
Exploring the Complexity of Deep Neural Networks
through Functional Equivalence

Guohao Shen 1

Abstract
We investigate the complexity of deep neural net-
works through the lens of functional equivalence,
which posits that different parameterizations can
yield the same network function. Leveraging the
equivalence property, we present a novel bound
on the covering number for deep neural networks,
which reveals that the complexity of neural net-
works can be reduced. Additionally, we demon-
strate that functional equivalence benefits opti-
mization, as overparameterized networks tend to
be easier to train since increasing network width
leads to a diminishing volume of the effective pa-
rameter space. These findings can offer valuable
insights into the phenomenon of overparameter-
ization and have implications for understanding
generalization and optimization in deep learning.

1. Introduction
Artificial neural networks, particularly deep and wide ones,
have shown remarkable success in various applications
widely in machine learning and artificial intelligence. How-
ever, one of the major challenges in understanding the suc-
cess is to explain their generalization ability when they are
very large and prone to overfitting data (Neyshabur et al.,
2014; 2017a; Razin & Cohen, 2020).

Theoretical studies have suggested that the generalization
error can be related to the complexity, approximation power,
and optimization of deep neural networks. Larger neural
networks are proved to possess better approximation power
(Yarotsky, 2017; Lu et al., 2021a; Zhou, 2020b), but may
exhibit larger complexity and generalization gaps (Bartlett
et al., 2017; Mohri et al., 2018; Bartlett et al., 2019), and
can be more challenging to optimize (Glorot et al., 2011).

1Department of Applied Mathematics, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong
SAR, China. Correspondence to: Guohao Shen <guo-
hao.shen@polyu.edu.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

However, some aspects of deep learning initially appeared to
contradict common sense: overparameterized networks tend
to be easier to train (Frankle & Carbin, 2019; Allen-Zhu
et al., 2019; Du et al., 2019) and exhibit better generalization
(Belkin et al., 2019; Neyshabur et al., 2019; Novak et al.,
2018). Although the model class’s capacity was immense,
deep networks did not tend to overfit (Zhang et al., 2017).

Recent studies have highlighted that the functional form of
neural networks may be less complex than their parametric
form (Bui Thi Mai & Lampert, 2020; Stock & Gribonval,
2022; Grigsby et al., 2022b), as networks with different
parameters may implement the same function. This insight
provides us with a fresh perspective for reconsidering how
overparameterization truly affects the generalization.

In this work, we quantitatively characterize the redundancy
in the parameterization of deep neural networks and derive a
complexity measure for these networks based on functional
equivalence. We analyze the results to gain insights into
generalization and optimization in deep learning.

1.1. Related work

The issue of redundancy or identification of parameteri-
zation of neural networks has been noted since 1990 in
Hecht-Nielsen (1990). Subsequent studies for neural net-
works with Tanh and sigmoid activations (Chen et al., 1993;
Fefferman & Markel, 1993; Kůrkov’a & Kainen, 1994) have
proved that given the input-output mapping of a Tanh neural
network, its architecture can be determined and weights
are identified up to permutations and sign flips. Recently,
the identifiability of parameterization in deep neural net-
works, particularly ReLU networks, has received consider-
able attention (Elbrächter et al., 2019; Bui Thi Mai & Lam-
pert, 2020; Bona-Pellissier et al., 2021; Dereich & Kassing,
2022; Stock & Gribonval, 2022; Grigsby et al., 2022b;a).
Most recently, (Bui Thi Mai & Lampert, 2020) demon-
strated that ReLU networks with non-increasing widths are
identifiable up to permutation and scaling of weight ma-
trices. With redundant parameterization, the weight space
of deep neural networks can exhibit symmetric structures,
which leads to implications for optimization (Neyshabur
et al., 2015a; Badrinarayanan et al., 2015a; Stock et al.,
2019). These studies suggest that naive loss gradient is

1

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

sensitive to reparameterization by scaling, and proposed
alternative, scaling-invariant optimization procedures. In ad-
dition, the redundancy or identification properties of neural
networks are closely related to the study of inverse sta-
bility (Elbrächter et al., 2019; Rolnick & Kording, 2020;
Bona-Pellissier et al., 2021; Petersen et al., 2021; Stock &
Gribonval, 2022), which investigates the possibility for one
to recover the parameters (weights and biases) of a neural
network.

The complexity of neural networks in terms of their pa-
rameterization redundancy has received limited attention.
Among the few relevant studies, (Grigsby et al., 2022a) and
(Grigsby et al., 2022b) are worth mentioning. In (Grigsby
et al., 2022a), the authors investigated local and global no-
tions of topological complexity for fully-connected feedfor-
ward ReLU neural network functions. On the other hand,
(Grigsby et al., 2022b) defined the functional dimension of
ReLU neural networks based on perturbations in parameter
space. They explored functional redundancy and conditions
under which the functional dimension reaches its theoretical
maximum. However, it should be noted that these results on
functional dimension do not directly translate into general-
ization error bounds for deep learning algorithms.

The complexity of a class of functions is closely related to
generalization error, with larger complexities often lead-
ing to larger generalization error (Bartlett et al., 2017;
Mohri et al., 2018). Various complexity upper bounds have
been studied for deep neural networks using different mea-
surements, such as Rademacher complexity (Neyshabur
et al., 2015b; Golowich et al., 2018; Li et al., 2018), VC-
dimension and Pseudo dimension (Baum & Haussler, 1988;
Goldberg & Jerrum, 1993; Anthony et al., 1999; Bartlett
et al., 2019), and covering number (Anthony et al., 1999;
Neyshabur et al., 2017b; Bartlett et al., 2017; Lin & Zhang,
2019). These measurements characterize the complexity of
the class of neural networks and are influenced by hyperpa-
rameters like network depth, width, number of weights and
bias vectors, and corresponding norm bounds. While these
bounds are not directly comparable in magnitude, they are
closely related and can be converted to facilitate compar-
isons (Anthony et al., 1999; Mohri et al., 2018).

1.2. Our contributions

We summarize our contributions as follows:

1. We make use of the permutation equivalence property
to firstly obtain a tighter upper bound on the covering
number of neural networks, which improves existing
results by factorials of the network widths and provides
unprecedented insights into the intricate relationship
between network complexity and layer width.

2. We improve existing covering number bounds in the

sense that our results hold for neural networks with
bias vectors and general activation functions. Since
bias terms are indispensable for the approximation
power of neural networks, our results are useful in
both theory and practice. Additionally, we express our
bound explicitly in terms of the network’s width, depth,
size, and the norm of the parameters.

3. We discuss the implications of our findings for under-
standing generalization and optimization. In particular,
we found that overparameterized networks tend to be
easier to train in the sense that increasing the width
of neural networks leads to a vanishing volume of the
effective parameter space.

The remainder of the paper is organized as follows. In
section 2, we introduce the concept of functional equiva-
lence and investigate the permutation invariance property
of general feedforward neural networks. In section 3, we
derive novel covering number bounds for shallow and deep
neural networks by exploiting the permutation invariance
property and compare our results with existing ones. In sec-
tion 4, we discuss the extension to convolutional, residual
and attention-based networks. In section 5, we demonstrate
the theoretical implication of permutation invariance on the
optimization complexity in deep learning and discuss the
implications of our results on generalization. Finally, we
discuss the limitations of this study and future research di-
rections in section 6. All technical proofs are included in
the Appendix.

2. Functionally equivalent Neural Networks
A feedforward neural network is a fully connected artifi-
cial neural network consisting of multiple layers of inter-
connected neurons. The network’s architecture can be ex-
pressed as a composition of linear maps and activations.
The functional form of an L-layer feedforward neural net-
work is determined by its weight matrices, bias vectors, and
activation functions:

f(x; θ) = AL+1◦σL◦AL◦· · ·◦σ2◦A2◦σ1◦A1(x). (1)

Here, Al(x) = W (l)x+ b(l) is the linear transformation for
layer l, where W (l) and b(l) are the weight matrix and bias
vector respectively. The activation function σl is applied
element-wise to the output of Al, and can be different across
layers. The collection of weight matrices and bias vectors
is denoted by θ = (W (1), b(1), . . . ,W (L+1), b(L+1)). The
input x is propagated through each layer of the network to
produce the output f(x; θ).

The parameterization of a neural network can be redundant,
with different parameter sets producing identical function
outputs. This redundancy arises from the non-identifiability
of weight matrices or activation functions.

2

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

Table 1. A comparison of recent results on the complexity of feedforward neural networks.

PAPER COMPLEXITY EXPLICIT
BIAS

VECTORS
GENERAL

ACTIVATIONS

PERMUTA-
TION

INVARIANCE

(BARTLETT ET AL.,
2017) B2

x(ρ̄s̄)
2U log(W)/ϵ2 % % % %

(NEYSHABUR ET AL.,
2017B) B2

x(ρ̄s̄)
2SL2 log(WL)/ϵ2 % % % %

(LIN & ZHANG,
2019) Bx(ρ̄s̄)S2L/ϵ % % % %

(BARTLETT ET AL.,
2019) LS log(S) log(ρ̄s̄Bx/ϵ) ! ! ! %

THIS PAPER LS log(ρ̄s̄B
1/L
x /((d1! · · · dL!)1/Sϵ)1/L) ! ! ! !

Notations: S number of parameters; U number of hidden neurons; L number of hidden layers; W maximum hidden layers width; Bx,
L2 norm of input; ρ̄ = ΠL

j=1ρj , products of Lipschitz constants of activations; s̄ = ΠL
j=1sj , products of spectral norms of hidden

layer weight matrices; ϵ, radius for covering number.

Definition 2.1 (Functionally-Equivalent Neural Networks).
Two neural networks f(x; θ1) and f(x; θ2) are said to be
functionally-equivalent on X if they produce the same input-
output function for all possible inputs, i.e.,

f1(x; θ1) = f2(x; θ2) ∀x ∈ X , (2)

where X is the input space and θ1 and θ2 denote the sets of
parameters of the two networks, respectively.

Neural networks with a fixed architecture can have
functionally-equivalent versions through weight scaling,
sign flips, and permutations. This can even occur across
networks with different architectures. In this paper, we fo-
cus on the complexity of a specific class of neural networks
with fixed architecture but varying parameterizations. We
provide examples of functionally-equivalent shallow neural
networks to illustrate this concept.
Example 2.2 (Scaling). Consider two shallow neural net-
works parameterized by θ1 = (W

(1)
1 , b

(1)
1 ,W

(2)
1 , b

(2)
1) and

θ2 = (W
(1)
2 , b

(1)
2 ,W

(2)
2 , b

(2)
2), defined as:

f(x; θ1) = W
(2)
1 σ(W

(1)
1 x+ b

(1)
1) + b

(2)
1 ,

f(x; θ2) = W
(2)
2 σ(W

(1)
2 x+ b

(1)
2) + b

(2)
2

respectively, where x ∈ Rn is the input to the network and
σ satisfies σ(λx) = λσ(x) for all x ∈ Rn and λ > 0. If
there exists a scalar value α > 0 such that:

(W
(1)
2 , b

(1)
2) = (αW

(1)
1 , αb

(1)
1) and W

(2)
2 =

1

α
W

(2)
1 ,

then f(·; θ1) and f(·; θ2) are functionally equivalent.

Scaling invariance property is applicable to ReLU, Leaky
ReLU, and piecewise-linear activated neural networks.
Specifically, for all x ∈ Rn and λ ≥ 0, we have σ(λx) =

λσ(x) for σ being the ReLU or Leaky ReLU function. It is
worth noting that the above example is presented for shal-
low neural networks, but the scaling invariance property can
happen in deep networks across any two consecutive layers.
Example 2.3 (Sign Flipping). Consider two shallow neural
networks f(·; θ1) and f(·; θ2) defined in Example 2.2 with
σ being an odd function, that is σ(−x) = −σ(x) for all
x ∈ Rn. If

(W
(1)
2 , b

(1)
2) = (−W

(1)
1 ,−b

(1)
1) and W

(2)
2 = −W

(2)
1 ,

then f(x; θ1) and f(x; θ2) are functionally equivalent.

