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Abstract

Algorithmic predictions are emerging as a promis-
ing solution concept for efficiently allocating soci-
etal resources. Fueling their use is an underlying
assumption that such systems are necessary to
identify individuals for interventions. We propose
a principled framework for assessing this assump-
tion: Using a simple mathematical model, we
evaluate the efficacy of prediction-based alloca-
tions in settings where individuals belong to larger
units such as hospitals, neighborhoods, or schools.
We find that prediction-based allocations outper-
form baseline methods using aggregate unit-level
statistics only when between-unit inequality is
low and the intervention budget is high. Our re-
sults hold for a wide range of settings for the price
of prediction, treatment effect heterogeneity, and
unit-level statistics’ learnability. Combined, we
highlight the potential limits to improving the ef-
ficacy of interventions through prediction.

1 Introduction
Predictive systems are emerging as a promising solution con-
cept for allocating societal resources. Often, such systems
output individual risk scores for undesirable outcomes like
eviction, poor health, and school dropout to assist decision-
makers in targeting individuals with greater precision. In
doing so, an underlying assumption is that individual pre-
dictions are necessary for efficient identification. See, e.g.,
(Bruce et al., 2011; Cuccaro-Alamin et al., 2017; Kleinberg
et al., 2018).

By contrast, decision-makers can use baseline allocation
schemes by proportioning their resources using aggregate
welfare information such as neighborhood eviction, hos-
pital readmission, or school dropout rates. These larger
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units (i.e., neighborhoods, hospitals, and schools) can then
target individuals within the units crudely. While such base-
line methods can be cheaper, easier to implement, and less
contested, they are also feared to be wasteful compared to
prediction-based allocations.1

We propose a principled framework for assessing this fun-
damental assumption and evaluating the efficacy of individ-
ual prediction-based systems. We present a simple math-
ematical model to compare prediction-based versus unit-
based allocations. The former method relies on individu-
als’ predicted welfare, while the latter uses aggregate unit-
level statistics and coarse information within the units. We
show that prediction leads to superior allocations only when
between-unit inequality is low, and the allocation budget
is high. (See Fig. 1 for a high-level view of inequality and
budget regimes covered in our results.) Our analyses cover a
broad range of settings for the price of prediction, treatment
effect heterogeneity, and unit-level statistics’ learnability.
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Figure 1. Sufficient conditions for a dominant unit-level allocation
(green) and nondominated unit-level allocation (red). We define a
high budget in relation to the cost of treating the whole population
and a low budget in relation to the cost of prediction. See Fig. 7
for a quantitative version of this figure.

1.1 Our Results

At a high level, we contrast two allocation mechanisms:
Individual-level allocation (ILA) predicts welfare, which
falls in [0, 1], and treats individuals in ascending order
of their predicted welfare. Unit-level allocation (ULA),

1See the discussion in (Johnson & Zhang, 2022; Moon & Guha,
2024).
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roughly speaking, sorts units according to their average wel-
fare and intervenes in increasing order of average welfare.
We assume administrators within each unit target the inter-
vention to a fraction of the individuals. They are able to
avoid giving resources to the top q ≥ 0 fraction, allowing
for some errors. To start, we consider an intervention with
a fixed treatment effect δ. The welfare is capped at 1 so
individuals of welfare above 1− δ see diminished effects.

Individual-Level versus Unit-Level Allocations. We char-
acterize each unit k with a parameter ρk that expresses the
fraction of high-welfare individuals in the unit. We measure
inequality in terms of the Gini index of the ρk-parameters.
Our main results establish the fundamental role of inequal-
ity in understanding the relative effectiveness of the mech-
anisms. We prove that high inequality ensures the relative
efficiency of ULA as long as the budget is not excessively
large. This is true even when ILA uses perfect predictions
(after paying some upfront cost).

What defines the high inequality regime depends on the
fraction q and the average of ρks, denoted by ρ̄. The quan-
tity ρ̄ is also the overall proportion of individuals with high
welfare (above 1− δ). Roughly speaking, a Gini index be-
low 1 − q/ρ̄ is low, and a Gini index above 1 − q/(4ρ̄) is
high. When inequality is neither high nor low, ULA will
still be efficient for a budget up to a constant ratio of the
cost of treating everyone. In all these cases, unless the cost
of prediction is minuscule, ULA dominates ILA (Fig. 1).

Necessary conditions for ILA to dominate ULA turn out
to be significantly stronger. Put differently, under mild
conditions we can show that ILA does not dominate ULA.
For example, in the natural regime of a Gini index around
1/2, ULA remains nondominated even if q = 0, that is,
within-unit allocation treats everyone.

Extension to Heterogeneous Treatment Effects. In Sec-
tion 6, we extend our results to the case of heterogeneous
treatment effects. We continue to assume that ILA uses wel-
fare prediction as the targeting mechanism. Without further
assumptions, the heterogeneity gives ILA an edge since dis-
tinguishing between individuals with close welfare through
prediction can potentially yield significant gains. We limit
this advantage by considering a Lipschitz continuous effect
curve. Additionally, we make our analysis more realistic
by restricting the concentration of welfare values. Both
assumptions help avoid contrived worst-case scenarios.

Without heterogeneity, there exists a sufficient level of pre-
diction accuracy such that more accurate predictors cannot
generate more value. However, with heterogeneous treat-
ment effects, even small changes in accuracy can be trans-
lated into value. Therefore, in the analysis of a heteroge-
neous treatment effect, we incorporate prediction accuracy
into our framework by assuming a model of independently

noisy predictions. Under these assumptions, we obtain simi-
lar results as in the homogeneous case.

Extension to Learning Unit-Level Statistics. ULA hinges
on the availability of some unit-level aggregate statistics,
such as ρks, to prioritize different units. We generally as-
sume the cost of obtaining these statistics is negligible. In
Section 7, we revisit this assumption and place our results
in a learning-theoretic context. Although some information
about individuals may be available for free, their welfare
may be costly to measure. Therefore, we explore how to use
readily available data to learn unit-level statistics sufficient
for implementing ULA. First, we demonstrate that if an
individual-level predictor can be obtained at a reasonable
cost, a predictor for unit-level statistics can be obtained at a
much lower cost. Next, we consider different noisy obser-
vation welfare models and discuss efficient learnability. In
particular, in a general nonparametric setting, the relative
cost of learning becomes negligible if the number of treated
units is sufficiently large.

Summary. Our results suggest that allocation by prediction
may not compare favorably to basic allocation schemes that
use aggregate unit statistics in cases where inequality exists,
or resources are limited. Our evaluation framework and
analyses surface inequality as a fundamental mechanism
linking prediction and intervention. We hope that our theo-
retical framework provides the tools necessary to investigate
prediction as a solution concept for allocation.

1.2 Related Work

ILA, as a form of resource allocation based on prediction,
is widely adopted across various domains (Kube et al.,
2023a;b; Toros & Flaming, 2018; Mashiat et al., 2024; Chan
et al., 2012; Mukhopadhyay & Vorobeychik, 2017; Faria
et al., 2017). However, there is still minimal evidence of its
efficacy (Mac Iver et al., 2019; Moon & Guha, 2024). For
instance, Perdomo et al. (2023) recently demonstrated that
early warning systems, when utilized to target interventions
at individual students by predicting the risk of dropout, have
shown little improvement despite the use of accurate predic-
tors. Perdomo et al. (2023) and Hardt & Kim (2023) also
point out how risk scores draw on unit-level information.
Closely related, Perdomo (2023) asks how improvements in
welfare arising from better predictions compare to those of
other policy levers, such as expanding access to resources.
In line with our results, it may not help investing in greater
accuracy when resources are limited.

Refer to Appendix A for a complete review of related work.

2



Allocation Requires Prediction Only if Inequality Is Low

2 Our Model
There are M units with N individuals each. Individual i
has a welfare of wi ∈ [0, 1]. Our goal is to improve so-
cial welfare, defined as the sum of individual welfares. To
do so, we can intervene on any individual at a unit cost c
subject to a total budget constraint B. We may target indi-
viduals by predicting their current welfare and allocating
resources to those with lower welfare. We call this mech-
anism individual-level allocation (ILA). Alternatively, we
may target units instead of individuals and delegate within-
unit allocation to unit administrators, through what we call
unit-level allocation (ULA).

The Cost of Prediction. We assume access to a welfare
prediction ŵi for each individual i that satisfies the uniform
error bound: |ŵi−wi| ≤ ϵ. We have to pay a total price p(ϵ)
to obtain such a predictor. The price p is a decreasing
function of ϵ. Our results about the limitations of ILA hold
even if we give ILA the advantage that after paying some
fixed price, predictions are perfect. In other words, there is
a fixed price of prediction p = p(ϵ) for any ϵ ∈ [0, 1).

Intervention Effect. Let w̃i denote the counterfactual wel-
fare of individual i had she received treatment. Then
τi = w̃i − wi denotes the treatment effect. In our simplest
model, we assume w̃i = min {wi+δ, 1}. This is the case of
an intervention that has a fixed treatment effect δ capped at
the maximum welfare. Our results extend to heterogeneous
treatment effects.

Individual-Level Allocation (ILA). The individual-level
allocation gives the resources to the individuals with the
lowest estimated welfare ŵi until the budget constraint is
met. Formally, sort individuals ascendingly in terms of ŵi

with any tie-breaking and let s(i) be the individual in the
ith place. Given a budget of B and an ϵ-error welfare pre-
dictor, we can treat I = ⌊B−p(ϵ)

c ⌋ individuals. Treating the
first I individuals after sorting, the value of ILA is

Vind =
∑

i∈[I] τs(i) . (1)

Unit-Level Allocation (ULA). The unit-level allocation tar-
gets those units that are performing worst in terms of some
aggregate measurement of their welfare. More precisely, we
define a statistic ρk for unit k that captures the well-being
of individuals in unit k and allocate the resources to the
units with the smallest ρk-values. Let Uk denote the set of
individuals under unit k. Define ρk to be the proportion of
individuals in Uk with a welfare more than 1− δ, i.e.,

ρk =
1

N

∑
i∈Uk

1{wi > 1− δ} . (2)

We assume ρk is known and freely available. We revisit this
assumption in Section 7, where we show learning ρks can

be done efficiently with minimal impact on the allocation
value. We denote the profile of all units with a vector ρ.

After choosing to intervene on a unit, the allocation of in-
terventions within each unit will be handled by unit admin-
istrators, such as school officials. We need to assume that
administrators are able to avoid a blatantly wasteful alloca-
tion of resources. Specifically, we assume administrators are
able to avoid intervening on individuals of highest welfare
most of the time. Quantitatively, the allocation avoids the
top q fraction of individuals according to welfare, possibly
misclassifying a q′ fraction of all individuals, where q′ ≤ q.
For example, with N = 100 individuals, q = 0.25, and
q′ = 0.1, a total of 75 individuals will receive resources.
Out of these, at most 10 individuals may erroneously belong
to the top 25 highest welfare individuals.

Given a budget of B, we can treat K = ⌊ B
N(1−q)c⌋ units.

Let Tk be the average treatment effect of unit k. Sort the
units ascendingly in terms of ρk with any tie-breaking and
let s(k) be the unit in the kth place. The value of ULA is

Vunit =
∑

k∈[K] N Ts(k) . (3)

Dominance Notion. Given two allocation mechanisms,
such as ILA and ULA, the next question is how to compare
them for a fixed available budget. Ideally, this comparison
should be agnostic to the specific unit profile ρ, as long as ρ
is within a set of unit profiles of our interest. Furthermore,
we would like the comparison to be agnostic to how indi-
vidual welfares are distributed within a unit k, as long as
welfares are consistent with ρk. Here we define a dominance
notion that accomplishes both desiderata.
Definition 2.1 (Dominance notion). A solution concept S1

(e.g., ULA) dominates another solution concept S2 (e.g.,
ILA) for a fixed budget B and for a set of feasible unit
profiles P , if for every profile ρ ∈ P , for every within-
unit welfare distribution consistent with ρ, and for every
tie-breaking in algorithms, the value of S1 is at least as the
value of S2. We denote this dominance relation by S1 ⪰ S2.
If there exists a profile ρ ∈ P for which S1 has a larger value
than S2, we say S1 strictly dominates S2 and denote it by
S1 ≻ S2. We use α · S1 ⪰ S2 to show that the comparison
is made by multiplying the value of S1 by a constant α.

This notion of dominance is a strong test if P is broad.
Nonetheless, as we discuss in Section 4, surprisingly ULA
dominates ILA in this strong sense for a typical P . For in-
stance, in the presence of high inequality across units which
is a common empirical observation in many settings, there
will be enough units with very low ρk that can be targeted
by ULA. On the other hand, as we discuss in Section 5,
for a sufficiently broad P , ULA can never be dominated.
Therefore, the dominance notion can provide a useful char-
acterization of P for which one solution concept is dominant
or nondominated assuming a typical P .
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3 Illustrating the Key Idea
We now present our theoretical argument in an illustrative
special case as a warm-up exercise. This simple argument
shows why ULA dominates ILA when inequality is high,
or the budget is low. For a graphical illustration of the key
idea behind our results based on real-world data, refer to
Appendix B. In the following, we consider cases where the
cost of treating everyone C := MNc is too high so that the
budget B scales sublinearly or linearly with C.

Consider M units uniformly distributed around a mean
value ρ̄: ρ1 = ρ̄ − g ρ̄ and ρM = ρ̄ + g ρ̄, for a constant
g ∈ [0, 1]. In this case,

ρk = ρ̄+2g ρ̄
(
k−(M+1)/2

)
/(M−1) , k ∈ [M ] . (4)

Here, the parameter g controls how spread out the units are
around ρ̄. We can interpret g as a measure of inequality
across units as well. In particular, g is proportional to the
Gini index of ρks denoted by Gρ. By definition,

Gρ :=

∑
k,k′ |ρk − ρk′ |

2M2ρ̄
= 2g ·

∑
k′<k(k − k′)

(M − 1)M2
.

Then a direct calculation shows Gρ = g (1 + 1/M)/3.

Consider a within-unit allocation with q > 0 and q′ ≈ 0.
If ρk ≤ q, ULA avoids all individuals in unit k that have
welfare above 1− δ. Hence, every individual treated under
ULA in unit k will experience the full δ improvement. For
uniformly distributed units, a large q such as q ≥ ρ̄ ensures
this happens for at least half of the units. So, if the budget
is not excessively large, ULA will be optimal. In particular,
so long as predictions are not free, ULA dominates ILA.

Even when q < ρ̄, either a low budget or high inequality
ensures the dominance of ULA. To see the former, observe
that a minimal inequality of g > 1 − q/ρ̄ guarantees that,
at least for the first unit, ρ1 < q. Similarly, for a sublinear
budget B = o(C), a minimal inequality of g ≥ 1− q/ρ̄+
o(1) ensures that all treated units have ρk ≤ q, implying the
optimality of ULA. Even for a linear budget B = Θ(C), a
simple argument shows that with sufficiently high inequality,
say, g ≥ 2(1−q/ρ̄), as long as the budget is not excessively
large, such as not surpassing the amount for treating one-
fourth of the units, the optimality of ULA is ensured.

Inequality plays a significant role in ULA, including cases
where the within-unit allocation treats everyone (q = q′ =
0). When everyone is treated at unit k, at least a (1 −
ρk) fraction of individuals experience a δ improvement. So,
for K treated units, Vunit ≥

∑
k∈[K] Nδ(1− ρk). Plugging

ρk from Eq. (4) into this, a direct calculation yields

Vunit ≥ KNδ

(
1− ρ̄+ g ρ̄

M −K

M − 1

)
.

Then, using K ≈ B
Nc , we obtain

Vunit ≥ B
δ

c

(
1− ρ̄︸ ︷︷ ︸

value from
random targeting

+ g ρ̄ (1−B/C)︸ ︷︷ ︸
extra value

from inequality

)
. (5)

Eq. (5) decomposes the value of ULA: For a dollar spent,
the maximum realizable value is δ/c. If units were chosen
randomly in ULA, on average, a unit of ρk = ρ̄ had been
treated, which in the worst case could decrease the rate
budget is turning into value by a factor of (1− ρ̄). However,
in the presence of inequality, the selected units will be those
with smaller ρks, and ULA performs better than random.
This extra value is proportional to g and (1−B/C).

In contrast, consider ILA, where we pay a price of p for (say,
perfect) prediction. Paying this price, ILA loses at least a
value of p δ

c compared to the optimum. Therefore,

Vind ≤ B
δ

c

(
1− p/B

)
.

Comparing this with the lower bound on ULA’s value in
Eq. (5), we have ULA ⪰ ILA so long as the fractional price
of prediction satisfies

p/B ≥ ρ̄
(
1− g (1−B/C)

)
.

This requirement becomes weaker as inequality grows, and
as budget shrinks.

Going beyond uniformly distributed units by considering
arbitrarily distributed units, we will show in Theorem 4.5
that a similar observation of ULA ⪰ ILA holds in general
if either inequality is high or the budget is not too large in
the presence of a medium inequality. We give a qualitative
view of the results in Table 1.

4 Sufficient Conditions for Dominant
Unit-Level Allocation

We present sufficient conditions under which ULA domi-
nates ILA. If we restrict feasible unit profiles to those meet-
ing these conditions, ULA ⪰ ILA. To this end, we set upper
bounds on Vind and lower bounds on Vunit and then compare
the bounds.

Upper bounding the Value of ILA. Given a predictor with
ϵ error that costs p(ϵ) to be implemented, there remains
a budget of B − p(ϵ) for intervention. If the predictor is
sufficiently accurate, only individuals with welfare less than
(1− δ) will be targeted, and the remaining budget will be
used optimally. Therefore, optimistically,

Vind ≤ max
{B − p(ϵ)

c
, 0

}
δ . (6)

This bound is tight if there are sufficient individuals with low
welfare. Specifically, if there are I = ⌊B−p(ϵ)

c ⌋ individuals
with wi ≤ 1− δ − 2ϵ, the bound is tight (Proposition F.1).
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Table 1. Sufficient conditions for ULA to dominate ILA. Refer to Theorem 4.5 for accurate statements. For a similar table with quantitative
values for low, medium, and high, refer to Table 3.

