with respect to the
variations in the number of labeled training examples in the
fine-tuning step. Specifically, DWS+SSL and GNN+SSL
significantly improve performance by up to ∼11% and ∼8%
of accuracy respectively in comparison to their fine-tune-
only counterparts. This finding indicates that a meaningful
representation is learned in the pre-training stage. In ad-
dition, we visualize the representations learned by the fea-
ture extractor by performing dimensionality reduction using
UMAP (McInnes et al., 2018). The results are presented
in Figure 5. The figure shows that the feature extractor
learns meaningful representations in two ways: (1) there is
a clear distinction between different classes. (2) clothing
items of the same category (e.g. shoes) exhibit proximity in
the representation space. Additional qualitative comparison
to augmentations proposed by Navon et al. (2023a) can be
found in Appendix E.3.

6. Previous work
Learning in deep weight spaces. Learning in deep weight
spaces is a relatively new learning setup, where we use a
special type of neural network to process the parameters
(weights and biases) of other neural networks. Pioneer-
ing works (Eilertsen et al., 2020; Unterthiner et al., 2020;
Andreis et al., 2023; Herrmann et al., 2023; Wang & Gol-
land, 2022; Xu et al., 2022) in this direction suggested using
standard architectures like fully connected networks or trans-
formers for this setup. One limitation is that they disregard
the permutation symmetry structure of weight spaces (see
Section 2). As symmetries provide meaningful inductive
biases, several recent works suggested weight space architec-
tures that are equivariant to these permutation symmetries
(Navon et al., 2023a; Zhou et al., 2023a;b; Zhang et al.,

Figure 5. Representations in weight space: Visualization of the 2D
feature space attained through SimCLR contrastive learning.

2023; Lim et al., 2023). These works have shown an im-
provement over previous approaches in INR classification
and editing tasks, but on most benchmarks, their perfor-
mance still significantly lags behind standard architectures
applied to the original data signals.

Implicit Neural Representations. In this paper we focus
on classifying Implicit Neural Representations (INRs) (Sitz-
mann et al., 2020; Mescheder et al., 2019; Park et al., 2019)
as the weight space task. INRs are an emerging type of data
representation for objects such as 3D shapes, 3D scenes,
and images. The core concept is to use a neural network to
represent an object as a continuous function. For instance,
an INR can take the form of a multilayer perceptron (MLP)
that takes 2D spatial coordinates (x, y) as input and out-
puts a grayscale value corresponding to this position in the
image, see Figure 2. Similarly, a neural network can be
fitted to take 3D coordinates as input and output the signed
distance to a surface to implicitly represent a 3D shape – the
zero-level set of this INR defines the original surface. More
complex 3D scenes can also be represented in this implicit
way using NeRFs (Mildenhall et al., 2021). Recent research
has shown that INRs are capable of representing complex
scenes and other objects faithfully, and they are considered
an extremely important research direction, however, it re-
mains unclear what type of neural network architecture is
best suited to handle them. While we focus on INRs in this
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paper, the augmentations we propose can be applied to other
types of functions represented by neural networks.

7. Conclusion
In this work, we explore overfitting in weight space architec-
tures and introduce weight space augmentations to address
this problem and improve model performance. Through
experiments, we first examine key questions related to gen-
eralization behavior in weight space models and show that
multiple neural views are an effective approach for improv-
ing generalization. We then review and design augmentation
techniques leveraging inherent weight space structure. In
particular, we propose three MixUp schemes for weight
spaces. Our results demonstrate that training with these
augmentations yields comparable performance to substan-
tially expanding the training set size. Moreover, we find that
weight space augmentations can be used effectively when
conducting self-supervised learning in weight space.

Limitations. Despite the improved performance discussed
above, a notable gap persists when compared to directly
working in image or point cloud representations. Future
research is needed in order to further close this gap. Ad-
ditionally, the evaluation of data augmentation schemes in
this paper centers on INRs. It is worth noting that the use
of weight space augmentations may be extended to other
scenarios, including generalization prediction and learning
to optimize (Zhang et al., 2023). Further research is required
to evaluate our data augmentation techniques and to develop
novel data augmentation techniques for this setup.
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P. Principal neighbourhood aggregation for graph nets.
In Advances in Neural Information Processing Systems,
2020.

