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Abstract
Bilevel optimization has been recently applied to
many machine learning tasks. However, their ap-
plications have been restricted to the supervised
learning setting, where static objective functions
with benign structures are considered. But bilevel
problems such as incentive design, inverse rein-
forcement learning (RL), and RL from human
feedback (RLHF) are often modeled as dynamic
objective functions that go beyond the simple
static objective structures, which pose significant
challenges of using existing bilevel solutions. To
tackle this new class of bilevel problems, we in-
troduce the first principled algorithmic framework
for solving bilevel RL problems through the lens
of penalty formulation. We provide theoretical
studies of the problem landscape and its penalty-
based (policy) gradient algorithms. We demon-
strate the effectiveness of our algorithms via sim-
ulations in the Stackelberg game and RLHF.

1. Introduction
Bilevel optimization (BLO) has emerged as an effective
framework in machine learning. In a nutshell, BLO involves
two coupled optimization problems in the upper and lower
levels respectively, where they have different decision vari-
ables, denoted by x and y respectively. The lower-level
problem is a constraint for the upper-level problem, e.g., in
the upper level, we minimize a function f(x, y) with the
constraint that y is a solution to the lower-level problem de-
termined by x, i.e., y ∈ Y∗(x). Here Y∗(x) is the solution
set of the lower-level problem determined by x.

BLO enjoys a wide range of applications in machine learn-
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ing, including hyper-parameter optimization (Franceschi
et al., 2018), meta-learning (Finn et al., 2017; Rajeswaran
et al., 2019), continue learning (Borsos et al., 2020), and
adversarial learning (Jiang et al., 2021). Existing applica-
tions mostly concentrate on supervised learning setting, thus
research on BLO has been predominantly confined to the
static optimization setting (Franceschi et al., 2017), where
in both the upper and lower-level problems, the objective
functions are (strongly-)convex functions. However, this set-
ting is insufficient to model more complex game-theoretic
behaviors with sequential decision-making.

Reinforcement learning (RL) (Sutton & Barto, 2018) is a
principled framework for sequential decision-making prob-
lems and has achieved tremendous empirical success in
recent years (Silver et al., 2017; Ouyang et al., 2022). In
this work, we study the BLO problem in the context of RL,
where the lower-level problem is an RL problem and the
upper-level problem can be either smooth optimization or
RL. Specifically, in the lower-level problem, the follower
solves a Markov decision process (MDP) determined by the
leader’s decision variable x, and returns a optimal policy of
this MDP to the leader, known as the best response policy.
The leader aims to maximize its own objective function,
subject to the constraint that the follower always adopts
the best response policy. This formulation of bilevel RL
encompasses a range of applications such as Stackelberg
Markov games (Stackelberg, 1952), reward learning (Hu
et al., 2020), and RL from human feedback (RLHF) (Chris-
tiano et al., 2017). As an example, in RL from human
feedback, the leader designs a reward rx for the follower’s
MDP, with the goal that the resulting optimal policy yields
the desired behavior of the leader.

Despite its various applications, the bilevel RL problem
is difficult to solve. Broadly speaking, the main technical
challenge lies in handling the constraint, i.e., the lower-level
problem. The lower-level problem of bilevel RL extends
from static smooth optimization to policy optimization in
RL, and thus faces significant technical challenges. Such an
extension loses a few optimization structures, such as strong
convexity and uniform Polyak-Łojasiewicz (PL) condition,
which are critical for existing BLO algorithms (Ghadimi &
Wang, 2018; Shen & Chen, 2023). Specifically, there are
two mainstream approaches for BLO: (a) implicit gradient
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or iterative differentiation methods; and, (b) penalty-based
methods. In (a), it is typically assumed that the lower-level
objective function is strongly convex (Ji et al., 2021b; Chen
et al., 2021), and thus its optimal solution Y∗(x) is unique.
Then methods in (a) are essentially gradient-descent meth-
ods for the hyper objective f(x,Y∗(x)), where the gradient
of Y∗(x) can be computed using the implicit function the-
orem. However, in our bilevel RL case, the lower-level
objective function is the discounted return in MDP, which
is known to be non-convex (Agarwal et al., 2020). Thus,
the hyper objective and its gradient are not well-defined. In
(b), the bilevel problem is reformulated as a single-level
problem by adding a penalty term of the lower-level sub-
optimality to the leader’s objective function. The penalty
reformulation approach has been studied in (Ye, 2012; Shen
& Chen, 2023; Ye et al., 2022; Kwon et al., 2023) under
the assumption that the lower-level objective function sat-
isfies certain PL conditions. Unfortunately, when it comes
to bilevel RL, the lower-level discounted return objective
does not satisfy these conditions. To develop the penalty
approach for bilevel RL problems, it is unclear (i) what is an
appropriate penalty function; (ii) how is the solution to the
reformulated problem related to the original bilevel problem;
and, (iii) how to solve the reformulated problem. Therefore,
directly extending applying BLO methods to bilevel RL is
not straightforward, and new theories and algorithms tai-
lored to the RL lower-level problem are needed, which are
the subject of the paper.

1.1. Our contributions

To this end, we propose a novel algorithm that extends the
idea of penalty-based BLO algorithm (Shen & Chen, 2023)
to tackle the specific challenges of bilevel RL. Our approach
includes the design of two tailored penalty functions: value
penalty and Bellman penalty, which are crafted to capture
the optimality condition of the lower-level RL problem.

In addition, leveraging the geometry of the policy optimiza-
tion problem, we prove that an approximate solution to our
reformulated problem is also an effective solution to the
original bilevel problem.

Furthermore, we establish the differentiability of the re-
formulated problem and we propose a first-order policy-
gradient-based algorithm. To our best knowledge, we es-
tablish the first provably convergent first-order algorithm
for bilevel RL. Lastly, we conduct experiments on exam-
ple applications covered by our framework, including the
Stackelberg game and RL from human feedback tasks.

1.2. Related works

Bilevel optimization. The BLO problem can be dated back
to (Stackelberg, 1952). The gradient-based BLO methods
have gained growing popularity in the machine learning

area; see, e.g., (Sabach & Shtern, 2017; Franceschi et al.,
2018; Liu et al., 2020). A prominent branch of gradient-
based BLO is based on the implicit gradient (IG) theorem.
The IG based methods have been widely studied under a
strongly-convex lower-level function, see, e.g., (Pedregosa,
2016; Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al.,
2021a; Chen et al., 2021; Khanduri et al., 2021; Shen &
Chen, 2022; Li et al., 2022; Sow et al., 2022; Xiao et al.,
2023b; Giovannelli et al., 2022; Chen et al., 2023). The
iterative differentiation (ITD) methods, which can be viewed
as an iterative relaxation of the IG methods, have been
studied in, e.g., (Maclaurin et al., 2015; Franceschi et al.,
2017; Nichol et al., 2018; Shaban et al., 2019; Liu et al.,
2021b; 2022; Bolte et al., 2022; Grazzi et al., 2020; Ji et al.,
2022; Shen & Chen, 2022). However, in our case the lower-
level objective is the discounted return which is known to
be non-convex (Agarwal et al., 2020). Thus it is difficult to
apply the fore-mentioned methods here.

The penalty relaxation of the BLO problem, which can be
dated back to (Clarke, 1983; Luo et al., 1996), has gained
interest from researchers recently (see, e.g., (Shen & Chen,
2023; Ye et al., 2022; Lu & Mei, 2023; Kwon et al., 2023;
Xiao et al., 2023a; Lu, 2024)). Theoretical results for this
branch of work are established under certain lower-level er-
ror bounds weaker than strong convexity, but unfortunately
not satisfied in our case. See Table 1 for more detailed com-
parison between this work and the general penalty-based
BLO.

Policy-based RL. The policy-based RL algorithms are gen-
erally based on the policy gradient theorem (Sutton et al.,
2000). There has been a large body of literature studying the
policy-based algorithms, including the Monte-Carlo sam-
pling based policy gradient methods (Sutton et al., 2000;
Baxter & Bartlett, 2001), the advantage actor-critic algo-
rithm (Borkar & Konda, 1997; Mnih et al., 2016), proximal
policy optimization (Schulman et al., 2017), and more gen-
erally the policy mirror descent methods (Lan, 2023; Zhan
et al., 2023). The landscape of the RL objective and the
(global) convergence of the policy gradient based algorithms
have been extensively studied in, to list a few, (Agarwal
et al., 2020; Zhang et al., 2019; Qiu et al., 2019; Bhandari &
Russo, 2019; Mei et al., 2020; Wu et al., 2020; Zhang et al.,
2021; Cen et al., 2022; Shen et al., 2023; Ding et al., 2024).

Applications of bilevel RL. Bilevel RL covers several appli-
cations including reward shaping (Hu et al., 2020; Zou et al.,
2019), reinforcement learning from preference (Christiano
et al., 2017; Xu et al., 2020; Pacchiano et al., 2021), Stack-
elberg game (Liu et al., 2021a; Zhong et al., 2021; Song
et al., 2023), AI-economics with two-level deep RL (Zheng
et al., 2022), social environment design (Zhang et al., 2024),
etc. A concurrent work (Chakraborty et al., 2024) studies
the policy alignment problem, and introduces a corrected
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Table 1: Comparison with general penalty-based BLO (e.g., (Shen & Chen, 2023; Kwon et al., 2023)). We compare this
work with the smooth penalty case in previous works since the penalty functions are smooth in this work.

Supervised penalty-based bilevel OPT This work on penalty-based bilevel RL
Problem application hyperparameter OPT, adversarial

training, continue learning, etc.
Stackelberg Markov game, RL from

preference, reward learning, etc
Penalty reformulation Value penalty with assumed property Value/Bellman penalty with proven property

Algorithm Gradient directly accessible Need to estimate gradients
Iteration complexity Õ(λϵ−1) with inner-loop GD Õ(λϵ−1) with inner-loop PMD

reward learning objective for RLHF that leads to strong
performance gain. While PARL (Chakraborty et al., 2024)
is based on the implicit gradient BLO method that requires
the strong-convexity of the lower-level objective. On the
other hand, PARL uses second-order derivatives of the RL
objective, while our algorithm is fully first order. Finally,
this work can be extended to the bilevel RL problem with
multi-agent lower-level, thus including more applications,
e.g., the incentive design (Yang et al., 2021).

2. Problem Formulations
In this section, we will first introduce the generic bilevel RL
formulation. Then we will show several specific applica-
tions of the generic bilevel RL problem.

2.1. Bilevel reinforcement learning formulation

RL studies the problem where an agent aims to find a policy
that maximizes its accumulated reward under the environ-
ment’s dynamic. In such problem, the reward function and
the dynamic are fixed given the agent’s policy. While in the
problem that we are about to study, the reward or the dy-
namic oftentimes depend on another decision variable, e.g.,
the reward is parameterized by a neural network in RLHF;
or in Stackelberg game, both the reward and the dynamic
are affected by the leader’s policy.

Tailoring to this, we first define a so-called parameterized
MDP. Given the parameter x ∈ Rdx , define a parameterized
MDP as Mτ (x) := {S,A, rx,Px, τh} where S is a finite
state space; A is a finite action space; rx(s, a) is the pa-
rameterized reward given state-action pair (s, a) ∈ S ×A;
Px is a parameterized transition distribution that specifies
Px(s

′|s, a)–the probability of transiting to s′ given (s, a);
a policy π specifies π(a|s) which is the probability of tak-
ing action a given state s; and τh is the regularization:
τ ≥ 0 and h = (hs)s∈S where each hs : ∆(A) 7→ R+ is
a strongly-convex regularization function given s. When
τ = 0, Mτ (x) is an unregularized MDP.

Given a policy π, the value function of Mτ (x) is defined as

V π
Mτ (x)

(s) :=Eπ

[ ∞∑
t=0

γt
(
rx(st, at)−τhst(π(st))

)∣∣s0=s
]

where γ ∈ [0, 1), π(s) := π(·|s) ∈ ∆(A) and the expec-

tation is taken over the trajectory (s0, a0 ∼ π(s0), s1 ∼
Px(·|s0, a0), . . . ). Given a state distribution ρ, we write
V π
Mτ (x)

(ρ) = Es∼ρ[V
π
Mτ (x)

(s)]. Define the Q function as

Qπ
Mτ (x)

(s, a) := rx(s, a) + γEs′∼Px(·|s,a)
[
V π
Mτ (x)

(s′)
]
.

and Pπ
x (st = s|s0) as the probability of reaching state s at

time step t given initial state s0 under a transition distribu-
tion Px and a policy π. The probability Pπ

x (st = s|s0, a0)
can be defined similarly.