High inequality Medium inequality Low inequalityMedium or lower budget Large budget

High price of prediction ULA ≻ ILA ULA ≻ ILA ULA ≻ ILA ULA ≻ ILA
Medium price of prediction ULA ≻ ILA ULA ≻ ILA ?
Low price of prediction

(
1 +O(q′)

)
·ULA ⪰ ILA

Lower bounding the Value of ULA. To set a lower bound
on Vunit (Eq. (3)), we first lower bound Tk in terms of the
within-unit allocation parameters q and q′ and the unit k’s
fraction of high welfare individuals ρk.

Lemma 4.1 (Treatment effect to loss conversion). For a
(q, q′)-within-unit allocation, we have

Tk/δ ≥ 1− q − loss(ρk) ,

where we define

loss(ρk) :=

{
min {ρk, q′} , ρk ≤ q ,

ρk − (q − q′) , ρk > q .
(7)

See proof on page 29. Lemma 4.1 implies that instead of
lower bounding Vunit, we may upper bound the total loss

lossK(ρ) :=
∑

k∈[K] loss(ρs(k))

for any valid sorting s(·) of the ρks. The next lemma pro-
vides such a bound on lossK .

Lemma 4.2. For a unit profile ρ, denote the mean and the
Gini index of ρks by ρ̄ and Gρ, respectively. Assume the
budget is not excessively large, so the number K of units
treated by ULA does not exceed M(1− ρ̄). We have

lossK(ρ) ≤

{
Kq′, q > qc/u(K/M) ,

K(qc − q + q′) , q ≤ qc u(K/M) .

Here, qc is a critical value for q defined as

qc := ρ̄
1− ρ̄−Gρ

1− ρ̄− ρ̄ Gρ
, (8)

and u(K/M) := 1− 2(K/M) 1−ρ̄
1−ρ̄−ρ̄Gρ

= 1−O(K/M).

See proof on page 30. This lemma naturally gives rise to a
critical value qc for q: Neglecting O(K/M) in u(K/M)—
as is the case for a sublinear budget, for instance— qc defines
two regimes for loss depending on whether q > qc or q ≤ qc.
Due to its importance, we define:

Definition 4.3 (Effective within-unit allocation). We say a
(q, q′)-within-unit allocation is effective if q > qc and least
effective otherwise. In both cases, we assume q′ ≤ (1− ρ̄)q.

A direct calculation shows that q > qc in a sufficiently high
inequality setting where Gρ/(1 − ρ̄) > 1−q/ρ̄

1−q . It is also
straightforward to show qc ≤ ρ̄ (1−Gρ). So, regardless of
the level of inequality, q > ρ̄ is sufficient to obtain q > qc.
As an immediate result of Lemma 4.2, we can lower bound
Vunit. For brevity, we present this only for B = o(C) next.

Corollary 4.4. Under the conditions of Lemma 4.2, for
B = o(C), neglecting o(1), ULA’s value scales at least
linearly with B. The rate at which budget converts to value
has two regimes: If the within-unit allocation is effective,

Vunit ≥ B
δ

c

(
1− q′

1− q

)
, (9)

and if the within-unit allocation is least effective,

Vunit ≥ B
δ

c

(
1− qc − (q − q′)

1− q

)
. (10)

Proof. Recall Tk/δ ≥ 1 − q − loss(ρk). Then, summing
the treatment effect over the first K units, we have

Vunit =
∑

k∈[K] N Ts(k) = KNδ(1− q)−Nδ lossK(ρ) .

Plugging the bound on lossK(ρ) from Lemma 4.2 with
u(K/M) ≈ 1 into this and using K ≈ B

N(1−q)c complete
the proof.

These bounds are insightful about the interaction of pa-
rameters. First, an effective within-unit allocation makes
ULA almost optimal: Looking at Eq. (9), for a small q′,
ULA achieves the optimal rate of δ/c. The deficiency of
ULA scales with q′/(1 − q). The dependency on q′ re-
flects the imperfection in within-unit allocation. The scaling
with 1/(1 − q) reflects the relative number of units that
should be treated compared to the case of q = 0. While
increasing q positively influences within-unit allocation to-
wards the effective regime, it comes at the cost of searching
for more units: By refusing to allocate to the top q of the
low-welfare units, we may overlook their individuals in
need, risking the search over the next units that may not
have enough eligible individuals.

When the within-unit allocation is least effective, ULA de-
viates from optimal allocation. However, the signal from
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inequality still makes it better than randomly targeting units.
Using q′ ≤ (1− ρ̄)q and qc ≤ ρ̄ (1−Gρ), we have

Vunit ≥ B
δ

c

(
1− qc − (q − q′)

1− q

)
≥ B

δ

c
(1− qc) (11)

≥ B
δ

c

(
1− ρ̄︸ ︷︷ ︸

value from
random targeting

+ ρ̄ Gρ︸︷︷︸
extra value

from inequality

)
. (12)

Eq. (11) shows the least effective within-unit allocation is
no worse than the case of q = q′ = 0. Eq. (12) shows
ULA leverages inequality signal, attaining extra value pro-
portional to ρ̄ Gρ. At this point, it is important to highlight
the role of inequality in ULA. Examining Eq. (8), we can
see that greater inequality relaxes the requirement for an
effective q. Therefore, inequality significantly increases
the effectiveness of omitting the top q. Moreover, even
when within-unit allocation is least effective, inequality still
informs ULA to avoid the high welfare units.

Establishing Sufficient Conditions. Next, based on the
bounded values of ULA and ILA, we outline sufficient con-
ditions for a dominant ULA.
Theorem 4.5 (Sufficient conditions for a dominant ULA).
Consider ULA with a (q, q′)-within-unit allocation and a
budget B no more than the cost of treating M(1− ρ̄) units.
Define the normalized Gini coefficient Ĝρ := Gρ/(1− ρ̄) ∈
[0, 1], and consider the inequality thresholds

Ĝ(1)
ρ := 1− q

ρ̄

1− ρ̄

1− q
≤ Ĝ(2)

ρ := 1− 1

4

q

ρ̄

1− ρ̄

1− q
.

• If Ĝρ > Ĝ
(2)
ρ , within-unit allocation is effective, and as

long as the budget is not excessively large (not surpassing
the cost of treating M(1 − ρ̄)/2 units), ULA achieves(
1 − q′/(1 − q)

)
of the maximal value. This implies(

1 +O(q′)
)
·ULA ⪰ ILA.

If further p(ϵ)/B > q′/(1− q), we have ULA ≻ ILA .

• If Ĝρ > Ĝ
(1)
ρ , within-unit allocation is still effective, and

we obtain similar results as long as the budget meets

B

C
< (1− q) ·max

{
1− ρ̄

q
, (1− ρ̄)

(
1−

√
qc
q

)}
. (13)

• In any case, if p(ϵ) consumes a small but sufficient part of
the budget as p(ϵ)/B > qc, we have ULA ≻ ILA .

See proof on page 34. Tables 1 and 3 summarize this the-
orem. Theorem F.2 is a stronger version for the case of
sublinear budget B = o(C).

5 Necessary Conditions for Dominant
Individual-Level Allocation

Previously, we showed that under weak assumptions ULA
dominates ILA. Now, we show that ILA dominates ULA

only when strong necessary conditions are met. Put differ-
ently, under weak conditions on the set of profiles P, we can
show that ILA does not dominate ULA. To show that ILA
does not dominate ULA, it suffices to find a profile ρ ∈ P
for which ULA yields a larger value than ILA.

To approach this result we construct a specific profile ρ of
small loss. The value achieved by this profile will then serve
as a lower bound on ULA’s value.

Lemma 5.1. Consider ULA with a budget for treating
K units that is no more than M(1 − ρ̄). There exists a
profile ρ∗ with mean ρ̄ and Gini index Gρ or less, such that

lossK(ρ∗) = K loss
(
max

{
ρ̄ (1− M

K
Gρ), 0

})
. (14)

See proof on page 34. The proof is constructive. Since
loss(·) is an increasing function, lossK(ρ∗) decreases
with Gρ to the point where the loss is 0, and ULA becomes
optimal. This happens for Gρ ≥ K/M . For a sublinear bud-
get, this condition always holds asymptotically: As long as
Gρ ≥ B

(1−q)C = o(1), there exists ρ∗ ∈ P for which ULA
is optimal. The situation is more involved in the case of a
linear budget. Next theorem, a counterpart of Theorem 4.5,
states sufficient conditions of ILA ⊁ ULA in general:

Theorem 5.2 (Sufficient conditions for a nondominated
ULA). Consider ULA with a (q, q′)-within-unit allocation
and a budget B no more than the cost of treating M(1 −
ρ̄) units. Consider a scenario in which the set of feasible
unit profiles P does not rule out profiles with a Gini index of
Gρ or lower. Define the normalized Gini coefficient Ĝρ :=
Gρ/(1− ρ̄) ∈ [0, 1], and consider the inequality threshold

Ĝ(0)
ρ :=

1

2
− 1

2

q

ρ̄
.

• If Ĝρ ≥ Ĝ
(0)
ρ , as long as the budget is not excessively

large (not exceeding the cost of treating M(1−ρ̄)/2 units),
there exists ρ∗ ∈ P for which ULA attains

(
1−q′/(1−q)

)
of the maximal value, implying ILA ⊁

(
1+O(q′)

)
·ULA.

If further p(ϵ)/B > q′/(1− q), we have ILA ⪰̸ ULA .

• In any case, if p(ϵ) uses a small but sufficient part of the
budget as p(ϵ)/B > ρ̄ (1− Ĝρ), we have ILA ⪰̸ ULA .

See proof on page 35. Table 2 summarizes the theorem.

Remark 5.3. If q > ρ̄, both Ĝ
(0)
ρ and Ĝ

(1)
ρ will be negative.

Otherwise, Ĝ(0)
ρ ≤ Ĝ

(1)
ρ /2 ≤ Ĝ

(2)
ρ /2.

Contrasting Theorems 5.2 and 4.5 using the above remark,
a nondominated ULA requires weaker conditions than a
dominant ULA as expected: Even for q = q′ = 0, all of the
cases in Theorem 5.2 are still plausible.
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Table 2. Sufficient conditions for a nondominated ULA. Refer to Theorem 5.2 for accurate statements. For a similar table with quantitative
values for low, medium, and high, refer to Table 4. *In general, compared to Table 1, a high price of prediction and a medium or higher
inequality require weaker conditions.

Medium or higher* inequality Low inequality

High* price of prediction ILA ⪰̸ ULA ILA ⪰̸ ULA
Medium price of prediction ILA ⪰̸ ULA ?
Low price of prediction ILA ⊁

(
1 +O(q′)

)
·ULA

6 Heterogeneous Intervention Effects
Thus far, we assumed intervention has a fixed effect of δ
capped at the maximum welfare of 1. In this section, we
allow for a general intervention effect τ(w). We show that,
under certain assumptions on the Lipschitzness of τ and
limited concentration of welfare distribution, a sufficiently
high inequality or a small budget ensures ULA outperforms
ILA and, in fact, is close to the optimal allocation.

Notation and Preliminaries. We assume τ(·) is a decreas-
ing function with τ(0) = δ′ and τ(1) = 0. The average
treatment effect at unit k with a (q, q′)-within-unit alloca-
tion is denoted by Tk. If everyone in k is treated, the average
effect is denoted by T ′

k. The average and Gini index of T ′
ks

are represented by T
′

and GT , respectively. Our focus is on
a setting with inequality GT and mean treatment effect T

′

on everyone, aiming to bound the advantage that a heteroge-
neous τ can give to ILA. Such an approach is most effective
when we make assumptions about welfare distribution. We
denote the density of welfare at unit k by pkw and the overall
welfare density by pw. Abusing notation, we use Vunit and
Vind to denote the expected ULA and ILA’s values.

Upper bounding the Value of ILA. Eq. (6) shows that
after paying for prediction, every remaining dollar can turn
into value at a rate of δ′/c. With no assumption on welfare
distribution, there would be enough individuals with a 0-
welfare and no one in [0, 2ϵ], making this bound tight. We
avoid such cases by imposing the following assumption.
Assumption 6.1. The overall welfare density is bounded
from above and below: γ ≥ pw(w) ≥ γ.

Prediction accuracy was less relevant when the treatment ef-
fect was homogeneous and there were sufficient low-welfare
individuals. However, in the case of a heterogeneous effect,
distinguishing small differences in welfare is valuable. We
propose a model for prediction error in the following. Recall
ILA sorts individuals in terms of their predicted welfare ŵ
and allocates to those with the lowest welfare. This is equiv-
alent to allocating to any individual i with ŵi ≤ wt for the
largest possible choice of a threshold wt that meets the bud-
get constraint. We assume prediction errors are symmetric
and independent. Formally, for an individual with welfare w,
we have Pr(ŵ ≤ wt | w) = σ(wt − w), where σ(∆w) is 1
for ∆w > ϵ, and is 0 for ∆w < −ϵ. Denoting the deriva-

tive of σ by σ′, we assume 1/ϵ ≥ |σ′(∆w)| ≥ 1/(2ϵ) for
|∆w| ≤ ϵ. The budget constraint requires the number of
treated to not exceed (B − p(ϵ))/c. We relax this constraint
and assume the budget should be met in expectation.

When τ changes sharply, distinguishing individuals with a
small difference in welfare gains significant value. We con-
trol this advantage by considering a Lipschitz continuous τ .
By leveraging Assumption 6.1 and Lipschitzness, next, we
provide a tighter bound on ILA’s value.
Theorem 6.2. Consider ILA with an ϵ-accurate welfare
predictor (ϵ ≤ 1/2) that costs p(ϵ). Define the remaining
budget as B̃ := B − p(ϵ). Under Assumption 6.1, suppose
B̃/C is no less than γϵ and no more than γ(1− ϵ). For a
concave and differentiable τ with l ≥ | dτdw | ≥ l/2, we have

Vind ≤ B̃
1

c

(
δ′ − l

8γ
(B̃/C + γϵ/2)

)
. (15)

See proof on page 35. Compared to the optimal rate of δ′/c,
Eq. (15) reflects two deficiencies: First, a larger budget im-
plies that more individuals will be treated, including those
with treatment effects farther from δ′. Second, lower accu-
racy means that more individuals with high welfare values
may be recognized as eligible.

Lower bounding the Value of ULA. ULA’s previous
bound can be reused in this general setting if, for a thresh-
old wt, we lower bound τ with τ̃(w) = δ · 1{w ≤ wt},
where δ = τ(wt). This approach underestimates the effect
on the low-welfare population by an amount as large as
δ′ − δ and neglects the effect on the population above wt.
So, there might be no good choice of wt in this tradeoff.
Next, we get around this by proposing ULA based on es-
timated unit-level average treatment effects instead of ρks.
Suppose ULA sorts units in terms of T ′

ks and allocates to
the top K units. We assume such estimates are available for
free. We will show in Section 7 that under some assump-
tions on τ , the additional cost of learning reduces ULA’s
value negligibly. The following assumption helps us avoid
contrived worst-case scenarios and tightly relate T ′

k and Tk.
Assumption 6.3. For every unit k, assume pkw(w) ≤ γ.

Lemma 6.4 (T ′
k to Tk conversion). For a (q, q′)-within-unit

allocation, under Assumption 6.3, we have

Tk ≥ Qτ (T
′
k − q′δ′; q, q′, γ) ,

7
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where

Qτ (t; q, q
′, γ) := γ Γ(1−q−q′)/γ

(
Γ−1
(1−2q′)/γ

(
t/γ

))
,

Γa(w) :=

∫ w+a

w

τ(x) dx .

See proof on page 37.
Remark 6.5. For every γ > 0, Qτ (t; q, q

′, γ) ≥ t 1−q−q′

1−2q′ ,
where equality corresponds to γ → ∞ (i.e., no assumption).

Proof. For b ≥ a > 0 and a decreasing τ , Γa(w)/Γb(w) ≥
a/b. Let w = Γ−1

b (t). Then Γa

(
Γ−1
b (t)

)
≥ (a/b)t.

Defining a = (1 − q − q′)/γ, b = (1 − 2q′)/γ, and
t = (T ′

k − q′δ′)/γ completes the proof.

In Lemma 6.4, Qτ transforms T ′
k into Tk for a single unit.

A property of τ will enable us to utilize Qτ for converting
an average treatment effect T

′
k to Vunit:

Property 1. Given wc, a, and b (b ≥ a > 0), τ has Prop-
erty 1 if r(w) := τ(w)−τ(w+a)

τ(w)−τ(w+b) is decreasing for w ≤ wc.

It can be immediately observed that a strictly decreasing τ
has Property 1 for any wc if a = b. See Proposition F.3 for a
necessary characterization of general treatment effects that
have Property 1. In fact, this property holds for many of the
typical τs, for example:
Example 6.6. Consider a treatment effect of δ′ at w = 0
decreasing linearly with w and capped at maximum welfare:

τ(w) = min {w + (δ′ − lw), 1} − w .

Here, δ′ = δ+(1−δ)l and l > 0. One can verify that for any
a and b (b ≥ a > 0), τ has Property 1 for wc = 1− δ − a.

In Theorem F.4, we show that for a τ satisfying Property 1,

Vunit ≥ KQτ

(
T

′
/(1−GT )− q′δ′; q, q′, γ

)
. (16)

So, effectively, ULA chooses a unit with T ′ = T
′
/(1−GT )

— clearly showing how inequality can make ULA extremely
more effective. We skip the details of the theorem here and
directly utilize it to identify a dominant ULA next.

Sufficient Conditions For a Dominant ULA. Our specific
interest lies in the elbow-shaped treatment effect (Fig. 2),
where, starting from τ(0) = δ′, an l-Lipschitz effect gradu-
ally decreases and reaches δ. Beyond this point, the welfare
after intervention will reach its cap of 1, limiting the effect.
Example 6.6 is a special case of this model that satisfies
Property 1. If τ of Fig. 2 similarly satisfies Property 1,
Theorem F.4 enables us to bound Vunit as Eq. (16). Then a
comparison to Theorem 6.2 can further establish sufficient
conditions for a dominant ULA. The next theorem proposes
such conditions for a small l. Consistent with our previ-
ous observations, high inequality or a reasonably bounded
budget can ensure that ULA is effective and dominant.