Diao, C. and Loynd, R. Relational attention: Generalizing
transformers for graph-structured tasks. In International
Conference on Learning Representations, 2023.

Eilertsen, G., Jönsson, D., Ropinski, T., Unger, J., and
Ynnerman, A. Classifying the classifier: dissecting
the weight space of neural networks. arXiv preprint
arXiv:2002.05688, 2020.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B.
The role of permutation invariance in linear mode con-
nectivity of neural networks. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=dNigytemkL.

Han, X., Jiang, Z., Liu, N., and Hu, X. G-mixup: Graph
data augmentation for graph classification. In Interna-
tional Conference on Machine Learning, pp. 8230–8248.
PMLR, 2022.

Hecht-Nielsen, R. On the algebraic structure of feedforward
network weight spaces. In Advanced Neural Computers,
pp. 129–135. Elsevier, 1990.

9

https://openreview.net/forum?id=dNigytemkL
https://openreview.net/forum?id=dNigytemkL


Improved Generalization of Weight Space Networks via Augmentations

Herrmann, V., Faccio, F., and Schmidhuber, J. Learning
useful representations of recurrent neural network weight
matrices. In NeurIPS 2023 Workshop on Symmetry and
Geometry in Neural Representations, 2023. URL https:
//openreview.net/forum?id=yqGoKziEvY.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Langosco, L., Alex, N., Baker, W., Quarel, D., Bradley,
H., and Krueger, D. Detecting backdoors with meta-
models. In NeurIPS 2023 Workshop on Backdoors in
Deep Learning-The Good, the Bad, and the Ugly, 2023.

Lim, D., Maron, H., Law, M. T., Lorraine, J., and Lucas,
J. Graph metanetworks for processing diverse neural
architectures. arXiv preprint arXiv:2312.04501, 2023.

Ling, H., Jiang, Z., Liu, M., Ji, S., and Zou, N. Graph mixup
with soft alignments. arXiv preprint arXiv:2306.06788,
2023.

Loshchilov, I. and Hutter, F. Fixing weight de-
cay regularization in adam. ArXiv, abs/1711.05101,
2017. URL https://api.semanticscholar.
org/CorpusID:3312944.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. Occupancy networks: Learning 3d re-
construction in function space. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 4460–4470, 2019.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Navon, A., Shamsian, A., Achituve, I., Fetaya, E., Chechik,
G., and Maron, H. Equivariant architectures for learn-
ing in deep weight spaces. In Krause, A., Brunskill,
E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.
(eds.), Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 25790–25816. PMLR, 23–
29 Jul 2023a. URL https://proceedings.mlr.
press/v202/navon23a.html.

Navon, A., Shamsian, A., Fetaya, E., Chechik, G., Dym, N.,
and Maron, H. Equivariant deep weight space alignment.
arXiv preprint arXiv:2310.13397, 2023b.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-
grove, S. Deepsdf: Learning continuous signed distance

functions for shape representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 165–174, 2019.

Peña, F. A. G., Medeiros, H. R., Dubail, T., Aminbeidokhti,
M., Granger, E., and Pedersoli, M. Re-basin via implicit
sinkhorn differentiation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 20237–20246, 2023.

Schürholt, K., Kostadinov, D., and Borth, D. Self-supervised
representation learning on neural network weights for
model characteristic prediction. Advances in Neural In-
formation Processing Systems, 34:16481–16493, 2021.