Sign flipping invariance property can happen for neural
networks activated by Tanh, Sin and odd functions. It is
worth noting that Sigmoid does not have a straightforward
Sign flipping invariance. While Sigmoid is an odd function
up to a constant 0.5, it can be Sign-flipping invariant up-to
a constant and the constant can be mitigated by using a
bias(Martinelli et al., 2023). The sign flipping invariance
property can also be generalized to deep neural networks
across any two consecutive layers.
Example 2.4 (Permutation). Consider two shallow neural
networks f(·; θ1) and f(·; θ2) defined in Example 2.2 with
σ being a general activation function. Let the dimension of
the hidden layer of f(x; θ1) and f(x; θ2) be denoted by m.
If there exists an m×m permutation matrix P such that

(PW
(1)
2 , P b

(1)
2) = (W

(1)
1 , b

(1)
1) and W

(2)
2 P = W

(2)
1 ,

then f(x; θ1) and f(x; θ2) are functionally equivalent.

The feedforward neural networks are built of linear trans-
formations and activations, and it is intuitive that simply
re-indexing neurons in a hidden layer and the correspond-
ing rows of the weights matrix and bias vector will lead
to a functionally equivalent network. The permutation in-
variance is the most basic type of equivalence for neural

3

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

networks since it does not rely on any specific properties of
activation functions, while scaling and sign flipping invari-
ance are activation-dependent properties. A comparison on
functional equivalence properties on neural network with
commonly-used activation functions is presented in Table 2.

Next, we derive sufficient conditions fo feed-forward neural
networks (FNNs) to be permutation-equivalent.
Proposition 2.5 (Permutation equivalence for deep FNNs).
Consider two neural networks f(x; θ1) and f(x; θ2) with
the same activations σ1, . . . , σL and architecture

f(x; θ) = W (L+1)σL(· · ·σ1(W
(1)
1 x+b

(1)
1) · · ·)+b

(L)
1)+b(L+1)

but parameterized by different parameters

θj = (W
(1)
j , b

(1)
j , . . . ,W

(L+1)
j , b

(L+1)
j), j = 1, 2

respectively, where x ∈ Rn is the input to the network.
Let P⊤ denote the transpose of matrix P . If there exists
permutation matrices P1, . . . , PL such that

W
(1)
1 = P1W

(1)
2 , b

(1)
1 = P1b

(1)
2 ,

W
(l)
1 = PlW

(l)
2 P⊤

l−1, b
(l)
1 = Plb

(1)
2 , l = 2, . . . , L

W
(L+1)
1 = W

(L+1)
2 P⊤

L , b
(L)
1 = b

(L)
2 ,

then f(x; θ1) and f(x; θ2) are functionally equivalent.

Proposition 2.5 describes the relationship between the pa-
rameters of two permutation-equivalent deep feedforward
neural networks. This relationship can be used to create
functionally equivalent networks given fixed architectures.
It’s important to note that although permutation invariance is
sufficient for functional equivalence of feedforward neural
networks, it’s not always necessary. (Petzka et al., 2020)
gave a complete characterization for fully-connected net-
works with two layers. While for general networks, certain
restrictions on the architecture and activation function are
required to fully characterize (Sussmann, 1992; Kůrkov’a &
Kainen, 1994; Bui Thi Mai & Lampert, 2020) and recover
the parameters of a network (Martinelli et al., 2023). This
study focuses only on utilizing permutation invariance to
investigate neural network complexity.

3. Complexity of Deep Neural Networks
In this section, we analyze the complexity of a class of
feedforward neural networks by examining the redundancy
that arises from permutation invariance. Specifically, we
study the covering number of real-valued, deep feedforward
neural networks that share the same architecture but have
different parameterization.

Let the vector (d0, d1, . . . , dL) represent the dimensions
of the layers of the neural network f(x; θ) defined in (1),
where dL+1 = 1 as the output is real-valued. Note that

the bias vectors in hidden layers contain U :=
∑L

i=1 di
entries, and the weight matrices together with bias vectors
contain S :=

∑L
i=0 di × di+1 + di+1 entries in total. We

define the parameter space of θ as Θ = [−B,B]S for some
B ≥ 1, which is closed for permutation operations and
ensures the absolute value of the weight matrix and bias
vector entries are bounded by B. We set Θ = [−B,B]S

for some B ≥ 1. The setting is in line with complexity
studies as in (Neyshabur et al., 2015b; Bartlett et al., 2017;
Golowich et al., 2018) with norm controls. The setting
of bounded parameter space can also correspond to the
observed implicit regularization phenomena in SGD-based
optimization algorithms (Neyshabur et al., 2014; Gunasekar
et al., 2018a;b), which can lead to minimum-norm solutions
(e.g., for least square problems). We do not specify any
activation functions σ1, . . . , σL since we consider general
deep feedforward neural networks. Finally, the class of
feedforward neural networks we consider is denoted as

F(L, d0, d1, . . . , dL, B) (3)

= {f(·; θ) : Rd0 → R is defined in (1) : θ ∈ [−B,B]S}.

3.1. Shallow Feed-Forward Neural Networks

It is well-known that a shallow neural network with a single
hidden layer has universal approximation properties (Cy-
benko, 1989; Hornik, 1991) and is sufficient for many learn-
ing tasks (Hanin & Rolnick, 2019; Hertrich et al., 2021).
We begin our investigation by considering shallow neural
networks of the form

F(1, d0, d1, B) (4)

= {f(x; θ) = W (2)σ1(W
(1)x+ b(1)) + b(2) : θ ∈ [−B,B]S}

where the total number of parameters is given by S =
(d0 + 2) × d1 + 1. By Theorem 2.5, for any θ =
(W (1), b(1),W (2), b(2)) ∈ Θ and any permutation matrix
P , θ̃ = (PW (1), P b(1),W (2)P⊤, b(2)) ∈ Θ will produce
the same input-out function. Actually, permutation invari-
ance leads to equivalence classes of parameters that yield the
same realization, and we can obtain a set of representatives
from equivalence classes. A canonical choice is

Θ0 := {θ ∈ [−B,B]S : b
(1)
1 ≥ b

(1)
2 ≥ · · · ≥ b

(1)
d1

},

where the set of representatives is by restricting the bias
vector b(1) = (b

(1)
1 , . . . , b

(1)
d1

)⊤ to have descending compo-
nents. Alternatively, we can sort the first component of the
rows of W (1) to obtain a set of representatives. It is worth
mentioning that Θ0 may not be the minimal set of represen-
tatives since there may be other symmetries within Θ0. We
did not further utilize these additional symmetries to reduce
Θ0 to be smaller since other symmetries can depend on the
specific properties of the activation functions in the neural
networks. In this work, we specifically employ permutation
invariance (which holds for networks with any activations)
to obtain a representative set Θ0.

The set of representatives Θ0 has two important properties

4

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

Table 2. Functional equivalence property for networks with different activation functions.

ACTIVATION FORMULA SIGN FLIPPING SCALING PERMUTATION

SIGMOID [1 + exp(−x)]−1
% % !

TANH [1− exp(−2x)]/[1 + exp(−2x)] ! % !

RELU max{0, x} % ! !

LEAKY RELU max{ax, x} FOR a > 0 % ! !

• Neural networks {f(·; θ) : θ ∈ Θ0} parameterized by
Θ0 contains all the functions in {f(·; θ) : θ ∈ Θ}, i.e.,

{f(·; θ) : θ ∈ Θ0} = {f(·; θ) : θ ∈ Θ}.

• The volume (in terms of Lebesgue measure) of the set
of representatives Θ0 is (1/d1!) times smaller that that
of the parameter space Θ, i.e.,

Volume(Θ) = d1!×Volume(Θ0).

The first property holds naturally since any parameter θ ∈ Θ
has a permuted version in Θ0. Regarding the second prop-
erty, we note that both Θ and Θ0 belong to the Euclidean
space RS (where S denotes the number of parameters), then
their volumes in terms of Lebesgue measure can be calcu-
lated. For any parameter θ with distinct components in the
bias vector b(1) = (b

(1)
1 , . . . , b

(1)
d1

)⊤, permutation of the bias
vector and corresponding weights can lead to (d1!) distinct
equivalent parameters θ1, . . . , θd1!. Then this implies a (d1!)
times smaller volume of representative set Θ0 compared to
that of Θ.

Subsequently, the two properties suggest that Θ0 can be a
representative parameterization of neural networks when
they are viewed only as input-output functions. Based on
these observations, we derive improved complexities of the
class of neural networks in terms of its covering number.
Definition 3.1 (Covering Number). Let F = f : X → R
be a class of functions. We define the supremum norm of
f ∈ F as ∥f∥∞ := supx∈X |f(x)|. For a given ϵ > 0,
we define the covering number of F with radius ϵ under
the norm ∥ · ∥∞ as the least cardinality of a subset G ⊆ F
satisfying

sup
f∈F

min
g∈G

∥f − g∥∞ ≤ ϵ.

Denoted by N (F , ϵ, ∥ · ∥∞), the covering number measures
the minimum number of functions in F needed to cover the
set of functions within a distance of ϵ under the supremum
norm.

The covering number N (F , ϵ, ∥·∥∞) provides a quantitative
measure of the complexity of the class of functions F under
the supremum norm, with smaller values indicating simpler
classes. Covering numbers, along with Rademacher com-
plexity, VC dimension, and Pseudo dimension, are essential

complexity measures in the analysis of learning theories and
in estimating generalization errors. Although these mea-
sures are different, they are correlated with each other, and
we introduce the detailed correlations in Appendix.
Remark 3.2. We define the covering number of a class of
functions in the uniform sense. This is an extension of the
canonical definition of covering numbers, which was origi-
nally developed for subsets in Euclidean space. While most
existing studies of covering numbers for function spaces
consider the image of the functions on a finite sample (An-
thony et al., 1999; Bartlett et al., 2017), our definition is
formulated directly in terms of the function space itself,
without requiring a finite sample or any other auxiliary con-
struction.

Theorem 3.3 (Covering number of shallow neural net-
works). Consider the class of single hidden layer neural
networks F := F(1, d0, d1, B) defined in (4) parameter-
ized by θ ∈ Θ = [−B,B]S . Suppose the radius of the
domain X of f ∈ F is bounded by some Bx > 0, and
the activation σ1 is continuous. Then for any ϵ > 0, the
covering number

N (F , ϵ, ∥ · ∥∞) ≤ (16B2(Bx + 1)
√

d0d1/ϵ)
S × ρSh/d1!,

(5)

where ρ denotes the Lipschitz constant of σ1 on the range of
the hidden layer (i.e., [−

√
d0B(Bx)+1),

√
d0B(Bx+1)]),

and Sh = d0d1 + d1 is the total number of parameters in
the linear transformation from input to the hidden layer, and
S = d0 × d1 + 2d1 + 1 is the total number of parameters.

Our upper bound on the covering number firstly takes ad-
vantage of permutation invariance, resulting in a reduced
complexity (by a factorial term d1! in the denominator) com-
pared to existing studies (Neyshabur et al., 2015b; Bartlett
et al., 2017; Neyshabur et al., 2017b; Neyshabur, 2017; Lin
& Zhang, 2019). The factorial reduction d!! can be signif-
icant. For instance, for a shallow ReLU network with a
hidden dimension of d1 = 128, the factorial 128! ≈ 10215,
which is far larger than 1082, the upper estimate on the num-
ber of atoms in the known universe. This reduction can be
substantial and can enhance theoretical analysis and results
that rely on covering numbers. In addition, it’s worth noting
that bounds in Theorem 3.3 holds true for networks with
bias vectors. This is also an improvement over existing

5

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

studies that didn’t consider bias vectors in neural networks,
since bias terms are crucial for the approximation power
of neural networks (Yarotsky, 2017; Lu et al., 2021b; Shen
et al., 2022).