Suppose the policy π is parameterized by y ∈ Y ⊆ Rdy .
We define the policy class as Π := {πy : y ∈ Y}. We
denote the optimal policy of Mτ (x) as π∗

y(x) ∈ Π satisfy-

ing V
π∗
y(x)

Mτ (x)
(s) ≥ V π

Mτ (x)
(s) for any π ∈ Π and s. With

f : Rdx × Rdy 7→ R, we are interested in solving

BM : min
x,y

f(x, y), s.t. x ∈ X ,(2.1)

y ∈ Y∗(x) := argmin
y∈Y

−V
πy

Mτ (x)
(ρ)

where X ⊆ Rdx and Y ⊆ Rdy are convex compact sets; and
ρ is a given state distribution with ρ(s) > 0 on S . The name
‘bilevel’ refers to the nested structure in the optimization
problem: in the upper-level, a function f(x, y) is minimized
subject to the lower-level optimality constraint that πy is the
optimal policy for Mτ (x).

2.2. Applications of bilevel reinforcement learning

Next we show several example applications that can be
modeled by a bilevel RL problem.

Stackelberg Markov game. Consider a Markov game
where at each time step, a leader and a follower observe the
state and make actions simultaneously. Then according to
the current state and actions, the leader and follower receive
rewards and the game transits to the next state. Such a MDP
can be defined as Mg

τ := {S,Al,Af , rl, rf ,P, τhl, τhf}
where S is the state space; Al/Af is the leader’s/follower’s
action space; rl(s, al, af ) and rf (s, al, af ) are respectively
the leader’s and the follower’s reward given (s, al, af ) ∈
S × Al × Af ; P(s′|s, al, af ) is the probability of tran-
siting to state s′ given (s, al, af ); the leader’s/follower’s
policy πx/πy defines πx(al|s)/πy(af |s)–the probability of
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choosing action al/af given state s; and τhl, τhf are the
regularization functions respectively for πx and πy .

Define the leader’s/follower’s value function as

V
πx,πy
⋆ (s) := Eπx,πy

[ ∞∑
t=0

γt
(
r⋆(st, al,t, af,t)

− τh⋆,st(π⋆(st))
)∣∣s0 = s

]
, ⋆ = l or f (2.2)

where γ ∈ [0, 1), π⋆(s) := π⋆(·|s) ∈ ∆(A⋆) and
the expectation is taken over the trajectory (s0, al,0 ∼
πx(s0), af,0 ∼ πy(s0), sl,1 ∼ P(s0, al,0, af,0), . . . ).
Then the Q function can be defined as

Q
πx,πy
⋆ (s, al, af ) :=r⋆(s, al, af )+γEs′∼P(s,al,af )

[
V

πx,πy
⋆ (s′)

]
.

The follower’s objective is to find a best-response policy
to the leader’s policy while the leader aims to find a best-
response to the follower’s best-response; that is

max
x,y

V
πx,πy

l (ρ), s.t. x ∈ X , y ∈ argmax
y∈Y

V
πx,πy

f (ρ). (2.3)

With the proof deferred to Appendix B.1, this problem can
be viewed as a bilevel RL problem with Mτ (x) in which
rx(s, af ) = Eal∼πx(s)[rl(s, al, af )] and Px(·|s, af ) =
Eal∼πx(s)[P(·|s, al, af )].

Reinforcement learning from human feedback (RLHF).
In the RLHF setting, the agent learns a task without knowing
the true reward function. Instead, humans evaluate pairs
of state-action segments, and for each pair they label the
segment they prefer. The agent’s goal is to learn the task
well with limited amount of labeled pairs.

The original framework of deep RL from human feed-
back in (Christiano et al., 2017) (we call it DRLHF) con-
sists of two possibly asynchronous learning process: re-
ward learning from labeled pairs and RL from learnt re-
wards. In short, we maintain a buffer of labeled seg-
ment pairs {(d0, l0, d1, l1)i}i where each segment d =
(st, at, . . . , st+T , at+T ) is collected with the agent’s pol-
icy πy and l0, l1 is the label (e.g., l1 = 1, l0 = 0 indicates
segment d1 is preferred over d0). DRLHF simultaneously
learns a reward predictor rx with the data and trains an RL
agent using the learnt reward. This process has a hierarchy
structure and can be reformulated as a bilevel RL problem:

min
x,y

− Eπy

[
l0 logP (d0 ≻ d1|rx) + l1 logP (d1 ≻ d0|rx)

]
,

s.t. y ∈ argmin
y

−V
πy

Mτ (x)
(ρ). (2.4)

where P (d0 ≻ d1|rx) = Sigmoid(
∑

st,at∈d0
rx(st, at) −∑

st,at∈d1
rx(st, at)) is the probability of preferring d0 over

d1 under reward rx, given by the Bradley-Terry model.

Remark 1 (Connection with DPO (Rafailov et al., 2023)).
The formulation in (2.4) becomes similar to DPO (Rafailov
et al., 2023) in a special case. Specifically when γ = 0, T =
0, πy is tabular and hs(πy(s)) = DKL(πy(s)||πref (s))
where πref is a given reference model, the lower level prob-
lem in (2.4) is solved if and only if the equation rx(s, a) =

τ log
πy(a|s)

πref (a|s)+τ logZrx(s) holds, where Zrx(s) is some
partition function (see, e.g., (Rafailov et al., 2023, eq. 5)).
Plugging this equation back in the upper-level loss results
in the DPO objective. The only difference is that the upper-
level loss is on policy since the samples follow πy, while
the DPO loss depends on an off-policy dataset.

Reward shaping. In the RL tasks where the reward is dif-
ficult to learn from (e.g., the reward signal is sparse where
most states give zero reward), we can reshape the reward to
enable efficient policy learning while staying true to the orig-
inal task. Given a task specified by Mτ = {S,A, r,P, τh},
the reward shaping problem (Hu et al., 2020) seeks to find a
reshaped reward rx such that the new MDP with rx enables
more efficient policy learning for the original task. We can
define the new MDP as Mτ (x) = {S,A, rx,P, τh} and
write the reward shaping problem as:

min
x,y

−V
πy

Mτ
(ρ), s.t. x∈X , y∈argmin

y∈Y
−V

πy

Mτ (x)
(ρ) (2.5)

which is a special case of bilevel RL.

3. Penalty Reformulation of Bilevel RL
A natural way to solve the bilevel RL problem BM is
through reduction to a single-level problem, that is, to find
a single-level problem that shares its local/global solutions
with the original problem. Then by solving the single-level
problem, we can recover the original solutions. In this sec-
tion, we will perform single-level reformulation of BM
through penalizing the upper-level objective with carefully
chosen functions.

Specifically, we aim to find penalty functions p(x, y) such
that the solutions of the following problem recover the solu-
tions of BM:

BMλp : min
x,y

Fλ(x, y) := f(x, y) + λp(x, y),

s.t. x ∈ X , y ∈ Y (3.1)

where λ is the penalty constant.

3.1. Value penalty and its landscape property

In BM, the lower-level problem of finding the optimal
policy πy can be rewritten as its optimality condition:
−V

πy

Mτ (x)
(ρ) + maxy∈Y V

πy

Mτ (x)
(ρ) = 0. Therefore, BM

can be rewritten as

min
x∈X ,y∈Y

f(x, y), s.t. − V
πy

Mτ (x)
(ρ) + max

y∈Y
V

πy

Mτ (x)
(ρ) = 0.

4



Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF

A natural penalty function that we call value penalty then
measures the lower-level optimality gap:

p(x, y) = −V
πy

Mτ (x)
(ρ) + max

y∈Y
V

πy

Mτ (x)
(ρ). (3.2)

The value penalty specifies a penalized problem BMλp

defined in (3.1). To capture the relation between solutions
of BMλp and BM, we have the following lemma.

Lemma 1 (Relation on solutions). Consider choosing p
as the value penalty in (3.2). Assume there exists constant
C such that maxx∈X ,y∈Y |f(x, y)|= C

2 . Given accuracy
δ > 0, choose λ ≥ Cδ−1. If (xλ, yλ) achieves ϵ-minimum
of BMλp, it achieves ϵ-minimum of the relaxed BM:

min
x,y

f(x, y), s.t. x ∈ X , y ∈ Y,

− V
πy

Mτ (x)
(ρ) + max

y∈Y
V

πy

Mτ (x)
(ρ) ≤ ϵλ (3.3)

where ϵλ ≤ δ + λ−1ϵ.

The proof is deferred to Appendix B.2. Perhaps one restric-
tion of the above lemma is that it requires the boundedness
of f on X ×Y . This assumption is usually mild in RL prob-
lems, e.g., it is guaranteed in Stackelberg game provided the
reward functions are bounded.

Since BMλp is a non-convex problem, it is also of interest
to connect the local solutions between BMλp and BM. To
achieve this, additional assumptions are required. Suppose
we use direct policy parameterization: y is a vector with
its (s, a) element ys,a = πy(a|s), and thus y = πy directly.
Then we can prove the following structural condition.

Lemma 2 (Gradient dominance). Given convex policy class
Π and any τ ≥ 0, it holds for any π ∈ Π that

max
π′∈Π

⟨∇πV
π
Mτ (x)

(ρ), π′−π⟩≥µ
(
max
π∈Π

V π
Mτ (x)

(ρ)−V π
Mτ (x)

(ρ)
)

where µ = ((1− γ)mins ρ(s))
−1.

See Appendix B.3 for a proof. A similar gradient dominance
property was first proven in (Agarwal et al., 2020, Lemma
4.1) for the unregularized MDPs. The above lemma is a
generalization of the result in (Agarwal et al., 2020) to
regularized case. Under such structure of the lower-level
problem, we arrive at the following lemma capturing the
relation on local solutions.

Lemma 3 (Relation on local solutions). Consider using
direct policy parameterization and choosing p as the value
penalty in (3.2). Assume f(x, ·) is L-Lipschitz-continuous
on Y . Given accuracy δ > 0, choose λ ≥ LCuδ

−1 where
Cu is a constant specified in the proof. If (xλ, yλ) is a local
solution of BMλp, it is a local solution of the relaxed BM
in (3.3) with an ϵλ ≤ δ.

The proof can be found in Appendix B.4. Lemmas 1 and
3 suggest we can recover the local/global solutions of the
bilevel RL problem BM by locally/globally solving its
penalty reformulation BMλp with the value penalty.

3.2. Bellman penalty and its property

Next we introduce the Bellman penalty that can be used
as an alternative. To introduce this penalty function, we
consider a tabular policy (direct parameterization) πy, i.e.
πy(·|s) = ys for all s and y = (ys)s∈S ∈ Y = Π. Then we
can define the Bellman penalty as

p(x, y)=g(x, y)−v(x) where v(x) :=min
y∈Y

g(x, y). (3.4)

Here g(x, y) is defined as

g(x, y) := Es∼ρ[⟨ys, qs(x)⟩+ τhs(ys)] (3.5)

where qs(x) ∈ R|A| is the vector of optimal Q functions,
which is defined as

qs(x)=(qs,a(x))a∈A where qs,a(x) :=−max
π∈Π

Qπ
Mτ (x)

(s, a).

It is immediate that p(x, ·) is τ -strongly-convex uniformly
for any x ∈ X by the 1-strong-convexity of hs, and
p(x, y) ≥ 0 by definition. Moreover, we can show that
the lower-level RL problem in BM is solved whenever
g(x, y)− v(x) is minimized in the following lemma.

Lemma 4. Assume τ > 0, then given any x ∈ X ,
Mτ (x) has a unique optimal policy π∗

y(x). And we have
argminy∈Y g(x, y) = Y∗(x) = {π∗

y(x)}. Therefore, BM
can be rewritten as the following problem with ϵ = 0:

BMϵ : min
x,y

f(x, y), s.t. x ∈ X , y ∈ Y,

g(x, y)− v(x) ≤ ϵ with v(x) :=min
y∈Y

g(x, y). (3.6)

More generally for an ϵ > 0, BMϵ is an ϵ-approximate
problem of BM. A discussion on this and the proof of
Lemma 4 are deferred to Appendix B.5. Based on Lemma
4, g(x, y)− v(x) is a suitable lower-level optimality metric,
thus is a natural penalty function candidate. We have the
following result that proves the Bellman penalty is indeed a
suitable penalty function.