Schürholt, K., Knyazev, B., Giró-i Nieto, X., and Borth, D.
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A. Datasets
The increasing usage of INRs in many machine-learning domains, specifically in images and 3D objects, raises the need
for INR benchmarks. Implicit representations, such as neural radiance fields and neural implicit surfaces, offer a more
flexible and expressive way to model complex 3D scenes and objects. However, as these techniques gain traction, it becomes
crucial to establish standardized benchmarks to assess and compare the performance of architectures designed for weight
space data. To address this issue, we present new INR classification benchmarks based on ModelNet40 (Wu et al., 2015),
Fashion-MNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009) datasets. We use the SIREN (Sitzmann et al.,
2020) architecture, i.e. MLP with sine activation, and fit each objects in the original dataset. To negate the possibility of
canonical representation that may lead to globally aligned data representation, we randomly initialize the weights for every
generated INR. In the case of ModelNet40, INRs are generated through training an MLP to accurately predict the signed
distance function values of a 3D object given a set of 3D point clouds. For Fashion-MNIST and CIFAR10 an MLP is trained
to map from the 2D xy-grid to the corresponding gray or RGB intensity level value in the original image. We fit 10 unique
INRs, namely views, per sample in the original dataset for ModelNet40 and Fashion-MNIST respectively. For CIFAR10
dataset we fit 5 unique INRs per image.

B. Datasets generation
Fashion-MNIST INRs. We fit an INR to each image in the original dataset. We split the INRs dataset into train, validation,
and test sets of sizes 55K, 5K, and 10K respectively. Each INR is a 5-layer MLP network with a 32 hidden dimension, i.e.,
3 −→ 32 −→ 32 −→ 32 −→ 32 −→ 3. We train the INRs using the Adam optimizer for 10K steps with a learning rate of 5e− 4.
When the PSNR of the reconstructed image from the learned INR is greater than 40, we use early stopping to reduce the
generation time.

CIFAR10 INRs. We fit an INR to each image in the original dataset. We use the train test splits presented by (Krizhevsky
et al., 2009). Each INR is a 3-layer MLP network with a 32 hidden dimension, i.e., 3 −→ 32 −→ 32 −→ 1. We train the INRs
using the Adam optimizer for 1K steps with a learning rate of 5e− 4. When the PSNR of the reconstructed image from the
learned INR is greater than 40, we use early stopping to reduce the generation time.

ModelNet40. We use the original split presented in (Wu et al., 2015) and fit an INR for each data sample. We start by
converting the mesh object to a signed distance function (SDF) by sampling 250K points near the surface. Next, we fit
a 5-layer INR with a hidden dim of 32, i.e., 3 −→ 32 −→ 32 −→ 32 −→ 32 −→ 1 by solving a regression problem. Given a 3
dimensional input, the INR network predicts its SDF. For the optimization, we use AdamW optimizer with 1e− 4 learning
rate and perform 1000 update steps.

C. Weight space augmentations

Figure 6. Illustration of alignment + mixup augmentation.

We provide a detailed description and hyperparameter
choice we use in the experimental sections.

Translate - we translate the weights of INR by drawing
translate parameter t from uniform distribution, i.e. t ∼
U(−u, u). In our experiments, we used u = 0.25

Rotation - we apply 2D rotation matrix R on the first
weight matrix of the INR, i.e. W1 = RW1. We draw
the rotation angle φ from a uniform distribution φ ∼
U(−u, u). Specifically, we set u = 30 in degrees unit.

Scale - We apply random scaling to the weight metrics
using a random variable c, where c ∼ U(0.8, 1).

SIREN bias - We exploit the natural symmetry of sine
function sin(x + kπ) = (−1)k sin(x) and apply it to
the input set of weights and biases. More formally,
Wi+1 sin(Wix + b) = (−1)kWi+1 sin(Wix + b + kπ),
for k ∈ Z.
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Table 3. INR classification: ModelNet40, FMNIST, and CIFAR10 test accuracy results with varying number of views.