Theorem 6.7 (Sufficient conditions for a dominant ULA
in case of a heterogeneous effect). Consider ULA with a
(q, q′)-within-unit allocation and a budget B that is no more
than the cost of treating MT

′
/δ′ units. Under Assump-

tion 6.3 and conditions of Theorem 6.2, suppose an elbow-
shaped effect with Property 1 (as in Theorem F.4). Consider
the inequality thresholds

G
(1)
T := 1− T

′

δ′ − q2/(2γ)
≤

G
(2)
T := 1− 1

4

T
′

δ′ − q2/(2γ)
− 3

4

T
′

δ′
. (17)

• If GT > G
(2)
T , neglecting O(l2) and O(q′2), ULA

achieves (1− q′/(1− q)− l/δ) of the optimal value.
If further,

p(ϵ)

B
>

q′

1− q
+

l

δ
− l

δ

1

8γ

(B
C

+ γϵ/2
)
, (18)

we have ULA ≻ ILA .

• If GT > G
(1)
T and the budget meets

B

C
<

1

2
(1− q)(2γδ′/q2 − 1)(GT −G

(1)
T ) ,

we obtain similar results.

The proof hinges on the strong convexity of Qτ and presents
a stronger statement of the theorem.

7 Learning Unit-Level Statistics
Welfare is not directly observable. However, noisy obser-
vations of welfare may be available. For instance, grades
or dropout rates can serve as informative signals of student
welfare. We refer to this information as type 1, with a cost
of c1 per query per individual. On the other hand, obtaining
true welfare is often expensive and may necessitate fresh
data. This might involve students taking some standard ex-
ams or patients undergoing a set of tests. We call this type
of data type 2 with a cost of c2 per data point. In practice,
obtaining true welfare may incur a cost comparable to the
cost of intervention c, and we expect c2 ≈ c ≫ c1. So,
we may collect type 2 only from a subset of individuals in
select units to train a predictor acting on type 1.

w

τ(w)

0 1− δ 1

δ′

δ

Figure 2. An elbow-shaped heterogeneous effect.
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In this section, we explore the efficient estimation of unit-
level statistics, such as ρk or T ′

k, even when individual
welfare estimation poses challenges. We consider general
unit-level statistics that can be expressed as the average
of a function u(·) evaluated at wis. For example, ρk is the
average of w → 1{w > 1−δ} at unit k, or T ′

k is the average
of τ . For brevity, we discuss the results when N = Θ(M);
however, Appendix E provides the general results.

Starting with the simplest case, consider estimating unit-
level statistics by sampling a few individual welfare from
each unit. This estimation relies on type 2 data and does not
involve learning. As discussed in Appendix E.1, the relative
decrease in ULA’s value due to inaccuracy in estimation and
the cost of obtaining type 2 data asymptotically becomes
negligible in expectation when there are many units and the
budget is sufficient to effectively treat K = Ω(M2/3) units.

Moving beyond estimating unit-level statistics with sam-
pled welfare values, we aim to learn a predictor that acts on
type 1 observations. This approach potentially reduces the
sampling cost by relying on fewer type 2 examples. We first
demonstrate that learning unit-level statistics from type 1
observations is no harder and often significantly easier than
learning individual-level welfare (Appendix E.2). Formally,
suppose there exists a high-probability generalization bound
on the mean squared error of the individual welfare predic-
tor in terms of the pseudo-dimension of the hypothesis class.
Then, for a monotone concave or convex u, a similarly ac-
curate predictor of unit-level statistics can be obtained with
the same or significantly better sample complexity if the pre-
dictor is additionally unbiased. Moreover, averaging within
units makes the intrinsic unpredictability of individuals less
relevant to unit-level statistics.

Next, we focus on methods that directly learn unit-level
statistics without relying on an individual predictor. In
the simplest model (Appendix E.3), we consider noise-free
observations o ∈ O as an unknown deterministic function of
welfare: o = f(w), assuming f is strictly monotone. Unlike
individual-level prediction, which requires learning f−1,
learning a single parameter f−1(1− δ) suffices for simple
statistics like ρ in the context of ULA. Theorem E.1 shows
that under Assumption 6.1 and 6.3, with an appropriately
chosen number of type 2 samples and algorithm, the relative
decrease of Vunit due to this extra step of sampling and
learning is O(

√
c/B ln(1/α)) with probability at least 1−

2α. This change is negligible since we expect B ≫ c. A
weaker result holds for a general 1-Lipschitz u, implying a
negligible decrease in ULA’s expected value (Theorem E.2).

In a more general setting, observation is a function of wel-
fare and an independent noise term z: o = f(w, z). In
Appendix E.4, we discuss learning unit-level statistics un-
der this model with different assumptions on f and noise.
Notably, we present a result on the learnability of a rank-

ing of the units under a nonparametric model with minimal
assumptions about noise. More precisely, if the noise does
not distort the observation too much, meaning there exists
a function v : O → R such that Epk

w
[u(w)] ≈ Epk

o
[v(o)]

while ∥v∥∞ = O(∥u∥∞), the risk of misranking can be
minimized by an SVM-like algorithm minimizing an em-
pirical margin loss (Lemma E.6). Hinging on this result,
we bound the relative decrease of Vunit due to ranking error
and cost of learning. Asymptotically, for an appropriately
chosen margin in the algorithm, when the number of treated
units exceeds M1/2, the relative decrease of Vunit is negli-
gible with high probability (Theorem E.8). Although we
perform a worst-case analysis in terms of where the ranking
errors might occur, this result is still significant compared
to the setting without learning. In sum, learning an accurate
ranking of units in terms of their unit-level statistics is pos-
sible under minimal assumptions, and the cost of learning
can be negligible in the analysis of ULA’s value.

8 Discussion
Our contribution is two-fold: On the technical side, we pro-
vide a mathematical framework for evaluating the efficacy
of predictions—the tools presented here point to lines of
inquiry to investigate prediction as a solution concept for
allocation. On the conceptual front, we surface inequality as
a driving mechanism limiting the utility of prediction. Our
insights run counter to the intuition that prediction may curb
wasteful allocations in settings where resources are scarce.

There are several open questions of interest. For instance,
in all cases, we only model individual treatment effects. An
extension could consider modeling individuals on a network
to examine network effects. Likewise, both ULA and ILA
treat individuals, and we do not leverage the presence of
units beyond identification. A separate line of inquiry may
investigate comparing individual versus group interventions.
That is, some interventions may only be available at the unit
level, e.g., increasing the number of doctors in a hospital or
teachers in a school, which would impact the entire unit.

There are known limitations to allocating by proxy, which
individual risk scores often are. These limitations apply
whether we are targeting individuals using predictions or
unit-level information. Significant gaps exist in our under-
standing of the limits to prediction as a proxy, and we echo
recent calls to examine this concern further. Finally, target-
ing itself is a contested means for intervention, as argued by
various social scientists and policy-makers (Rawls, 1971;
Sen, 1980; 1981; Mkandawire, 2005). While both ULA
and ILA are ultimately used for targeting individuals, the
insights in our work point to the persistence of structural
forces in determining outcomes.
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Impact Statement
We provide a framework for challenging the use of indi-
vidual prediction/risk-based systems for societal decision-
making when outcomes are driven by environmental factors.
In particular, modeling existing societal structures where
individuals belong to larger units, we show that coarse unit-
based allocations suffice for settings where there is great
between-unit inequality. This insight challenges the need
for implementing prediction-based identification strategies
for environmentally-determined outcomes.

However, this framework does not guarantee that individual
prediction-based allocations are appropriate or superior to
unit-based allocations if these conditions are not met. For
one, in our paper, we treat ILA generously in various set-
tings so our ULA vs. ILA comparisons are conservative
in favor of ILA: We lower bound ULA’s value and upper
bound ILA’s value assuming ILA has access to a sufficiently
accurate predictor with strong individual-level guarantees.
Setting aside this concern, there may be other reasons why
the ULA vs. ILA comparison might capture only a part of
the story, e.g. if the target variable is ill-formulated or is
a poor proxy for the actual outcome of interest. From an
even broader perspective, the underlying decision problem
may itself be unpalatable. For example, we assume that
the societal resource being allocated is fixed and we focus
on efficient identification given this scarcity of resources.
A greater point of leverage, however, might be challeng-
ing why the resources are scarce and how to increase them.
Similarly, in settings like recidivism or predictive policing,
whether the problem formulation itself is socially palatable.
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A Additional Related Work
Prediction for Allocation. As a form of resource allocation based on prediction, ILA is widely adopted across various
domains. These include allocating homelessness funds to minimize the predicted probability of household re-entry (Kube
et al., 2023a;b) or expected cost (Toros & Flaming, 2018), reducing eviction rate by targeting assistance to renters at greater
predicted risk (Mashiat et al., 2024), making ICU discharge decisions based on readmission probability (Chan et al., 2012),
improving emergency responses using incident prediction models (Mukhopadhyay & Vorobeychik, 2017), or allocating
educational resources based on early warning systems that identify students at risk of dropping out (Faria et al., 2017;
Mac Iver et al., 2019; Perdomo et al., 2023). For a more complete discussion on the role of predictive tools in education
refer to Liu et al. (2023b) and Rismanchian & Doroudi (2023).

Despite widespread implementation of ILA, there is little evidence of its efficacy (Mac Iver et al., 2019). Reviewing existing
algorithmic approaches to reducing homelessness as a resource allocation problem, Moon & Guha (2024) found broad
issues when optimization is based on individual-level predictors. They suggest a more “human-centered approach” that
involves key stakeholders to understand how structural and individual factors impact hard-to-quantify facets of an individual,
such as one’s resilience and willingness to improve. In our model, this kind of mechanism could be seen as an instance of
ULA, where within-unit allocation is delegated to the unit administrators.

Perdomo et al. (2023) recently demonstrated that early warning systems, when utilized to target interventions at individual
students by predicting the risk of dropout, have shown little improvement despite the use of accurate predictors. Perdomo
et al. (2023) and Hardt & Kim (2023) also point out how risk scores draw on unit-level information. Consistent observations
were made by Faria et al. (2017) and Mac Iver et al. (2019), indicating no statistically significant impact of the intervention.
In particular, Mac Iver et al. (2019) attribute these observations to the lack of contrast between what happened in treatment
and control schools, as the control schools were effectively implementing the same mechanism internally. This supports our
assumption that units can implement a reasonable within-unit allocation when directed and provided resources. Closely
related to our work, Perdomo (2023) asks how improvements in welfare arising from better predictions compare to those of
other policy levers, such as expanding access to resources. In line with our results, it often does not help to invest in greater
accuracy when resources are limited.

Prediction and Policy Problems. Historically, policy planning has relied on aggregate data. However, the promise of better
resource allocation, lower costs, and more preventative intervention has increasingly motivated individual-level algorithmic
solutions in public sector applications (Levy et al., 2021). Abaigar et al. (2023) present an overview of key technical
challenges where discrepancies between policy goals and machine learning models commonly arise. In their resource
allocation setting, policy goals can be formalized through an allocation principle that chooses the target population based on
predicted individual outcomes of interest. As they highlight, such individual estimation may not always be helpful for the
decision-making process, and the choice of aggregation level is of utmost importance.

There is extensive work on the use of causal inference to identify suitable policies and interventions, see, e.g., (Imbens &
Wooldridge, 2009; Bertsimas & Kallus, 2020; Athey & Wager, 2021) and references therein. Zezulka & Genin (2024) argue
in social contexts predictions that inform policies should be evaluated based on the change in social goods that arises after
deploying the algorithm. Kleinberg et al. (2015) discuss a class of policy problems that do not necessitate causal inference
but rather rely on predictive inference.

Empirical evaluation of index-based allocations (Mate et al., 2023), where individuals estimated to be in utmost need receive
resources, such as the mechanisms we study, requires careful design and estimators (Mate et al., 2023; Boehmer et al., 2024).
This is because of the interdependencies among samples, as what an individual receives under these policies depends on her
prediction and predictions about others (Zheng et al., 2020; Shirali, 2022).

Prediction and Decision-making. The extensive debate around the use of risk scores touched on the role of predictive
tools as the basis for consequential decisions and interventions. For example, Wang et al. (2022) raise concerns about the
legitimacy of decision-making based on predictive optimization. In the context of the criminal justice system, Barabas et al.
(2018) argued that risk assessment should be intervention-driven and ideally work as a diagnostic tool, identifying causal
structures that drive crime. Hofman et al. (2021) suggest that explanatory modeling can benefit predictive modeling (and
vice versa), for example, by encouraging more robust models that generalize better under interventions. Liu et al. (2023b)
discuss improving outcome prediction may not necessarily help decision-makers in selecting a more effective intervention
option. Related to this topic is the question of actionability of predictions as studied by Liu et al. (2023a).
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Connection to the Predict-Then-Optimize Paradigm. Related to our discussion of intervention-driven predictions is
the predict-then-optimize paradigm in the Operations Research community. Here, a predictive tool is first acquired to
maximize accuracy, followed by the optimization of allocations or decisions based on it. Our definition of ILA closely
aligns with this paradigm. The disentanglement of these stages has been a subject of study for a long time; refer to Manski
(2004) as one of the first attempts where a predictive model is directly optimized to maximize the social welfare resulting
from a prediction-based treatment choice. Informing prediction with its downstream applications is widely known as
decision-focused learning (Mukhopadhyay & Vorobeychik, 2017; Elmachtoub et al., 2020; Elmachtoub & Grigas, 2022).
Although following such an approach can potentially provide ILA with a predictor informed about the follow-up decision,
the main deficiency of ILA in our model comes from the cost of prediction. Our generous assumption of strong per-individual
guarantees for the predictor makes a decision-focused predictor less relevant for our study of ILA. However, our proposed
algorithm for learning unit-level statistics under a nonparametric model in Section 7 chooses a sampling strategy informed
by downstream ranking decisions and generally operates within a decision-focused framework. Future works can also extend
our framework to sequential learning under a resource-constrained setting (Li & Varakantham, 2022; Verma et al., 2023).

Pre-Algorithmic Methods of Allocation and Human Discretion. Social service bureaucracies neither fully give street-level
bureaucrats full discretion nor fully prioritize algorithmically in targeting assistance (Johnson & Zhang, 2022; Pokharel et al.,
2023). The pre-algorithmic, rule-based part typically involves a dimensionality reduction, quantization, and deliberation
by the stakeholders, which overall is called categorical prioritization by Johnson & Zhang (2022). Pokharel et al. (2023)
discovered that discretionary decisions in resource allocation, not easily explained by simple decision rules, often lead
to improved outcomes. This suggests that caseworkers leverage the knowledge gained through human interactions and
evaluations in the process. The stronger these discretionary decisions are, the stronger our within-unit allocation, thereby
enhancing ULA as well.

Limits and Resistance to Prediction. Even with access to abundant data on individuals’ lives, it remains challenging to
forecast outcomes at the individual level (Salganik et al., 2020).

Raviv (2023) found citizens exhibit aversion to the use of algorithmic decision systems when they are required to make
inferences about individuals rather than collectives. This might root, for instance, in the disproportionate advantage
individuals receive in return for sharing their personal data; in fact, it is challenging to determine whether such participation
ultimately benefits or harms them (Monteiro Paes et al., 2022).
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B Graphical Illustration of the Key Idea
Consider units of equal size where individual welfares are drawn from a beta distribution with unique parameters for each
unit. Fig. 3 depicts such units, sorted according to their median welfare. Within each unit, individuals are sorted based
on their welfare and plotted with their position on the horizontal axis and their welfare on the vertical axis. We have
implemented a within-unit allocation with parameters q = 0.3 and q′ ≈ 0 for simplicity. The top q fraction of individuals at
each unit will be excluded during within-unit allocation and appear as faded in the plot.

Suppose prediction costs 20% of the budget. In the figure, we show the values realized by ULA and ILA from each unit. For
simplicity, we neglect ULA’s value from high-welfare individuals with w > 1− δ. As the figure suggests, in the presence of
high inequality between units, ULA with an effective within-unit allocation mostly avoids individuals with high welfare and
is almost optimal. However, due to the costly prediction, ILA, despite more accurate targeting, cannot reach ULA’s value.

unit 1 unit 2 unit 3 unit 4 unit 5 unit 6 unit 7 unit 8
population, lexicographical order by (unit, individual) welfare

0

0.7

1

we
lfa

re

1

ULA

ILA

ILA welfare cutoff

Figure 3. ULA outperforms ILA in a simulated setting with high inequality. The treatment effect is δ = 0.3, and half of the units are
treated, with 20% of the budget required for prediction. Within each unit, individuals have independent beta-distributed welfare. They are
sorted based on their welfare and plotted according to their position and welfare. A within-unit allocation with q = 0.3 and q′ ≈ 0 is
considered, and individuals among the top q fraction at each unit are faded. The values obtained by ILA and ULA from each unit are
depicted with horizontal bars, and their total values compared. For ease of presentation, we assume ULA gets zero value from treating
units above welfare 1− δ.

The observation replicates on real-world data. Here, we utilize the American Community Survey Children’s Education
Tabulation,2 an annually updated custom data collection of demographic, economic, social, and housing characteristics about
school-age children and their families, developed from the U.S. Census Bureau’s 2017-2021 data. We limit our analysis to
certain school districts (units) and relevant students (individuals), namely those who reside within the territory of the district.
As a proxy for welfare, we examine household income (inflation-adjusted), which is reported in 10 income brackets ranging
from less than $10k to more than $200k. We consider the highest bracket as having a welfare of 0.95 and the lowest bracket
as having a welfare of 0.05.

Fig. 4 displays data from representative school districts of similar size in the greater Los Angeles (LA) area (excluding the
LA Unified School District due to its sheer size). We consider a similar parameter setting as in the synthetic data example
with δ = 0.3, q = 0.3, q′ ≈ 0, p(ϵ) = 0.2 · B, and a budget B sufficient to treat half of the units. As the figure suggests,
in the presence of high inequality, as is the case for the chosen 8 districts, ULA largely avoids high-welfare students. In
contrast, ILA with costly prediction cannot achieve comparable value.

The superiority of ULA primarily stems from the high inequality between the different school districts. The same
conclusions hold in other high-inequality regions. For example, Fig. 5 illustrates the same point for school districts in New
York. Conversely, in regions of low inequality, ULA may not achieve the same value as ILA. To give an example, Fig. 6
shows that for Utah’s school districts, ILA comes out ahead. When considering the Gini index of the ρks, the inequality in
the chosen New York state school districts is almost twice that of LA and four times that of Utah.