Lemma 5 (Relation on solutions). Suppose choose the
Bellman penalty in (3.4). Assume f(x, ·) is L-Lipschitz-
continuous on Y . Given accuracy δ > 0, choose λ ≥
L
√
τ−1δ−1. If (xλ, yλ) is a local/global solution of BMλp,

then it is a local/global solution of BMϵλ with ϵλ ≤ δ.

This lemma follows directly from the τ -strong-convexity of
g(x, ·) and (Shen & Chen, 2023, Proposition 3).
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4. A Penalty-based Algorithm
In the previous sections, we have introduced two penalty
functions p(x, y) such that the original problem BM can
be approximately solved via solving BMλp. However, it
is still unclear how BMλp can be solved. One challenge is
the differentiability of the penalty function p(x, y) in (3.1).
In this section, we will first study the differentiability of
Fλ(x, y) and its specific gradient forms in each application.
We will propose a penalty-based algorithm based on these
results and further establish its convergence.

4.1. Differentiability of the value penalty

We first consider the value penalty

p(x, y) = −V
πy

Mτ (x)
(ρ) + max

y∈Y
V

πy

Mτ (x)
(ρ).

For the differentiability in y, it follows ∇yp(x, y) =
−∇yV

πy

Mτ (x)
(ρ) can be evaluated with the policy gradient

theorem. The issue lies in the differentiability of p(x, y)
with respect to x, where p(x, y) may not be differentiable in
x due to the optimality function maxy∈Y V

πy

Mτ (x)
(ρ). Fortu-

nately, we will show that in the setting of RL, p(·, y) admits
closed-form gradient under mild assumptions below.

Assumption 1. Assume (a) ∇xV
πy

Mτ (x)
(ρ) is continuous in

(x, y); and, (b) given any x ∈ X and y, y′ ∈ Y∗(x), we
have ∇xV

πy

Mτ (x)
(ρ) = ∇xV

πy′

Mτ (x)
(ρ).

Assumption 1 (a) is mild in the applications, and can often
be guaranteed by the a continuously differentiable reward
function rx. A sufficient condition of Assumption 1 (b) is
the optimal policy of Mτ (x) on Π is unique, e.g., when
πy = πy′ for y, y′ ∈ Y∗(x). As indicated by Lemma 4, the
uniqueness is guaranteed when τ > 0.

Lemma 6 (Generic gradient form). Consider the value
penalty p in (3.2). Suppose Assumption 1 holds. Then
p(x, y) is differentiable in x with the gradient

∇xp(x, y) = −∇xV
πy

Mτ (x)
(ρ) +∇xV

π
Mτ (x)

(ρ)|π=π∗
y(x)

where recall π∗
y(x) is an optimal policy on policy class

Π = {πy : y ∈ Y} of Mτ (x).

The proof can be found in Appendix C.1. Next, we can
apply the generic result from Lemma 6 to specify the ex-
act gradient formula in different bilevel RL applications
discussed in Section 2.2.

Lemma 7 (Gradient form in the applications). Consider
the value penalty p in (3.2). The gradient of the penalty
function in specific applications are listed below.

(a) RLHF/reward shaping: Assume rx is continuously dif-
ferentiable and Assumption 1 (b) holds. Then Lemma 6

holds and

∇xp(x, y) =− E
[ ∞∑

t=0

γt∇rx(st, at)
∣∣ρ, πy

]
+ E

[ ∞∑
t=0

γt∇rx(st, at)
∣∣ρ, π∗

y(x)
]
.

(b) Stackelberg game: Assume πx is differentiable and As-
sumption 1 (b) holds. Then Lemma 6 holds and

∇xp(x, y)=−E
[ ∞∑

t=0

γtQ̄
πx,πy

f,t ∇ log πx(al,t|st)
∣∣s0=s

]
+ E

[ ∞∑
t=0

γtQ̄
πx,π

∗
y(x)

f,t ∇ log πx(al,t|st)
∣∣s0=s

]
where Q̄πx,πy

f,t :=Q
πx,πy

f (st, al,t, af,t)−τhf,st(πy(st)).
Recall in the Stackelberg setting, π∗

y(x) is the optimal
follower policy given πx; and the expectation is taken
over the trajectory generated by πx, πy(or π∗

y(x)),P .

We defer the proof to Appendix C.2.

4.2. Differentiability of the Bellman penalty

For the Bellman penalty defined in (3.4), though it is
straightforward to evaluate ∇yp(x, y) = ∇yg(x, y), the
differentiability of p(x, y) in x is unclear. We next identify
some sufficient conditions that allow convenient evaluation
of ∇xp(x, y).
Assumption 2. Assume τ > 0 and (a) given any (s, a),
∇xQ

π
Mτ (x)

(s, a) exists and is continuous in (x, π); and,
(b) given x ∈ X , for the MDP Mτ (x), the Markov chain
induced by any policy π ∈ Π is irreducible1.

Assumption 2 (a) is mild as it can be verified later in Lemma
8. Assumption 2 (b) is a regularity assumption on the MDP
(Mitrophanov, 2005), and is often assumed in recent theo-
retical studies on policy gradient algorithms (see e.g., (Wu
et al., 2020; Qiu et al., 2021)).
Lemma 8 (Generic gradient form). Consider the Bellman
penalty in (3.4). Under Assumption 2, p(x, y) is differen-
tiable with ∇xp(x, y) = ∇xg(x, y)−∇v(x) where

∇xg(x, y) = −Es∼ρ,a∼πy(s)

[
∇xQ

π
Mτ (x)

(s, a)
]∣∣

π=π∗
y(x)

∇v(x) = −Es∼ρ,a∼π(s)

[
∇xQ

π
Mτ (x)

(s, a)
]∣∣

π=π∗
y(x)

The proof can be found in Appendix C.3. The above lemma
provides the form of gradients for the BM problem. Next
we show that Lemma 8 holds for the applications in Section
2.2 and then compute the closed-form of the gradients.

1The Markov chain is irreducible if for any state s and initial
state-action pair s0, a0, there exists time step t such that Pπ

x (st =
s|s0, a0) > 0, where Pπ

x (st = s|s0, a0) is the probability of
reaching s at time step t in MDP Mτ (x) with policy π.
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Lemma 9 (Gradient form in the applications). Consider the
Bellman penalty p(x, y) in (3.4). The gradient form of the
bilevel RL applications are listed below.

(a) RLHF/reward shaping: Assume rx is continuously dif-
ferentiable and Assumption 2 (b) holds. Then Lemma 8
holds and

∇xg(x, y)=−E
[ ∞∑

t=0

γt∇rx(st, at)
∣∣a0∼πy(s)

]
where the expectation is taken over s0∼ρ, a0 ∼ πy(s0)
and the trajectory generated by π∗

y(x) and P , and
∇v(x) = ∇xg(x, y)|πy=π∗

y(x)
.

(b) Stackelberg game: Assume πx is differentiable and As-
sumption 2 (b) holds. Then Lemma 8 holds and

∇xg(x, y)=−E
[
Q

πx,πy

f (s0, al,0, af,0)∇ log πx(al,0|s0)

−
∞∑
t=1

γtQ̄
πx,π

∗
y(x)

f,t ∇ log πx(al,t|st)
]

where Q̄
πx,πy

f,t =Q
πx,πy

f (st, al,t, af,t)−τhf,st(πy(st)),
π∗
y(x) is the optimal follower policy given πx; and the

expectation is taken over all the randomness. Finally,
we have ∇v(x) = ∇xg(x, y)|πy=π∗

y(x)
.

The proof is deferred to Appendix C.4.

4.3. A gradient-based algorithm and its convergence

In the previous subsections, we have addressed the chal-
lenges of evaluating ∇p(x, y), enabling the gradient-based
methods to optimize Fλ(x, y) in (3.1). However, comput-
ing ∇p(xk, yk) possibly requires an optimal policy π∗

y(xk)
of the lower-level RL problem Mτ (xk). Given xk, the
lower-level RL problem can be solved with a wide range
of algorithms, and we can use an approximately optimal
policy parameter π̂k ≈ π∗

y(xk) to compute the approximate
penalty gradient ∇̂p(xk, yk; π̂k) ≈ ∇p(xk, yk). The ex-
plicit formula of ∇̂p(xk, yk; π̂k) can be straightforwardly
obtained by replacing π∗

y(xk) with its approximate π̂k in
the formula of ∇p(xk, yk) in Lemmas 7 and 9. Therefore,
we defer the formula to Appendix C.7 for ease of reading.

Given ∇̂p(xk, yk; π̂k), we can compute the approximate
gradient of Fλ as ∇̂Fλ(xk, yk; π̂k) := ∇f(xk, yk) +
λ∇̂p(xk, yk; π̂k) and update (with Z = X × Y)

(xk+1, yk+1) = ProjZ

[
(xk, yk)− α∇̂Fλ(xk, yk; π̂k)

]
.

The optimization process is summarized in Algorithm 1.
Remark 2 (Comparison with the general penalty-based BLO
algorithm.). The flow of the BLO-based algorithm in this
work is similar to the general BLO algorithm in (Shen &
Chen, 2023), the ingredients are significantly different; see

Algorithm 1 PBRL: Penalty-based Bilevel RL Algorithm
1: Select either the value or Bellman penalty. Select

(x1, y1) ∈ Z := X × Y . Select step size α, penalty
constant γ and iteration number K.

2: for k = 1 to K do
3: Given RL problem Mτ (xk), compute an optimal pol-

icy estimator π̂k ∈ Π.
4: Compute the penalty’s approximate gradient

∇̂p(xk, yk; π̂k) ≈ ∇p(xk, yk).
5: Compute the inexact gradient of Fλ as

∇̂Fλ(xk, yk; π̂k) = ∇f(xk, yk) + λ∇̂p(xk, yk; π̂k)

6: (xk+1, yk+1)=ProjZ
[
(xk, yk)−α∇̂Fλ(xk, yk; π̂k)

]
7: end for

our back-to-back comparison in Table 1. Specifically, the
penalty gradient ∇p(x, y) is assumed to be directly accessi-
ble in the generic BLO algorithms. While in this work, we
derive the close forms of ∇p(x, y) (Section 4), ∇p(x, y; π̂)
(Appendix C.7) for our newly introduced penalty functions,
and then use them in Algorithm 1.

We next study the convergence of PBRL. To bound the gradi-
ent error in Algorithm 1, we make the following assumption
on the sub-optimality of the policy π̂k.

Assumption 3 (Oracle accuracy). Given some accuracy
ϵorac and step size α, assume the following inequality holds

1

K

K∑
k=1

20λ2∥∇̂p(xk, yk; π̂k)−∇p(xk, yk)∥2

≤ ϵorac +
1

K

K∑
k=1

1

α2
∥(xk+1, yk+1)− (xk, yk)∥2. (4.1)

This assumption only requires the running average of the
error to be upper bounded, which is milder than requiring
the error to be upper bounded for each iteration. A sufficient
condition of the above assumption is ∥π̂k − π∗

y(xk)∥2 ≤
ϵorac with some constant c, which can be achieved by the
policy mirror descent algorithm (see e.g., (Lan, 2023; Zhan
et al., 2023)) with iteration complexity O(− log(ϵorac/λ

2))
(see a justification in Appendix C.7).

Furthermore, to guarantee worst-case convergence, the reg-
ularity condition that f and p are Lipschitz-smooth is re-
quired. We thereby identify a set of sufficient conditions for
the value penalty or Bellman penalty to be smooth.

Assumption 4 (Smoothness assumption). Assume ∀(s, a),
hs(πy(s)) is Lh-Lipschitz-smooth on Y ; and Q

πy

Mτ (x)
(s, a),

V
πy

Mτ (x)
(s) are Lv-Lipschitz-smooth on X × Y .

Assumption 4 is satisfied under a smooth rx and a smooth
policy (e.g., softmax policy (Mei et al., 2020)), or a direct
policy parameterization paired with smooth regularization
function hs. See a discussion on this in Appendix C.5.
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Figure 1. The result is generated by running the algorithms in 10 random Stackelberg MDPs. The environment step k is proportional
to the number of samples used in training. The leader’s value function is V

πxk
,πyk

l (ρ), and the follower’s optimality gap is given by

V
πxk

,π∗
y(xk)

f (ρ)− V
πxk

,πyk
f (ρ). A zero optimality gap means the follower has found the best response to the leader.