Augmentation type Model ModelNet40 FMNIST CIFAR10

1 View 10 View 1 View 10 View 1 View 10 View

No augmentation DWS 16.17 ± 0.25 30.25 ± 0.95 68.30 ± 0.62 76.01 ± 1.20 40.64 ± 0.22 40.64 ± 0.22
No augmentation GNN 8.82 ± 1.08 34.51 ± 1.24 68.84 ± 0.41 79.58 ± 3.01 38.11 ± 0.66 46.52 ± 0.15

Translate DWS 18.18 ± 0.97 31.17 ± 0.02 67.90 ± 0.24 77.61 ± 0.36 38.76 ± 0.77 40.95 ± 0.39
Rotation DWS — — 68.55 ± 0.28 77.04 ± 0.47 39.21 ± 0.61 40.46 ± 0.08
Scale DWS 16.41 ± 0.57 30.54 ± 0.72 67.99 ± 0.14 75.77 ± 1.09 39.34 ± 0.91 40.93 ± 0.49
Gaussian noise DWS 14.10 ± 0.71 25.31 ± 1.78 68.53 ± 0.09 77.60 ± 0.13 38.36 ± 0.05 38.54 ± 0.57
SIREN bias DWS 4.69 ± 0.10 4.90 ± 0.01 58.20 ± 0.01 62.21 ± 0.55 24.34 ± 0.56 22.83 ± 0.45
SIREN negation DWS 20.14 ± 0.98 32.31 ± 0.70 71.40 ± 0.29 77.71 ± 1.38 31.03 ± 0.66 29.15 ± 0.67
Masking DWS 11.43 ± 2.44 14.71 ± 1.14 68.48 ± 0.14 75.57 ± 1.91 36.48 ± 0.89 37.11 ± 0.78
Quantile masking DWS 15.13 ± 2.45 29.88 ± 0.62 68.72 ± 0.27 76.22 ± 0.72 39.46 ± 0.35 40.61 ± 0.21
Translate GNN 8.17 ± 0.81 34.93 ± 1.31 70.17 ± 1.26 83.83 ± 0.25 38.06 ± 0.81 46.41 ± 0.17
Rotation GNN — — 69.35 ± 2.18 83.72 ± 1.14 36.65 ± 0.74 46.61 ± 0.44
Scale GNN 8.58 ± 0.65 34.70 ± 5.19 68.96 ± 1.46 83.67 ± 0.19 38.23 ± 0.65 46.82 ± 0.74
Gaussian noise GNN 9.06 ± 0.27 32.82 ± 1.14 77.55 ± 0.33 81.28 ± 0.50 45.66 ± 0.35 44.88 ± 1.14
SIREN bias GNN 11.63 ± 2.48 34.32 ± 1.57 68.09 ± 0.49 77.20 ± 1.03 35.64 ± 0.16 35.84 ± 0.94
SIREN negation GNN 11.41 ± 3.22 37.93 ± 2.26 72.74 ± 4.29 82.36 ± 3.66 35.81 ± 1.01 36.37 ± 0.16
Masking GNN 8.10 ± 0.43 18.04 ± 1.24 68.55 ± 1.21 79.72 ± 1.35 36.49 ± 1.45 42.69 ± 0.29
Quantile masking GNN 8.12 ± 0.85 34.36 ± 1.14 69.96 ± 2.08 83.78 ± 0.76 46.73 ± 0.11 38.47 ± 0.12

MixUp DWS 26.96 ± 0.91 31.92 ± 0.37 74.36 ± 1.17 78.58 ± 0.20 41.23 ± 0.47 40.94 ± 0.26
MixUp + random perm. DWS 26.62 ± 0.18 33.55 ± 1.40 73.89 ± 0.89 78.04 ± 1.02 38.34 ± 0.54 40.78 ± 0.24
Alignment + MixUp DWS 27.40 ± 0.97 33.33 ± 0.43 75.67 ± 0.36 79.41 ± 0.56 42.76 ± 0.12 43.36 ± 0.40
MixUp GNN 20.45 ± 3.82 42.25 ± 3.83 80.18 ± 0.59 82.20 ± 0.52 47.14 ± 0.95 47.56 ± 0.58
MixUp + random perm. GNN 24.46 ± 2.92 41.67 ± 4.55 78.45 ± 2.29 82.24 ± 0.68 43.97 ± 0.86 45.36 ± 0.67
Alignment + MixUp GNN 26.88 ± 1.75 42.83 ± 4.18 78.80 ± 2.12 82.94 ± 0.31 47.66 ± 0.86 49.50 ± 0.55