2https://nces.ed.gov/programs/edge/Demographic/ACS
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unit 1 unit 2 unit 3 unit 4 unit 5 unit 6 unit 7 unit 8

population, lexicographical order by (unit, individual) welfare
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ILA welfare cutoff

Greater LA Area School Districts

Figure 4. ULA outperforms ILA in a real-world high inequality setting. Eight school districts from the greater Los Angeles (LA) area
are considered. Household income, in 10 brackets, is used as a proxy for individual welfare. A within-unit allocation with q = 0.3 and
q′ ≈ 0 is considered, where individuals among the top q fraction at each unit appear faded. The values obtained by ILA and ULA from
each unit are depicted with horizontal bars, and their overall values are compared.
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Figure 5. Similar to Fig. 4, ULA outperforms ILA in a real-world high inequality setting. New York State’s school districts with a
household population of 8, 500 or more are considered (excluding the New York City Department of Education due to its sheer size).
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Figure 6. Unlike Fig. 4, ILA outperforms ULA in a real-world low inequality setting. Utah’s school districts with a household population
of 20, 000 or more are considered.
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C Additional Tables

Table 3. Sufficient conditions for ULA to dominate ILA. Refer to Theorem 4.5 for accurate statements.

Ĝρ > Ĝ
(2)
ρ

Ĝ
(2)
ρ ≥ Ĝρ > Ĝ

(1)
ρ

Ĝρ ≤ Ĝ
(1)
ρB/C meets Eq. (13) B/C doesn’t meet Eq. (13)

p(ϵ)/B > qc ULA ≻ ILA ULA ≻ ILA ULA ≻ ILA ULA ≻ ILA
p(ϵ)/B > q′/(1− q) ULA ≻ ILA ULA ≻ ILA ?
o.w.

(
1 +O(q′)

)
·ULA ⪰ ILA

Table 4. Sufficient conditions for when ILA does not dominate ULA. Refer to Theorem 5.2 for accurate statements.
Ĝρ ≥ Ĝ

(0)
ρ Ĝρ < Ĝ

(0)
ρ

p(ϵ)/B > ρ̄ (1− Ĝρ) ILA ⪰̸ ULA ILA ⪰̸ ULA
p(ϵ)/B > q′/(1− q) ILA ⪰̸ ULA ?
o.w. ILA ⊁

(
1 +O(q′)

)
·ULA

D Additional Figures
Fig. 7 gives a more precise version of Fig. 1 in terms of the three different inequality thresholds that come out of Theorems 4.5
and 5.2.

Ĝ
(0)
ρ Ĝ

(1)
ρ Ĝ

(2)
ρ

1

p(ϵ)/ρ̄

Θ(C) [Eq. (13)]

Ĝρ

B

Figure 7. Sufficient conditions for dominant ULA (green) and nondominated ULA (red) for q ≤ ρ̄.

17



Allocation Requires Prediction Only if Inequality Is Low

E Further on Learning Unit-Level Statistics

E.1 Estimating Unit-Level Statistics by Sampling From All Units

Suppose we estimate unit-level statistics at each unit by sampling the welfare of n individuals at each unit. These samples
are classified as type 2 because they contain true welfare values. Let Sk denote the set of sampled individuals from unit k.
Our estimate of the true unit-level statistic Uk := 1

N

∑
i∈Uk

u(wi) will be Ûk := 1
n

∑
i∈Sk

u(wi). Given that the samples
are randomly drawn, we can approximate Ûk with N (Uk, σ

2/n). Since ULA only considers the ranking of these statistics,
we can normalize any u to the interval [0, 1], implying σ2 ≤ 1/4.

Suppose ULA’s value is (Nδ′)-Lipschitz in unit-level statistics, which holds for u(w) = τ(w)/δ′ for example. Here,
consistent with Section 6, δ′ denotes the maximum treatment effect an individual may experience. This property allows us
to bound the potential decrease in Vunit due to inaccurate estimations by

|∆Vunit| ≤ Nδ′
∑

k∈[M ]

|Ûk − Uk| .

Hence, in expectation with respect to the randomness in sampling, we have

E[|∆Vunit|] ≤ MNδ′ E
[
|N (0, 1/(4n))|

]
= 2MNδ′

∫ ∞

0

√
2n

π
x exp

(
− 2nx2

)
dx =

MNδ′√
2πn

.

On the other hand, collecting n type 2 samples from each unit reduces the treatment budget by M nc2. Assuming c2 ≈ c,
this implies Mn fewer individuals will receive treatment. Consequently, we can bound the reduction o Vunit due to estimation
cost by M nδ′. Therefore, we can bound the overall reduction of ULA’s value, accounting for both inaccurate estimation
and the additional cost of estimation, by

E[|∆Vunit|] ≤ Mnδ′ +
MNδ′√
2πn

.

Optimally, choosing n = Θ
(
N2/3

)
implies E[|∆Vunit|] = O

(
MN2/3δ′

)
. Since for an efficient allocation we expect

Vunit = Θ(KNδ′), the relative decrease of ULA’s value is bounded by O
(

M
KN1/3

)
. For this effect to become negligible

asymptotically, the number of treated units should exceed Ω(M/N1/3).

E.2 Learning Unit-Level Statistics Is No Harder Than Learning Individual Welfare

An individual-level predictor uses a set of features, denoted by x, to make a prediction about welfare w. The features include
observations about the individual as well as any relevant contextual information accessible to the predictor. Consider a joint
distribution D over X ×W , where X is the feature space and W = [0, 1]. Assume n2 independent samples S are drawn
from D. These samples go under type 2 data because they contain the true welfare values. For a choice of loss function
l : W ×W → [0, 1], the risk and the empirical risk of h are defined as

R(h) := E(x,w)∼D[l(h(x), w)] ,

R̂(h) :=
1

|S|
∑

(x,w)∈S

l(h(x), w) .

To learn a predictor with low risk, the standard approach is to minimize the empirical risk. If empirical risk minimization
can be performed perfectly over a hypothesis class H consisting of functions with range in W , then based on a well-known
result (see Mohri et al. (2018), Theorem 11.8), the risk of the empirical risk minimizer ĥ can be bounded with probability at
least 1− 2α by

R(ĥ) ≤ min
h∈H

R(h) +

√
8d log(en2/d)

n2
+

√
2 log(1/α)

n2
= min

h∈H
R(h) + Õ

(√ d

n2
+

√
log(1/α)

n2

)
. (19)

Here d is the pseudo-dimension (Mohri et al. (2018), Definition 11.5) of G = {(x,w) → l(h(x), w) : h ∈ H}. Let
l(ŵ, w) = (ŵ − w)2. Collecting n2 = Ω(d/ϵ2) samples ensures the second term of the bounded risk will be Õ(ϵ). Then ĥ
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could have a mean squared error of Õ(ϵ) if minh R(h) is sufficiently small. The best we can hope for this term is the Bayes
risk from the Bayes predictor hB(x) = E[w|x]. Unfortunately, in many practical settings, limited relevant observations
from individuals and their intrinsic unpredictability can lead to a large Bayes risk, making accurate prediction challenging.
Next, we discuss why this concern is less relevant for estimating unit-level statistics.

Consider a unit-level statistic that can be expressed as the average of a strictly monotone bounded function u(·) evaluated at
wis. Note that since only the ranking of such statistics matters in ULA, we can normalize any u to be in [0, 1]. Redefine the
loss as l(ŵ, w) :=

(
u(ŵ)− u(w)

)2
. For strictly monotone convex or concave u, one can verify that the pseudo-dimension

based on the new l is similar to the pseudo-dimension based on the (ŵ − w)2 loss. We may assume that minimizing the
empirical risk based on the new loss function is computationally as hard as minimizing the empirical risk based on the
original (ŵ−w)2 loss. Given this assumption, a similar argument demonstrates that the risk of the empirical risk minimizer ĥ
can be bounded by Eq. (19). Using ĥ, we can estimate the unit-level statistic at unit k by calculating 1

N

∑
i∈Uk

u(ĥ(xi)).
Our primary interest lies in the L2 risk of the estimated unit-level statistics. Using the Jensen’s inequality, we can bound this
with the risk of ĥ:

E
[ 1

M

∑
k∈[M ]

( 1

N

∑
i∈Uk

u(ĥ(xi))−
1

N

∑
i∈Uk

u(wi)
)2] ≤ E

[ 1

MN

∑
k∈[M ]

∑
i∈Uk

(
u(ĥ(xi))− u(wi)

)2]
= R(ĥ) . (20)

This shows learning unit-level statistics is no harder than learning individual-level welfare.

Suppose ĥ is additionally unbiased: E[u(ĥ(x)) | w] = u(w). Then a straightforward calculation shows that the upper
bound of Eq. (20) is loose and the L2 risk of the estimated unit-level statistics can be bounded by 1

NR(ĥ). Moreover,
R(ĥ) ≤ R(hB) + Õ

(√
d/n2

)
. Note that the Bayes predictor in this case outputs hB(x) = u−1

(
E[u(w)|x]

)
. One can see

for a large number of individuals per unit the Bayes risk is less relevant here. When this is the case, n2 = Ω(d/(Nϵ)2)

samples are sufficient to get a mean-squared error of Õ(ϵ) which is significantly less number of samples compared to
learning an individual-level predictor with a similar error.

In sum, assuming the efficient learnability of individual welfare, learning unit-level statistics can be achieved using similar
tools as for predicting individual welfare but in a more efficient way possibly requiring fewer assumptions about the intrinsic
unpredictability of individuals. In the following, we show learning unit-level statistics can be done directly based on type 1
observations and without an individual welfare predictor under the hood.

E.3 Learning Unit-Level Statistics Under Noise-Free Observations o = f(w)

In the simplest case, observation o is an unknown deterministic function of welfare w. We assume f is a strictly increasing
function of w, however, similar results hold true for a strictly decreasing function. Learning a function from observation to
individual welfare requires learning f−1. However, this is unnecessary for estimating unit-level statistics. For instance, ρk is
an average of threshold function w → 1{w > 1 − δ} evaluated at wis. Since f is an increasing function, there exists a
threshold t such that ρk can be calculated as an average of threshold function o → 1{o > t} evaluated at ois. Therefore, the
problem of learning ρks reduces to learning a single parameter t. The next theorem demonstrates that for every available
budget B, by appropriately choosing the number of type 2 samples, we can estimate ρks sufficiently accurately with minimal
cost, such that our previous bounds on Vunit can be nearly realized with high probability.

Theorem E.1. Given a set of welfare-observation pairs {wi, oi}, choose threshold t̂ as the largest oi for which wi ≤ 1− δ.
Estimate ρk at each unit as the average of 1{o > t̂}. Consider ULA based on estimated ρks, given a budget of B ≫ c for
treating K units. Under Assumption 6.1 and 6.3, for any 0 < α < 1/2, by choosing an appropriate number of samples, the
decrease of Vunit due to the extra step of sampling and learning is bounded with probability at least 1− 2α by

∆Vunit ≥ −
√
KNδ

(
γ/γ + ln(1/α) + zα(KN)−1/4(γ/γ)1/2

)
,

where zα is the z-score at α significance level. This implies that, with probability at least 1 − 2α, the relative decrease
of Vunit is bounded by

O
(√ c

B

(
γ/γ + ln(1/α)

))
.

See proof on page 39.
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Theorem E.1 suggests learning ρks under noise-free observations comes at the relative cost of O(
√

c/B) which we expect
to be very small. In fact, this is not limited to ρks. The next theorem shows that for a 1-Lipschitz u, a slightly weaker bound
of Õ

(√
c/B

)
on the relative decrease of ULA’s value holds in expectation.

Theorem E.2. Consider ULA based on unit-level statistics defined as the average of a 1-Lipschitz function u(·) at each unit.
Given a random set S of welfare-observation pairs, we can reconstruct a quantized f−1 and use that to estimate unit-level
statistics based on type 1 observations (the details come in the proof). Assume Vunit is N -Lipschitz in the unit-level statistics
(for example, this is the case when unit-level statistics are average treatment effects). Given a budget of B ≫ c for treating
K units, under Assumption 6.1, by an appropriately chosen number of samples, the expected decrease of Vunit due to the
extra step of sampling and learning is bounded by

ES [∆Vunit] ≥ −3
√
KN − δ′

2γ

√
KN ln(KN) ,

where δ′ is the maximum treatment effect an individual may experience. This implies that, the expected relative decrease
of Vunit is bounded by

Õ
(√ c

B

(
1/γ + 1/δ′

))
.

See proof on page 40.

E.4 Learning Unit-Level Statistics Under Noisy Observations o = f(w, z)

Estimation Under Known Welfare-To-Observation Likelihood. In the simplest model, suppose the function f and the
distribution of noise z denoted by pz are known. Also, suppose welfare distribution can be represented as a member of a
parametric statistical model parameterized by a few-dimensional parameter θ. Marginalizing over z, we obtain a statistical
model with parameter θ over the space of observation. Maximizing likelihood, under mild assumptions, we can obtain a
consistent estimator θ̂k for unit k with true parameter θk. Assuming there are n1 observations available from this unit, θ̂k
will have a covariance matrix of I−1(θk)

n , where I(θk) is the Fisher information matrix. We can then analytically calculate
expected T ′

k or ρk for this unit. For instance, denoting the cumulative density function of welfare associated with θ as Pθ,
the estimated ρ̂k will be consistent with a variance of ∇θPθ(1− δ)T I−1(θk)

n ∇θPθ(1− δ). For a regular statistical model,
we can assume I(θk) is well-conditioned (its smallest eigenvalue is Ω(1)) and Pθ is O(1)-Lipschitz. These are sufficient
conditions to guarantee ∥I(θk)−1/2∇θPθ∥22 = O(1). Then,

∣∣Ew[ρ̂k]− Ew[ρk]
∣∣ = O

(
1√
n1

)
with high probability. In fact,

for each individual, there may already be a few type 1 samples almost freely available. Then, when n1 = Ω(N), the O
(

1√
n1

)
error in estimating Ew[ρk] will be smaller or on par with the unavoidable O

(
1√
N

)
finite sample error in

∣∣ρk − Ew[ρk]
∣∣,

making ρ̂k optimal.

In summary, when the welfare-to-observation likelihood is known and the Fisher information of the specified statistical
model is well-conditioned, no type 2 samples or learning is required to estimate unit-level statistics. It is worth noting that a
known likelihood does not necessarily imply that observations can fully resolve uncertainty about individual welfare. In fact,
for each individual, only a few observations may be relevant at the time of intervention. For instance, a student might have
only a few grades early in their school when interventions are most effective. Furthermore, individual welfare is subject to
change, and previous years’ grades may not be helpful due to potential changes in the student’s life circumstances. However,
these issues are less relevant when considering units as a whole.

Learning Under Limited Distortion of Welfare Distribution. The following proposition provides an example where
noisy observations of welfare are available with an unknown noise distribution, but the noise does not strongly distort the
observations. In this case, by paying a fixed cost, we can obtain an ϵ-accurate predictor for unit-level statistics.
Proposition E.3. Consider noisy observation o = f(w, z) where z is an independent randomness (noise). Assume there
exists a scaled and shifted version of observation õ such that EMD(pw, põ) ≤ ϵ, where EMD is earth mover’s distance.
Suppose u(·) is 1-Lipschitz and there are many type 1 observations available from each unit for free. By observing average
treatment effects from 1/ϵ2 units, we can obtain a predictor from observations to unit-level statistic that has an average
absolute error of O(ϵ).

Proof. For a 1-Lipschitz u(·), Kantorovich-Rubinstein duality implies
∣∣Ew[u(w)] − Eõ[u(õ)]

∣∣ ≤ EMD(pw, põ) ≤ ϵ.
Therefore, when the input to u is appropriately shifted and scaled, the estimated unit-level statistic Ûk := Eõ[u(õ) | Uk]
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will remain in the ϵ-radius of the true statistic Uk := Ew[u(w) | Uk]. We can find the scale and shift by solving a linear
regression: Assume Uks are available from m units denoted by S. Solve the regression to find the scale and shift that
minimizes

∑
k∈S |Ûk − Uk|. Such estimates will have an L1-norm risk of O(ϵ +

√
1/m). Choosing m = 1/ϵ2 will

complete the proof.

Learning Under a Nonparamteric Model. Next, we show efficient learning of unit-level statistics is possible under more
general nonparametric models. Assume that observation o ∈ O is an unknown noisy function of w: o = f(w, z). Units
differ in how welfare is distributed within each unit, but the function f and the distribution of noise z are common across
units. We denote the density of welfare and observation at unit k by pkw and pko , respectively. For demonstration purposes,
we assume that O is a closed interval of R with O(1) length.

We assume the distortion from the noise is limited in the sense that there exists v : O → R such that for every unit k we have
Epk

w
[u(w)] ≈ Epk

o
[v(o)] while maxo |v(o)| = O(maxw |u(w)|). Consider a Hilbert space H = RO equipped with an inner

product ⟨p, q⟩H =
∫
O p(o) q(o) do, for p, q ∈ H. Define a kernel K : [M ]× [M ] → R by its feature mapping ϕ : [M ] → H

where ϕ(k) = pko . Hence K(k, k′) =
∫
O pko(o) p

k′

o (o) do.

Since only the ranking of statistics matters in ULA, we can normalize any u to be in [0, 1]. Our assumptions on the
observation model ensure that there exists v∗ ∈ H with ∥v∗∥∞ = Λ = O(1) such that the unit-level statistic at unit k can be
computed by h∗(k) = ⟨v∗, ϕ(k)⟩H = Epk

w
[u(w)]. Note that h∗ is linear in v∗. Consider hypothesis class

H = {h : k → ⟨vh, ϕ(k)⟩H, ∥v2h∥H ≤ Λ} . (21)

The next assumption enables efficient learning of vh such that h(k) induces an accurate ranking of units, as presented in a
follow-up lemma.
Assumption E.4. We limit the concentration of pko by assuming r := supk∈[M ] K(k, k) is O(1).

Lemma E.5 (Mohri et al. (2018), Corollary 10.2). Consider n independent samples S drawn from an arbitrary joint
distribution D over [M ]× [M ]. For β > 0 and a sample (k, k′, y), where y = χ{h∗(k) > h∗(k′)}, define the β-margin loss
lβ
(
y(h(k)− h(k′))

)
:= min

{
1,max {0, 1− y(h(k)− h(k′))/β}

}
. Also, define the zero-one risk and empirical β-margin

risk by

R(h) := E(k,k′,y)∼D
[
l0+

(
y(h(k)− h(k′))

)]
,

R̂β(h) :=
1

n

∑
(k,k′,y)∈S

lβ
(
y(h(k)− h(k′))

)
.