Stirling’s formula can be used to approximate the facto-
rial term as

√
2πd1(d1/e)

d1 exp(1/(12d1 + 1)) < d1! <√
2πd1(d1/e)

d1 exp(1/12d1) when d1 ≥ 1. This re-
duces the covering number approximately by a factor of
(d1/e)

d1 and the bound in (5) is (CB,Bx,d0,ρ/ϵ)
S × dS−U

1 ,
where U = d1 denotes the number of hidden neurons and
CB,Bx,d0,ρ > 0 is a constant depending only on B,Bx, d0
and ρ. Notably, S − U is the number of weights (excluding
bias), and the reduced bound is basically that for a single
neural network without bias vectors and considering permu-
tation invariance. Lastly, we note that increasing the number
of neurons in a shallow neural network enlarges its approxi-
mation power (Lu et al., 2017; Ongie et al., 2019), but at a
smaller increase in complexity according to our results.
Remark 3.4. Theorem 3.3 applies to any activation function
that is locally Lipschitz on bounded sets (range of the hidden
layer), which does not require any specific choice such as
Hinge or ReLU in (Neyshabur et al., 2015b; 2017b), and
does not require universal Lipschitz and σ(0) = 0 as in
(Bartlett et al., 2017; Lin & Zhang, 2019). In the case of the
ReLU or Leaky ReLU activation, our bound simplifies to
ρ = 1 without any condition, leading to the disappearance
of the term ρSh in our bound.

3.2. Deep Feed-Forward Neural Networks

For deep neural networks, we can also analyze its effective
parameter space based on permutation invariance properties.
By Theorem 2.5, a set of representatives Θ0 = Θ

(1)
0 ×

Θ
(2)
0 × · · · ×Θ

(L)
0 ×Θ

(L+1)
0 can be constructed where

Θ
(l)
0 =

{
(W (l), b(l)) ∈ [−B,B]Sl : b

(l)
1 ≥ b

(l)
2 ≥ · · · ≥ b

(l)
dl
}

for l = 1, . . . , L,Θ
(L+1)
0 = {(W (L+1), b(L+1)) ∈ [−B,B]SL+1

}
.

Then we can obtain an upper bound of the covering number of
deep feedforward neural networks.

Theorem 3.5 (Covering number of deep neural net-
works). Consider the class of deep neural networks F :=
F(1, d0, d1, . . . , dL, B) defined in (3) parameterized by
θ ∈ Θ = [−B,B]S . Suppose the radius of the domain
X of f ∈ F is bounded by Bx for some Bx > 0, and the
activations σ1, . . . , σL are locally Lipschitz. Then for any
ϵ > 0, the covering number N (F , ϵ, ∥ · ∥∞) is bounded by(

4(L+ 1)(Bx + 1)(2B)L+2(ΠL
j=1ρj)(Π

L
j=0dj) · ϵ−1

)S

d1!× d2!× · · · × dL!
,

where S =
∑L

i=0 didi+1 + di+1 and ρi denotes the Lip-
schitz constant of σi on the range of (i − 1)-th hidden
layer, especially the range of (i − 1)-th hidden layer is

bounded by [−B(i), B(i)] with B(i) ≤ (2B)iΠi−1
j=1ρjdj for

i = 1, . . . , L.

Theorem 3.5 provides a novel upper bound for the cover-
ing number of deep neural networks based on permutation
invariance, which reduces the complexity compared to pre-
vious results (Neyshabur et al., 2015b; 2017b; Bartlett et al.,
2017; Lin & Zhang, 2019) by approximately a factor of
(d1!d2! · · · dL!). According to Theorem 3.5, increasing the
depth of a neural network increases its complexity. However,
it is interesting to note that the increased hidden layer l will
have a (dl!) discount on the complexity. If the hidden layers
have equal width (d = d1 = · · · = dL), the bound reduces
to (CB,Bx,d0,ρ/ϵ)

S × dS−U , where U = Ld denotes the
number of hidden neurons and CB,Bx,d0,ρ > 0 is a constant
depending only on B,Bx, d0 and ρi, i = 1, . . . , L. As with
shallow neural networks, the improved rate (S−U) denotes
the number of weights but excluding biases, which assures
the approximation power of neural networks, but grows its
complexity in a rate free of number of bias.
Remark 3.6. As discussed in Remark 3.4, our results take
into account the permutation invariance and have looser
requirements on activation functions compared to exist-
ing results (Neyshabur et al., 2015b; 2017b; Bartlett et al.,
2017; Lin & Zhang, 2019). In addition, our upper bound
is explicitly expressed in parameters which are known and
can be specified in practice, e.g., network depth L, width
(d0, d1, . . . , dL), size S and uniform bound B for weights
and biases. While most existing bounds in (Neyshabur et al.,
2015b; 2017b; Bartlett et al., 2017; Lin & Zhang, 2019) are
in terms of the spectral norm of weight matrices and some
measurement on externally introduced reference matrices,
which are usually unknown in practice.

3.3. Comparing to existing results

The complexity upper bounds in terms of covering num-
ber on the class of deep neural networks have been studied
in (Anthony et al., 1999; Neyshabur et al., 2017b; Bartlett
et al., 2017; Lin & Zhang, 2019). These results are proved
by using similar approaches of mathematical induction
(e.g. Lemma A.7 in (Bartlett et al., 2017), Lemma 2 in
(Neyshabur et al., 2017b) and Lemma 14 of (Lin & Zhang,
2019)). Compared with these results, we improve upon their
results in three ways.

• First, we consider the generally defined neural net-
works where the bias vector is allowed to appear. Bias
terms are indispensable for the approximation power
of neural networks (Yarotsky, 2017; Lu et al., 2021b;
Shen et al., 2022). Neural networks without bias vec-
tors may be disqualified in theory and practice.

• Second, we explicitly express our bound in terms of
the width, depth, and size of the neural network, as

6

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

well as the infinity norm of the parameters.

• Third, we utilize the permutation equivalence property
to obtain a tighter upper bound on the covering number.
Notably, this bound improved existing results by a fac-
torial of the network widths, providing unprecedented
insights into the intricate relationship between network
complexity and layer width.

Various complexity upper bounds for deep neural networks
in other measurements have also been studied, including
Rademacher complexity (Neyshabur et al., 2015b; Golowich
et al., 2018; Li et al., 2018), VC-dimension, and Pseudo di-
mension (Baum & Haussler, 1988; Goldberg & Jerrum,
1993; Anthony et al., 1999; Bartlett et al., 2019). Our
bounds in terms of covering number are not directly com-
parable with these measurements. To make a compari-
son with these other measurements, we convert the up-
per bounds into metric entropy, which is equivalent to the
logarithm of the covering number log(N (F , ϵ, ∥ · ∥∞)).
Specially, let ρ̄ = ΠL

j=1ρj products of Lipschitz constants
of activation functions and s̄ = ΠL

j=1sj products of spec-
tral norms of hidden layer weight matrices (Bartlett et al.,
2017) derived an spectral-norm based bound of metric en-
tropy B2

x(ρ̄s̄)
2U log(W)/ϵ2, following which (Neyshabur

et al., 2017b) obtained B2
x(ρ̄s̄)

2SL2 log(WL)/ϵ2 and (Lin
& Zhang, 2019) obtained Bx(ρ̄s̄)S2L/ϵ. Based on Theorem
12.2 in (Anthony et al., 1999), the Pseudo dimension bound
in (Bartlett et al., 2017) leads to LS log(S) log(ρ̄s̄Bx/ϵ).
Lastly, our results in Theorem 3.5 can be presented as
LS log(ρ̄s̄B

1/L
x /((d1! · · · dL!)Sϵ)1/L) by letting si :=

B
√
didi−1 given in our setting. It is important to note

that the quantity B
√

didi−1 can provide an upper bound
for the spectral norm si, but the reverse is not necessarily
true. We cannot ensure Theorem 3.5 to still be true by di-
rectly substituting B

√
didi−1 with si in the theorem. In

other words, if the covering number bounds are derived in
terms of the spectral norm, the reduction factor d1! · · · dL!
may not be obtained, and additional parameters like ma-
trix norm bounds would appear in the upper bound(Bartlett
et al., 2017). We would also mention that even our results
improved over the existing ones, all these bounds scale with
number of parameters S and can still result vacuous bounds
in error analysis with extremely over-parametrized settings.
We present a detailed comparison of the results in Table 1.

4. Extension to other neural networks
Functional equivalence can manifest ubiquitously across
various types of neural networks, with a specific emphasis
on the presence of permutation equivalence within neu-
ral networks featuring linear transformation layers. This
section delves into the exploration of feasible extensions
aimed at harnessing the power of functional equivalence

within convolutional neural networks, residual networks,
and attention-based networks.

4.1. Convolutional neural networks

Convolutional neural networks (CNNs) are featured by the
utilization of convolution and pooling layers. In a convolu-
tion layer, the input is convolved with parameter-carrying
filters, resembling a linear layer with a sparse weight matrix.
A pooling layer is commonly employed for downsampling
and summarizing input feature information. It partitions the
input into non-overlapping regions and applies a pooling op-
eration to each region. The most prevalent types of pooling
operations include max/min/avg pooling, which retain the
maximum, minimum, or average value within each region.

As demonstrated in Example 2.2-2.4, scaling, sign flip, and
permutation equivalence directly apply to convolution layers
(linear layer with sparse weight matrix). We also extend the
permutation equivalence within pooling regions as follows.
Example 4.1 (Permutation within Pooling Regions).
Consider two shallow CNNs defined by f(x; θ1) =
Pool(W1x+ b1) and f(x; θ2) = Pool(W2x+ b2) respec-
tively where “Pool” is a pooling operator. Let I1, . . . , IK
be the non-overlapping index sets (correspond to the pool-
ing operator) of rows of W1x + b1 and W2x + b2. Then
f(·; θ1) and f(·; θ2) are functional equivalent if there exists
a permutation matrix P such that ∀k ∈ {1, . . . ,K}

(PW2)Ik
∼= (W1)Ik

and (Pb2)Ik
∼= (b1)Ik

,

where AIk
denotes the Ik rows of A and A ∼= B denotes

that A equals to B up to row permutations.

Permutation equivalence within non-overlapping regions in
CNNs preserves max/min/avg values, eliminating the need
for cancel-off operations in subsequent layers. This further
allows for the derivation of complexity bounds of CNNs
by identifying their effective parameter space, similar to
Theorem 3.5. In addition, the results on the connections
between CNNs and feed-forward networks can be naturally
utilized to improve the covering number bounds and ca-
pacity estimates (Fang et al., 2020; Mao et al., 2021), e.g.,
(Zhou, 2020b;a) showed that fully connected deep ReLU
networks can be realized by deep CNNs with the same order
of network parameter numbers,.

4.2. Residual Networks

Residual Networks are a type of deep CNN architecture
that has a significant impact on computer visions (He et al.,
2016). The key feature of ResNet is the use of skip connec-
tions that enable networks to learn residual mappings and
bypass layers, leading to very deep but trainable networks.
Mathematically, a residual layer f(x; θ) = x+ F(x; θ) out-
puts the summation of the input x and its transformation

7

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

F(x; θ). The F (·; θ) can be any transformation that maps x
to the space of itself, and it defines the residual layer. Then
the equivalence of F implies that of the residual layer.
Example 4.2 (Equivalence of Residual Layer). Consider
two residual layers f(x; θ1) = x+F (x; θ1) and f(x; θ2) =
x + F (x; θ2). Then f(·; θ1) and f(·; θ2) are functionally
equivalent if and only if F (·; θ1) and F (·; θ2) are function-
ally equivalent.

4.3. Attention-based Networks

Attention-based models, well known for BERT, GPT and
many others, have been successful in natural language pro-
cessing and computer vision tasks (Vaswani et al., 2017;
Devlin et al., 2018; Radford et al., 2018). It utilizes an at-
tention mechanism to focus on relevant parts of the input
data. Here we focus on the self-attention module due to its
effectiveness. Let Xn×d denote the input of a n-sequence
of d-dimensional embeddings, and let WQ

d×dq
,WK

d×dk
and

WV
d×dv

be the weight matrices where dq = dk. Then the
self-attention map outputs

Softmax

(
XWQ(WK)′X ′

√
dk

)
XWV

where the Softmax(·) is applied to each row of its input
and A′ denotes the transpose of a matrix A.
Example 4.3 (Permutation within Attention map). Consider
two attention maps f(x; θ1) and f(x; θ2) with f(x; θi) =

Softmax(XWQ
i (WK

i)′X ′/
√
dk)XWV

i for i = 1, 2.
Then f(·; θ1) and f(·; θ2) are functionally equivalent if there
exists dk × dk permutation matrix P such that

WQ
2 P = WQ

1 and WK
2 P = WK

1 .