Combination DWS 29.05 ± 1.19 35.60 ± 1.20 74.43 ± 0.11 78.57 ± 0.47 29.63 ± 0.87 32.01 ± 0.65
Combination GNN 13.65 ± 0.68 46.07 ± 0.59 75.36 ± 1.57 80.13 ± 1.82 37.46 ± 0.57 39.14 ± 0.54

SIREN negation - We exploit the natural symmetry of sine function sin(x) = − sin(−x). Since the function is odd
we can negate the weight and biases of layer i and the weight of the following layer i+1 as Wi+1 sin(Wix + b) =
−Wi+1 sin(−Wix− b).

Masking - randomly zero out elements from the neural view according to a pre-defined masking rate. In our experiments, we
set the masking rate to 0.1, i.e., 10% of the elements mapped to zero.

Quantile Masking - acts similarly to Masking augmentation, but instead of randomly zeroing the elements, here we zero
elements with magnitudes below a threshold. In our experiments, we randomly draw the threshold from U(0, 0.1).

Gaussian Noise - adding additive noise drawn from Gaussian distribution to the neural view. More formally, the noise is
drawn from N (0, sσWi

), where s denotes scaling factor and σWi
the standard deviation of Wi. In our experiments, we set

s = 0.32.

Combination - here, we sequentially apply a combination of weight space augmentations. This combination includes
translate, gaussian noise, SIREN negation, and alignment + MixUp. Note that we did not experiment with all possible
combinations as it grows exponentially and is highly computationally demanding.

C.1. ReLU scaling augmentation

We present additional weight space augmentation tailored for ReLU activation symmetry, as well as other homogeneous
activations (i.e. f(αx) = αf(x)). We can arbitrarily scale the weights of any layer and define new weights by

W̃i = CWi, b̃i = Cbi, W̃i+1 = Wi+1C
−1,

where C is a diagonal matrix with positive entries. These new weights are functionally equivalent to the original weights
since ReLU is equivariant to multiplication with positive diagonal matrices: Wi+1C

−1ReLU(CWix+Cbi)+bi+1 =
Wi+1ReLU(Wix+bi)+bi+1.
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(a) Our augmentations. (b) Augmentations from (Navon et al., 2023a).

Figure 7. Representations in weight space: Visualization of the 2D feature space attained through SimCLR contrastive learning, showcasing
the impact of our augmentations on the learned representations.

D. Experimental settings
DWS. In all experiments, we use DWS (Navon et al., 2023b) network with 4 hidden layers and hidden dimension of 128.
We optimized the network using a 5e− 3 learning rate with AdamW (Loshchilov & Hutter, 2017) optimizer.

GNN. For the GNN, we use the version of Relation Transformer presented in (Zhang et al., 2023) with 4 hidden layers, node
dimension of 64, and edge dimension of 32. We optimized the network using a 1e−3 learning rate with AdamW (Loshchilov
& Hutter, 2017) optimizer and a 1000 steps warmup schedule.

INR classification. We optimized the weight space architecture for 250 epochs for the ModelNet40, and 300 epochs for
the FMNIST and CIFAR10 INRs datasets. Additionally, we utilize the validation set for early stopping, i.e. selecting the
best model w.r.t validation accuracy.

Representation learning. In this learning setup, we employ FMNIST and CIFAR10 INRs datasets to perform semi-
supervised learning for INR classification. We start by optimizing weight space architecture using the SimCLR framework
as the pre-training step. Next, we fine-tune the model using a limited amount of labeled data. We use 100/400 epochs in the
pertaining step for FMNIST and CIFAR10 respectively, followed by 400 epochs for fine-tuning using labeled data.