Lemma 10 (Lipschitz smoothness of penalty functions).
Under Assumptions 2 and 4, the value or Bellman penalty
function p(x, y) is Lp-Lipschitz-smooth on X × Y with
constant Lp specified in the proof.

We refer the reader to Appendix C.6 for a proof. Next, we
make the final regularity assumption on f .

Assumption 5. Assume f is Lf -Lipschitz-smooth in (x, y).

The projected gradient is a commonly used metric in the
convergence analysis of projected gradient type algorithms
(Ghadimi et al., 2016). Define the projected gradient as

Gλ(xk, yk) := α−1
(
(xk, yk)− (x̄k+1, ȳk+1)

)
, (4.2)

where (x̄k+1, ȳk+1) := ProjZ((xk, yk)− α∇Fλ(xk, yk)).
Now we are ready to establish the convergence of PBRL.

Theorem 4.1 (Convergence of PBRL). Suppose Assump-
tions 2–5 hold. Choose step size α ≤ 1

Lf+λLp
, then

1

K

K∑
k=1

∥Gλ(xk, yk)∥2≤
16
(
Fλ(x1, y1)−infZf(x, y)

)
αK

+ϵorac

See Appendix C.8 for the proof of above theorem. At
each outer iteration k, let com(ϵorac) be the oracle’s itera-
tion complexity. Then the above theorem suggests Algo-
rithm 1 has an iteration complexity of O(λϵ−1com(ϵorac)).
When choosing the oracle as policy mirror descent so that
com(ϵorac) = O(− log(ϵorac/λ

2)) (Lan, 2023; Zhan et al.,
2023), Algorithm 1 has an iteration complexity of Õ(λϵ−1).

5. Simulation
In this section, we test the empirical performance of PBRL.

5.1. Stackelberg Markov game

We first solve the following Stackelberg Markov game de-
scribed in Section 2.2. We parameterize πx and πy with
the softmax function. Here the transition distribution and
rewards are randomly generated. It has a state space of size

|S| = 100, and the leader, and follower’s action space are
of size |Al| = 5, |Af | = 5 respectively. Each entry of the
rewards Rl, Rf ∈ R100×5×5 is uniformly sampled between
[0, 1] and values smaller than 0.7 are set to 0 to promote
sparsity. Each entry of the transition matrix is sampled
between [0, 1] and then is normalized to be a distribution.

Baseline. We implement PBRL with both value and Bell-
man penalty, and compare them with the independent policy
gradient method (Daskalakis et al., 2020; Ding et al., 2022).
In the independent gradient method, each player myopically
maximizes its own value function, i.e., the leader maxi-
mizes V πx,πy

l (ρ) while the follower maximizes V πx,πy

f (ρ).
At each step k, leader updates πxk

with one-step gradient
of V

πx,πyk

l (ρ) while the follower updates πyk
with one-step

gradient of V
πxk

,πy

f (ρ). We test all algorithms across 10
randomly generated MDPs.

We report the results in Figure 1. In the right figure, we can
see the follower’s optimality gap diminishes to zero, that
is, the followers have found their optimal policies. In the
mean time, the left figure reports the leaders’ total rewards
for the three methods. Overall, we find that both PBRL
with value penalty and Bellman penalty outperform the
independent gradient: it can be observed from Figure 1
(left) that PBRL can achieve a higher leader’s return than
the independent gradient, and the PBRL with value penalty
reaches the highest value.

5.2. Deep reinforcement learning from human feedback

We test our algorithm in RLHF, following the experiment
setting in (Christiano et al., 2017); see a description of the
general RLHF setting in Section 2.2.

Environment and preference collection. We conduct our
experiments in the Arcade Learning Environment (ALE)
(Bellemare et al., 2013) through OpenAI gym. The ALE
provides the game designer’s reward that can be treated
as the ground truth reward. For each pair of segments we
collect, we assign preference to whichever has the high-
est ground truth reward. This allows us to benchmark our

8
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Figure 2. Performance on Atari games measured by true reward. The ‘episode return’ is the sum of true rewards in an episode. We average
the episode return in 5 consecutive episodes. The ‘environment steps’ is the number of steps taken per worker in policy optimization. We
compare performance of PBRL (ours) and DRLHF both with few labeled pairs, and A2C with true reward.

algorithm with DRLHF that also use this process.

Baseline. We compare PBRL with DRLHF (Christiano
et al., 2017) and A2C (A3C (Mnih et al., 2016) but syn-
chronous). We use the ground truth reward to train A2C
agent, and treat A2C as an oracle algorithm which estimates
a performance upperbound for other algorithms.

The results are reported in Figure 2. The first two games
(Seaquest and BeamRider) are also reported in (Christiano
et al., 2017). For Seaquest, the asymptotic performance
of DRLHF and PBRL are similar, while DRLHF is more
unstable in training. The unstability can also be made in the
original paper of DRLHF. For BeamRider and MsPacman,
we find out that PBRL has an advantage over DRLHF on
the episode return. It can be observed that PBRL is able
to achieve higher best-episode-return than DRLHF, and
become comparable to the oracle algorithm.

6. Concluding Remarks
In this paper, we propose a penalty-based first-order algo-
rithm for the bilevel RL problems. We provide results in
three aspects: 1) we find penalty function with proper land-
scape properties such that the induced penalty reformulation
admits solutions for the original bilevel RL problem; 2) to
develop a gradient-based method, we study the differen-
tiability of the penalty functions and find out their close
form gradients; 3) based on the previous findings, we pro-
pose the convergent PBRL algorithm and evaluate it on the
Stackelberg Markov game and the RLHF task.
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A. Preliminary results
Lemma 11 (Lipschitz continuous optimal policy). Given x ∈ X , consider the optimal policies in a convex policy class Π of
a parameterized MDP Mτ (x). Suppose Assumption 2 holds, τ > 0 and X is compact. Then the optimal policy π∗

y(x) is
unique and the following inequality hold:

∥π∗
y(x)− π∗

y(x
′)∥ ≤ τ−1CJ∥x− x′∥, ∀x, x′ ∈ X (A.1)

where CJ is a constant specified in the proof.

Proof. By Lemma 4, the optimal policy of Mτ (x) on a convex policy class Π is unique, given by

π∗
y(q(x)) = argmin

π∈Π
J(q(x), π) := Es∼ρ[⟨π(s), qs(x)⟩+ τhs(π(s))] (A.2)

where recall q(x) = (qs(x))s∈S with

qs(x) = (−max
π∈Π

Qπ
Mτ (x)

(s, a))a∈A. (A.3)

We overload the notation π∗ here with π∗
y(q(x)) which equals π∗

y(x). In (A.2), since τEs∼ρ[hs(π(s))] is τ -strongly convex
at π on Π, π∗

y(q(x)) satisfies (A.2) if and only if it is a solution of the following parameterized variational inequality (VI)

⟨∇πJ(q(x), π), π − π′⟩ ≤ 0, ∀π′ ∈ Π (A.4)

where

∇πJ(q(x), π) =
(
ρ(s)qs(x) + τρ(s)∇hs(π(s))

)
s∈S

. (A.5)

First, it can be checked that ∇πJ(q(x), π) is continuously differentiable at any (q(x), π). Secondly, by the uniform strong
convexity of J(q(x), ·), given any q(x), it holds that

(π − π′)⊤∇2
πJ

(
q(x), π∗

y(q(x))
)
(π − π′) ≥ τ−1∥π − π′∥2. (A.6)

Given these two properties of the VI, it then follows from (Dontchev & Rockafellar, 2009, Theorem 2F.7) that the solution
mapping π∗

y(q(x)) is τ−1-Lipschitz-continuous locally at any point q(x). Thus π∗
y(q(x)) is τ−1-Lipschitz-continuous in

q(x) globally, yielding

∥π∗
y(q(x))− π∗

y(q(x
′))∥ ≤ τ−1∥q(x)− q(x′)∥

≤ τ−1 max
x∈X

∥∇q(x)∥∥x− x′∥

= τ−1CJ∥x− x′∥ (A.7)

where the second inequality follows from q(x) is continuously differentiable by Lemma 8 and continuity of π∗
y(x), and

CJ = maxx∈X ∥∇q(x)∥ is well-defined by compactness of X .

B. Proof in Section 2 and 3
B.1. Proof that Stackelberg Markov game is a bilevel RL problem

Lemma 12 (Stackelberg game cast as BM). The Stackelberg MDP from the follower’s viewpoint can be defined as a
parametric MDP:

Mτ (x) = {S,Af , rx(s, af ) = Eal∼πx(s)[rl(s, al, af )],Px(·|s, af ) = Eal∼πx(s)[P(·|s, al, af )], τhf}.

Then V
πx,πy

f (s) = V
πy

Mτ (x)
(s),∀s and the original formulation of Stackelberg game in (2.3) can be rewritten as BM:

SG : min
x,y

−V
πx,πy

l (ρ), s.t. x ∈ X , y ∈ Y∗(x) = argmin
y∈Y

−V
πy

Mτ (x)
(ρ). (B.1)
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Proof. Recall that the follower’s value function V
πx,πy

f (s) under the leader’s policy πx and the follower’s policy πy is
defined as

V
πx,πy

f (s) = E
[ ∞∑

t=0

γt
(
rf (st, al,t, af,t)− τhf,st(πy(st))

)∣∣s0 = s, πx, πy

]
(B.2)

where the leader’s action al,t ∼ πl(st), the follower’s action af,t ∼ πf (st), and the state transition follows st+1 ∼
P(·|st, al,t, af,t).

It then follows from a expansion of the expectation in (B.2) that

V
πx,πy

f (s) = Eal,0∼πx(s0),af,0∼πy(s0)

[
rf (s0, al,0, af,0)− τhf,s0(πy(s0))

∣∣s0 = s, πx, πy

]
+ γEal,0∼πx(s0),af,0∼πy(s0)

s1∼P(s0,al,0,af,0)
al,1∼πx(s1),af,1∼πy(s1)

[
rf (s1, al,1, af,1)− τhf,s1(πy(s1))

∣∣s0 = s, πx, πy

]
+ . . .

= Eaf,0∼πy(s0)

[
rx(s0, af,0)− τhf,s0(πy(s0))

∣∣s0 = s, πy

]
+ γE af,0∼πy(s0)

s1∼Px(s0,af,0)
af,1∼πy(s1)

[
rx(s1, af,1)− τhf,s1(πy(s1))

∣∣s0 = s, πy

]
+ . . .

= V
πy

Mτ (x)
(s) (B.3)

where recall Px(s, af ) = Eal∼πx(s)[P(·|s, al, af )] and rx(s, af ) = Eal∼πx(s)[rl(s, al, af )]. Thus we have V
πx,πy

f (s) =

V
πy

Mτ (x)
(s),∀s. Therefore, the Stackelberg Markov game can be written as BM.

B.2. Proof of Lemma 1

Proof. Since (xλ, yλ) is an ϵ-minima of BMλp, it holds for any x ∈ X and y ∈ Y that

f(xλ, yλ) + λ
(
− V

πyλ

Mτ (xλ)
(ρ) + max

y∈Y
V

πy

Mτ (xλ)

)
≤ f(x, y) + λ

(
− V

πy

Mτ (x)
(ρ) + max

y∈Y
V

πy

Mτ (x)

)
+ ϵ. (B.4)

Choosing x = xλ and y ∈ Y(xλ) in the above inequality and rearranging yields

max
y∈Y

V
πy

Mτ (xλ)
(ρ)− V

πyλ

Mτ (xλ)
(ρ) ≤ 1

λ

(
f(xλ, yλ)− f(xλ, y) + ϵ

)
≤ 1

λ

(
C + ϵ

)
≤ δ + λ−1ϵ. (B.5)

Define ϵλ := maxy∈Y V
πy

Mτ (xλ)
(ρ)− V

πyλ

Mτ (xλ)
(ρ) then ϵλ ≤ δ + λ−1ϵ. It follows from (B.4) that for any x, y feasible for

(3.3) that

f(xλ, yλ) ≤ f(x, y) + λ
(
− V

πy

Mτ (x)
(ρ) + max

y∈Y
V

πy

Mτ (x)
− ϵλ

)
+ ϵ

≤ f(x, y) + ϵ. (B.6)

This completes the proof.