Under Assumption E.4, with probability at least 1− α, for every h in the hypothesis class H of Eq. (21), we have

R(h) ≤ R̂β(h) +
4r

β

√
1

n
+

√
log(1/α)

n
,

where r = O(1) by assumption.

Direct application of this lemma is not possible since we only have finite-sample estimates of h∗(k) and h(k). Let
zα be the z-score of α significance level. If there are n1 type 1 samples available for calculating h(k), then ĥ(k) =
1
n1

∑
j,o(j)∼pk

o
vh(o

(j)) will be in zα
√
Var(vh)/n1 radius of h(k) with probability at least 1 − α. Observing n2 type 2

samples from each unit, we can estimate h∗(k) with h̃∗(k) = 1
n2

∑
j,w(j)∼pk

w
u(w(j)) up to an error of zα

√
Var(u)/n2 ≤

zα
√

1/(4n2) with probability at least 1− α. Using these finite-sample estimates, we can present the following lemma.

Lemma E.6 (Extension of Lemma E.5). Given β, n2, and α, consider n independent samples drawn from an arbitrary joint
distribution D over ([M ]× [M ]) \

{
(k, k′) : |h∗(k)− h∗(k′)| < max {β, zα/

√
n2}

}
. Let h be the minimizer of empirical

β-margin risk calculated with n1 type 1 and n2 type 2 samples. Under Assumption E.4, with probability at least 1− 8α, we
have

R(h) ≤ 4zα
β

√√
rΛ

n1
+

4r

β

√
1

n
+

√
log(1/α)

n
.
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Proof. Consider a sample (k, k′) from D. Our finite-sample evaluation of this sample’s label based on type 2 data is
ỹ = χ{h̃∗(k) > h̃∗(k′)} where h̃∗(k) = 1

n2

∑
j,w(j)∼pk

w
u(w(j)). Since D only encompasses (k, k′) such that |h∗(k) −

h∗(k′)| > zα/
√
n2 and |h̃∗(k) − h∗(k)| ≥ zα

√
1/4n2 with probability at least 1 − α, we can conclude ỹ = y with

probability at least 1− 2α.

Let ĥ∗(k) = 1
n1

∑
j,o(j)∼pk

o
v∗(o(j)) be the empirical evaluation of h∗(k) based on type 1 observations. For (k, k′) drawn

from D we know |h∗(k)− h∗(k′)| ≥ β. Since |ĥ∗(k)− h∗(k)| ≤ zα
√
Var(v∗)/n1 with probability at least 1− α, we can

argue lβ
(
y(ĥ∗(k)− ĥ∗(k′))

)
≤ 2zα

β

√
Var(v∗)/n1 with probability at least 1− 2α.

Putting it together, the finite-sample evaluation of empirical margin risk of h∗ will be bounded by 2zα
β

√
Var(v∗)/n1 with

probability at least 1 − 4α. Let h be the minimizer of the finite-sample evaluation of empirical margin risk. A similar
argument shows the true empirical margin risk of h, denoted by R̂β(h), cannot differ from its finite-sample evaluation
more than 2zα

β

√
Var(vh)/n1 with probability at least 1− 4α. Therefore, since h was the minimizer of the finite-sample

evaluation of empirical margin risk, we have

R̂β(h) ≤
2zα
β

√
Var(v∗)

n1
+

2zα
β

√
Var(vh)

n1
, (22)

with probability at least 1− 8α. By definition of the hypothesis class, ∥v2h∥H ≤ Λ. Then for any unit k, Assumption E.4 and
Cauchy–Schwarz inequality imply

Var(vh) ≤ max
k

Epk
o
[v2h(o)] = max

k
⟨ϕ(k), v2h⟩H ≤ max

k
∥ϕ(k)∥H ∥v2h∥H ≤

√
rΛ .

Since h∗ ∈ H, the same bound holds on Var(v∗). Using these variance bounds to further bound R̂β(h) in Eq. (22), and
plugging this into Lemma E.5 complete the proof.

Thus far, we have shown that efficiently ranking units is possible for a general bounded u(·). The following assumption will
enable us to connect the ranking risk with the ULA’s value in subsequent analysis.
Assumption E.7. Denote the unit-level statistics at unit k by Uk. We assume Uks are not very concentrated: There exists
λ = O(1) such that Pr(Uk ∈ [a, a+ b]) ≤ λ b.

Since type 1 data is abundant and almost freely available, we neglect finite-sample issues with n1 and assume c1 ≈ 0. The
next theorem shows that by appropriately choosing the number of samples and margin β, the relative cost of learning an
accurate ranking of units will be negligible for a sufficiently large budget.

Theorem E.8. Suppose ULA treats K units and ULA’s value is (Nδ′)-Lipschitz in unit-level statistics. By appropriate
choice of the algorithm and the number of samples as detailed in the proof, the relative decrease in ULA’s value due to the
cost of learning a ranking of units is O

(
K−8/9M2/3N−2/9

)
with high probability, where M is the total number of units

and N is the number of individuals per unit. As a result, for K = Ω(M3/4/N1/4), the effect of learning starts to become
negligible asymptotically.

Proof. From m random units, sample n2 true welfare from each unit. Without loss of generality, assume ULA allocates
resources to the units with the smallest statistics. We assume the ξ-quantile of the unit-level statistics is known and denoted
by U(ξ). One can later verify that quantiles can effectively be estimated with our sampled data without incurring a significant
additional cost. Define ∆ := max {β, zα/

√
n2}. Targeting K units, define D as the product of two distributions D1 and D2,

where D1 is a uniform distribution over any unit with a statistic less than U(K/M) and D2 is a uniform distribution over any
unit with a statistic more than U(K/M) +∆. Since Assumption E.7 limits the concentration of Uks, the m random samples
from the units give n = Θ

(
K
Mm2

)
samples from D.

We minimize the empirical β-margin risk of Lemma E.6 using finite-sample evaluations of welfare. Since by definition of D
this problem is realizable, assuming empirical risk minimization can be performed perfectly, we have R̂β(h) = 0. Next,
we bound R(h). For notational brevity, we normalize ULA’s value by Nδ′, where δ′ is the maximum treatment effect an
individual may experience.

• For K ′ units (K ′ ≤ K) in the support of D2 to substitute K ′ units in the support of D1, at least K ′2 pairwise misranking
is required. Since every pairwise misranking at least contributes 1/(KM) to the risk, we have K ′ ≤

√
KMR(h), where
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Lemma E.6 requires R(h) = O
(
1
β

√
M

Km2

)
with high probability. Therefore, the change in ULA’s value due to misranking

is O(K1/4M3/4m−1/2β−1/2).

• Assuming c2 ≈ c, the cost of sampling wastes a budget equivalent to treating mn2 individuals. Hence, the change in
ULA’s (normalized) value due to the sampling cost is O(mn2/N).

• Finally, assuming ULA’s (normalized) value is 1-Lipschitz in unit-level statistics, the change in ULA’s value due to
misranking of individuals with their statistic in [U(K/M), U(K/M) + ∆], is O

(
∆(Mλ∆)

)
= O(M∆2) = O(Mβ2 +

M/n2).

Adding these all together, the decrease in ULA’s (normalized) value is bounded by

O
(
K1/4M3/4m−1/2β−1/2 +mn2/N +Mβ2 +M/n2

)
.

Choose β = K1/10M−1/10m−1/5 and n2 =
√
MN/m. Then, the above bound reduces to

O
(
K1/5M4/5m−2/5 +

√
Mm/N

)
.

Finally, choose m = K2/9M1/3N5/9. Then the above bound simplifies to

O
(
K1/9M2/3N−2/9

)
.

Since ULA’s (normalized) value is Θ(K), the relative change in ULA’s value is bounded by O
(
K−8/9M2/3N−2/9

)
. Hence,

this effect becomes negligible when K exceeds Ω(M3/4/N1/4).

In a comparison with naive sampling from all units (Appendix E.1), a direct calculation shows that Theorem E.8 provides
more efficient learning if N = O(M3). In particular, for M = Θ(N), the effect of learning a ranking according to
Theorem E.8 becomes negligible when K = Ω(

√
M), while naive sampling from all units requires K = Ω(M2/3). It is

also worth noting that the guarantee in Theorem E.8 holds with high probability, which is a stronger result than the one
presented in Appendix E.1 that holds in expectation.

Theorem E.8 has a pessimistic view of where incorrect ranking can occur. Optimistically, if for any pair of units, the
probability of mistake is O(R(h)), then a simple calculation shows sampling from O(log(M)) units is enough to get a
sufficiently accurate ranking for ULA.
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F Additional Statements

Proposition F.1. In ILA with an ϵ-accurate predictor, if there are at least I = ⌊B−p(ϵ)
c ⌋ individuals with a welfare of

(1− δ − 2ϵ) or less, the ILA’s maximum value of

max
{B − p(ϵ)

c
, 0

}
δ

can be realized.

Proof. To see this, first, observe that for the I individuals with the lowest welfare, the estimated welfare will be less than or
equal to (1− δ − ϵ). This ensures the I th estimated welfare after sorting, ŵs(I), will be less than or equal to (1− δ − ϵ).
Therefore, the true welfare of s(1), . . . , s(I) should be less than or equal to (1− δ). For such a group of targeted individuals,
the treatment effect is at its maximum of δ.

Theorem F.2 (Sufficient conditions for a dominant ULA in case of a sublinear budget). Consider ULA with a (q, q′)-within-
unit allocation and a budget B = o(C). Assume q′ ≤ (1− ρ̄)q. Define normalized inequality Ĝρ := Gρ/(1− ρ̄) ∈ [0, 1],
and consider inequality threshold

Ĝ(1)
ρ := 1− q

ρ̄

1− ρ̄

1− q
.

• If q > ρ̄, within-unit allocation is effective and ULA achieves
(
1− q′/(1− q)

)
of the maximal value of B δ

c . This implies(
1 +O(q′)

)
·ULA ⪰ ILA.

If further p(ϵ)/B > q′/(1− q), we have ULA ≻ ILA .

• If q ≤ ρ̄ but a minimal inequality is present as Ĝρ > Ĝ
(1)
ρ , within-unit allocation is still effective and similar results hold

true as the previous case.

• If none of the above conditions hold, but p(ϵ) consumes a significant portion of the budget as p(ϵ) > B qc−(q−q′)
1−q , we

have ULA ≻ ILA .

Proof. First of all, note that for a sublinear budget, the condition K ≤ M(1 − ρ̄) of Lemma 4.2 (and so Corollary 4.4)
is met. In the first two cases, within-unit allocation is effective, and Corollary 4.4 shows ULA at max loses a value of
B δ

c

(
q′

1−q

)
compared to the optimal. On the other hand, Eq. (6) shows ILA at least loses a value of p(ϵ) δc . Therefore,

ULA’s value will exceed ILA if B q′

1−q < p(ϵ). For a least effective within-unit allocation, Corollary 4.4 shows that ILA

would lose a maximum value of B δ
c

( qc−(q−q′)
1−q

)
. Therefore, a similar argument shows that ULA will dominate ILA if

B
( qc−(q−q′)

1−q

)
< p(ϵ).

Proposition F.3. If 1) τ is strictly decreasing, 2) τ ∈ C1, 3) τ is either convex or concave, and 4) dτ
dw is convex, then r(w)

of Property 1 will be increasing in w for wc = 0 and every valid choice of a and b. Therefore, under these conditions, τ
won’t have Property 1.

Proof. Since τ is strictly decreasing, for every choice of b > 0, r(w) is well-defined. Denote the derivative of τ by τ ′.
Taking the derivative of r w.r.t. w and rearranging the terms, we obtain

1(
τ(w)− τ(w + b)

)2{τ ′(w)(τ(w + a)− τ(w + b)
)
− τ ′(w + a)

(
τ(w)− τ(w + b)

)
+ τ ′(w + b)

(
τ(w)− τ(w + a))

}
.

The sign of the derivative is determined by its numerator, denoted by n(w). Define

c1(w) := τ(w + a)− τ(w + b) ,

c2(w) := τ(w)− τ(w + a) .

Then, the numerator of the derivative can be written as

n(w) = c1(w)τ
′(w) + c2(w)τ

′(w + b)−
(
c1(w) + c2(w)

)
τ ′(w + a) .
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Note that a strictly decreasing τ and b ≥ a > 0 implies c1 and c2 are positive. Then, for a convex τ ′, Jensen’s inequality
implies

n(w) ≥
(
c1(w) + c2(w)

)
τ ′
(
w + b

c2(w)

c1(w) + c2(w)

)
−
(
c1(w) + c2(w)

)
τ ′(w + a) . (23)

• For a concave τ and b ≥ a > 0, the Jensen’s inequality gives τ(w + a) ≥ (1− a/b)τ(w) + (a/b)τ(w + b). This allows
us to write

c2(w)

c1(w) + c2(w)
=

τ(w)− τ(w + a)

τ(w)− τ(w + b)
≤ τ(w)− (1− a/b)τ(w)− (a/b)τ(w + b)

τ(w)− τ(w + b)
=

a

b
. (24)

Plugging this into Eq. (23) and using the fact that τ ′ is decreasing since τ is concave, we obtain

τ ′
(
w + b

c2(w)

c1(w) + c2(w)

)
≥ τ ′(w + a) . (25)

• For a convex τ and b ≥ a > 0, the Jensen’s inequality gives τ(w + a) ≤ (1− a/b)τ(w) + (a/b)τ(w + b). So, Eq. (24)
holds in the reverse direction. Plugging this into Eq. (23) and using the fact that τ ′ is increasing since τ is convex, we
again obtain Eq. (25).

Since in both cases Eq. (25) holds true, Eq. (23) implies n(w) ≥ 0, and the proof is complete.

Theorem F.4. Consider ULA with a (q, q′)-within-unit allocation and a budget B that is no more than the cost of treating
MT

′
/δ′ units. Under Assumption 6.3, suppose τ has Property 1 for wc, a = (1− q − q′)/γ, and b = (1− 2q′)/γ. Define

T ′
c := γΓb(wc) + q′δ′ and two inequality thresholds

G̃
(1)
T := 1− T

′

T ′
c

≤ G̃
(2)
T := 1− 1

4

T
′

T ′
c

− 3

4

T
′

δ′
. (26)

Then, if any of the following conditions holds, for every treated unit k, we will have T ′
k ≥ T ′

c :

• If GT > G̃
(2)
T and the budget is not excessively large (not surpassing the cost of treating MT

′
/2δ′ units).

• If GT > G̃
(1)
T and the budget does not exceed

B

C
< (1− q)

T
′ − T ′

c +max {T ′ − T ′
c, GTT

′
c}

2(δ′ − T ′
c)

. (27)

Then, defining T ′
eff := T

′
/(1−GT ) and neglecting O(B2/C2), if any of the above conditions holds, we have

Vunit ≥ KQτ (T
′
eff − q′δ′; q, q′, γ) .

Proof. Denote the profile of all T ′
ks by T ′. Let s(·) be the ascending sort of T ′

ks. For notational simplicity, assume s(k) = k
without loss of generality. We also drop the dependency of Qτ (·; q, q′, γ) on q, q′, and γ as these are the constants of the
problem. Lemma 6.4 guarantees that unit k if treated, provides a value of at least Qτ (T

′
k − q′δ′). Then, treating K units

ensures a value of

Vunit ≥ Ṽ (T ′) :=

M∑
k=M−K+1

Qτ (T
′
k − q′δ′) .

Next, we look for T ′ minimizing Ṽ (T ′) while satisfying a mean of T
′

and a Gini index of GT . The proof has two parts:
First, we find sufficient conditions under which all the treated units have a T ′ larger than or equal to

T ′
c := γΓ(1−2q′)/γ(wc) + q′δ′ .

Then, for such units, we further lower bound Ṽ (T ′).
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Ensuring for All Treated Units, T ′
k ≥ T ′

c. As the first step, we relax the problem, allowing for unit profiles with a Gini
index of GT or more. This requires

2
∑

k∈[M ]

kT ′
k ≥ M(M + 1)T

′
+M2T

′
GT . (28)

Consider two units l and u (u > l). For a fixed mean, the Gini index or equivalently the left-hand side of Eq. (28) can be
increased if we increase T ′

u and decrease T ′
l by the same amount. Now assume there are K+ units with T ′

k ≥ T ′
c. Neglecting

two units at max, for a fixed K+, the Gini index will be maximized when units are concentrated on the boundaries T ′
min, T ′

c,
and T ′

max. We denote the number of units on these boundaries by K0, K1, and K2. These numbers should be integer but by
neglecting at max three units, we can assume they can take any nonnegative real value. We further relax the problem and
set T ′

min = 0 and T ′
max = δ′. We do a proof by contradiction. If any of the K treated units has T ′

k < T ′
c, we should have

K > K+. Since K+ ≥ K2, necessarily K > K2. The mean constraint requires K1T
′
c +K2δ

′ = MT
′
. Using this and

K0 +K1 +K2 = M , we can solve for K0 and K1 in terms of K2:

K1 =
MT

′ −K2δ
′

T ′
c

, (29)

K0 =
M(T ′

c − T
′
) +K2(δ

′ − T ′
c)

T ′
c

. (30)

Then, the nonnegativity of K0 and K1 requires

T
′ − T ′

c

δ′ − T ′
c

≤ K2

M
≤ T

′

δ′
. (31)

The Gini index constraint also imposes a lower bound on K2. For a unit profile concentrated on the boundaries, Eq. (28) can
be written as

(K0 + 1 +M −K2)K1T
′
c + (M −K2 + 1 +M)K2δ

′ ≥ M(M + 1)T
′
+M2T

′
GT .

Plugging K0 and K1 from Eq. (29) into this and doing a direct calculation, we obtain

−
(K2

M

)2 δ′

T
′ + 2

(K2

M

)
+

T ′
c(1−GT )− T

′

δ′ − T ′
c

≥ 0 . (32)

If B = o(c) and consequently K/M = o(1), asymptotically this condition requires GT ≤ G̃
(1)
T := 1− T/T ′

c. Therefore, in
the case of a sublinear budget, GT > G̃

(1)
T results in contradiction and ensures for no treated unit T ′

k < T ′
c. In general, since

K2/M ≤ T
′
/δ′ (Eq. (31)), the quadratic function of Eq. (32) is increasing in the valid range of K2. Under the assumption

K/M ≤ T
′
/δ′, then K > K2 requires Eq. (32) to be holding for K2 = K as well. Now consider two cases:

• If the budget is not excessively large and K/M ≤ T
′
/(2δ′), Eq. (32) for K2 = K = T

′
/(2δ′) requires

GT ≤ G̃
(2)
T := 1− 1

4

T
′

T ′
c

− 3

4

T
′

δ′
.