E. Additional experimental results
E.1. INR classification.

We present additional results complementing those discussed in Section 5.1, which encompass augmentations detailed in
Appendix C. We run every augmentation with 3 random seeds and report the average accuracy and standard deviation.

E.2. Comparison to non-invariant architectures.

In this experiment, we compare DWS and GNN models, incorporating Alignment + MixUp augmentation, to architectures
that are not invariant to permutation symmetries. Specifically, we use the transformer architecture proposed by (Schürholt
et al., 2021) and re-run it twice: once with random permutation augmentation and once without. We evaluate the models on
the FMNIST INR classification task for both 1 and 10 views. The results are shown in Table 4. As demonstrated in (Navon
et al., 2023b), architectures that do not respect the permutation symmetries perform significantly worse than permutation
equivariant models.
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Table 4. Comparison to non-invariant models: FMNIST test accuracy results with varying number of views.

Model Augmentation

1 View 10 View

Transformer No augmentation 27.60± 0.25 29.91± 0.31
Transformer Random permutation 28.93± 0.43 30.14± 0.06

DWS No augmentation 68.30± 0.62 76.01± 1.20
DWS Alignment + MixUp 75.67± 0.36 79.41± 0.56

GNN No augmentation 68.84± 0.41 79.58± 3.01
GNN Alignment + MixUp 78.80± 2.12 82.94± 0.31

Figure 8. Additional images or additional neural views: DWS
test accuracy on FMNIST dataset. We fix the number of
training INRs and vary the number of unique objects (x axis). Figure 9. FMNIST test accuracy as a function of model com-

plexity

E.3. Representation learning in weight spaces.

In this section, we provide additional results for the experiment presented in Section 5.2. We repeat the experiment again
but with variations in the augmentations applied during SimCLR optimization. Specifically, we apply the augmentations
presented in (Navon et al., 2023a), namely translate and gaussian noise. The qualitative comparison is presented in Figure 7.
We show that using our augmentations yields better distinction in the feature space. Additionally, our augmentations achieve
a lower NCE loss value of 1.12 compared to 4.52 when using the augmentations from (Navon et al., 2023a).

E.4. Feature MixUp

Feature MixUp (Verma et al., 2018), also known as Manifold MixUp, is an extended version of MixUp applied to hidden
representations. While regular Mixup linearly interpolates between pairs of input samples in the input space, Manifold Mixup
operates in a way that considers the non-linear structure of the data manifold. We use the same setup from Section Section 5.1
and investigate the performance of DWS on the FMNIST dataset using the Feature MixUp augmentation. DWS achieves a
test accuracy of 68.47, which was significantly lower than the MixUp variants presented in this paper.
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E.5. MixUp component ablation.

Table 5. MixUp ablation on FMNIST-INR dataset.

FMNIST-INR

1 View 10 View

No augmentation 68.30± 0.62 76.01± 1.12

Label smoothing 69.15± 0.51 76.95± 1.74
Input averaging 72.38± 0.39 77.92± 0.32

MixUp 74.36± 1.17 78.58± 0.20
Alignment + MixUp 75.67± 0.36 79.41± 0.56

Weight Space MixUp can be considered as a combination
of two basic regularization techniques, one that merges
the labels and one that merges the input samples. The
first technique is related to label smoothing, a technique
where the ground-truth labels are adjusted by perturba-
tions (Szegedy et al., 2016). The second technique is
defining new inputs by weighted averaging of pairs of
samples. Both approaches prevent the model from be-
coming overly confident and encourage more robust gen-
eralization. To investigate the benefit of the individual
components, we train DWS on the FMNIST INRs dataset
with 3 different augmentations: (i) label-smoothing, (ii)
averaging input data, and (iii) weight space MixUp. Ta-
ble 5 shows that using only label smoothing or input averaging in the weight space helps slightly over no augmentation,
but still yields worse results compared to MixUp. It can be concluded from this that the performance boost obtained from
weight space MixUp does not result from either of the techniques alone but from the combination of both.
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