B.3. Proof of Lemma 2

Proof. The following proof holds for any x and thus we omit x in the notations Mτ (x), π∗
y(x) and Px in this proof. We

first prove a policy gradient theorem for the regularized MDP. From the Bellman equation, we have

V π
Mτ

(s) =
∑
a

π(a|s)Qπ
Mτ

(s, a)− τhs(π(s)) (B.7)

Differentiating two sides of the equation with respect to π gives

∇V π
Mτ

(s) =
∑
a

∇π(a|s)Qπ
Mτ

(s, a) +
∑
a

π(a|s)∇Qπ
Mτ

(s, a)− τ∇πhs(π(s)). (B.8)
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By the definition of Q function, we have ∇Qπ
Mτ

(s, a) =
∑

s′ P(s′|s, a)∇V π
Mτ

(s′). Substituting this inequality into (B.8)
yields

∇V π
Mτ

(s) =
∑
a

∇π(a|s)Qπ
Mτ

(s, a) +
∑
s′

Pπ(s1 = s′|s0 = s)∇V π
Mτ

(s, a)− τ∇πhs(π(s)) (B.9)

where Pπ(s1 = s′|s0 = s) is the probability of s1 = s′ given s0 = s under policy π. Note that the above inequality has a
recursive structure, thus we can repeatedly applying it to itself and obtain

∇V π
Mτ

(s) =
1

1− γ
Es̄∼dπ

s

[∑
a

Qπ
Mτ

(s̄, a)∇π(a|s̄)
]
+

τ

1− γ
Es̄∼dπ

s
[−∇πhs̄(π(s̄))] (B.10)

where dπs (s̄) := (1− γ)
∑

t γ
tPπ(st = s̄|s0 = s) is the discounted visitation distribution. Define dπMτ

(s̄) := Es∼ρ[d
π
s (s̄)].

Since ∇π(a|s̄) = 1s̄,a where 1s̄,a is the indicator vector, we have the regularized policy gradient given by

∇πV
π
Mτ

(ρ) =
1

1− γ

[
dπMτ

(s)
(
Qπ

Mτ
(s, ·)− τ∇hs(π(s))

)]
s∈S . (B.11)

Now we begin the prove the lemma. By the performance difference lemma (see e.g., (Lan, 2023, Lemma 2) and (Zhan et al.,
2023, Lemma 5)), for any π ∈ Π, we have

max
π∈Π

V π
Mτ

(ρ)− V π
Mτ

(ρ) =
1

1− γ
Es∼dπ∗

Mτ

[
⟨Qπ

Mτ
(s, ·), π∗

y(s)− π(s)⟩ − τhs(π
∗
y(s)) + τhs(π(s))

]
≤ 1

1− γ
Es∼dπ∗

Mτ

[
⟨Qπ

Mτ
(s, ·), π∗

y(s)− π(s)⟩ − τ⟨∇hs(π(s)), π
∗
y(s)− π(s)⟩

]
where the inequality follows from the convexity of hs. Continuing from the inequality, it follows

max
π∈Π

V π
Mτ

(ρ)− V π
Mτ

(ρ)

≤ 1

1− γ
Es∼dπ∗

Mτ

[
max
π′∈Π

⟨Qπ
Mτ

(s, ·), π′(s)− π(s)⟩ − τ⟨∇hs(π(s)), π
′(s)− π(s)⟩

]
=

1

1− γ
Es∼dπ

Mτ

[
dπ

∗

Mτ
(s)

dπMτ
(s)

max
π′∈Π

(
⟨Qπ

Mτ
(s, ·), π′(s)− π(s)⟩ − τ⟨∇hs(π(s)), π

′(s)− π(s)⟩
)]

≤ 1

1− γ
Es∼dπ

Mτ

[∥∥∥dπ∗

Mτ

dπMτ

∥∥∥
∞

max
π′∈Π

(
⟨Qπ

Mτ
(s, ·), π′(s)− π(s)⟩ − τ⟨∇hs(π(s)), π

′(s)− π(s)⟩
)]

(B.12)

where the last inequality follows from
dπ∗
Mτ

(s)

dπ
Mτ

(s) ≤
∥∥∥dπ∗

Mτ

dπ
Mτ

∥∥∥
∞

and

max
π′∈Π

(
⟨Qπ

Mτ
(s, ·), π′(s)− π(s)⟩ − τ⟨∇hs(π(s)), π

′(s)− π(s)⟩
)

≥ ⟨Qπ
Mτ

(s, ·), π(s)− π(s)⟩ − τ⟨∇hs(π(s)), π(s)− π(s)⟩ = 0. (B.13)

Continuing from (B.12), we have

max
π∈Π

V π
Mτ

(ρ)− V π
Mτ

(ρ)

≤ 1

1− γ

1

(1− γ)mins ρ(s)
max
π′∈Π

Es∼dπ
Mτ

[(
⟨Qπ

Mτ
(s, ·), π′(s)− π(s)⟩ − τ⟨∇hs(π(s)), π

′(s)− π(s)⟩
)]

=
1

(1− γ)mins ρ(s)
max
π′∈Π

⟨∇πV
π
Mτ

(ρ), π′ − π⟩ (B.14)

where the inequality follows from (1− γ)ρ(s) ≤ dπMτ
(s) ≤ 1 for any s and π, and the equality follows from (B.11). This

proves the result.
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B.4. Proof of Lemma 3

Proof. Given xλ, point yλ satisfies the first-order stationary condition:

⟨∇yf(xλ, yλ) + λ∇yp(xλ, yλ), yλ − y′⟩ ≤ 0, ∀y′ ∈ Y (B.15)

which leads to

⟨∇yp(xλ, yλ), yλ − y′⟩ ≤ − 1

λ
⟨∇yf(xλ, yλ), yλ − y′⟩

≤ L∥yλ − y′∥
λ

≤ LCu

λ
, ∀y′ ∈ Y (B.16)

where Cu := maxy,y′∈Y ∥y − y′∥ which is well defined by compactness of Y . For the LHS of the above inequality, we
have the following inequality hold

min
y′∈Y

⟨∇yp(xλ, yλ), yλ − y′⟩ = max
y′∈Y

⟨∇yV
πyλ

Mτ (xλ)
(ρ), y′ − yλ⟩

≥ 1

(1− γ)mins ρ(s)

(
max
y∈Y

V
πy

Mτ (xλ)
(ρ)− V

πyλ

Mτ (xλ)
(ρ)

)
(B.17)

where the last inequality follows from we are using direct policy parameterization y = π and Lemma 2.

Substituting (B.17) into (B.16) yields

max
y∈Y

V
πy

Mτ (xλ)
(ρ)− V

πyλ

Mτ (xλ)
(ρ) ≤ LCu

λ
. (B.18)

Define ϵλ := −V
πyλ

Mτ (xλ)
(ρ) + maxy∈Y V

πy

Mτ (xλ)
(ρ) then ϵλ ≤ δ by choice of λ.

By local optimality of (xλ, yλ), it holds for any x ∈ X , y ∈ Y and in the neighborhood of (xλ, yλ) that

f(xλ, yλ) + λ
(
− V

πyλ

Mτ (xλ)
(ρ) + max

y∈Y
V

πy

Mτ (xλ)

)
≤ f(x, y) + λ

(
− V

πy

Mτ (x)
(ρ) + max

y∈Y
V

πy

Mτ (x)

)
. (B.19)

From the above inequality, it holds for any (x, y) feasible for the relaxed BM in (3.3) and in neighborhood of (xλ, yλ) that

f(xλ, yλ) ≤ f(x, y) + λ
(
− V

πy

Mτ (x)
(ρ) + max

y∈Y
V

πy

Mτ (x)
− ϵλ

)
≤ f(x, y) (B.20)

which proves the result.

B.5. Proof of Lemma 4

Proof. Define

V ∗
Mτ (x)

(s) := max
π∈Π

V π
Mτ (x)

(s), Q∗
Mτ (x)

(s, a) := r(s, a) + γEs′∼Px(s,a)[V
∗
Mτ (x)

(s′)].

Then it follows from the definition of the value function that for any s0,

V ∗
Mτ (x)

(s0) = max
π∈Π

E
[
rx(s0, a0)− τhs0(π(s0)) +

∞∑
t=1

γt
(
rx(st, at)− τhst(π(st))

)∣∣s0, π]
= max

π∈Π
E
[
rx(s0, a0)− τhs0(π(s0)) + E

[ ∞∑
t=1

γt
(
rx(st, at)− τhst(π(st))

)∣∣s0, a0, π,Px

]∣∣s0, π]
= max

π∈Π
Ea0∼π(s0)

[
rx(s0, a0)− τhs0(π(s0)) + γEs1∼Px(s0,a0)

[
V π
Mτ (x)

(s1)
]]

≤ max
π∈Π

Ea0∼π(s0)

[
r(s0, a0)− τhs0(π(s0)) + γEs1∼Px(s0,a0)

[
V ∗
Mτ (x)

(s1)
]]

(B.21)

16



Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF

Given x, define a policy π∗
y = (π∗

y(s))s∈S ∈ Π via

π∗
y(s0) := argmax

π(s0)

Ea0∼π(s0)

[
r(s0, a0)− τhs0(π(s0)) + γEs1∼Px(s0,a0)

[
V ∗
Mτ (x)

(s1)
]]
,∀s0 ∈ S

where the argmax is a singleton following from the τ -strong convexity of τh, and we sometimes treat the singleton set as
its element for convenience. Given the definition of π∗

y , it then follows from (B.21) that

V ∗
Mτ (x)

(s0) ≤ Ea0∼π∗
y(s0)

[
r(s0, a0)− τhs0(π(s0)) + γEs1∼Px(s0,a0)

[
V ∗
Mτ (x)

(s1)
]]

≤ Ea0∼π∗
y(s0)

[
r(s0, a0)− τhs0(π(s0))

+ γEs1∼Px(s0,a0),a1∼π∗
y(s1)

[
r(s1, a1)− τhs1(π(s1)) + γEs2∼Px(s1,a1)[V

∗
Mτ (x)

(s2)]
]]

(B.22)

where the last inequality is a result of applying (B.21) twice. Continuing to recursively apply (B.21) and then using the
definition of V π

Mτ (x)
yield

V ∗
Mτ (x)

(s0) ≤ V
π∗
y

Mτ (x)
(s0), ∀s0 ∈ S (B.23)

which proves π∗
y is the optimal policy for Mτ (x). In addition, we have

π∗
y(s0) = argmax

π(s0)

Ea0∼π(s0)

[
r(s0, a0)− τhs0(π(s0)) + γEs1∼Px(s0,a0)

[
V

π∗
y

Mτ (x)
(s1)

]]
= argmax

π(s0)

Ea0∼π(s0)

[
Q

π∗
y

Mτ (x)
(s0, a0)− τhs0(π(s0))

]
, ∀s0. (B.24)

Then we have π∗
y = argminy∈Π g(x, y) and thus argminy∈Π g(x, y) ∈ Y∗(x). To further prove

argminy∈∆(A)|S| g(x, y) = Y∗(x), it then suffices to prove any other policy π ∈ Π different from π∗
y is not optimal.

Let s′0 be the state such that π∗
y(s

′
0) ̸= π(s′0). We have

V π
Mτ (x)

(s′0) ≤ Ea0∼π(s′0)

[
r(s′0, a0)− τhs′0

(π(s′0)) + γEs1∼Px(s′0,a0)

[
V ∗
Mτ (x)

(s1)
]]

< Ea0∼π∗
y(s

′
0)

[
r(s′0, a0)− τhs′0

(π∗
y(s

′
0)) + γEs1∼Px(s′0,a0)

[
V ∗
Mτ (x)

(s1)
]]

= V ∗
Mτ (x)

(s′0) (B.25)

where the last inequality follows from the strong convexity of h and the definition of π∗
y ; and the last equality follows from

π∗
y is the optimal policy. This proves the lemma.

More generally for ϵ ≥ 0, BMϵ is an ϵ-approximate problem of BM in a sense that: 1) We have any feasible policy yϵ of
BMϵ is ϵ-feasible for BM:

∥yϵ − y∗∥2 ≤ τ−1
(
g(x, yϵ)− v(x)

)
≤ τ−1ϵ (B.26)

where y∗ = π∗
y is the optimal policy, and the first inequality follows from τ -strong-convexity of g(x, ·).