For the attention module, there is no activation function
between the key and query matrices. The relevant sym-
metry can be considered for any equivalent linear maps
WQ(WK)′. In addition, the output of Softmax operator
is invariant to the row shift of its input, which also leaves
the possibility to further reduce the complexity of attention
modules to understand the overparameterization of large
language models.

5. Implications to generalization and
optimization

In this section, we introduce the relevance and highlight the
usefulness of our study to both generalization and optimiza-
tion via empirical risk minimization (ERM) framework.

The goal of ERM is to find the target function f0, which rep-
resents the true relationship between the inputs and outputs,
and is typically defined as the minimizer (can be unbounded)
of some risk R(·), i.e., f0 := argminf R(f). However,

since the target function is unknown, we can only approxi-
mate it using a predefined hypothesis space F , such as the
class of neural networks parameterized by θ in deep learn-
ing, i.e., F(Θ) = {fθ(·) = f(·; θ) : θ ∈ Θ}. Then the “best
in class” estimator is defined by fθ∗ = argminf∈FΘ

R(f).
It’s worth noting that the risk function R is defined with
respect to the distribution of the data, which is unknown
in practice. Instead, only a sample with size n is avail-
able, and the empirical risk Rn can be defined and mini-
mized to obtain an empirical risk minimizer (ERM), i.e.,
fθn ∈ argminf∈FΘ Rn(f). Finally, optimization algo-
rithms such as SGD and ADAM, lead us to the estimator
obtained in practice, i.e., fθ̂n . The generalization error of
fθ̂n can be defined and decomposed as (Mohri et al., 2018):

R(fθ̂n,opt
)−R(f0)︸ ︷︷ ︸

generalization error

= R(fθ̂n)−R(fθn)︸ ︷︷ ︸
optimization error

+R(fθn)−R(fθ∗)︸ ︷︷ ︸
estimation error

+R(fθ∗)−R(f0)︸ ︷︷ ︸
approximation error

.

The estimation error is closely related to the complexity of
the function class F(Θ) and the sample size n. pecifically,
for a wide range of problems such as regression and classi-
fication, the estimation error is O((log{N (F(Θ), 1/n, ∥ ·
∥∞)}/n)k) for k = 1/2 or 1 (Bartlett et al., 2019; Kohler
& Langer, 2021; Shen et al., 2022; Jiao et al., 2023). Our
results improve the estimation error by subtracting at least
log(d1! · · · dL!) from the numerator (·/n)k compared to ex-
isting results.

The approximation error depends on the expressive power
of networks F(Θ) and the features of the target f0, such as
its input dimension d and smoothness β. Typical results for
the bounds of the approximation error are O((LW)−β/d)
(Yarotsky, 2017; 2018; Petersen & Voigtlaender, 2018; Lu
et al., 2021b) where L and W denote the depth and width of
the neural network. However, it is unclear how our reduced
covering number bounds will improve the approximation
error based on current theories.

Regarding the optimization error, due to the high non-
convexity and complexity of deep learning problems, quan-
titative analysis based on current theories is limited. Even
proving convergence (to stationary points) of existing meth-
ods is a difficult task (Sun, 2020). However, we found that
the symmetric structure of the parameter space can facili-
tate optimization. To be specific, our Theorem 5.1 in the
following indicates that considering the symmetry structure
of the deep network parameter space can make the probabil-
ity of achieving zero (or some level of) optimization error
(d1! · · · dL!) times larger.

For a deep neural network in (3), we say two rows in the pa-
rameters θ(l) := (W (l); b(l)) in the lth hidden layer are iden-
tical if the two rows of the concatenated matrix (W (l); b(l))
are identical. Here we concatenate the weight matrix W (l)

and bias vector b(l) by (W (l); b(l)) due to the one-one corre-
spondence of the rows in W (l) and b(l). Specifically, if the

8

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

lth layer of the network is activated by σ, then the ith row of
the output vector σ(W (l)x+b(l)) is given by σ(W (l)

i x+b
(l)
i)

where W
(l)
i and b

(l)
i denote the ith row of W (l) and b(l) re-

spectively. We let d∗l denote the number of distinct permuta-
tions of rows in θ(l), and let (d∗1, . . . , d

∗
L) collect the number

of distinct permutations in the hidden layers of the network
parameterization θ = (θ(1), . . . , θ(L)). We let ∆min(θ) and
∆max(θ) denote the minimum and maximum of the L∞
norm of distinct rows in θ(l) over l ∈ 1, . . . , L (see Defini-
tion (8) and (9) in Appendix for details). Then we have the
following result.

Theorem 5.1. Suppose we have an ERM fθn(·) = f(·; θn)
with parameter θn having (d∗1, . . . , d

∗
L) distinct permuta-

tions and ∆min(θn) = δ. For any optimization algorithm
A, if it guarantees producing a convergent solution of θn
when its initialization θ

(0)
n satisfies ∆max(θ

(0)
n − θn) ≤ δ/2,

then any initialization scheme that uses identical random
distributions for the entries of weights and biases within a
layer will produce a convergent solution with probability at
least d∗1×· · ·×d∗L×P(∆max(θ

(0)−θn) ≤ δ/2). Here, θ(0)

denotes the random initialization, and P(·) is with respect
to the randomness from initialization.

Theorem 5.1 can be understood straightforwardly. By The-
orem 2.5, if fθn parameterized by θn is a solution, then
fθ̃n parameterized by θ̃n (the permuted θn) is also a solu-
tion. The conditions in Theorem 2.5 ensure that the con-
vergent regions for permutation-implemented solutions are
disjoint. Thus, the probability fro convergence can be mul-
tiplied by the number of distinct permutations. These con-
ditions can hold true under specific scenarios. For instance,
when the loss is locally (strongly) convex within the (δ/2)-
neighborhood under ∆max of a global solution θn, then
(stochastic) gradient descent algorithms A can guarantee
convergence to the solution if the initialization θ

(0)
n falls

within its (δ/2)-neighborhood. It is also worth noting that
when the parameter space is Θ = [−B,B]S , the optimiza-
tion problem is equivalent when restricted to the effective
parameter space Θ0, as defined in section 3.2. The volume
of Θ0 is (2B)S/(d1! · · · dL!). Specifically, when B is fixed,
(2B)S/(d1! · · · dL!) approaches zero when dl → ∞ for any
l = 1, . . . , L. Remarkably, increasing the width of neural
networks leads to the effective parameter space’s volume
tending towards zero. As a result, this may explain the obser-
vations in (Frankle & Carbin, 2019; Allen-Zhu et al., 2019;
Du et al., 2019) where overparameterized networks tend to
be easier to train. In (Simsek et al., 2021), the geometry (in
terms of manifold and connected affine subspace) of sets of
minima and critical points in deep learning was described,
which also indicates that overparameterized networks bear
more minima solutions, thereby facilitating optimization.

The landscape of the loss surface in deep learning has been
studied by considering the symmetry of the parameter space

in several works. Specifically, (Brea et al., 2019) discov-
ered that permutation critical points are embedded in high-
dimensional flat plateaus and proved that all permutation
points in a given layer are connected with equal-loss paths.
(Entezari et al., 2021) conjectured that SGD solutions will
likely have no barrier in the linear interpolation between
them if the permutation invariance of neural networks is
taken into account. (Ainsworth et al., 2022) further explored
the role of permutation symmetries in the linear mode con-
nectivity of SGD solutions, and argued that neural network
loss landscapes often contain (nearly) a single basin after ac-
counting for all possible permutation symmetries of hidden
units. Subsequently, (Jordan et al., 2022) proposed methods
to mitigate the variance collapse phenomenon that occurs
in the interpolated networks, and to improve their empir-
ical performance. Additionally, optimization algorithms
for deep learning have been proposed to enhance training
based on the symmetry of network parameter space (Badri-
narayanan et al., 2015b; Cho & Lee, 2017; Meng et al.,
2018; Navon et al., 2023).

Remark 5.2. The popular initialization schemes, including
the Xavier and He’s methods, use normal random numbers
to initialize the entries of weight matrices and bias vectors
identically within a layer (Glorot & Bengio, 2010; He et al.,
2015; Shang et al., 2016; Reddi et al., 2019). By Theorem
5.1, these initializations reduce the optimization difficulty
due to the permutation invariance property.

6. Conclusion
In this work, we quantitatively characterized the redundancy
in the parameterization of deep neural networks based on
functional equivalence, and derived a tighter complexity
upper bound of the covering number, which is explicit and
holds for networks with bias vectors and general activations.
We also explored functional equivalence in convolutional,
residual and attention-based networks. We discussed the
implications for understanding generalization and optimiza-
tion. Specifically, we found that permutation equivalence
can indicate a reduced theoretical complexity of both esti-
mation and optimizations in deep learning.

A limitation of our work is that we only considered permu-
tation invariance, neglecting sign flip and scaling invariance,
which may be relevant for specific activations. Furthermore,
functional equivalence in practice may be limited to a finite
sample, potentially resulting in reduced complexity. Future
research could explore the effects of sign flip and scaling in-
variance and investigate advanced optimization algorithms
or designs for deep learning. We also acknowledge that
the importance of deriving the lower bound of the cover-
ing numbers. We intend to pursue these areas of study to
enhance our understanding in the future.

9

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

Acknowledgements
The author thanks the anonymous reviewers for their valu-
able comments and suggestions that have improved the qual-
ity of this paper. Guohao Shen’s research is (partially) sup-
ported by the Hong Kong Research Grants Council (Grant
No. 15305523) and research grants from The Hong Kong
Polytechnic University.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ainsworth, S. K., Hayase, J., and Srinivasa, S. Git re-basin:

Merging models modulo permutation symmetries. arXiv
preprint arXiv:2209.04836, 2022.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
Conference on Machine Learning, pp. 242–252. PMLR,
2019.

Anthony, M., Bartlett, P. L., Bartlett, P. L., et al. Neural
network learning: Theoretical foundations, volume 9.
cambridge university press Cambridge, 1999.

Badrinarayanan, V., Mishra, B., and Cipolla, R. Symmetry-
invariant optimization in deep networks. arXiv preprint
arXiv:1511.01754, 2015a.

Badrinarayanan, V., Mishra, B., and Cipolla, R. Under-
standing symmetries in deep networks. arXiv preprint
arXiv:1511.01029, 2015b.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. Advances
in neural information processing systems, 30, 2017.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
Nearly-tight vc-dimension and pseudodimension bounds
for piecewise linear neural networks. The Journal of
Machine Learning Research, 20(1):2285–2301, 2019.

Baum, E. and Haussler, D. What size net gives valid gen-
eralization? Advances in neural information processing
systems, 1, 1988.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine-learning practice and the classical bias–
variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Bona-Pellissier, J., Bachoc, F., and Malgouyres, F. Pa-
rameter identifiability of a deep feedforward relu neural
network. arXiv preprint arXiv:2112.12982, 2021.

Brea, J., Simsek, B., Illing, B., and Gerstner, W. Weight-
space symmetry in deep networks gives rise to permuta-
tion saddles, connected by equal-loss valleys across the
loss landscape. arXiv preprint arXiv:1907.02911, 2019.

Bui Thi Mai, P. and Lampert, C. Functional vs. paramet-
ric equivalence of relu networks. In 8th International
Conference on Learning Representations, 2020.

Chen, A. M., Lu, H.-m., and Hecht-Nielsen, R. On the
geometry of feedforward neural network error surfaces.
Neural computation, 5(6):910–927, 1993.