Therefore, GT > G̃
(2)
T results in a contradiction.

• Neglecting the squared term in Eq. (32), K/M should be at least (T
′−T ′

c(1−GT ))/(2δ
′−2T ′

c), which is binding only if
GT > G̃

(1)
T := 1−T

′
/T ′

c. Furthermore, Eq. (31) and K ≥ K2 requires K/M to be also no less than (T
′−T ′

c)/(δ
′−T ′

c).
Putting these together,

K

M
≥ 1

2

T
′ − T ′

c +max {T ′ − T ′
c, GTT

′
c}

δ′ − T ′
c

.

Hence, a K less than the above amount results in a contradiction.

This completes the first part of the proof.
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Lower Bounding Ṽ (T ′). We next lower bound Ṽ (T ′), under the conditions that T ′
k ≥ T ′

c for k > M −K, subject to the
mean and Gini index constraints. As the first step, we further relax the Gini constraint of Eq. (28) and require

2

M−K∑
k=1

kT ′
k + 2M

M∑
k=M−K+1

T ′
k ≥ M(M + 1)T

′
+M2T

′
GT . (33)

Let T ′∗ be the optimal solution of the relaxed problem. We now construct a solution T ′ from T ′∗ that does not increase Ṽ
while maintaining a similar mean and meeting the relaxed Gini constraint of Eq. (33) with a lower or equal margin. As the
first step, construct a new solution as

T ′
k =

{
T ′∗
k , k ≤ M −K ,
1
K

∑
k>M−K T ′∗

k o.w.

This solution maintains the same mean and meets the relaxed Gini constraint with the same margin. We argue Ṽ (T ′) ≤
Ṽ (T ′∗): First, we show Qτ (t) is a convex function for t ≥ T ′

c − q′δ′ or equivalently T ′ ≥ T ′
c. To see this, note that

dQτ

dt
= (Γ−1

b )′(t/γ) Γ′
a

(
Γ−1
b (t/γ)

)
=

Γ′
a(w)

Γ′
b(w)

=
τ(w)− τ(w + a)

τ(w)− τ(w + b)
, (34)

where w = Γ−1
b (t/γ). Then Property 1 implies dQτ

dt is decreasing in w or equivalently increasing in t for w ≤ wc or
equivalently t = T ′ − q′δ′ ≥ γΓb(wc) = T ′

c − q′δ′. Since we have already shown T ′
k ≥ T ′

c for all of the top K units,
Jensen’s inequality implies Ṽ (T ′) ≤ Ṽ (T ′∗). Therefore, if T ′∗ was optimal, the constructed T ′ should be optimal as well.

In the second step, choose any two units l, u from [M −K] such that T ′
l < T ′u. Decrease T ′

l and increase T ′
u for the same

amount while the order of units is preserved. Such a change will increase the margin of the relaxed Gini index constraint
but does not change the mean of the units and the objective. By repetitively applying this operation, we obtain an optimal
solution where all units except for one are concentrated around either 0 or T ′

u := 1
K

∑
k>M−K T ′

k. Hence, we can represent
this solution by two numbers K0 and K1 which are the number the number of units with T ′

k of 0 and T ′
u. These numbers

should be integers however neglecting the value of two units in maximum, we can assume they are nonnegative real numbers
satisfying the sum constraint K0 +K1 = M . The mean constraint also requires K1T

′
u = MT

′
. Solving for K0 and K1 in

terms of T ′
u we obtain K1/M = T

′
/T ′

u and K0/M = 1− T
′
/T ′

u. The nonnegativity of K0 and K1 ≥ K imposes

max {T ′
, T ′

c} ≤ T ′
u ≤ M

K
T .

The relaxed Gini constraint also imposes another lower bound on T ′
u. From Eq. (33) we have

(K0 + 1 +M −K)(K1 −K)T ′
u + 2MKT ′

u ≥ M(M + 1)T
′
+M2T

′
GT .

Substituting K0 and K1 in terms of T ′
u and simplifying equation, we obtain

K2 −K

M2

(T ′
u

T
′

)2

+ (1−GT )
(T ′

u

T
′

)
− 1 ≥ 0 .

Then a direct calculation shows T ′
u should be at least as large as

T ′
u ≥ 2T

′

1−GT +
√
(1−GT )2 + 2(K2 −K)/M2

. (35)

Using this lower bound in Ṽ (T ′) = KQτ (T
′
u − q′δ′) then completes the proof.
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G Missing Proofs
Theorem 6.7 (Sufficient conditions for a dominant ULA in case of a heterogeneous effect). Consider ULA with a (q, q′)-
within-unit allocation and a budget B that is no more than the cost of treating MT

′
/δ′ units. Under Assumption 6.3

and conditions of Theorem 6.2, suppose an elbow-shaped effect (Fig. 2) that satisfies Property 1 for wc = 1 − δ − a,
a = (1− q − q′)/γ, and b = (1− 2q′)/γ. Then T ′

c ≤ δ′ − q2/2. Consider inequality thresholds

G
(1)
T := 1− T

′

δ′ − q2/(2γ)
≤ G

(2)
T := 1− 1

4

T
′

δ′ − q2/(2γ)
− 3

4

T
′

δ′
.

If either GT > G
(2)
T , or GT > G

(1)
T and the budget meets Eq. (36), then we have T ′

k ≥ δ for every treated unit k.
Furthermore,

• Defining g := (GT −G
(1)
T )/(1−GT ) and

α := 1− 1− q − q′

4γ
− 1

2(q − q′)
g − γ

4

1− 2q

(q − q′)3
g2 ,

and neglecting O(l2), ULA achieves (1− q′/(1− q))(1− αl/δ) of the optimal value.

• Neglecting O(q′2), if

p(ϵ)

B
>

q′

1− q
+ α

l

δ
− l

δ

1

8γ

(B
C

+ γϵ/2
)
,

we will further have ULA ≻ ILA .

Proof. Since τ is l-Lipschitz when w < 1− δ, for wc = 1− δ − a, we have

T ′
c = γΓb(wc) + q′δ′ = γΓa(wc) + γ(δ − (b− a)/2)(b− a) + q′δ′

≤ γδ′a+ γ(δ′ − (b− a)/2)(b− a) + q′δ′ = γδ′b− γ(b− a)2/2 + q′δ′

≤ δ′ − q2/(2γ) .

Plugging this into Eq. (26) give inequality thresholds G(1)
T and G

(2)
T .

Examining Eq. (27), if T
′ − T ′

c ≥ GTT
′
c, then the upper bound on the budget decreases with increasing T ′

c. On the other
hand, if T

′ − T ′
c < GTT

′
c, utilizing the property of the Gini index that GT cannot exceed 1− T

′
/δ′, one can verify that the

upper bound is again decreasing in T ′
c. Therefore, to satisfy Eq. (27), it suffices to have

B

C
< (1− q)

T
′ − δ′ + q2/(2γ) + max {T ′ − δ′ + q2/(2γ), (δ′ − q2/(2γ))GT }

2(δ′ − δ′ + q2/(2γ))

=
1

2
(1− q)(2γδ′/q2 − 1)

(
−G

(1)
T +max {−G

(1)
T , GT }

)
. (36)

In the proof of Theorem F.4 (in particular, Eq. (34)) we showed

dQτ

dt
=

τ(w)− τ(w + a)

τ(w)− τ(w + b)
,

for w = Γ−1
b (t/γ). Then we argued Property 1 implies Qτ (t) is a convex function for t ≥ T ′

c − q′δ′. Now we further show
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that Qτ is strongly convex in the regime of interest where w + b ≥ wc and w + a ≤ wc:

d2Qτ

dt2
=

dw

dt

d

dw

(dQτ

dt

)
=

1

γ

−τ ′(w)
(
τ(w + a)− τ(w + b)

)
+ τ ′(w + a)

(
τ(w)− τ(w + b)

)
− τ ′(w + b)

(
τ(w)− τ(w + a)

)(
τ(w)− τ(w + b)

)3
≥ 1

γ

l
2

(
τ(w + a)− τ(w + b)

)
− l

(
τ(w)− τ(w + b)

)
+

(
τ(w)− τ(w + a)

)(
τ(w)− τ(w + b)

)3
=

1

γ

(
τ(w)− τ(w + a)

)
− l

2

(
τ(w)− τ(w + b)

)
+O(l2)(

τ(w)− τ(w + b)
)3

≥ l

2γ

2a− b

(b− a)3
+O(l2) . (37)

Here we denoted the derivative of τ by τ ′ and used l ≥ |τ ′(w)| ≥ l/2 for w ≤ wc + a and τ ′(w + b) = −1. Neglecting
O(l2), this second derivative is positive for a > b/2 or equivalently q < 1/2. We denote the lower bound of Eq. (37) by β2.
Using a similar technique, we can lower bound the first derivative as well:

dQτ

dt
≥ l

2

a

b− a
+O(l2) .

Neglecting O(l2), we denote this lower bound by β1. At w = wc, we have

Qτ (T
′
c − q′δ′) = γΓa(wc) ≥ γa(δ + la/4) .

Also note that for a nonnegative G̃
(1)
T , we have

T ′
eff − T ′

c =
T ′
c

1−GT

(T ′

T ′
c

− 1 +GT

)
≥ T

′GT − G̃
(1)
T

1−GT
≥ T

′GT −G
(1)
T

1−GT
.

Now we have all the pieces to lower bound Qτ (T
′
eff − q′δ′):

Qτ (T
′
eff − q′δ′) ≥ Qτ (T

′
c − q′δ′) + β1(T

′
eff − T ′

c) +
1

2
β2(T

′
eff − T ′

c)
2

≥ γa
(
δ +

la

4
+

β1

γ
T

′GT −G
(1)
T

1−GT
+

β2

2γ

(
T

′GT −G
(1)
T

1−GT

)2)
.

Plugging β1, β2, a, and b into the above equation and using K ≈ B
Nc(1−q) in Theorem F.4 will complete the proof of the

near-optimality of ULA.

We next drop O(q′2) from our calculation and obtain sufficient conditions for the dominance of ULA. If ULA is not
dominant, necessarily,

(B − p(ϵ))
δ′

c
> B

δ′

c

(
1−O(l, q′)

)
.

This requires p(ϵ)/B = O(l, q′). For such a small price of prediction, using Theorem 6.2, it is sufficient to have

Bδ′
(
1− q′

1− q
− α

δ

δ

)
> (B − p(ϵ))

(
δ′ − l

8γ
(B/C + γϵ/2)

)
≈ Bδ′ − p(ϵ)δ −B

l

8γ
(B/C + γϵ/2)

)
.

Rearranging the terms and solving for p(ϵ)/B will prove the stated sufficiency condition.

Proof of Lemma 4.1. Recall that within an intervened unit, resources will be allocated to the lower (1 − q) fraction of
individuals, potentially including a q′ fraction from the top q cut. Depending on the relative size of q to ρk, two possibilities
arise:
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• ρk ≤ q: In the worst case, the top ρk portion may erroneously receive the resources in place of the population in need.
However, if q′ ≤ ρk, only a proportion of size q′ may be misclassified. The treatment on these individuals may have zero
effect. Hence, Tk/δ ≥ 1− q −min {ρk, q′}.

• ρk > q: Since at least (q − q′) fraction of top individuals rightfully will not receive the resources, at most ρk − (q −
q′) fraction of top individuals will be among treated. These individuals might experience a zero effect. Therefore, we have
Tk/δ ≥ 1− q −

(
ρk − (q − q′)

)
.

In both cases, we can write the lower bound as Tk/δ ≥ 1− q − loss(ρk), where loss is defined in Eq. (7).

Proof of Lemma 4.2. Given a unit profile ρ, let s(·) be the ascending sorting of ρks. For notational simplicity, assume
s(k) = k without loss of generality. The largest possible loss of any unit profile ρ with a mean of ρ̄ and Gini index of Gρ is
the solution of the optimization problem

max
ρ

∑
k∈[K]

loss(ρk) (38)

s.t.
∑

k∈[M ]

ρk = Mρ̄ , (Mean constraint)

∑
k∈[M ]

kρk − M(M + 1)

2
ρ̄− M2

2
ρ̄Gρ = 0 , (Gini index constraint) (39)

1 ≥ ρk ≥ 0 , (Valid range constraint)
ρk+1 ≥ ρk, for k ∈ [M − 1] . (Valid sorting constraint)

The second constraint (Eq. (39)) is obtained by rearranging terms in the Gini index formula. Since loss(·) is a piecewise
linear function and the constraints are all linear functions of ρ, the above optimization problem is a linear program. We
upper bound the solution to this problem in the following.

As the first step, we relax the Gini index constraint (Eq. (39)) to include every unit profile with a Gini index of Gρ or more:∑
k∈[M ]

kρk − M(M + 1)

2
ρ̄− M2

2
ρ̄Gρ ≥ 0 . (40)

The solution of the linear program with this relaxed constraint will serve as an upper bound for lossK(ρ).

Depending on the magnitude of ρK (corresponding to the last treated unit) compared to q and q′, three regimes can be
defined:

1. ρK < q′

2. q′ ≤ ρK < q

3. q ≤ ρK

For a fixed K, we upper bound the solution of the linear program in each regime and take the maximum of these three upper
bounds as a bound for the original problem.

Second Regime. Let ρ∗ be an optimal solution in the second regime where q′ ≤ ρ∗K < q. We show a new solution ρ can be
constructed from ρ∗ with a similar mean, larger or equal Gini index, and larger or equal loss. Hence, this solution should
also be optimal. Let l = min {k : ρ∗k > q′} and u = max {k : ρ∗k < 1}. Define ∆ = min {ρ∗l − q′, 1 − ρ∗u}. This is the
maximum amount that we can move ρ∗l back and ρ∗u forward while keeping them in the [q′, 1] range. Define the new values
ρl = ρ∗l − ∆, ρu = ρ∗u + ∆, and ρk = ρ∗k for k /∈ {l, u}. The new solution ρ admits the same mean as ρ∗, preserves
the ordering, and increases the margin of the Gini index constraint (Eq. (40)) by (u − l)∆ ≥ 0. Further, since ρ∗K < q,
we already know for l ≤ k ≤ K, loss(ρk) is the minimum loss in range [q′, 1] and this change can only increase loss(ρ).
Therefore, ρ should also be an optimal solution. By repetitively applying this operation, we can obtain an optimal solution ρ
such that no more than one unit lies in (q′, 1). During this process, ρK may enter the third regime, which is fine, as it shows
the loss of the solution in the third regime is larger. In the rest of the proof, we continue in the second regime where ρK < q.

Let us call the constructed unit profile, which we know is optimal, ρ∗. We build on the same idea and further manipulate ρ∗ to
obtain another optimal unit profile ρ. Let l = min {k : ρ∗k > 0} and u = max {k : ρ∗k < q′}. Define ∆ = min {ρ∗l , q′−ρ∗u}.

30



Allocation Requires Prediction Only if Inequality Is Low

This is the maximum amount that we can move ρ∗l back and ρ∗u forward while keeping them in the [0, q′] range. Define the
new values ρl = ρ∗l −∆, ρu = ρ∗u +∆, and ρk = ρ∗k for k /∈ {l, u}. The new solution ρ again has the same mean as ρ∗,
preserves the ordering, and increases the margin of the Gini index constraint by (u− l)∆ ≥ 0. Moreover, since loss(·) is
linear in the [0, q′] range and u ≤ K, this operation does not change the objective function. Therefore, if ρ∗ was optimal, ρ
also remains optimal. By repetitively applying this operation, we can obtain an optimal solution ρ such that no more than
one unit admits 0 < ρk < q′.

Neglecting a maximum of two units, in the optimal solution ρ constructed so far, ρk only takes a value from {0, q′, 1}.
Hence, we can represent this solution by three numbers K0, K1, and K2 which are the number of units with ρk of 0, q′, and
1, respectively. These numbers should be integers; however, neglecting the value of three units in maximum, we can assume
they are nonnegative real numbers satisfying the sum constraint K0 +K1 +K2 = M . The mean constraint for this solution
is

K1q
′ +K2 = Mρ̄ .

Solving for K2, we have K2 = Mρ̄ − K1q
′. The nonnegativity of K2 requires K1 ≤ Mρ̄/q′. Plugging K2 into

the sum constraint and solving for K0, we obtain K0 = M(1 − ρ̄) − K1(1 − q′). The nonnegativity of K0 requires
K1 ≤ M(1− ρ̄)/(1− q′). The Gini index constraint for ρ is∑

k∈[M ]

kρk =
1

2
(K0 + 1 +K0 +K1)K1q

′ +
1

2
(M −K2 + 1 +M)K2 ≥ 1

2
M(M + 1)ρ̄+

1

2
M2ρ̄Gρ .

Plugging K0 and K2 into this and simplifying equations, we obtain

K1

M
≤

√
ρ̄(1− ρ̄−Gρ)

q′(1− q′)
.

Note that for values bounded between 0 and 1 with a mean of ρ̄, the Gini index cannot exceed (1− ρ̄). Putting these together,

0 ≤ K1

M
≤ min

{ ρ̄

q′
,
1− ρ̄

1− q′
,

√
ρ̄(1− ρ̄−Gρ)

q′(1− q′)

}
.

This imposes the following bounds on K0:

1− ρ̄ ≥ K0

M
≥ max

{
0, 1− ρ̄− ρ̄

1− q′

q′
, 1− ρ̄−

√
1− q′

q′
ρ̄(1− ρ̄−Gρ)

}
. (41)

In regime 2, we have q′ ≤ ρK < q. This requires K0 ≤ K ≤ K0 +K1. Substituting K1 in terms of K0 and performing a
direct calculation, we obtain the following upper bounds on K0:

K0

M
≤ K

M
,

K0

M
≤ 1− ρ̄

q′
− K

M

1− q′

q′
. (42)

For a solution to exist in regime 2, the upper bounds of Eq. (42) should be larger than the lower bound of Eq. (41). One can
verify that for K ≤ 1− ρ̄, the upper bound in the right-hand side of Eq. (42) is larger than the lower bound. Hence, there
remains one condition for the solution of regime 2 to exist:

K

M
≥ 1− ρ̄−min

{
ρ̄
1− q′

q′
,

√
1− q′

q′
ρ̄(1− ρ̄−Gρ)

}
.