2) Moreover, if f(x, ·) is L-Lipschitz-continuous with some constant L, the optimal objective value of BM and BMϵ are
close. Let f∗ and f∗

ϵ = f(x∗
ϵ , y

∗
ϵ ) respectively be the optimal objective value of BM and BMϵ. Then we have

f(x∗
ϵ ,Y(x∗

ϵ ))− f(x∗
ϵ , y

∗
ϵ ) ≤ L∥y∗ϵ − Y(x∗

ϵ )∥ ≤ L
√
τ−1ϵ (B.27)

where the last inequality follows from (B.26) with the fact that under x∗
ϵ , y∗ϵ is a feasible policy of BMϵ and Y(x∗

ϵ ) is the
optimal policy. The it follows from the fact that f(x∗

ϵ ,Y(x∗
ϵ )) ≥ f∗ and f(x∗

ϵ , y
∗
ϵ ) ≤ f∗, we have

|f∗ − f(x∗
ϵ , y

∗
ϵ )| ≤ f(x∗

ϵ ,Y(x∗
ϵ ))− f(x∗

ϵ , y
∗
ϵ ) ≤ L

√
τ−1ϵ.

This concludes the discussion.
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C. Proof in Section 4
C.1. Proof of Lemma 6

We first introduce a generalized Danskin’s theorem as follows.

Lemma 13 (Generalized Danskin’s Theorem (Clarke, 1975)). Let F be a compact set and let a continuous function ℓ : Rd×
F 7→ R satisfy: 1) ∇xℓ(x, y) is continuous in (x, y); and 2) given any x, for any y, y′ ∈ argmaxy∈F ℓ(x, y), ∇xℓ(x, y) =
∇xℓ(x, y

′). Then let h(x) := maxy∈F ℓ(x, y), we have ∇h(x) = ∇xℓ(x, y
∗) for any y∗ ∈ argmaxy∈F ℓ(x, y).

Lemma 13 first follows (Clarke, 1975, Theorem 2.1) where conditions (a)–(d) are guaranteed by Lemma 13’s condition
1). Then by (Clarke, 1975, Theorem 2.1 (4)) that we have the Clarke’s generalized gradient set of h(x) = maxy∈F ℓ(x, y)
is the convex hull of {∇xℓ(x, y), y ∈ argmaxy∈F ℓ(x, y)}. It then follows from Lemma 13’s condition 2) that this
generalized gradient set is a singleton {∇xℓ(x, y

∗)} with any y∗ ∈ argmaxy∈F ℓ(x, y). Finally it follows from (Clarke,
1975, Proposition 1.13) that h(x) is differentiable with gradient ∇xℓ(x, y

∗).

Now to prove Lemma 6, it suffices to prove ∇maxy∈Y V
πy

Mτ (x)
(ρ) = ∇xV

πy∗

Mτ (x)
(ρ)|y∗∈Y∗(x). This arguments is true

following from Assumption 1 and the generalized Danskin’s theorem above, with ℓ(x, y) = V
πy

Mτ (x)
(ρ).

C.2. Proof of Lemma 7

Proof. (a). Under the assumptions in (a), Lemma 6 holds. It then follows from

∇xV
πy

Mτ (x)
(ρ) = E

[ ∞∑
t=0

γt∇rx(st, at)|s0 ∼ ρ, πy

]
(C.1)

that the result holds.

(b). Given the follower’s policy πy , define the Stackelberg MDP from the leader’s view as

M(πy) = {S,Al, rπy
(s, al) = Eaf∼πy(s)[rf (s, af , al)]− τhf,s(πy(s)),Pπy

(·|s, al) = Eaf∼πy(s)[P(·|s, al, af )]}

Note M(πy) does not include a regularization for its policy πx. By Lemma 12, we have the follower’s value function
V

πx,πy

f (s) can be rewritten from the viewpoint that πy is the main policy and πx is part of the follower’s MDP, that is,
V

πx,πy

f (s) = V
πy

Mτ (x)
(s). It can be proven similarly that V πx,πy

f (s) = V πx

M(πy)
(s). Therefore, we have V

πy

Mτ (x)
(s) =

V πx

M(πy)
(s) and

∇xV
πy

Mτ (x)
(s) = ∇xV

πx

M(πy)
(s)

= E
[ ∞∑

t=0

γtQπx

M(πy)
(st, al,t)∇ log πx(al,t|st)

∣∣s0 = s, πx

]
(C.2)

where the last equality follows from the policy gradient theorem (Sutton et al., 2000). We have

Qπx

M(πy)
(s, al) = rπy

(s, al) + γEs′∼Pπy (s,al)[V
πx

M(πy)
(s′)]

= Eaf∼πy(s)[rf (s, af , al)]− τhf,s(πy(s)) + γEs′∼P(s,al,af ),af∼πy(s)[V
πx,πy

f (s′)]

= Eaf∼πy(s)[Q
πx,πy

f (s, al, af )]− τhf,s(πy(s)) (C.3)

where the last equality follows from the definition of Qπx,πy

f (s, al, af ) in Section 2.2. Substituting the above equality into
(C.2) yields

∇xV
πy

Mτ (x)
(s) = E

[ ∞∑
t=0

γtQ
πx,πy

f (st, al,t, af,t)∇ log πx(al,t|st)
∣∣s0 = s, πx, πy

]
− τE

[ ∞∑
t=0

γthf,st(πy(st))∇ log πx(al,t|st)
∣∣s0 = s, πx, πy

]
(C.4)
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It then follows from Lemma 6 that

∇xp(x, y) = −∇xV
πy

Mτ (x)
(ρ) +∇xV

πy

Mτ (x)
(ρ)|πy=π∗

y(x)

= −E
[ ∞∑

t=0

γt
(
Q

πx,πy

f (st, al,t, af,t)− τhf,st(πy(st))
)
∇ log πx(al,t|st)

∣∣s0 = s, πx, πy

]
+ E

[ ∞∑
t=0

γt
(
Q

πx,π
∗
y(x)

f (st, al,t, af,t)− τhf,st(π
∗
y(x)(st))

)
∇ log πx(al,t|st)

∣∣s0 = s, πx, π
∗
y(x)

]
(C.5)

where π∗
y(x) is the follower’s optimal policy given leader’s policy πx.

C.3. Proof of Lemma 8

Proof. We first consider ∇xg(x, y). To prove ∇xg(x, y) exist, it suffices to show ∇qs,a(x) exist for any (s, a). By
Lemma 13, to show qs,a(x) = −maxπ∈Π Qπ

Mτ (x)
(s, a) is differentiable, it remains to show that argmaxπ∈Π Qπ

Mτ (x)
(s, a)

is a singleton. By Lemma 4, the optimal policy of Mτ (x) is unique. Since the unique optimal policy π∗
y(x) ∈

argmaxπ∈Π Qπ
Mτ (x)

(s, a), it suffices to show any policy π different from π∗
y(x) leads to Qπ

Mτ (x)
(s, a) < Q

π∗
y(x)

Mτ (x)
(s, a).

Next we prove this result.

By the uniqueness of the optimal policy, the policies different from π∗
y(x) are non-optimal, that is, for any non-optimal π,

there exists state s̄ such that V π
Mτ (x)

(s̄) < V
π∗
y(x)

Mτ (x)
(s̄). By the Bellman equation, we have for any T ,

Qπ
Mτ (x)

(s, a) = E
[ T−1∑

t=0

γtrx(st, at)|π, s0 = s, a0 = a
]
+ γTEsT∼Pπ

x (·|s0=s,a0=a)[V
π
Mτ (x)

(sT )] (C.6)

By the irreducible Markov chain assumption, there exists i such that Pπ
x (si = s̄|s0 = s, a0 = a) > 0. Choosing T = i in

the above equality yields

Qπ
Mτ (x)

(s, a) = E
[ i−1∑

t=0

γtrx(st, at)|π, s0 = s, a0 = a
]
+ γiEsi∼Pπ

x (·|s0=s,a0=a)[V
π
Mτ (x)

(si)]

< E
[ i−1∑

t=0

γtrx(st, at)|π, s0 = s, a0 = a
]
+ γiEsi∼Pπ

x (·|s0=s,a0=a)[V
π∗
y(x)

Mτ (x)
(si)]

≤ Q
π∗
y(x)

Mτ (x)
(s, a) (C.7)

where the first inequality follows from V π
Mτ (x)

(s̄) < V
π∗
y(x)

Mτ (x)
(s̄) and Pπ

x (si = s̄|s0 = s, a0 = a) > 0; and the last inequality
follows from the optimality of π∗

y(x).

Given (C.7), we can conclude that qs,a(x) is differentiable with the gradient

∇qs,a(x) = −∇xQ
π
Mτ (x)

(s, a)|π=π∗
y(x)

. (C.8)

Then ∇xg(x, y) can be computed as

∇xg(x, y) = −Es∼ρ,a∼πy(s)

[
∇xQ

π
Mτ (x)

(s, a)
]∣∣

π=π∗
y(x)

. (C.9)

Since g(x, ·) is smooth and strongly-convex, we can use the Danskins’ theorem to obtain

∇v(x) = ∇xg(x, y)|y=argminy∈Y g(x,y) = ∇xg(x, y)|y=π∗
y(x)

(C.10)

where the last equality follows from Lemma 4. This completes the proof.
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C.4. Proof of Lemma 9

Proof. We first prove the first bullet. We have

∇xQ
π
Mτ (x)

(s, a) = E
[ ∞∑

t=0

γt∇xrx(st, at)|π, s0 = s, a0 = a
]
. (C.11)

It can be checked that Assumption 2 holds and then ∇xg(x, y), ∇v(x) follow from Lemma 8 with (C.11).

We next prove the second bullet. By (C.4), we have

∇xV
πy

Mτ (x)
(s) = E

[ ∞∑
t=0

γtQ
πx,πy

f (st, al,t, af,t)∇ log πx(al,t|st)
∣∣s0 = s, πx, πy

]
− τE

[ ∞∑
t=0

γthf,st(πy(st))∇ log πx(al,t|st)
∣∣s0 = s, πx, πy

]
(C.12)

Then

∇xQ
πy

Mτ (x)
(s, af ) = ∇x

(
rx(s, af ) + γEs′∼Px(s,af )[V

πy

Mτ (x)
(s′)

)
= ∇x

(
Eal∼πx(s)[rl(s, al, af )] + γEal∼πx(s),s′∼P(s,al,af )[V

πy

Mτ (x)
(s′)]

)
(C.13)

where the last eqaulity follows from the definition of Mτ (x) in Lemma 12. Using the log-trick, we can write

∇xQ
πy

Mτ (x)
(s, af ) = Eal∼πx(s)

[(
r(s, al, af ) + γEs′∼P(s,al,af )[V

πx,πy

f (s′)]
)
∇ log πx(al|s)

]
+ γEal∼πx(s),s′∼P(s,al,af )[∇xV

πy

Mτ (x)
(s′)] (C.14)

Substituting (C.4) into the above equality yields

∇xQ
πy

Mτ (x)
(s, af ) = Eal∼πx(s)

[(
r(s, al, af ) + γEs′∼P(s,al,af )[V

πx,πy

f (s′)]
)
∇ log πx(al|s)

]
+ γEal∼πx(s),s′∼P(s,al,af )E

[ ∞∑
t=0

γtQ
πx,πy

f (st, al,t, af,t)∇ log πx(al,t|st)
∣∣s0 = s′, πx, πy

]
− τγEal∼πx(s),s′∼P(s,al,af )E

[ ∞∑
t=0

γthf,st(πy(st))∇ log πx(al,t|st)
∣∣s0 = s′, πx, πy

]
Using the definition of Qπx,πy

f in the first term, and taking γ of the second and third term inside the expectation gives

∇xQ
πy

Mτ (x)
(s, af ) = Eal∼πx(s)

[
Q

πx,πy

f (s, al, af )∇ log πx(al|s)
]

+ Eal∼πx(s),s′∼P(s,al,af )E
[ ∞∑

t=1

γtQ
πx,πy

f (st, al,t, af,t)∇ log πx(al,t|st)
∣∣s1 = s′, πx, πy

]
− τEal∼πx(s),s′∼P(s,al,af )E

[ ∞∑
t=1

γthf,st(πy(st))∇ log πx(al,t|st)
∣∣s1 = s′, πx, πy

]
Continuing from above, combining the first and second term yields

∇xQ
πy

Mτ (x)
(s, af ) = Eal∼πx(s)E

[ ∞∑
t=0

γtQ
πx,πy

f (st, al,t, af,t)∇ log πx(al,t|st)
∣∣s0 = s, al,0 = al, af,0 = af , πx, πy

]
− τEal∼πx(s),s′∼P(s,al,af )E

[ ∞∑
t=1

γthf,st(πy(st))∇ log πx(al,t|st)
∣∣s1 = s′, πx, πy

]
= E

[ ∞∑
t=0

γtQ
πx,πy

f (st, al,t, af,t)∇ log πx(al,t|st)
∣∣s0 = s, af,0 = af , πx, πy

]
− τEal∼πx(s),s′∼P(s,al,af )E

[ ∞∑
t=1

γthf,st(πy(st))∇ log πx(al,t|st)
∣∣s1 = s′, πx, πy

]
(C.15)

It can then be checked that Assumption 2 holds and the result follows from Lemma 8 and (C.15).