Cho, M. and Lee, J. Riemannian approach to batch nor-
malization. Advances in Neural Information Processing
Systems, 30, 2017.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Dereich, S. and Kassing, S. On minimal representations of
shallow relu networks. Neural Networks, 148:121–128,
2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks. In
International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Dudley, R. M. The sizes of compact subsets of hilbert
space and continuity of gaussian processes. Journal of
Functional Analysis, 1(3):290–330, 1967.

Dudley, R. M. Universal donsker classes and metric entropy.
In Selected Works of RM Dudley, pp. 345–365. Springer,
2010.

Elbrächter, D. M., Berner, J., and Grohs, P. How degenerate
is the parametrization of neural networks with the relu
activation function? Advances in Neural Information
Processing Systems, 32, 2019.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The
role of permutation invariance in linear mode connectivity
of neural networks. arXiv preprint arXiv:2110.06296,
2021.

10

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

Fang, Z., Feng, H., Huang, S., and Zhou, D.-X. Theory of
deep convolutional neural networks ii: Spherical analysis.
Neural Networks, 131:154–162, 2020.

Fefferman, C. and Markel, S. Recovering a feed-forward
net from its output. Advances in neural information pro-
cessing systems, 6, 1993.

Frankle, J. and Carbin, M. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=rJl-b3RcF7.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse recti-
fier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and
statistics, pp. 315–323. JMLR Workshop and Conference
Proceedings, 2011.

Godfrey, C., Brown, D., Emerson, T., and Kvinge, H. On the
symmetries of deep learning models and their internal rep-
resentations. Advances in Neural Information Processing
Systems, 35:11893–11905, 2022.

Goldberg, P. and Jerrum, M. Bounding the vapnik-
chervonenkis dimension of concept classes parameterized
by real numbers. In Proceedings of the sixth annual con-
ference on Computational learning theory, pp. 361–369,
1993.

Golowich, N., Rakhlin, A., and Shamir, O. Size-independent
sample complexity of neural networks. In Conference On
Learning Theory, pp. 297–299. PMLR, 2018.

Grigsby, J. E., Lindsey, K., and Masden, M. Local and
global topological complexity measures of relu neural
network functions. arXiv preprint arXiv:2204.06062,
2022a.

Grigsby, J. E., Lindsey, K., Meyerhoff, R., and Wu, C. Func-
tional dimension of feedforward relu neural networks.
arXiv preprint arXiv:2209.04036, 2022b.

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. Charac-
terizing implicit bias in terms of optimization geometry.
In International Conference on Machine Learning, pp.
1832–1841. PMLR, 2018a.

Gunasekar, S., Lee, J. D., Soudry, D., and Srebro, N. Im-
plicit bias of gradient descent on linear convolutional
networks. Advances in neural information processing
systems, 31, 2018b.

Hanin, B. and Rolnick, D. Deep relu networks have sur-
prisingly few activation patterns. Advances in neural
information processing systems, 32, 2019.

Haussler, D. Sphere packing numbers for subsets of the
boolean n-cube with bounded vapnik-chervonenkis di-
mension. Journal of Combinatorial Theory, Series A, 69
(2):217–232, 1995.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hecht-Nielsen, R. On the algebraic structure of feedforward
network weight spaces. In Advanced Neural Computers,
pp. 129–135. Elsevier, 1990.

Hertrich, C., Basu, A., Di Summa, M., and Skutella, M. To-
wards lower bounds on the depth of relu neural networks.
Advances in Neural Information Processing Systems, 34:
3336–3348, 2021.

Hornik, K. Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251–257, 1991.

Jiao, Y., Shen, G., Lin, Y., and Huang, J. Deep nonparamet-
ric regression on approximate manifolds: Nonasymptotic
error bounds with polynomial prefactors. The Annals of
Statistics, 51(2):691–716, 2023.

Jordan, K., Sedghi, H., Saukh, O., Entezari, R., and
Neyshabur, B. Repair: Renormalizing permuted
activations for interpolation repair. arXiv preprint
arXiv:2211.08403, 2022.

Kohler, M. and Langer, S. On the rate of convergence of
fully connected deep neural network regression estimates.
The Annals of Statistics, 49(4):2231–2249, 2021.

Kůrkov’a, V. and Kainen, P. C. Functionally equivalent
feedforward neural networks. Neural Computation, 6(3):
543–558, 1994.

Li, X., Lu, J., Wang, Z., Haupt, J., and Zhao, T. On tighter
generalization bound for deep neural networks: Cnns,
resnets, and beyond. arXiv preprint arXiv:1806.05159,
2018.

Lin, S. and Zhang, J. Generalization bounds for convolu-
tional neural networks. arXiv preprint arXiv:1910.01487,
2019.

11

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

Lu, J., Shen, Z., Yang, H., and Zhang, S. Deep network
approximation for smooth functions. SIAM Journal on
Mathematical Analysis, 53(5):5465–5506, 2021a.

Lu, J., Shen, Z., Yang, H., and Zhang, S. Deep network
approximation for smooth functions. SIAM Journal on
Mathematical Analysis, 53(5):5465–5506, 2021b.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expres-
sive power of neural networks: A view from the width.
Advances in neural information processing systems, 30,
2017.

Mao, T., Shi, Z., and Zhou, D.-X. Theory of deep convo-
lutional neural networks iii: Approximating radial func-
tions. Neural Networks, 144:778–790, 2021.

Martinelli, F., Simsek, B., Brea, J., and Gerstner, W. Expand-
and-cluster: exact parameter recovery of neural networks.
arXiv preprint arXiv:2304.12794, 2023.

Meng, Q., Zheng, S., Zhang, H., Chen, W., Ye, Q., Ma,
Z.-M., Yu, N., and Liu, T.-Y. G-sgd: Optimizing relu
neural networks in its positively scale-invariant space. In
International Conference on Learning Representations,
2018.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. MIT press, 2018.

Navon, A., Shamsian, A., Achituve, I., Fetaya, E., Chechik,
G., and Maron, H. Equivariant architectures for learn-
ing in deep weight spaces. In Krause, A., Brunskill, E.,
Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 25790–25816. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/navon23a.html.

Neyshabur, B. Implicit regularization in deep learning.
arXiv preprint arXiv:1709.01953, 2017.

Neyshabur, B., Tomioka, R., and Srebro, N. In search of the
real inductive bias: On the role of implicit regularization
in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Neyshabur, B., Salakhutdinov, R. R., and Srebro, N. Path-
sgd: Path-normalized optimization in deep neural net-
works. Advances in neural information processing sys-
tems, 28, 2015a.

Neyshabur, B., Tomioka, R., and Srebro, N. Norm-based
capacity control in neural networks. In Conference on
learning theory, pp. 1376–1401. PMLR, 2015b.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro,
N. Exploring generalization in deep learning. Advances
in neural information processing systems, 30, 2017a.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. A
pac-bayesian approach to spectrally-normalized mar-
gin bounds for neural networks. arXiv preprint
arXiv:1707.09564, 2017b.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and
Srebro, N. The role of over-parametrization in gener-
alization of neural networks. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=BygfghAcYX.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and
Sohl-Dickstein, J. Sensitivity and generalization in neural
networks: an empirical study. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=HJC2SzZCW.

Ongie, G., Willett, R., Soudry, D., and Srebro, N. A function
space view of bounded norm infinite width relu nets:
The multivariate case. arXiv preprint arXiv:1910.01635,
2019.

Petersen, P. and Voigtlaender, F. Optimal approximation
of piecewise smooth functions using deep relu neural
networks. Neural Networks, 108:296–330, 2018.

Petersen, P., Raslan, M., and Voigtlaender, F. Topological
properties of the set of functions generated by neural
networks of fixed size. Foundations of computational
mathematics, 21:375–444, 2021.

Petzka, H., Trimmel, M., and Sminchisescu, C. Notes on
the symmetries of 2-layer relu-networks. In Proceedings
of the northern lights deep learning workshop, volume 1,
pp. 6–6, 2020.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Razin, N. and Cohen, N. Implicit regularization in deep
learning may not be explainable by norms. Advances in
neural information processing systems, 33:21174–21187,
2020.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. arXiv preprint arXiv:1904.09237,
2019.

Rolnick, D. and Kording, K. Reverse-engineering deep
relu networks. In International Conference on Machine
Learning, pp. 8178–8187. PMLR, 2020.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Under-
standing and improving convolutional neural networks
via concatenated rectified linear units. In international
conference on machine learning, pp. 2217–2225. PMLR,
2016.

12

https://proceedings.mlr.press/v202/navon23a.html
https://proceedings.mlr.press/v202/navon23a.html
https://openreview.net/forum?id=BygfghAcYX
https://openreview.net/forum?id=BygfghAcYX
https://openreview.net/forum?id=HJC2SzZCW
https://openreview.net/forum?id=HJC2SzZCW

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

Shen, G., Jiao, Y., Lin, Y., and Huang, J. Approximation
with cnns in sobolev space: with applications to clas-
sification. Advances in Neural Information Processing
Systems, 35:2876–2888, 2022.

Simsek, B., Ged, F., Jacot, A., Spadaro, F., Hongler, C.,
Gerstner, W., and Brea, J. Geometry of the loss landscape
in overparameterized neural networks: Symmetries and
invariances. In International Conference on Machine
Learning, pp. 9722–9732. PMLR, 2021.

Stock, P. and Gribonval, R. An embedding of relu networks
and an analysis of their identifiability. Constructive Ap-
proximation, pp. 1–47, 2022.

Stock, P., Graham, B., Gribonval, R., and Jégou,
H. Equi-normalization of neural networks. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=r1gEqiC9FX.

Sun, R.-Y. Optimization for deep learning: An overview.
Journal of the Operations Research Society of China, 8
(2):249–294, 2020.

Sussmann, H. J. Uniqueness of the weights for minimal
feedforward nets with a given input-output map. Neural
networks, 5(4):589–593, 1992.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Yarotsky, D. Error bounds for approximations with deep
relu networks. Neural Networks, 94:103–114, 2017.

Yarotsky, D. Optimal approximation of continuous func-
tions by very deep relu networks. In Conference on Learn-
ing Theory, pp. 639–649. PMLR, 2018.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking gen-
eralization. In International Conference on Learning
Representations, 2017. URL https://openreview.
net/forum?id=Sy8gdB9xx.

Zhou, D.-X. Theory of deep convolutional neural networks:
Downsampling. Neural Networks, 124:319–327, 2020a.

Zhou, D.-X. Universality of deep convolutional neural net-
works. Appl. Comput. Harmon. Anal., 48(2):787–794,
2020b.

13

https://openreview.net/forum?id=r1gEqiC9FX
https://openreview.net/forum?id=r1gEqiC9FX
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sy8gdB9xx

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

In this Appendix, we present the technical details of the proof of theorems and provide supporting definition and lemmas.

A. Proof of Theorems
In the proofs, we adopt the following notation. We introduce the L∞-norm of a collection of parameters θ =
(W (1), b(1), . . . ,W (L), b(L),W (L+1), b(L+1)). We define the infinity norm of the collection of parameters by ∥θ∥∞ =
∥(W (1), b(1), . . . ,W (L), b(L),W (L+1), b(L+1))∥∞ = max{maxl=1,...,L ∥W (l)∥∞,maxl=1,...,L ∥b(l)∥∞}. Here, ∥ · ∥∞
denotes the maximum absolute value of a vector or matrix. We let ∥ · ∥2 denote the L2 norm of a vector. For any matrix
A ∈ Rm×n, the spectral norm of A is denoted by ∥A∥2 = maxx ̸=0 ∥Ax∥2/∥x∥2, defined as the largest singular value of A
or the square root of the largest eigenvalue of the matrix A⊤A. Also we have ∥A∥2 ≤

√
mn∥A∥∞.

A.1. Proof of Theorem 2.5

Proof. The proof is straight forward based on the properties of permutation matrix and element-wise activation functions.
Firstly, for any n × n permutation matrix P , it is true that PP⊤ = P⊤P = In where In is the n × n identity matrix.
Secondly, for any element-wise activation function σ, any n-dimensional vector x ∈ Rn and any n× n permutation matrix
P , it is easy to check

σ(Px) = Pσ(x).