In regime 2, we can write the objective as
lossK(ρ) = (K −K0)q

′ .

Maximizing the objective then corresponds to minimizing K0 subject to Eq. (41). It can be verified that when q′ < qc =

ρ̄
1−ρ̄−Gρ

1−ρ̄−ρ̄Gρ
, the lower bound in Eq. (41) is zero, resulting in lossK(ρ) = Kq′. When q′ ≥ qc, the lower bound is at least

K0 ≥ 1− ρ̄−
√
ρ̄ (1− ρ̄−Gρ) (1− q′)/q′. For K0 equal to this lower bound, lossK(ρ) ≤ (K −K0)q

′.
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Third Regime. Let ρ∗ be an optimal solution in the third regime where q ≤ ρ∗K . We follow a similar approach and show
that a new optimal solution ρ can be constructed from ρ∗ that admits a specific structure. First of all, Let us upper bound
loss(ρk) with l̃oss(ρk) = max {q′, ρk − (q − q′)}. We will consider maximizing l̃ossK(ρ) :=

∑
k∈[K] l̃oss(ρk) instead

of lossK(ρ) in the linear program of Eq. (38). Fix ρ∗K . Let l = min {k : k > 0} and u = max {k : ρ∗k < ρ∗K}. Define
∆ = min {ρ∗l , ρ∗K − ρ∗u}. This is the maximum amount we can move ρ∗l back and ρ∗u forward while keeping them in
the [0, ρ∗K ] range. Define the new values ρl = ρ∗l −∆, ρu = ρ∗u + ∆, and ρk = ρ∗k for k /∈ {l, u}. The new solution ρ
admits the same mean as ρ∗, preserves the ordering, and increases the margin of the Gini index constraint by (u− l)∆ ≥ 0.
Further, since l̃oss(·) is convex in [0, ρ∗K ], this change can only increase the loss. Therefore, ρ should be optimal as well.
By repetitively applying this operation, we can obtain an optimal solution ρ such that no more than one unit falls in
0 < ρk < ρ∗K = ρK .

Let us call the constructed unit profile ρ∗. Again, fix ρ∗K . Let l = min {k : k > ρ∗K} and u = max {k : ρ∗k < 1}. Define
∆ = min {ρ∗l − ρ∗K , 1− ρ∗u}. This is the maximum amount we can move ρ∗l back and ρ∗u forward while keeping them in the
[ρ∗K , 1] range. Define the new values ρl = ρ∗l −∆, ρu = ρ∗u +∆, and ρk = ρ∗k for k /∈ {l, u}. This new solution has the
same mean as ρ∗ with a higher Gini index. It also leaves the objective function unaffected. Hence, the constructed solution
is also optimal. By repetitively applying this operation, we can obtain an optimal solution ρ such that for no more than one
unit ρ∗K < ρk < 1.

For notational simplicity, denote ρ∗K by ρ, a free parameter in the constructed solution. Neglecting a maximum of two units,
ρk in the constructed optimal solution can only take a value from {0, ρ, 1}. So, we can represent this solution with ρ and
three integers K0, K1, and K2 which are the number of units with ρk equal to 0, ρ, and 1, respectively. Although these
numbers are integers, we can treat them as nonnegative real numbers, neglecting the effect of three units in maximum. We
require K0 +K1 +K2 = M . The mean constraint also requires

K1ρ+K2 = Mρ̄ .

Solving these two equations for K1 and K2 in terms of K0, we obtain K1 =
(
M(1 − ρ̄) − K0

)
/(1 − ρ) and K2 =(

M(ρ̄− ρ) +K0ρ
)
/(1− ρ). The nonnegativity of K1 and K2 imposes a bound on K0: 1− ρ̄/ρ ≤ K0/M ≤ 1− ρ̄. The

Gini index constraint requires∑
k∈[M ]

kρk =
1

2
(K0 + 1 +K0 +K1)K1ρ+

1

2
(M −K2 + 1 +M)K2 ≥ 1

2
M(M + 1)ρ̄+

1

2
M2ρ̄Gρ .

Plugging K1 and K2 as a function of K0 into this constraint and simplifying equations, we obtain

K0

M
≥ 1− ρ̄−

√
1− ρ

ρ

√
ρ̄(1− ρ̄−Gρ) .

Since we are in the third regime, K0 ≤ K, and K ≤ K0 + K1. The latter imposes another upper bound on K0:
K0 ≤ M(1− ρ̄)/ρ−K(1− ρ)/ρ. Altogether, the following bounds are in place on K0:

min
{K

M
, 1− ρ̄,

1− ρ̄

ρ
− K

M

1− ρ

ρ

}
≥ K0

M
≥ max

{
0, 1− ρ̄

ρ
, 1− ρ̄−

√
1− ρ

ρ

√
ρ̄(1− ρ̄−Gρ)

}
. (43)

One can verify that for K ≤ 1 − ρ̄, the second and third term of the upper bound in the left-hand side of Eq. (43)
are always larger than or equal to the lower bound. Hence, for the solution of the third region to exist, it is required
K/M ≥ max {1− ρ̄/ρ, 1− ρ̄−

√
ρ̄(1− ρ̄−Gρ)(1− ρ)/ρ}. After a direct calculation, this imposes two upper bounds

on ρ:

ρ ≤ ρ̄

1− K
M

, ρ ≤ ρ̄
1− ρ̄−Gρ

1− ρ̄− ρ̄Gρ − 2K
M (1− ρ̄− K

2M )
. (44)

Define

qu(K/M) := min
{ ρ̄

1− K
M

, ρ̄
1− ρ̄−Gρ

1− ρ̄− ρ̄Gρ − 2K
M (1− ρ̄− K

2M )

}
. (45)

Then the upper bounds of Eq. (44) can be summarized as ρ ≤ qu(K/M). Since we are in regime 3 and ρ ≥ q, a necessary
condition in this regime is q ≤ qu(K/M).
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The upper bounded loss for the constructed ρ in regime 3 is

l̃ossK(ρ) = K0q
′ + (K −K0)(ρ− q + q′) = (K −K0)(ρ− q) +Kq′ . (46)

For a fixed ρ, to maximize l̃ossK(ρ), we have to minimize K0. From Eq. (43) we can see

K0

M
≥

{
1− ρ̄−

√
1−ρ
ρ

√
ρ̄(1− ρ̄−Gρ) , ρ > qc ,

0 , o.w. ,
(47)

where
qc := ρ̄

1− ρ̄−Gρ

1− ρ̄− ρ̄Gρ
.

Note the tradeoff in the choice of ρ: Eq. (46) indicates that a larger ρ leads to a larger loss. However, Eq. (47) shows that a
larger ρ also results in a larger K0, reducing the loss. Consider two possibilities:

• ρ < qc: Since ρ ≥ q in regime 3, we should have q < qc. The lower bound of Eq. (47) is not binding in this case, and K0

can be as low as 0. Since ρ ≤ qc, a direct result of Eq. (46) is

l̃ossK(ρ) < K(qc − q + q′) .

• ρ ≥ qc: If B = o(C), we have K/M = o(1) and neglecting o(1), the second upper bound of Eq. (44) reduces to qc.
Plugging K0 = 0 and ρ = qc + o(ρ̄) into Eq. (46), we obtain

l̃ossK(ρ) ≤ K(qc − q + q′) .

If B = Θ(C) and consequently K/M = Θ(1), we show if q ≤ qc/2, the maximum loss occurs at ρ = qc. To show this,
substitute K0 with its lower bound of Eq. (47) in l̃ossK(ρ):

l̃ossK(ρ) =
(
K −M(1− ρ̄) +M

√
1− ρ

ρ

√
ρ̄(1− ρ̄−Gρ)

)
(ρ− q) +Kq′ .

Take a derivative of l̃ossK with respect to ρ and simplify the equations:

∂

∂ρ
l̃ossK = K −M(1− ρ̄) +M

√
1− ρ

ρ

√
ρ̄(1− ρ̄−Gρ)

(
1− 1

2

1− q/ρ

1− ρ

)
. (48)

First of all, observe that
√
(1− ρ)/ρ and the last term inside the parentheses are decreasing in ρ, hence l̃ossK is concave

in the feasible range of ρ. Define
ql(K/M) := qc u(K/M) . (49)

We next show if q ≤ ql(K/M), then ∂ l̃ossK
∂ρ is nonpositive at the left boundary where ρ = qc. To observe this, plug ρ = qc

into Eq. (48) and simplify the equations:

∂

∂ρ
l̃ossK |ρ=qc = K − M

2
(1− q

qc
)
1− ρ̄− ρ̄Gρ

1− ρ̄
.

Then, one can verify that the above derivative is nonpositive for q ≤ ql(K/M). Combining this with our observation of
concavity shows that the maximum of l̃ossK occurs at ρ = qc. For this choice of ρ, we have

l̃ossK(ρ) < K(qc − q + q′) .

First Regime. Following a similar argument as the third regime, we can show there exists an optimal solution ρ such that
neglecting two units, every other unit has ρk from {0, ρ, 1}, where ρ ≤ q′. We can again represent this solution with K0,
K1, and K2 corresponding to the number of units with ρk = 0, ρ, and 1, respectively. One can show exactly similar upper
bounds on ρ (Eq. (44)) and a similar lower bound for K0 (Eq. (47)). In the first regime, the objective at ρ can be written as

lossK(ρ) = (K −K0)ρ .

If ρ < qc, the zero lower bound for K0 can be achieved. In this case,

lossK(ρ) ≤ Kmin{qc, q′} .

If ρ ≥ qc, it is necessary to have q′ ≥ qc. In this case, we can upper-bound the objective by

lossK(ρ) ≤ Kq′ .
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Worst of All Regimes. Finally, we consider the largest objective among all regimes as an upper bound on the optimal
solution of the problem. For a sublinear budget B = o(C),

• If q ≥ q′ ≥ qc, the largest loss comes from regime 1 where lossK(ρ) ≤ Kq′.

• If q ≥ qc > q′, the largest loss comes from both regimes 1 and 2 where lossK(ρ) ≤ Kq′.

• If qc > q ≥ q′, the largest loss comes from regime 3 where neglecting o(1) we have lossK(ρ) ≤ K(qc − q + q′).

For a linear budget B = Θ(C), using the definitions of ql(·) and qu(·) from Eqs. (45) and (49)

• If q > qu(K/M) and q′ ≥ qc, the largest loss comes from regime 1 where lossK(ρ) ≤ Kq′.

• If q > qu(K/M) ≥ qc > q′, the largest loss comes from both regimes 1 and 2 where lossK(ρ) ≤ Kq′.

• If ql(K/M) ≥ q ≥ q′, the largest loss comes from regime 3 where lossK(ρ) ≤ K(qc − q + q′).

This completes the proof. Note that in presenting the results in the main text, we used qc u(K/M) ≥ qu(K/M).

Proof of Theorem 4.5. Recall from Lemma 4.2 that lossK(ρ) ≤ Kq′ if q > qu(K/M), where qu(K/M) is defined in
Eq. (45) as

qu(K/M) := min
{ ρ̄

1− K
M

, ρ̄
1− ρ̄−Gρ

1− ρ̄− ρ̄Gρ − 2K
M (1− ρ̄− K

2M )

}
. (50)

Observe that qu(·) is an increasing function as long as K ≤ M(1 − ρ̄). So, for K ≤ M(1 − ρ̄)/2, in order to have
q > qu(K/M), it suffices to have q > qu

(
(1− ρ̄)/2

)
. In particular, it suffices to have q larger than the second term in the

minimum in Eq. (50):

q > ρ̄
1− ρ̄−Gρ

1− ρ̄− ρ̄Gρ − 3
4 (1− ρ̄)2

.

Rearranging the terms, we find this condition can be met by a sufficiently high inequality: Gρ/(1− ρ̄) > 1− 1
4
q
ρ̄
1−ρ̄
1−q .

Even when inequality is not this high, a not-too-large budget can ensure q > qu(K/M). Solving for K/M in q > qu(K/M),
we obtain

K

M
< max

{
1− ρ̄

q
, 1− ρ̄−

√
(1− ρ̄)2 − (1− qc

q
)(1− ρ̄− ρ̄Gρ)

}
.

The first term in the maximum is positive only when q > ρ̄. Similarly, the second term is also positive only when
q > qc. Since qc ≤ ρ̄, a positive bound on K/M requires q > qc which is equivalent to a sufficiently high inequality:
Gρ/(1− ρ̄) > 1−q/ρ̄

1−q = 1− q
ρ̄
1−ρ̄
1−q . In this case, the second term of the maximum will be decreasing in Gρ. Therefore, it

suffices to set Gρ to its maximum of (1− ρ̄). Then, plugging K/M ≈ B
(1−q)C into this condition gives Eq. (13).

In the third case, where inequality does not satisfy Gρ/(1− ρ̄) > 1−q/ρ̄
1−q , within-unit allocation is least effective. In this

case, Lemma 4.2 suggests that for q ≤ ql(K/M) := qc u(K/M), the loss will be bounded by K(qc − q+ q′) which gives a
similar lower bound on Vunit as Eq. (10). Then a similar argument as the third case of Theorem F.2 shows that ULA will
dominate ILA if p(ϵ)/B > qc−(q−q′)

1−q . There remains to show q ≤ ql(K/M). For instance, if the budget is not larger than
the amount for treating M(1− ρ̄)/4 units and q ≤ qc/2, one can verify that regardless of the level of inequality, we will
have q ≤ ql(K/M). In the worst case when such conditions don’t hold, within-unit allocation may not be effective at all,
and we can resort to a blind within-unit allocation corresponding to q = q′ = 0. This gives the sufficient condition of
p(ϵ)/B > qc for ULA dominance.

Proof of Lemma 5.1. Consider the following unit profile:

ρ∗k =

{
ρl , k ≤ K ,

ρu , k > K .

Here, ρ∗ks are concentrated around a lower (ρl) and an upper value (ρu). For a unit profile with mean ρ̄, we should have
Kρl + (M − K)ρu = Mρ̄. Solving for ρu, we obtain ρu = (Mρ̄ − Kρl)/(M − K). A valid ρu lies in the range
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1 ≥ ρu ≥ ρl. One can verify the upper bound of 1 is already satisfied if K ≤ M(1− ρ̄) and ρl ≥ 0. A simple calculation
also shows the lower bound is satisfied for ρl ≤ ρ̄. Therefore, for a valid choice of ρl and ρu, we just need ρ̄ ≥ ρl ≥ 0.

Our choice of ρl and ρu should also result in a Gini index of Gρ or less:

∑
k∈[M ]

kρ∗k − M(M + 1)

2
ρ̄− M2

2
ρ̄Gρ ≤ 0

⇐⇒ K(K + 1)ρl + (M +K + 1)(M −K)ρu −M(M + 1)ρ̄−M2ρ̄Gρ ≤ 0 .

Plugging ρu in terms of ρl into this and simplifying equations, we obtain

ρl ≥ ρ̄− M

K
Gρ̄ .

Since lossK(ρ∗) = K loss(ρl), we are interested in the smallest ρl possible, which is either the above bound or 0. Note that
this choice satisfies ρ̄ ≥ ρl ≥ 0, and results in Eq. (14).

Proof of Theorem 5.2. As Lemma 5.1 suggests, if Gρ ≥ K/M , there exists ρ∗ ∈ P for which ULA’s loss is zero. Assuming
K ≤ M(1− ρ̄)/2, then it suffices to have Gρ/(1− ρ̄) ≥ 1/2 for an optimal ULA.

If inequality is not this high, we can still hope for a small loss if ρeff := ρ̄ (1 − (M/K)Gρ) is less than or equal to q. In
this case, loss(ρeff) ≤ q and lossK(ρ∗) ≤ Kq′. Rearranging terms, ρeff ≤ q can be interpreted as a condition on Gρ:
Gρ ≥ (K/M)(1− q/ρ̄). Using K ≤ M(1− ρ̄)/2, it suffices to have Gρ/(1− ρ̄) ≥ (1− q/ρ̄)/2. Then for a loss of Kq′,
the value of ULA will be at least as the lower bound in Eq. (9). Therefore, ULA achieves

(
1− q′/(1− q)

)
of the maximal

value of B δ
c , and we get ILA ⊁

(
1 +O(q′)

)
·ULA.

We can get rid of the O(q′) term in the previous case if p(ϵ)/B is sufficiently large. For ρeff ≤ q, we can expand loss(ρeff)
using Eq. (7)) and obtain

lossK(ρ∗) ≤ K min {ρeff, q
′} = min

{
ρ̄ (K −MGρ),Kq′

}
.

This corresponds to a reduction of

min
{
B

ρ̄

1− q
− ρ̄ GρC, B

q′

1− q

}δ

c

from ULA’s value. Since ILA would lose at least a value of p(ϵ) δc , if p(ϵ)/B > q′/(1− q) or p(ϵ) > ρ̄ (B/(1− q)−GρC)
holds, ULA will have a larger value than ILA for ρ∗, and we have ILA ⪰̸ ULA.

Finally, if ρeff > q, within-unit allocation is not effective and we can use a blind within-unit allocation instead. For
q = q′ = 0, Eq. (7) simply gives loss(ρeff) = ρeff. Then a similar argument as the previous case shows ULA would beat ILA
for ρ∗ if p(ϵ) > ρ̄

(
B −GρC

)
. Since by assumption K ≤ M(1− ρ̄), we have C ≥ B/(1− ρ̄). Therefore, it is sufficient

to have p(ϵ)/B > ρ̄
(
1−Gρ/(1− ρ̄)

)
.

Proof of Theorem 6.2. The proof has two parts. First, for a fixed budget, we characterize the welfare density that maximizes
Vind subject to Assumption 6.1. Then for such a class of densities, we upper bound Vind as a function of the budget.
Throughout the proof, we denote the remaining budget by B̃ := B − p(ϵ) and define γ := γ − γ.

Given a welfare density pw consistent with Assumption 6.1, define a new density qw(w) := pw(w) − u δ(w − w1) +
u δ(w−w2), where δ(·) is Dirac delta function and u ≥ 0 is chosen such that Assumption 6.1 is not violated. For a fixed wt,
increasing u from 0 changes the budget by

1

C

∂B̃

∂u
= −σ(wt − w1) + σ(wt − w2) .
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Without loss of generality, suppose w2 > w1. Then a nondecreasing σ implies ∂B̃
∂u ≤ 0. To spend the same budget, we need

to increase wt:
1

C

∂B̃

∂wt
= E[σ′(wt − w)] ≥ 0 .