20



Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF

C.5. Sufficient conditions of the smoothness assumption

Lemma 14. Suppose the following conditions hold.

(a) For any (s, a), the policy parameterization πy satisfies 1)
∑

a ∥∇πy(a|s)∥ ≤ Bπ; and, 2) πy(a|s) is Ly-Lipschitz-
smooth.

(b) If τ > 0 then: 1) for any s, assume |hs(πy(s))| ≤ Bh and ∥∇yhs(πy(s))∥ ≤ B′
h on Y; and, 2) hs(πy(s)) is

Lh-Lipschitz-smooth on Y .

(c) For any (s, a, s′), we have for any x ∈ X that 1) |rx(s, a)| ≤ Br; and, 2) V πy

Mτ (x)
(ρ) is Lvx-Lipschitz-smooth on X

uniformly for y ∈ Y .

Then it holds for any s that V πy

Mτ (x)
(s) is Lipschitz-smooth on X × Y:

∥∇V
πy

Mτ (x)
(s)−∇V

πy′

Mτ (x)
(s)∥ ≤ max{Lvx, Lvy}∥(x, y)− (x′, y′)∥, ∀x, x′ ∈ X and y, y′ ∈ Y (C.16)

where Lvy = O
(

B2
π(Br+τBh)
(1−γ)3 +

τB′
hBπ+|A|Ly(Br+τBh)

(1−γ)2 +
τ(B′

h+Lh)
1−γ

)
.

Condition (a) holds for direct parameterization, where
∑

a ∥∇πy(a|s)∥ ≤ |A| and Ly = 0; and it also holds for softmax
parameterization where

∑
a ∥∇πy(a|s)∥ =

∑
a πy(a|s)∥∇ log πy(a|s)∥ ≤ 1 and Ly = 2. Condition (b) holds for smooth

composite of regularization function and policy, e.g., softmax and entropy (Mei et al., 2020, Lemma 14), or direct policy
with a smooth regularization. function. Condition (c) 1) is guaranteed since X is compact and rx is continuous, and 2)
needs to be checked for specific applications. For example, in RLHF/Reward shaping, it can be checked from the formula of
∇xV

πy

Mτ (x)
(s) in Lemma 7 that there exists Lvx = Lr

1−γ if rx is Lr-Lipschitz-smooth.

Proof. We start the proof by showing V
πy

Mτ (x)
(s) is Lipschitz-smooth in y on uniformly for any x, that is

∥∇yV
πy

Mτ (x)
(s)−∇yV

πy′

Mτ (x)
(s)∥ ≤ Lvy∥y − y′∥ (C.17)

where Lvy is a constant independent of x. By the regularized policy gradient derived in (B.10), we have

∇yV
πy

Mτ (x)
(s) =

1

1− γ
Es̄∼d

πy
s,x

[∑
a

Q
πy

Mτ (x)
(s̄, a)∇πy(a|s̄)

]
+

τ

1− γ
Es̄∼dπ

s,x
[−∇yhs̄(πy(s̄))] (C.18)

where dπy
s,x(s̄) := (1− γ)

∑∞
t=0 γ

tP
πy
x (st = s̄|s0 = s) is the discounted visitation distribution, and recall Pπy

x (st = s̄|s0 =
s) is the probability of reaching state s̄ at time step t under Px and πy. Towards proving (C.17), we prove the following
results:

(1) We have Qπy

Mτ (x)
(s, a) is uniformly bounded, and V

πy

Mτ (x)
(s) and Q

πy

Mτ (x)
(s, a) are Lipschitz continuous in y uniformly

for any x.

By the definition of Qπy

Mτ (x)
(s, a), we have

|Qπy

Mτ (x)
(s, a)| ≤

∞∑
t=0

γt|rx(st, at)|+ τ |hst(πy(st))| ≤
Br + τBh

1− γ
, (C.19)

therefore it follows from (C.18) that

∥∇yV
πy

Mτ (x)
(s)∥ ≤ Bπ

Br + τBh

(1− γ)2
+

τB′
h

1− γ
(C.20)

Then by the definition of Q function

Q
πy

Mτ (x)
(s, a) = rx(s, a) + γEs′∼Px(s,a)

[
V

πy

Mτ (x)
(s′)

]
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we have

∥∇yQ
πy

Mτ (x)
(s, a)∥ ≤ Br + γ

(
Bπ

Br + τBh

(1− γ)2
+

τB′
h

1− γ

)
(C.21)

(2) We have dπy
s0,x(s) is Lipschitz-continuous in y uniformly for any x. Define M as a MDP with τ = 0, r(s, a) = 1s which

is an indicator function of s, and transition Px. Then we can write d
πy
s0,x(s) as

dπy
s0,x(s) =

∑
s′∈S

∑
a′∈A

dπy
s0,x(s

′)πy(a
′|s′)1s

= Es∼d
πy
s0,x,a∼πy(s)

[r(s, a)]

= (1− γ)V
πy

M (s0)

where the last equality follows from substituting in d
πy
s0,x(s) = (1− γ)

∑∞
t=0 γ

tP
πy
x (st = s|s0). It then follows from (C.20)

with τ = 0 (since V
πy

M (s0) has τ = 0) that dπy
s0,x(s) is also uniformly Lipschitz continuous with constant Bπ:

sup
s∈S

∥dπy
s0,x(s)− d

πy′
s0,x(s)∥ ≤ Bπ∥y − y′∥. (C.22)

To this end, we can decompose the difference as

∇yV
πy

Mτ (x)
(s)−∇yV

πy′

Mτ (x)
(s)

=
1

1− γ
Es̄∼d

πy
s,x

[∑
a

Q
πy

Mτ (x)
(s̄, a)∇πy(a|s̄)

]
− 1

1− γ
E
s̄∼d

π
y′

s,x

[∑
a

Q
πy

Mτ (x)
(s̄, a)∇πy(a|s̄)

]
+

1

1− γ
E
s̄∼d

π
y′

s,x

[∑
a

Q
πy

Mτ (x)
(s̄, a)∇πy(a|s̄)

]
− 1

1− γ
E
s̄∼d

π
y′

s,x

[∑
a

Q
πy′

Mτ (x)
(s̄, a)∇πy(a|s̄)

]
+

1

1− γ
E
s̄∼d

π
y′

s,x

[∑
a

Q
πy′

Mτ (x)
(s̄, a)∇πy(a|s̄)

]
− 1

1− γ
E
s̄∼d

π
y′

s,x

[∑
a

Q
πy′

Mτ (x)
(s̄, a)∇πy′(a|s̄)

]
+

τ

1− γ
Es̄∼d

πy
s,x

[−∇yhs̄(πy(s̄))]−
τ

1− γ
E
s̄∼d

π
y′

s,x
[−∇yhs̄(πy(s̄))]

+
τ

1− γ
E
s̄∼d

π
y′

s,x
[−∇yhs̄(πy(s̄))]−

τ

1− γ
E
s̄∼d

π
y′

s,x
[−∇yhs̄(πy′(s̄))]

Continuing from the above inequality, we have

∥∇yV
πy

Mτ (x)
(s)−∇yV

πy′

Mτ (x)
(s)∥ ≤ 1

1− γ
2 sup

s
∥dπy

s,x(s)− d
πy′
s,x (s)∥ sup

∥∥∑
a

Q
πy

Mτ (x)
(s̄, a)∇πy(a|s̄)

∥∥
+

1

1− γ
sup
a

∣∣Qπy

Mτ (x)
(s̄, a)−Q

πy′

Mτ (x)
(s̄, a)

∣∣∥∥∑
a

∇πy(a|s̄)
∥∥

+
1

1− γ
E
s̄∼d

π
y′

s,x

[
sup
a

∣∣Qπy′

Mτ (x)
(s̄, a)

∣∣∑
a

∥∥∇πy(a|s̄)−∇πy′(a|s̄)
∥∥]

+
τ

1− γ
2 sup

s
∥dπy

s,x(s)− d
πy′
s,x (s)∥ sup ∥∇yhs̄(πy(s̄))∥

+
τ

1− γ
E
s̄∼d

π
y′

s,x

[
∥∇yhs̄(πy(s̄))−∇yhs̄(πy′(s̄))∥

]
. (C.23)

Then given the assumptions (a), (b) in this lemma, along with the (C.19)–(C.22), we can get

∥∇yV
πy

Mτ (x)
(s)−∇yV

πy′

Mτ (x)
(s)∥ ≤ Lvy∥y − y′∥ (C.24)

where Lvy = O
(

B2
π(Br+τBh)
(1−γ)3 +

τB′
hBπ+|A|Ly(Br+τBh)

(1−γ)2 +
τ(B′

h+Lh)
1−γ

)
. Thus we conclude

∥∇V
πy

Mτ (x)
(s)−∇V

πy′

Mτ (x)
(s)∥2

= ∥∇yV
πy

Mτ (x)
(s)−∇yV

πy′

Mτ (x)
(s)∥2 + ∥∇xV

πy′

Mτ (x)
(s)−∇xV

πy′

Mτ (x′)(s)∥
2

≤ L2
vy∥y − y′∥2 + L2

vx∥x− x′∥2 ≤ max{L2
vy, L

2
vx}∥(x, y)− (x′, y′)∥2 (C.25)
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which proves the result.

C.6. Proof of Lemma 10

C.6.1. SMOOTHNESS OF THE VALUE PENALTY

Proof. Under the two assumptions, Lemma 11 holds and thus π∗
y(x) is unique and is τ−1CJ -Lipschitz continuous on X .

Thus for any y, y′ ∈ Y∗(x), we have πy = πy′ = π∗
y(x). With Lemma 6, we have

∥∇max
y∈Y

V
πy

Mτ (x)
(ρ)−∇max

y∈Y
V

πy

Mτ (x′)(ρ)∥ = ∥∇V π
Mτ (x)

(ρ)|π=π∗
y(x)

−∇V π
Mτ (x′)(ρ)|π=π∗

y(x
′)∥

≤ Lv(∥x− x′∥+ ∥π∗
y(x)− π∗

y(x
′)∥)

≤ Lv(1 + τ−1CJ)∥x− x′∥. (C.26)

It then follows from V
πy

Mτ (x)
(ρ) is Lv-Lipschitz smooth that the value penalty is Lv(2 + τ−1CJ)-Lipschitz smooth.

C.6.2. SMOOTHNESS OF THE BELLMAN PENALTY

Proof. First note that Lemma 11 holds and thus π∗
y(x) is τ−1CJ -Lipschitz continuous on X . We have p(x, y) = g(x, y)−

v(x) where

g(x, y) := Es∼ρ[⟨ys, qs(x)⟩+ τhs(ys)]. (C.27)

By Lemma 8,

∇xg(x, y) = −Es∼ρ,a∼ys

[
∇xQ

π
Mτ (x)

(s, a)
]∣∣

π=π∗
y(x)

. (C.28)

Since ∇xQ
π
Mτ (x)

(s, a) is Lv-Lipschitz continuous by the assumption, and π∗
y(x) is τ−1CJ -Lipschitz continuous, we have

∇xg(x, y) is Lv(1 + τ−1CJ)-Lipschitz continuous at x ∈ X uniformly for any y. We also have ∇xg(x, y) is CJ -Lipschitz
continuous at y ∈ Π uniformly for any x ∈ X . Therefore, we conclude ∇xg(x, y) is (CJ + Lv(1 + τ−1CJ))-Lipschitz
continuous at (x, y) on X ×Π.