Then for any deep neural network

f(x; θ) = W (L+1)σL(W
(L) · · ·σ1(W

(1)
1 x+ b

(1)
1) · · ·) + b

(L)
1) + b(L+1),

and any permutation matrices P1, . . . , PL, it is easy to check

W (L+1)P⊤
L σL(PLW

(L)P⊤
L−1 · · ·σ1(P1W

(1)x+ P1b
(1)) · · ·) + PLb

(L)) + b(L+1)

= W (L+1)σL(W
(L) · · ·σ1(W

(1)x+ b(1)) · · ·) + b(L)) + b(L+1),

which completes the proof.

A.2. Proof of Theorem 3.3

Proof. Firstly, by the property of permutation invariance, we know that the neural networks {f(x; θ) = W (2)σ1(W
(1)x+

b(1))+ b(2) : θ ∈ Θ0} parameterized by Θ0 contains all the functions in {f(x; θ) = W (2)σ1(W
(1)x+ b(1))+ b(2) : θ ∈ Θ}.

The covering numbers of these two class of functions are the same. Then we can consider the covering number of
{f(x; θ) = W (2)σ1(W

(1)x+ b(1)) + b(2) : θ ∈ Θ0} where

Θ0 := {θ ∈ [−B,B]S : b
(1)
1 ≥ b

(1)
2 ≥ · · · ≥ b

(1)
d1

}.

Recall that for a single hidden layer neural network f(·; θ) parameterized by θ = (W (1), b(1),W (2), b(2)), the parameters
W (1) ∈ Rd1×d0 , b(1) ∈ Rd1 , W (2) ∈ R1×d1 , and b(2) ∈ R1 have components bounded by B. We start by considering the
covering number of the activated linear transformations

H := {σ1 ◦ A1 : (W (1), b(1)) ∈ Θ
(1)
0 },

where Θ(1)
0 = {[−B,B]d1×d0+d1 , b

(1)
1 ≥ b

(1)
2 ≥ · · · ≥ b

(1)
d1

}, σ1 is a ρ-Lipschitz activation function on [−BBx−B,BBx+

B], and A1(x) = W (1)x+ b(1). Here A1 output d1-dimensional vectors, and we define ∥A1∥∞ := supx∈X ∥σ1 ◦A1(x)∥2
for vector-valued functions.

Let ϵ1 > 0 be a real number and Θ
(1)
0,ϵ1

= {(W (1)
j , b

(1)
j)}N1

j=1 be a minimal ϵ1-covering of Θ(1)
0 under ∥ · ∥∞ norm with

covering number N1 = N (Θ
(1)
0 , ϵ1, ∥ · ∥∞). Then for any (W (1), b(1)) ∈ Θ

(1)
0 , there exist a (W

(1)
j , b

(1)
j) such that

∥(W (1)
j −W (1), b

(1)
j − b(1))∥∞ ≤ ϵ1. For any x ∈ X and (W (1), b(1)) ∈ Θ

(1)
0 , it is not hard to check ∥W (1)x+ b(1)∥2 ≤

14

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

B(
√
d0d1Bx + 1). Then we have

∥σ1(W
(1)
i x+ b

(1)
i)− σ1(W

(1)
j x+ b

(1)
j)∥2 ≤ρ∥(W (1)x+ b(1))− (W

(1)
j x+ b

(1)
j)∥2

≤ρ∥(W (1) −W
(1)
j)x∥2 + ρ∥(b(1) − b

(1)
j)∥2

≤ρ
√
d0d1∥W (1) −W

(1)
j ∥∞∥x∥2 + ρ

√
d1∥(b(1) − b

(1)
j)∥∞

≤ρϵ1(
√

d0d1Bx +
√
d1).

This implies that
H1 = {σ1 ◦ A1 : (W (1).b(1)) ∈ Θ

(1)
0,ϵ1

}

is a set with no more than N1 elements and it covers H under ∥ · ∥∞ norm with radius ϵ1ρ(
√
d0d1Bx +

√
d1). By Lemma

B.4, the covering number N1 = N (Θ
(1)
0 , ϵ, ∥ · ∥∞) ≤ Volume(Θ

(1)
0)× (2/ϵ1)

d1×d0+d1 = (4B/ϵ1)
d1×d0+d1/d1!.

Now, let ϵ2 > 0 be a real number and Θ
(2)
0,ϵ2

= {(W (2)
j , b

(2)
j)}N2

j=1 be a minimal ϵ2-covering of Θ(2)
0 under ∥ · ∥∞ norm with

N2 = N (Θ
(2)
0 , ϵ2, ∥ · ∥∞) ≤ Volume(Θ

(2)
0)× (2/ϵ2)

d1×1+1 = (4B/ϵ2)
d1+1. Also we construct a class of functions by

H2 = {A2 ◦ h : h ∈ H1, (W
(2), b(2)) ∈ Θ

(2)
0,ϵ2

},

where A2(x) = W (2)x + b(2). Now for any f = A2 ◦ σ1 ◦ A1 parameterized by θ = (W (1), b(1),W (2), b(2)) ∈ Θ0, by
the definition of covering, there exists hj ∈ H1 such that ∥hj − σ1 ◦ A1∥∞ ≤ ρϵ1(

√
d0d1Bx +

√
d1) and there exists

(W
(2)
k , b

(2)
k) ∈ Θ

(2)
0,ϵ2

such that ∥(W (2)
k −W (2), b

(2)
k − b(2))∥∞ ≤ ϵ2. Then fro any x ∈ X

∥f(x)−W
(2)
k hj(x) + b

(2)
k ∥2

=∥W (2)σ1 ◦ A1(x) + b(2) −W
(2)
k hj(x)− b

(2)
k ∥2

≤∥W (2)σ1 ◦ A1(x)−W
(2)
k hj(x)∥2 + ∥b(2) − b

(2)
k ∥2

≤∥W (2)σ1 ◦ A1(x)−W (2)hj(x)∥2 + ∥W (2)hj(x)−W
(2)
k hj(x)∥2 +

√
d2ϵ2

≤
√
d1Bρϵ1(

√
d0d1Bx +

√
d1) + ϵ2

√
d1B(

√
d0d1Bx +

√
d1) + ϵ2

≤2
√

d0d1B(Bx + 1)[ρϵ1 + ϵ2],

which implies that H2 is a (2
√
d0d1B(Bx + 1)[ρϵ1 + ϵ2])-covering of the neural networks F(1, d0, d1, B), where there are

at most (4B/ϵ1)
d1×d0+d1/d1!× (4B/ϵ2)

d1+1 elements in H2. Given ϵ > 0, we take ϵ1 = ϵ/(4ρ
√
d0d1B(Bx + 1)) and

ϵ2 = ϵ/(4
√
d0d1B(Bx + 1)), then this implies

N (F(1, d0, d1, B), ϵ, ∥ · ∥∞)

≤(4B/ϵ1)
d1×d0+d1/d1!× (4B/ϵ2)

d1+1

=(16B/ϵ)d0×d1+d1+d1+1 × (ρ
√

d0d1B(Bx + 1))d0×d1+d1 × (
√
d0d1B(Bx + 1))d1+1/d1!

=(16B/ϵ)d0×d1+d1+d1+1 × (
√
d0d1B(Bx + 1))d0×d1+d1+d1+1 × ρd0×d1+d1/d1!

=(16B2(Bx + 1)
√
d0d1/ϵ)

d0×d1+d1+d1+1 × ρd0×d1+d1/d1!,

=(16B2(Bx + 1)
√
d0d1/ϵ)

S × ρS1/d1!,

where S = d0 × d1 + d1 + d1 +1 is the total number of parameters in the network and S1 denotes the number of parameters
in the linear transformation from the input to the hidden layer.

A.3. Proof of Theorem 3.5

Proof. Our proof takes into account permutation equivalence and extends Theorem 3.3 by using mathematical induction.
Similar approaches using induction can be found in Lemma A.7 of (Bartlett et al., 2017) and Lemma 14 of (Lin & Zhang,
2019). However, we improve upon their results in three ways. Firstly, we consider the generally defined neural networks

15

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

where the bias vector is allowed to appear. Secondly, we express our bound in terms of the width, depth, and size of the
neural network as well as the infinity norm of the parameters, instead of the spectral norm of the weight matrices, which can
be unknown in practice. Thirdly, we utilize permutation equivalence to derive tighter upper bounds on the covering number.

Step 1. We analyze the effective region of the parameter space

Θ = [−B,B]S ,

where S =
∑L

i=0 didi+1+di+1 is the total number of parameters in the deep neural network. We denote Sl = dl−1dl+dl by
the total number of parameters in (W (l), B(l)) in the lth layer, and denote Θ(l) = {(W (l), bl) : (W (l), b(l)) ∈ [−B,B]Sl}
by the parameter space for l = 1, . . . , L+ 1. By our Theorem 2.5, for any given neural network f(·; θ) parameterized by

θ = (W (1), b(1), . . . ,W (L+1), b(L+1)) ∈ Θ,

there exists P1, . . . , PL such that f(·; θ̃) parameterized by

θ̃ = (P1W
(1), P1b

(1), . . . , PlW
(l)P⊤

l−1, Plb
(1), . . . ,W (L+1)P⊤

L , b(L+1))

implements the same input-output function. This implies that there exists a subset Θ0 of Θ such that neural networks
{f(·; θ) : θ ∈ Θ0} parameterized by Θ0 contains all the functions in {f(·; θ) : θ ∈ Θ}. The covering numbers of these two
class of functions are the same. To be specific, the effective parameter space

Θ0 = Θ
(1)
0 ×Θ

(2)
0 × · · · ×Θ

(L)
0 ×Θ

(L+1)
0 ,

where

Θ
(1)
0 ={(W (1), b(1)) ∈ [−B,B]S1 : b

(1)
1 ≥ b

(1)
2 ≥ · · · ≥ b

(1)
d1

},

Θ
(l)
0 ={(W (l), b(l)) ∈ [−B,B]Sl : b

(l)
1 ≥ b

(l)
2 ≥ · · · ≥ b

(l)
dl
} for l = 2, . . . , L,

Θ
(L+1)
0 = {(W (L+1), b(L+1)) ∈ [−B,B]SL+1}.

In the following, we focus on considering the covering number of {f(·; θ) : θ ∈ Θ0}.

Step 2. We start by bounding the covering number for the first activated hidden layer. Let H1 = {σ1◦A1 : (W (1)x+b(1)) ∈
Θ

(1)
0 } where A1(x) = W (1)x+ b(1) is the linear transformation from the input to the first hidden layer. Given any ϵ1 > 0,

in the proof of Theorem 3.3, we have shown that

N1 := N (H1, ϵ1ρ1
√

d0d1(Bx + 1), ∥ · ∥∞) ≤ Volume(Θ
(1)
0)× (2/ϵ1)

S1 ,

and ∥h(1)∥∞ ≤ ρ1
√
d0d1B(Bx + 1) for h(1) ∈ H1.

Step 3. We use induction to proceed the proof for l = 1, . . . , L. Let Hl = {σl ◦ Al ◦ · · · ◦ σ1 ◦ A1 : (W (k)x + b(k)) ∈
Θ

(k)
0 , k = 1, . . . , l} where Ak(x) = W (k)x+ b(k) is the linear transformation from the (k − 1)th layer to the kth layer for

k = 1, . . . , l. Let B(l) denotes the infinity norm of functions h(l) ∈ Hl for k = 1, . . . , L. For any el > 0, let

H̃l = {h(l)
j }N (Hl,el,∥·∥∞)

j=1

be a el-covering of Hl under the ∥ · ∥∞ norm. For any ϵl+1 > 0, let

Θ
(l+1)
0,ϵl+1

= {(W (l+1)
t , b

(l+1)
t)}N (Θ

(l+1)
0 ,ϵl+1,∥·∥∞)

t=1

be a ϵl+1-covering of Θ(l+1)
0 . Then for any h(l+1) = σl+1 ◦ Al+1 ◦ h(l) ∈ Hl+1 where Al+1(x) = W (l+1)x + b(l+1) ,

there exists h(l)
j ∈ H̃l and (W

(l+1)
t , b

(l+1)
t) ∈ Θ

(l+1)
0,ϵl+1

such that

∥h(l) − h
(l)
j ∥∞ ≤ el

16

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

and
∥(W (l+1)

t −W (l+1), b
(l+1)
t − b(l+1))∥∞ ≤ ϵl+1.