Since we calculate the derivative at u = 0, the expectation is w.r.t. w ∼ pw. Putting these together, a fixed spending requires

dwt

du
=

σ(wt − w1)− σ(wt − w2)

E[σ′(wt − w)]
.

When we increase wt in this way, the (expected) value of ILA changes by

1

MN

dVind

du
= −τ(w1)σ(wt − w1) + τ(w2)σ(wt − w2) +

dwt

du
E[τ(w)σ′(wt − w)]

= −τ(w1)σ(wt − w1) + τ(w2)σ(wt − w2) +
(
σ(wt − w1)− σ(wt − w2)

)E[τ(w)σ′(wt − w)]

E[σ′(wt − w)]
. (51)

Consider the special case of w2 = 1. At this point τ(w2) = 0. We assume B̃ is more than γϵ and less than γ(1− ϵ). This
ensures for a tight choice of wt, 1− ϵ ≥ wt ≥ ϵ which implies σ(wt) = 1 and σ(wt−1) = 0. We also relax Assumption 6.1
at the right-most boundary and assume density can be concentrated at w = 1. Then Eq. (51) shows a mass can move from w1

to 1 while increasing the value if and only if τ(w1) < E[τ(w)σ′(wt − w)]/E[σ′(wt − w)]. Therefore, we can characterize
the value-maximizing pw for w < 1 by pw(w) = γ 1{w ≤ a}+ γ 1{w > a}, where

τ(a) =
E[τ(w)σ′(wt − w)]

E[σ′(wt − w)]
.

This is of course a recursive formula and not the full characterization. However, it allows us to bound a in terms of wt:

• Using the concavity of τ and the symmetry of σ′, a simple argument in terms of the worst-case σ′ shows

τ(a) ≥
γ
∫ wt+ϵ

wt−ϵ
1
2ϵτ(w) dw + γ

∫ a

wt−ϵ/2
1
ϵ τ(w) dw

γ + γ(a− wt − ϵ/2)/ϵ
. (52)

Since l ≥ | dτdw | ≥ l/2, we can further lower bound the integrals in the numerator:

1

2ϵ

∫ wt+ϵ

wt−ϵ

τ(w) dw ≥ 1

2

(
τ(wt)− lϵ/2 + τ(t) + lϵ/4

)
= τ(w)− lϵ/8,

1

ϵ

∫ a

wt−ϵ/2

τ(w) dw ≥
(
τ(a) + l(a− wt + ϵ/2)/4

)
(a− wt + ϵ/2)/ϵ .

Plugging these into Eq. (52) and simplifying equations, we obtain

τ(a)− τ(wt) ≥ − lϵ

8
+

γ

γ

l

4

(a− wt + ϵ/2)2

ϵ
.

Using τ(a)− τ(wt) ≤ l(wt − a), we can further simplify the above equation and obtain

a ≤ wt − αϵ ,

where
α :=

1

2
+ 2(γ/γ)−

√
4(γ/γ)2 + (5/2)(γ/γ) .

Note that for γ ≥ 3γ, we have α ∈ [0, 1/2].

• Using Jensen’s inequality for a concave τ and the symmetry of σ′, one can show

τ(a) ≤
γτ(wt) + γ

∫ a

wt−ϵ
1
2ϵτ(w) dw

γ + γ(a− wt − ϵ)/(2ϵ)
. (53)
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Since l ≥ | dτdw | ≥ l/2, we can further upper bound the integral in the numerator:

1

2ϵ

∫ a

wt−ϵ

τ(w) dw ≤
(
τ(a) + l(a− wt + ϵ)/2

)
(a− t+ ϵ)/(2ϵ) .

Plugging this into Eq. (53) and simplifying equations, we obtain

τ(a)− τ(wt) ≤
γ

γ

l

4

(a− wt + ϵ)2

ϵ
.

Using τ(a)− τ(wt) ≥ l(wt − a)/2, we can further simplify the above equation and obtain

a ≥ wt − βϵ ,

where
β := 1 + (γ/γ)−

√
(γ/γ)2 + 2(γ/γ) .

Next, we upper bound Vind for the partially characterized optimal pw. Using | dτdw | ≥ l/2, for a nondecreasing σ, we have

1

MN
Vind ≤ τ(0)E[σ(wt − w)]− γ

la2

4
σ(wt − a)− γ(wt − a)

la

2
σ(0)− γ

lwt

2

∫ 1

wt

σ(wt − w) dw .

When all of the budget B̃ is spent, the first term is equal to δ′ B̃/C. Using σ′(∆w) ≥ 1/ϵ and wt ≤ 1− ϵ, we can lower
bound the integral by ϵ/8. Since a ≤ wt, we also have σ(wt − a) ≥ σ(0) = 1/2. Plugging these into the above equation,
we obtain

1

MN
Vind ≤ Ṽ (wt, a) := δ′ B̃/C − γ

la2

8
− γ(wt − a)

la

4
− γ

lwtϵ

16
.

When the budget constraint is met tightly, using the symmetry of σ and 1− ϵ ≥ wt ≥ ϵ, we have

B̃/C = E[σ(wt − w)] ≤ γa+ γwt .

We call this the budget constraint. Maximizing (̃wt, a) subject to this budget constraint and two additional constraints
a ≤ wt − αϵ and a ≥ wt − βϵ shows that when γ ≥ 4γβ, the budget constraint is tight and a = wt − αϵ. In this case,

Ṽ (wt, a) = δ′B̃/C − l

8γ

(
(B̃/C − γαϵ)2 + 2γαϵ(B̃/C − γαϵ) + γϵ(B̃/C + γαϵ)/2

)
.

Then a straightforward calculation shows that for γ ≥ 2γα,

1

MN
Vind ≤ Ṽ (wt, a) ≤ (B̃/C)

(
δ′ − l

8γ
(B̃/C + γϵ/2)

)
.

Proof of Lemma 6.4. Our goal is to find a welfare density that minimizes treatment effect Tk while adhering to T ′
k and

Assumption 6.3. Define wk
(α) as the αth quantile of welfare at unit k. For notational brevity, we drop the superscript k in

the following. Let p∗w be the optimal welfare density with the αth quantile denoted by w∗
(α). We show a new valid welfare

density pw can be constructed from p∗w that gives a Tk lower or equal to what p∗w could give. Fix w∗
(q′), w

∗
(1−q), and w∗

(1−q′).
Define four regimes for welfare:

R1 = [0, w∗
(q′)), R2 = [w∗

(q′), w
∗
(1−q)), R3 = [w∗

(1−q), w
∗
(1−q′)), R4 = [w∗

(1−q′), 1] .

Note that during within-unit allocation, in the worst case, individuals from the top q′ fraction will replace those in the bottom
q′ fraction and receive treatment. In this case, Tk will only come from the individuals with welfare in R2 and R4. Since
τ(·) is nonincreasing, for fixed boundaries of the regimes, our aim is to move the mass within these R2 and R4 towards
larger values while adhering to Assumption 6.3. As the first step, we relax the problem and assume Assumption 6.3 only
needs to be held in R2 and R3. The minimum of Tk under this relaxation serves as a lower bound for the original problem.
If there exist w+ ∈ R2 ∪R4, w− ∈ R1 ∪R3, ∆+ ≥ 0, and ∆− ≥ 0 such that
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1. Either ∆+ or ∆− is not zero ,

2. w+ +∆+ and w− −∆− lie in the same regimes as w+ and w− ,

3. p∗w(w
+) > 0 and p∗w(w

−) > 0 ,

4. If w+ ∈ R2, p∗w(w
+ +∆+) < γ ,

5. If w− ∈ R3, p∗w(w
− −∆−) < γ ,

6. τ(w+ +∆+) + τ(w− −∆−) = τ(w+) + τ(w−) ,

then construct a new solution

pw(w) = p∗w(w) + d1{w = w+ +∆+} − d1{w = w+}+ d1{w = w− −∆−} − d1{w = w−} , (54)

where d > 0 is the maximum value that keeps pw a valid probability density function. For instance, if w+ ∈ R2 and
w− ∈ R3,

d = min
{
p∗(w+)− 0, p∗(w−)− 0, γ − p∗(w+ +∆+), γ − p∗(w− −∆−)

}
.

It is straightforward to verify that the constructed pw preserves T ′
k and meets Assumption 6.3 at R2 and R3, but has a Tk

lower or equal to what p∗w could give. By repetitively applying this operation for all w+, w−, ∆+, and ∆− that meet the
conditions, we obtain a density function that follows one of the following structures:

1. All the mass in R2 and R4 has moved towards the right-most boundaries, and all the mass in R1 and R3 has moved
towards the left-most boundaries (Fig. 8(c)):

pw(w) = γ 1
{
w ∈

[
w∗

(1−q) −
1− q − q′

γ
,w∗

(1−q) +
q − q′

γ

]}
+ q′ δ(w) + q′ δ(w − 1) . (55)

Here, δ(·) is the Dirac delta function.

2. All the mass in R2 and R4 has moved towards the right-most boundaries. Choose w+ ∈ R3, w− ∈ R3, ∆+ ≥ 0, and
∆− ≥ 0 such that all the previous conditions are met and additionally w+ > w−. Then applying a similar operation as
Eq. (54) multiple times, move the mass in R3 towards its boundaries. Similarly, if we choose w+ and w− from R1 and
apply the operations multiple times, the mass in R1 will be concentrated on its boundaries. These operations maintain T ′

k.
They also do not change Tk as Tk only depends on pw in R2 and R4. These operations make pw look like Fig. 8(a).
Now consider increasing w(1−q) by moving the block around it forward while decreasing w(1−q′) such that the resulting
distribution preserves T ′

k. Then at some point two blocks of mass merge as Fig. 8(b). Since the mass under R2 is only
moving forward, this operation can only decrease Tk. Keep moving the merged block forward while decreasing w(q′)

to preserve T ′
k. This operation also can only decrease Tk. As w(q′) approaches zero, we obtain a density like Fig. 8(c),

which has a similar structure as the first case.

w

pw

w∗
(q′) w∗

(1−q) w∗
(1−q′)

(a)

w

pw

w(q′) w(1−q)w(1−q′)

(b)

w

pw

w(q′) w(1−q)w(1−q′)

(c)

Figure 8. Demonstrating the proof of Lemma 6.4.

3. All the mass in R1 and R3 has moved towards the left-most boundaries. We follow similar steps as the previous case.
Choose w+ ∈ R2, w− ∈ R2, ∆+ ≥ 0, and ∆− ≥ 0 such that all the required conditions are met and additionally
w+ > w−. Then applying a similar operation as Eq. (54) multiple times, move the mass in R2 towards its boundaries.
Similarly, if we choose w+ and w− from R4 and apply the operations multiple times, the mass in R4 will be concentrated
on its boundaries. These operations maintain T ′

k. Define T c
k := T ′

k − Tk. Since T c
k only depends on pw in R1 and R3,

these operations do not change T c
k , consequently leaving Tk intact. Now consider decreasing w(1−q) by moving the

block around it forward while decreasing w(q′) such that the resulting distribution preserves T ′
k. Then at some point two
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blocks of mass merge. This operation can only increase T c
k and therefore decreases Tk. Keep moving the merged block

forward while increasing w(1−q′) to preserve T ′
k. This operation also can only decrease Tk. As w(1−q′) approaches one,

we obtain a density like Fig. 8(c), which has a similar structure as the first case.

The above analysis shows there exists an optimal pw with the structure following Eq. (55) (Fig. 8(c)). This solution should
give an average treatment effect of T ′

k when everyone gets treated. We can write T ′
k and Tk resulting from pw of Eq. (55) as

T ′
k = q′δ′ + γ Γ(1−2q′)/γ

(
w(1−q) − (1− q − q′)/γ

)
,

Tk = γ Γ(1−q−q′)/γ

(
w(1−q) − (1− q − q′)/γ

)
.

Then solving for w(1−q) from the first equation and plugging it into the second equation completes the proof.

Proof of Theorem E.1. Choose a set S of n2 individuals uniformly at random and collect their true welfare data (type 2
data). Let t̂ = max {oi : i ∈ S, wi ≤ 1− δ} be the estimated threshold. Note that t̂ ≤ t. At every unit k, estimate ρk from
observations by ρ̂k = 1

N

∑
i∈Uk

1{oi > t̂}. The error of estimating ρk is

ρ̂k − ρk =
1

N

∑
i∈Uk

1{oi ∈ (t̂, t]} ≥ 0 .

Sort the ρk values in ascending order and, without loss of generality, let ρk be the kth smallest value. Similarly, sort the ρ̂k
values in ascending order and let ŝ(k) denote the unit with the kth smallest value. In ULA, we intervene on first K units
according to ŝ(·). For k ∈ [K], if k is among ŝ(1), . . . , ŝ(K), then our previous bound on loss from allocation to this unit
will be valid. Otherwise, a unit not among true bottom K units has substituted unit k in allocation. In this case, for any
k′ ∈ [K], we have ρ̂ŝ(k′) ≤ ρ̂k and hence

ρŝ(k′) ≤ ρ̂ŝ(k′) ≤ ρ̂k ≤ ρk +
1

N

∑
i∈Uk

1{oi ∈ (t̂, t]} .

So, in the worst case, for k ∈ [K], units with effective unit-level statistic ρ̃k = ρk +
1
N

∑
i∈Uk

1{oi ∈ (t̂, t]} will be treated.
Recall that loss(·) in Eq. (7) is 1-Lipschitz. This suggests that for a fixed t̂, the increase of loss can be bounded by

∆loss ≤ 1

N

∑
k∈[K]

∑
i∈Uk

1{oi ∈ (t̂, t]} .

Define D := f−1(t)− f−1(t̂). The fact that f is an increasing function and t̂ ≤ t ensure D ≥ 0. Assumption 6.3 limits the
concentration of welfare at each unit by γ. Therefore, in the worst case, we can think of 1{oi ∈ (t̂, t]} as Ber(γD). Denoting
the z-score at the α significance level by zα and using the central limit theorem to approximate the sum of Bernoulli random
variables with a Gaussian distribution, we have

∆lossK ≤ 1

N

(
KNγD + zα

√
KN

√
γD(1− γD)

)
≤ KγD + zα

√
K/N

√
γD ,

with probability at least 1− α. Observing D > d requires none of n2 welfare samples to lie in an interval of length d. Since
the overall welfare density is lower bounded by γ (Assumption 6.1), we have Pr(D > d) ≤ (1 − γd)n2 . Then a direct
calculation shows

D ≤ (1− α1/n2)/γ ,

with probability at least 1− α. Putting these together, the increase in loss due to inaccurate estimation of unit-level statistics
is bounded by

∆lossK ≤ K
γ

γ
(1− α1/n2) + zα

√
K/N

√
γ

γ

√
1− α1/n2 ,

with probability at least 1− 2α. Assuming c2 ≈ c, the cost n2 type 2 samples at most reduces ULA’s value by n2δ. A unit
change in lossK would also decrease ULA’s value by Nδ. Therefore, with probability at least 1− 2α, the decrease of ULA’s
value can be bounded by

∆Vunit/δ ≥ −KN
γ

γ
(1− α1/n2)− zα

√
KN

√
γ

γ

√
1− α1/n2 − n2 .
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Choose n2 =
√
KN ln(1/α). Then α1/n2 = exp(ln(α)/n2) = exp(−1/

√
KN) ≈ 1− 1/

√
KN , and we have

∆Vunit/δ ≥ −
√
KN

(γ
γ

)
− zα(KN)1/4

√
γ

γ
−

√
KN ln(1/α) .

Using Vunit = Θ(KNδ) and K = Θ(B/(Nc)) complete the proof.

Proof of Theorem E.2. Our strategy is to reconstruct f by quantizing welfare into L levels. Choose a set S of n2 individuals
uniformly at random and get their true welfare (type 2 data). Define

t̂l =

{
max {oi : i ∈ S, wi ≤ l/L} , l ∈ [L− 1] ,

1 , l = L .

Here, if a set was empty for lth bin, we can assume t̂l = t̂l+1. Using the estimated thresholds, we can approximate f−1 and
estimate the welfare of an observation o by

ŵ = f̂−1(o) =
1

L
min {l ∈ [L] : t̂l ≥ o} .

Note that by this definition, we have ŵ ≥ w. Consider a welfare value w that lies in [(l − 1)/L, l/L] for an l ∈ [L− 1]. If
there exists i ∈ S such that wi ∈ [l/L, (l + 1)/L], then ŵ − w ≤ 2/L. Since S are random draws and welfare density is at
least γ (Assumption 6.1),

Pr
S
(ŵ − w > 2/L) ≤ β := (1− γ/L)n2 .

For l = L, since t̂L = 1, we always have ŵ − w ≤ 1/L, and the above argument holds more strongly. Denote the unit-level
statistics at unit k by Uk: Uk = 1

N

∑
i∈Uk

u(wi). Our estimation from Uk is Ûk = 1
N

∑
i∈Uk

u(ŵi), where ŵi = f̂−1(oi).
For a 1-Lipschitz u, we have

(1− β)(u(wi)− 2/L) ≤ ES [u(ŵi)] ≤ (1− β)(u(wi) + 2/L) + β .

Therefore, |ES [u(ŵi)]− u(wi)| ≤ β + 2/L. This gives

|ES [Ûk]− Uk| ≤ β + 2/L .

Now if Vunit is N -Lipschitz in Uk for any k ∈ [K], the expected decrease of Vunit can be bounded by

ES [∆Vunit] ≥ −KN(β + 2/L)− n2δ
′ = −KN

(
(1− γ/L)n2 + 2/L

)
− n2δ

′ ,

where δ′ is the maximum treatment effect an individual can experience. Using the well-known property exp(x) ≥ (1+x/n)n

for n ≥ |x|, by choosing n2 = (L/γ) · ln(L) and L =
√
KN , we obtain

ES [∆Vunit] ≥ −KN
(
1/L+ 2/L

)
− (L/γ) ln(L) δ′ = −3

√
KN − δ′

2γ

√
KN ln(KN) .

Using Vunit = Θ(KNδ′) and K = Θ(B/(Nc)) complete the proof.
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