Next we have

∇yg(x, y) =
(
ρ(s)qs(x) + τρ(s)∇hs(ys)

)
s∈S

. (C.29)

Since qs is CJ -Lipschitz continuous, and hs is Lh-Lipschitz smooth, we have ∇yg(x, y) is (CJ +Lh)-Lipschitz continuous
at (x, y) on X ×Π.

Collecting the Lipschitz continuity of ∇xg(x, y) and ∇yg(x, y) yields g(x, y) is Lipschitz smooth with modulus Lg =
2CJ + Lv(1 + τ−1CJ) + Lh. Then we have

∥v(x)− v(x′)∥ = ∥g(x, π∗
y(x))− g(x′, π∗

y(x
′))∥ ≤ Lg(∥x− x′∥+ τ−1CJ∥x− x′∥). (C.30)

Then we have p(x, y) = g(x, y)− v(x) is Lipschitz smooth with modulus Lg(2 + τ−1CJ). Together with the assumption
that f is Lf -Lipschitz smooth gives Fλ is Lv-Lipschitz smooth with Lv = Lf + λLg(2 + τ−1CJ).

C.7. Example gradient estimators of the penalty functions

In this section, we give examples of ∇̂p(x, y; π̂) that is an estimator of ∇p(x, y).

Value penalty. Consider choosing the value penalty p(x, y) = −V
πy

Mτ (x)
(ρ) + maxy∈Y V

πy

Mτ (x)
(ρ). Then by Lemma 6, we

have

∇xp(x, y) = −∇xV
πy

Mτ (x)
(ρ) +∇xV

π
Mτ (x)

(ρ)|π=π∗
y(x)

where recall π∗
y(x) is the optimal policy of MDP Mτ (x) on the policy class Π = {πy : y ∈ Y}. A natural choice of

∇̂p(x, y; π̂) is then

∇̂p(x, y; π̂) :=
(
−∇xV

πy

Mτ (x)
(ρ) +∇xV

π
Mτ (x)

(ρ)|π=π̂,∇yp(x, y)
)

(C.31)
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By (Agarwal et al., 2020, Lemma D.3.), there exists constant Lv = 2γ|A|/(1− γ)3 that V π
Mτ (x)

(ρ) is Lv-Lipschitz-smooth
in π for any x. Then the estimation error can be quantified by

∥∇̂p(x, y; π̂)−∇p(x, y)∥ ≤ Lv∥π∗
y(x)− π̂∥. (C.32)

Therefore, the estimation error is upper bounded by the policy optimality gap ∥π∗
y(x)− π̂∥. One may use efficient algorithms

(e.g., policy mirror descent (Zhan et al., 2023)) to solve for π̂, which has an iteration complexity of O(− log ϵ) to achieve
∥π∗

y(x)− π̂∥ ≤ ϵ. Then Assumption 3 is guaranteed with complexity O(− log(ϵorac/λ
2)).

Bellman penalty. Consider choosing the Bellman penalty p(x, y) = g(x, y) − v(x) where recall g(x, y) =
Es∼ρ[⟨ys, qs(x)⟩+ τhs(ys)] and v(x) = miny∈Y g(x, y). Then by Lemma 8, we have

∇xp(x, y) = −Es∼ρ,a∼πy(s)

[
∇xQ

π
Mτ (x)

(s, a)
]∣∣

π=π∗
y(x)

+ Es∼ρ,a∼π(s)

[
∇xQ

π
Mτ (x)

(s, a)
]∣∣

π=π∗
y(x)

(C.33)

Therefore, a natural choice of ∇̂p(x, y; π̂) is then

∇̂p(x, y; π̂) :=
(
− Es∼ρ,a∼πy(s)

[
∇xQ

π̂
Mτ (x)

(s, a)
]
+ Es∼ρ,a∼π̂(s)

[
∇xQ

π̂
Mτ (x)

(s, a)
]
,∇yp(x, y)

)
(C.34)

It then follows similarly to (C.32) that Assumption 3 is guaranteed with complexity O(− log(ϵorac/λ
2)).

Example algorithms to get π̂. Finally, we also explicitly write down the update to obtain π̂ to be self-contained. If we are
using policy mirror descent, then at each outer-iteration k, for i = 1, ...T where T is the inner iteration number, we run

πi+1
k (·|s) = argmin

p∈Π

{
− ⟨p, Qπi

k

Mτ (x)
(s, ·)⟩+ τhs(p) +

1

η
Dh(p, π

i
k; ξ

i
k)
}
, for any s ∈ S (C.35)

where η is a learning rate, Dh is the Bregman divergence, and ξik is given by

ξi+1
k (s, a) =

1

1 + ητ
ξik(s, a) +

η

1 + ητ
Q

πi
k

Mτ (x)
(s, a). (C.36)

Finally, we set the last iterate πT+1
k (·|s) as the approximate optimal policy π̂k. For theoretical reasons, we use this update

in the analysis to gain fast rate. While practically our update scheme is not limited to policy mirror descent. As a simple
example, the policy gradient based algorithms can also be used:

ŷi+1
k = ProjY

[
ŷik + η∇ŷV

π
ŷi
k

Mτ (x)
(ρ)

]
, for i = 1, 2, . . . , T. (C.37)

We use the last iterate as the approximate optimal policy parameter: π̂k = πŷT+1
k

. In the above update, the policy gradient

∇ŷV
π
ŷi
k

Mτ (x)
(ρ) can be estimated by a wide range of algorithms including the basic Reinforce (Baxter & Bartlett, 2001), and

the advantage actor-critic (Mnih et al., 2016).

C.8. Proof of Theorem 4.1

Proof. In this proof, we write z = (x, y). Consider choosing either the value penalty or the Bellman penalty, then Lemma
10 holds under the assumptions of this theorem. Therefore, Fλ is Lλ-Lipschitz-smooth with Lλ = Lf + λLp. Then by
Lipschitz-smoothness of Fλ, it holds that

Fλ(zk+1) ≤ Fλ(zk) + ⟨∇Fλ(zk), zk+1 − zk⟩+
Lλ

2
∥zk+1 − zk∥2

α≤ 1
Lλ

≤ Fλ(zk) + ⟨∇̂Fλ(zk; π̂k), zk+1 − zk⟩+
1

2α
∥zk+1 − zk∥2 + ⟨∇Fλ(zk)− ∇̂Fλ(zk; π̂k), zk+1 − zk⟩.

(C.38)

Consider the second term in the RHS of (C.38). It is known that zk+1 can be written as

zk+1 = argmin
z∈Z

⟨∇̂Fλ(zk; π̂k), z⟩+
1

2α
∥z − zk∥2.
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By the first-order optimality condition of the above problem, it holds that

⟨∇̂Fλ(zk; π̂k) +
1

α
(zk+1 − zk), zk+1 − z⟩ ≤ 0, ∀z ∈ Z.

Since zk ∈ Z , we can choose z = zk in the above inequality and obtain

⟨∇̂Fλ(zk; π̂k), zk+1 − zk⟩ ≤ − 1

α
∥zk+1 − zk∥2. (C.39)

Consider the last term in the RHS of (C.38). By Young’s inequality, we first have

⟨∇Fλ(zk)− ∇̂Fλ(zk; π̂k), zk+1 − zk⟩ ≤ α∥∇Fλ(zk)− ∇̂Fλ(zk; π̂k)∥2 +
1

4α
∥zk+1 − zk∥2

≤ αλ2∥∇p(zk)− ∇̂p(zk; π̂k)∥2 +
1

4α
∥zk+1 − zk∥2 (C.40)

Substituting (C.40) and (C.39) into (C.38) and rearranging the resulting inequality yield

1

4α
∥zk+1 − zk∥2 ≤ Fλ(zk)− Fλ(zk+1) + αλ2∥∇p(zk)− ∇̂p(zk; π̂k)∥2. (C.41)

With z̄k+1 defined in (4.2), we have

∥z̄k+1 − zk∥2 ≤ 2∥z̄k+1 − zk+1∥2 + 2∥zk+1 − zk∥2

≤ 2α2∥∇Fλ(zk)− ∇̂Fλ(zk; π̂k)∥2+2∥zk+1−zk∥2

≤ 2α2λ2∥∇p(zk)− ∇̂p(zk; π̂k)∥2 + 2∥zk+1−zk∥2 (C.42)

where the second inequality uses non-expansiveness of ProjZ .

Together (C.41) and (C.42) imply

∥z̄k+1 − zk∥2 ≤ 10α2λ2∥∇p(zk)− ∇̂p(zk; π̂k)∥2 + 8α(Fλ(zk)− Fλ(zk+1)).

Since p(x, y) ≥ 0, Fλ(z) ≥ infz∈Z f(z) for any z ∈ Z . Taking a telescope sum of the above inequality and using
Gλ(zk) =

1
α (zk − z̄k+1) yield

K∑
k=1

∥Gλ(zk)∥2 ≤
8
(
Fλ(z1)− infz∈Z f(z)

)
α

+

K∑
k=1

10λ2∥∇p(zk)− ∇̂p(zk; π̂k)∥2

≤
8
(
Fλ(z1)− infz∈Z f(z)

)
α

+

K∑
k=1

1

2
∥Gλ(zk)∥2 +

K

2
ϵorac (C.43)

where the last inequality follows from Assumption 3. Rearranging gives

K∑
k=1

∥Gλ(zk)∥2 ≤
16
(
Fλ(z1)− infz∈Z f(z)

)
α

+Kϵorac. (C.44)

This proves the first inequality in this theorem. The result for OS follows similarly with Fλ(y) being Lv-Lipschitz-smooth
and ϵorac = 0 since no oracle is needed.

D. Additional experiment details
D.1. Stackelberg Markov game

For the independent gradient algorithm, we set the learning rate as 0.1, and both the follower and the leader use Monte-Carlo
sampling with trajectory length 5 and batch size 16 to estimate the policy gradient. For the PBRL algorithms, to estimate
a near-optimal policy π̂ at each outer iteration, we run the policy gradient algorithm for T steps at every outer iteration.
For PBRL with value penalty, we set learning rate 0.1, penalty constant λ = 2, inner iteration number T = 1, and we use
Monte-Carlo sampling with trajectory length 5 and batch size 16 to estimate the policy gradient. For PBRL with Bellman
penalty, we use λ = and inner iteration number T = 10 instead.

25



Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF

D.2. Deep reinforcement learning from human feedback

We conduct our experiments in the Arcade Learning Environment (ALE) (Bellemare et al., 2013) wrapped by OpenAI
gymnasium which is also used in (Mnih et al., 2016) and (Christiano et al., 2017).

For the Atari games, we use A2C, which is a synchronous version of (Mnih et al., 2016), as the policy gradient estimator in
both DRLHF and PBRL. The policy and the critic shares a common base model: The input is fed through 4 convolutional
layers of size 8× 8, 5× 5, 4× 4, 4× 4, strides 4, 2, 1, 1 and number of filters 16, 32, 32, 32, with ReLU activation. This is
followed by a fully connected layer of output size 256 and a ReLU non-linearity. The output of the base model is fed to
a fully connected layer with scalar output as critic, and another fully connected layer of action space size as policy. The
reward predictor has the same input (84× 84× 4 stacked image) as the actor critic. The input is fed through 4 convolutional
layers of size 7× 7, 5× 5, 3× 3, 3× 3, strides 3, 2, 1, 1 with 16 filters each and ReLU activation. It is followed by a fully
connected layer of size 64, ReLU activation and another fully connected layer of action space size that gives the reward
function. We use random dropout (probability 0.5) between fully connected layers to prevent over-fitting (only in reward
predictor). The reward predictor and the policy are trained synchronously. Reward predictor is updated for one epoch every
300 A2C update.

We compare trajectories of 25 time steps. At the start of training, we collect 576 pairs of trajectories and warm-up the
reward predictor for 500 epochs. After training starts, we collect 16 new pairs per reward learning epoch. We only keep the
last collected 3000 pairs in a buffer.

For policy learning, we have actor-critic learning rate 0.0003, entropy coefficient 0.01, actor-critic batch size 16, initial
upper-level loss coefficient 0.001 which decays every 3000 actor-critic gradient steps. We find out that the learning procedure
is very sensitive to this coefficient, we generally select this coefficient so that the upper-level loss converges stably; for
reward learning, we set reward predictor learning rate 0.0003, reward predictor batch size 64, and the reward predictor is
trained for one epoch every 500 actor-critic gradient steps. For Beamrider, we change actor-critic learning rate to 7× 10−5.
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