Then for any x ∈ X , we have

∥h(l+1)(x)− σl+1(W
(l+1)
t h

(l)
j (x) + b

(l+1)
t)∥2

=∥σl+1(W
(l+1)h(l)(x) + b(l+1))− σl+1(W

(l+1)
s h

(l)
j (x)− b(l+1)

s)∥2

≤ρl+1∥(W (l+1)h(l)(x) + b(l+1))− (W (l+1)
s h

(l)
j (x)− b(l+1)

s)∥2

≤ρl+1∥W (l+1)h(l)(x)−W (l+1)
s h

(l)
j (x)∥2 + ρl+1

√
dl+1∥b(l+1) − b(l+1)

s ∥∞

≤ρl+1∥W (l+1)h(l)(x)−W (l+1)h
(l)
j (x)∥2 + ρl+1∥W (l+1)h

(l)
j (x)−W (l+1)

s h
(l)
j (x)∥2 + ρl+1

√
dl+1ϵl+1

≤ρl+1

√
dlBel + ρl+1ϵl+1

√
dlB

(l) + ρl+1

√
dl+1ϵl+1

=ρl+1(
√
dlBel + (B(l) +

√
dl+1)ϵl+1).

Then it is proved that the covering number N (H(l+1), el+1, ∥ · ∥∞) with el+1 = ρl+1(
√
dlBel + (B(l) +

√
dl+1)ϵl+1)

satisfying
N (H(l+1), el+1, ∥ · ∥∞) ≤ N (H(l), el, ∥ · ∥∞)×N (Θ

(l+1)
0 , ϵl+1, ∥ · ∥∞)

for l = 1, . . . , L− 1. Recall that in the proof of Theorem 3.3, we have proved that

N (H(1), e1, ∥ · ∥∞) ≤ N (Θ
(1)
0 , ϵ1, ∥ · ∥∞),

where e1 = ρ1ϵ1
√
d0d1(Bx + 1), which leads to

N (H(l), el, ∥ · ∥∞) ≤ Πl
i=1N (Θ

(l)
0 , ϵl, ∥ · ∥∞),

for l = 1, . . . , L.

Step 4. Next we give upper bounds of el and B(l) for l = 1, . . . , L. Recall that B(l) denotes the infinity norm of functions
h(l) ∈ Hl for k = 1, . . . , L. Then it is easy to see that B(l) ≥ ρlB since we can always take the bias vectors to have
components B or −B. In addition,

B(l+1) = ∥σl+1 ◦ Al+1 ◦ hl∥∞ ≤ ρl+1B(
√

dlB
(l) +

√
dl+1) ≤ 2ρl+1

√
dldl+1BB(l).

As proved in Theorem 3.3, we know B(1) ≤ ρ1B
√
d0d1(Bx + 1), then we can get

B(l) ≤ (2B)l(Bx + 1)
√
d0Π

l
i=1diρi/(

√
dl).

Recall el+1 = ρl+1(
√
dlBel + (B(l) +

√
dl+1)ϵl+1) for l = 1, . . . , L − 1, and e1 = ρ1ϵ1

√
d0(Bx + 1), then by simple

mathematics

eL = BL−1ΠL
i=2ρi

√
di−1e1 +

L∑
i=2

(B(i−1) +
√
di)ϵiΠ

L
j=iρj

√
dj−1/

√
dL

≤ BL−1ΠL
i=1ρi

√
di−1(Bx + 1)ϵ1 +

L∑
i=2

(Bx + 1)(2B)i−1
√
d0(Π

L
j=1ρjdj)ϵi/(

√
dL)

≤ 2

L∑
i=1

√
d0(Bx + 1)(2B)i−1(ΠL

j=1ρjdj)ϵi/
√

dL.

Step 5. Last we construct a covering of F = F(1, d0, d1, B) = {f(x; θ) = W (2)σ1(W
(1)x+ b(1)) + b(2) : θ ∈ Θ0}. Let

H̃L = {h(L)
j }N (HL,eL,∥·∥∞)

j=1

17

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

be a eL-covering of HL under the ∥ · ∥∞ norm. For any ϵL+1 > 0, let

Θ
(L+1)
0,ϵL+1

= {(W (L+1)
t , b

(L+1)
t)}N (Θ

(L+1)
0 ,ϵL+1,∥·∥∞)

t=1

be a ϵL+1-covering of Θ(L+1)
0 . Then for any f = AL+1 ◦ h(L) ∈ F where AL+1(x) = W (L+1)x+ b(L+1) , there exists

h
(L)
j ∈ H̃L and (W

(L+1)
t , b

(L+1)
t) ∈ Θ

(L+1)
0,ϵL+1

such that

∥h(L) − h
(L)
j ∥∞ ≤ eL

and
∥(W (L+1)

t −W (L+1), b
(L+1)
t − b(L+1))∥∞ ≤ ϵL+1.

Then for any x ∈ X , we have

∥f(x)−W
(L+1)
t h

(L)
j (x) + b

(L+1)
t ∥2

=∥W (L+1)h(L)(x) + b(L+1) −W (L+1)
s h

(L)
j (x)− b(L+1)

s ∥2

≤∥(W (L+1)h(L)(x) + b(L+1))− (W (L+1)
s h

(L)
j (x)− b(L+1)

s)∥2

≤∥W (L+1)h(L)(x)−W (L+1)
s h

(L)
j (x)∥2 + ∥b(L+1) − b(L+1)

s ∥2

≤∥W (L+1)h(L)(x)−W (L+1)h
(L)
j (x)∥2 + ∥W (L+1)h

(L)
j (x)−W (L+1)

s h
(L)
j (x)∥2 + ϵL+1

≤
√
dLBeL + ϵL+1

√
dLB

(L) + ϵL+1

=(
√
dLBeL + (

√
dLB

(L) + 1)ϵL+1)

≤2
√
d0

L∑
i=1

(Bx + 1)(2B)i(ΠL
j=1ρjdj)ϵi + 2(2B)L(Bx + 1)

√
d0(Π

L
j=1ρjdj)ϵL+1

≤2
√
d0(Bx + 1)(ΠL

j=1ρjdj)

L+1∑
i=1

(2B)iϵi.

Then we know that the covering number N (F , eL+1, ∥ · ∥∞) with radius

eL+1 = 2(Bx + 1)
√
d0(Π

L
j=1ρjdj)

L+1∑
i=1

(2B)i−1ϵi

satisfies

N (F , eL+1, ∥ · ∥∞) ≤ N (H(L), eL, ∥ · ∥∞)×N (Θ
(L+1)
0 , ϵL+1, ∥ · ∥∞)

≤ ΠL+1
i=1 N (Θ

(i)
0 , ϵL+1, ∥ · ∥∞)

≤ ΠL+1
i=1 Volume(Θ

(i)
0)× (2/ϵi)

Si

= (4B/ϵL+1)
SL+1 ×ΠL

i=1(4B/ϵi)
Si/(di!).

Finally, setting ϵi = {2(L+ 1)
√
d0(Bx + 1)(2B)i(ΠL

j=1ρjdj)}−1ϵ for i = 1, . . . , L+ 1 leads to an upper bound for the
covering number N (F , ϵ, ∥ · ∥∞)

N (F , ϵ, ∥ · ∥∞) ≤ (4(L+ 1)(Bx + 1)
√

d0(Bx + 1)(2B)L+2(ΠL
j=1ρjdj)/ϵ)

SL+1

×ΠL
i=1(4(L+ 1)(2B)i+1(ΠL

j=1ρj
√

dj)/ϵ)
Si/(di!)

≤
(4(L+ 1)

√
d0(Bx + 1)(2B)L+2(ΠL

j=1ρjdj)/ϵ)
S

d1!× d2!× · · · × dL!
.

This completes the proof.

18

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

A.4. Proof of Theorem 5.1

Proof. The proof is straightforward. And we present the proof in three steps. First, we show that if fθn is an empirical risk
minimizer, then there are at least d∗1 × d∗2 × · · · × d∗L empirical risk minimizers with distinct parameterization. Second,
we prove that the (δ/2) neighborhood of these distinct parameterization are disjoint under the L∞ norm. Lastly, we show
that initialization schemes with identical random distribution for weights and bias within layers can indeed increase the
probability of convergence for any appropriate optimization algorithms A.

Step 1. Suppose fθn is an empirical risk minimizer with parameterization

θn = (W (1)
n , b(1)n ,W (2)

n , b(2)n , . . . ,W (L)
n , b(L)

n ,W (L+1)
n , b(L+1)

n).

By Theorem 2.5, for any permutation matrices P1, . . . , PL,

Step 1. Suppose fθn is an empirical risk minimizer with parameterization

θn = (W (1)
n , b(1)n ,W (2)

n , b(2)n , . . . ,W (L)
n , b(L)

n ,W (L+1)
n , b(L+1)

n).

By Theorem 2.5, for any permutation matrices P1, . . . , PL,

θ̃n = (P1W
(1)
n , P1b

(1)
n , P2W

(2)
n P⊤

1 , P2b
(2)
n , . . . , PLW

(L)
n , PLb

(L)
n ,W (L+1)

n P⊤
L , b(L+1)

n), (6)

will lead to an empirical risk minimizer fθ̃n . However, the concatenated matrices (W (l)
n ; b

(l)
n) may have identical rows, and

the permutation-implemented matrices (PlW
(l)
n P⊤

l−1;Pl; b
(l)
n) may remain unchanged for some permutation matrices Pl. Let

d∗l denote the number of distinct permutations of the rows in (W
(l)
n ; b

(l)
n). Then it is guaranteed that {(PlW

(l)
n P⊤

l−1;Pl; b
(l)
n) :

Pl, Pl−1 are permutation matrices} has at least d∗l distinct elements. Note that 1 ≤ d∗l ≤ dl! for l = 1, . . . , L where
dl is the dimension of the bias vector b(l) as well as the number of rows of (W (l)

n ; b
(l)
n). Specifically, d∗l = 1 if and

only if all the entries of b
(l)
n are identical and all the rows of W (l) are identical. And d∗l = dl! if and only if all

the rows of concatenated matrix (W
(l)
n , b

(l)
n) are distinct. Moreover, the distinct elements in {(PlW

(l)
n P⊤

l−1;Pl; b
(l)
n) :

Pl, Pl−1 are permutation matrices} can range from 1 to dl−1!dl!. It is 1 if and only if all the entries of b(l)n are identical
and all the entries of W (l)

n are identical; it is dl−1!dl! if and only if all the entries of b(l)n are distinct and all the entries of
W

(l)
n are distinct. Lastly, it is easy to see that θn ̸= θ̃n if (W (l)

n ; b
(l)
n) ̸= (PlW

(l)
n P⊤

l−1;Pl; b
(l)
n) for any l ∈ {1, . . . , L}. Then

there are at least d∗1 × · · · × d∗L distinct elements in

Θ̃n = {θ̃n defined in (6) : P1, . . . PL are permutation matrices}. (7)

Step 2.

Let θ = (W (1), b(1),W (2), b(2), . . . ,W (L), b(L),W (L+1), b(L+1)) be the collection of parameters of a network and let θ(l)i

be the ith row of concatenated matrix θ(l) = (W (l); b(l)). We define

∆min(θ) := min
l∈{1,...,L}

[
min

i,j∈{1,...,dl},θ(l)
i ̸=θ

(l)
j

∥θ(l)i − θ
(l)
j ∥∞

]
, (8)

and

∆max(θ) := max
l∈{1,...,L}

[
max

i,j∈{1,...,dl}
∥θ(l)i − θ

(l)
j ∥∞

]
. (9)

Recall that ∆min(θn) = δ. This implies that for any two distinct permutation-implemented θ̃n,1 and θ̃n,2 in (7),

∆max(θ̃n,1 − θ̃n,2) ≥ δ,

where ∆max(θn) denote the maximum of the ∥ · ∥∞ norm of distinct rows in θ
(l)
n over l ∈ 1, . . . , L. Then the neighborhoods

B∞(θ̃n, δ/2) := {θ : ∆max(θ − θ̃n) ≤ δ/2} in the collection

B(δ/2) = {B∞(θ̃n, δ/2) : θ̃n ∈ Θ̃n}

19

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

are pairwise disjoint. It worth mentioning that for θ̃ = P(θn), we have

B∞(θ̃n, δ/2) = {P(θ) : ∆max(θ − θn) ≤ δ/2}, (10)

by the symmetry of permutation and the definition of ∆max.

Step 3. For any given permutation matrices P1, . . . , PL, we let P = P(P1, . . . , PL) denote the operator such that

P(θ) = θ̃

for any θ ∈ Θ where

θn = (W (1)
n , b(1)n ,W (2)

n , b(2)n , . . . ,W (L)
n , b(L)

n ,W (L+1)
n , b(L+1)

n).

and

θ̃n = (P1W
(1)
n , P1b

(1)
n , P2W

(2)
n P⊤

1 , P2b
(2)
n , . . . , PLW

(L)
n , PLb

(L)
n ,W (L+1)

n P⊤
L , b(L+1)

n).

Now if an optimization algorithm A guarantees to produce a convergent solution towards θn when θ(0) is an initialization
belong to the (δ/2)-neighborhood of θn, then for any P , the algorithm A should guarantee to produce a convergent solution
towards P(θn) when θ(0) is an initialization belong to the (δ/2)-neighborhood of P(θn). The reason is that the loss surface
of the empirical risk keeps the same structure on

B∞(θn, δ/2) = {θ(0) : ∆max(θ
(0) − θn) ≤ δ/2}

and
B∞(θ̃n, δ/2) = {P(θ(0)) : ∆max(θ

(0) − θn) ≤ δ/2}.

This implies that if the initialization θ(0) belongs to (δ/2)-neighborhood of any θ̃n ∈ Θ̃n, the algorithm A should guarantee
to produce a convergent solution towards some θ̃n ∈ Θ̃n, which learns the an empirical risk minimizer fθ̃n . The rest of the
proof is to calculate the probability of an random initialization θ(0) locates in the union of neighborhoods in Bδ/2, i.e, we
targets for

P(θ(0) ∈ ∪θ̃n∈Θ̃n
B∞(θ̃n, δ/2)),

where the probability is with respect to the randomness of initialization. Firstly, for any random initialization scheme and
permutation operator P , we have

P(θ(0) ∈ B∞(θn, δ/2)) = P(P(θ(0)) ∈ B∞(P(θn), δ/2)), (11)

by (10) and the definition of permutation. With a little bit abuse of notation, let

θ(0) = (W
(1)
(0) , b

(1)
(0), . . . ,W

(L+1)
(0) , b

(L+1)
(0)).

If the initialization method uses identical random distributions for the entries of weights and biases within a layer, then we
know that the entries of W (l)

(0) are independent and identically distributed, and entries of b(l)(0) are independent and identically
distributed. This further implies that for any permutation matrices P1, . . . , PL,

(W
(1)
(0) , b

(1)
(0))

d
= (P1W

(1)
(0) , P1b

(1)
(0)),

(W
(l)
(0), b

(l)
(0))

d
= (PlW

(l)
(0)P

⊤
l−1, Plb

(l)
(0)), l = 2, . . . , L

(W
(L+1)
(0) , b

(L+1)
(0))

d
= (W

(L+1)
(0) P⊤

L , b
(L+1)
(0)),

where d
= denotes the equivalence in distribution. Consequently, P(θ(0)) has the same distribution of θ(0). And we have

P(P(θ(0)) ∈ B∞(P(θn), δ/2)) = P(θ(0) ∈ B∞(P(θn), δ/2)), (12)

for any permutation P .

20

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

Combining (11), (12) and the property in (7), we have

P(θ(0) ∈ ∪θ̃n∈Θ̃n
B∞(θ̃n, δ/2)) = Σθ̃∈Θ̃P(θ

(0) ∈ B∞(θ̃n, δ/2))

= Σθ̃∈Θ̃P(θ
(0) ∈ B∞(θn, δ/2))

= d∗1 × · · · × d∗L × P(θ(0) ∈ B∞(θn, δ/2))

= d∗1 × · · · × d∗L × P(∆max(θ
(0) − θn) ≤ δ/2).

This completes the proof.

B. Supporting Lemmas
In this section, we give definitions of covering number, packing number of subsets in Euclidean space. We also present
definitions of other complexity measures including VC-dimension, Pseudo-dimension, and Rademacher complexity. Lemmas
regarding their properties and correlations are also given.

Definition B.1 (Covering number). Let (K, ∥ · ∥) be a metric space, let C be a subset of K, and let ϵ be a positive real
number. Let Bϵ(x) denote the ball of radius ϵ centered at x. Then C is called a ϵ-covering of K, if K ⊂ ∪x∈CBϵ(x). The
covering number of the metric space (K, ∥ · ∥) with any radius ϵ > 0 is the minimum cardinality of any ϵ-covering, which is
defined by N (K, ϵ, ∥ · ∥) = min{|C| : C is a ϵ−covering of K}.

Definition B.2 (Packing number). Let (K, ∥ · ∥) be a metric space, let P be a subset of K, and let ϵ be a positive real
number. Let Bϵ(x) denote the ball of radius ϵ centered at x. Then P is called a ϵ-packing of K, if {Bϵ(x)}x∈P is pairwise
disjoint. The ϵ-packing number of the metric space (K, ∥ · ∥) with any radius ϵ > 0 is the maximum cardinality of any
ϵ-packing, which is defined by M(K, ϵ, ∥ · ∥) = max{|P | : P is a ϵ−packing of K}.

Lemma B.3. Let (K, ∥ · ∥) be a metric space, and for any ϵ > 0, let N (K, ϵ, ∥ · ∥) and M(K, ϵ, ∥ · ∥) denote the ϵ-covering
number and ϵ-packing number respectively, then

M(K, 2ϵ, ∥ · ∥) ≤ N (K, ϵ, ∥ · ∥) ≤ M(K, ϵ/2, ∥ · ∥).

Proof. For simplicity, we write Nϵ = N (K, ϵ, ∥·∥) and Mϵ = M(K, ϵ, ∥·∥). We firstly proof M2ϵ ≤ Nϵ by contradiction.
Let P = {p1, . . . , pM2ϵ

} be any maximal 2ϵ-packing of K and C = {c1, . . . , cNϵ
} be any minimal ϵ-covering of K. If

M2ϵ ≥ Nϵ +1, then we must have pi and pj belonging to the same ϵ-ball Bϵ(ck) for some i ̸= j and k. This means that the
distance between pi and pj cannot be more than the diameter of the ball, i.e. ∥pi − pj∥ ≤ 2ϵ, which leads to a contradiction
since ∥pi − pj∥ > 2ϵ by the definition of packing.

Secondly, we prove Nϵ ≤ Mϵ/2 by showing that each maximal (ϵ/2)-packing P = {p1, . . . , pMϵ
} is also a ϵ-covering.

Note that for any x ∈ K\P , there exist a pi ∈ P such that ∥x− pi∥ ≤ ϵ since if this does not hold, then we can construct a
bigger packing with pMϵ+1 = x. Thus P is also a ϵ-covering and we have Nϵ ≤ Mϵ by the definition of covering.

Lemma B.4. Let S be a subset of Rd with volume V , and let ϵ > 0 be a positive real number. Then, the covering number
N (V, ϵ, ∥ · ∥∞) and packing number M(V, ϵ/2, ∥ · ∥∞) of S satisfies:

N (V, ϵ, ∥ · ∥∞) ≤ M(V, ϵ/2, ∥ · ∥∞) ≤ V × (
2

ϵ
)d.

Proof. Consider a packing of S with non-overlapping hypercubes of side length ϵ/2 under the L∞ norm. The volume of
each hypercube is (ϵ/2)d, and since the hypercubes do not overlap, the total volume of the hypercubes in the packing is at
most the volume of S. Thus, we have:

M(V, ϵ/2, ∥ · ∥∞) · (ϵ/2)d ≤ V,

which implies:

M(V, ϵ/2, ∥ · ∥∞) ≤ V × (
2

ϵ
)d.

Then by Lemma B.3, N (V, ϵ, ∥ · ∥∞) ≤ M(V, ϵ/2, ∥ · ∥∞), which completes the proof.

21

Exploring the Complexity of Deep Neural Networks through Functional Equivalence

Definition B.5 (Shattering, Definition 11.4 in (Mohri et al., 2018)). Let F be a family of functions from a set Z to R. A set
{z1, . . . , Zn} ⊂ Z is said to be shattered by F , if there exists t1, . . . , tn ∈ R such that∣∣∣∣∣{[sgn(f(z1)− t1)

. . .
sgn(f(zn)− tn)

]
: f ∈ F

}∣∣∣∣∣ = 2n,

where rmsgn is the sign function returns +1 or −1 and | · | denotes the cardinality of a set. When they exist, the threshold
values t1, . . . , tn are said to witness the shattering.

Definition B.6 (Pseudo dimension, Definition 11.5 in (Mohri et al., 2018)). Let F be a family of functions mapping from Z
to R. Then, the pseudo dimension of F , denoted by Pdim(F), is the size of the largest set shattered by F .

Definition B.7 (VC dimension). Let F be a family of functions mapping from Z to R. Then, the Vapnik–Chervonenkis
(VC) dimension of F , denoted by VCdim(F), is the size of the largest set shattered by F with all threshold values being
zero, i.e., t1 = . . . ,= tn = 0.

Definition B.8 (Empirical Rademacher Complexity, Definition 3.1 in (Mohri et al., 2018)). Let F be a family of functions
mapping from Z to [a, b] and S = (z1, . . . , zn) a fixed sample of size m with elements in Z . Then, the empirical Rademacher
complexity of F with respect to the sample S is defined as:

R̂S(F) = Eσ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

σif(xi)

∣∣∣∣∣
]
,

where σ = (σ1, . . . , σn)
⊤, with σis independent uniform random variables taking values in {+1,−1}. The random

variables σi are called Rademacher variables.

Definition B.9 (Rademacher Complexity, Definition 3.2 in Mohri et al. (2018)). Let D denote the distribution according
to which samples are drawn. For any integer n ≥ 1, the Rademacher complexity of F is the expectation of the empirical
Rademacher complexity over all samples of size n drawn according to D:

Rn(F) = ES∼Dn

[
R̂S(F)

]
.

Lemma B.10 (Dudley’s Theorem, (Dudley, 1967)). Let F be a set of functions f : X → R. Then

Rn(F) ≤ 12

∫ ∞

0

√
logN (F , ϵ, ∥ · ∥∞)

n
dϵ.

Dudley’s Theorem gives a way to bound Rademacher complexity using covering number (Dudley, 1967; 2010). And the
covering and packing numbers can be bounded in terms of the VC dimension or Pseudo dimension (Haussler, 1995; Anthony
et al., 1999).

Lemma B.11 (Theorem 12.2 in (Anthony et al., 1999)). Suppose that F is a class of functions from X to the bounded
interval [0, B] ⊂ R. Given a sequence x = (x1, . . . , xn) ∈ Xn, we let F|x be the subset of Rn given by

F|x = {(f(x1), . . . , f(xn)) : f ∈ F}.

we define the uniform covering number Nn(F , ϵ, ∥ · ∥∞) to be the maximum, over all x ∈ Xn, of the covering number
N (F|x, ϵ, ∥ · ∥∞), that is

Nn(F , ϵ, ∥ · ∥∞) = max{N (F|x, ϵ, ∥ · ∥∞) : x ∈ Xn}.

Let ϵ > 0 and suppose the pseudo-dimension of F is d. Then

Nn(F , ϵ, ∥ · ∥∞) ≤
d∑

i=1

(
n

i

)
(
B

ϵ
)i,

which is less that (enB/(ϵd))d for n ≥ d.

22

