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Abstract
GFlowNets are a promising alternative to MCMC
sampling for discrete compositional random vari-
ables. Training GFlowNets requires repeated eval-
uations of the unnormalized target distribution, or
reward function. However, for large-scale pos-
terior sampling, this may be prohibitive since it
incurs traversing the data several times. More-
over, if the data are distributed across clients, em-
ploying standard GFlowNets leads to intensive
client-server communication. To alleviate both
these issues, we propose embarrassingly parallel
GFlowNet (EP-GFlowNet). EP-GFlowNet is a
provably correct divide-and-conquer method to
sample from product distributions of the form
R(·) ∝ R1(·)...RN (·) — e.g., in parallel or feder-
ated Bayes, where each Rn is a local posterior de-
fined on a data partition. First, in parallel, we train
a local GFlowNet targeting each Rn and send the
resulting models to the server. Then, the server
learns a global GFlowNet by enforcing our newly
proposed aggregating balance condition, requir-
ing a single communication step. Importantly, EP-
GFlowNets can also be applied to multi-objective
optimization and model reuse. Our experiments
illustrate the EP-GFlowNets’s effectiveness on
many tasks, including parallel Bayesian phyloge-
netics, multi-objective multiset, sequence genera-
tion, and federated Bayesian structure learning.

1. Introduction
Generative Flow Networks (GFlowNets) (Bengio et al.,
2021) are powerful sampling tools and, despite being in
their infancy, have become popular alternatives to Markov
Chain Monte Carlo methods in finite discrete state spaces.
While the most straight-forward use of MCMC-like methods
is to sample from Bayesian posteriors (Deleu et al., 2022;
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2023; Atanackovic et al., 2023b), GFlowNets find varied
applications in combinatorial optimization (Zhang et al.,
2023a), multi-objective active learning (Jain et al., 2023),
and design of biological sequences (Jain et al., 2022). Inher-
iting jargon from reinforcement learning, GFlowNets learn
to sample from R : X → R+ by incrementally refining a
policy function pF that incrementally builds objects x ∈ X
by augmenting an initial state s0. In Bayesian context, R is
proportional to some posterior p(·|D), and X is its support.

Nonetheless, similarly to running MCMC chains, training
GFlowNets requires repeatedly evaluating R. For posterior
sampling, this implies repeated sweeps through the data.
Furthermore, if the data is scattered across many clients
— e.g., in Bayesian federated learning (El Mekkaoui et al.,
2021; Vono et al., 2022) —, the multiple communication
rounds between clients and the server may be a bottleneck.

In the realm of MCMC, embarrassingly parallel meth-
ods (Neiswanger et al., 2014) address both aforementioned
issues simultaneously through a divide-and-conquer scheme.
In a nutshell, given an N -partition D1, . . . ,DN of the data
D, the strategy consists of sampling in parallel from N
subposteriors defined on different data shards:

Rn(x) ∝ p(Dn|x)p(x)1/N ∀n = 1 . . . N,

and subsequently combining the results in a server to get
approximate samples from the full posterior p(x|D), or
equivalently from R ∝ R1R2 . . . RN . In federated settings,
the data partition reflects how data arises in client devices,
and this class of algorithms incurs a single communica-
tion round between the clients and the server. However,
these methods are tailored towards continuous random vari-
ables, and their combination step relies on approximating
(or sampling from) the product of sample-based continuous
surrogates of the subposteriors, e.g., kernel density estima-
tors (Neiswanger et al., 2014), Gaussian processes (Nemeth
& Sherlock, 2018; de Souza et al., 2022), or normalizing
flows (Mesquita et al., 2019). Consequently, they are not
well-suited to sample from discrete state spaces.

We propose EP-GFlownet, the first embarrassingly parallel
sampling method for discrete distributions. EP-GFlowNets
start off by learning N local GFlowNets in parallel to sam-
ple proportional to their corresponding reward functions
R1, . . . , RN and send the resulting models to the server.
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Then, the server learns a global GFlowNets by enforcing
our newly proposed aggregating balance (AB) condition,
which ensures the global model correctly samples from the
product of (sampling distributions of) the local GFlowNets.
Notably, sampling from products of GFlowNets is challeng-
ing since no simple composition (e.g., avg./product) of local
policies induces the product distribution (Du et al., 2023).

Towards deriving the AB, we introduce a novel balance crite-
rion to train conventional/local GFlowNets, the contrastive
balance (CB) condition. Compared to broadly used train-
ing criteria (Bengio et al., 2023; Malkin et al., 2022), CB
often leads to faster convergence, which may be attributed
to its minimal parametrization, requiring only forward and
backward policies. We also show that, in expectation, mini-
mizing the CB is equivalent to minimizing the variance of
an estimator of the log-partition from Zhang et al. (2023c).

Remarkably, the applicability of EP-GFlowNets goes be-
yond Bayesian inference. For instance, it applies to multi-
objective tasks in which we need to sample from a combi-
nation of different objective functions (Daulton et al., 2021;
Jain et al., 2023). EP-GFlowNets can also be applied for
model reuse (Garipov et al., 2023), allowing sampling from
log-pools of experts without retraining individual models.

Our experiments validate EP-GFlowNets in different
contexts, including multi-objective multiset, parallel
Bayesian phylogenetic inference, and federated Bayesian
structure learning. In summary, our contributions are:

1. We propose EP-GFlowNet, the first algorithm for embar-
rassingly parallel sampling in discrete state spaces using
GFlowNets. We provide theoretical guarantees of cor-
rectness, and also analyze EP-GFlowNet’s robustness
to errors in the estimation of local GFlowNets;

2. We present the contrastive balance (CB) condition, show
it is a sufficient and necessary condition for sampling
proportionally to a reward, and analyze its connection
to variational inference (VI);

3. We substantiate our methodological contributions with
experiments on five different tasks. Our empirical re-
sults i) showcase the accuracy of EP-GFlowNets; ii)
show that, in some cases, using the CB as training cri-
terion leads to faster convergence compared to popular
loss functions; iii) illustrate EP-GFlowNets’ potential
in two notable applications: Bayesian phylogenetic in-
ference, and Bayesian network structure learning.

2. Preliminaries
Notation. We represent a directed acyclic graph (DAG)
over nodes V and with adjacency matrix A ∈ {1, 0}|V |×|V |

as G = (V,A). A forward policy over V in G is a function
p : V × V → R+ such that (i) p(v, ·) is a probability mea-

sure over V for every v ∈ V and (ii) p(v, w) > 0 if and only
if Avw = 1; we alternatively write p(v → w) and p(w|v)
to represent p(v, w). A transition kernel p induces a condi-
tional probability measure over the space of trajectories in
G: if τ = (v1 → · · · → vn) is a trajectory of length n in G,
then p(τ |v1) =

∏n−1
i=1 p(vi+1|vi). A backward policy in G

is a forward policy on the transpose graph G⊺ = (V,A⊺).

Generative flow networks. GFlowNets are a family of
amortized variational algorithms trained to sample from an
unnormalized distribution over discrete and compositional
objects. More specifically, let R : X → R+ be an unnor-
malized distribution over a finite space X . We call R a
reward due to terminological inheritance from the reinforce-
ment learning literature. Define a finite set S and a variable
so. Then, let G be a weakly connected DAG with nodes
V = {so}∪{sf}∪S∪X such that (i) there are no incoming
edges to so, (ii) there are no outgoing edges exiting sf and
(iii) there is an edge from each x ∈ X to sf . We call the
elements of V states and refer to X as the set of terminal
states; so is called the initial state and sf is an absorbing
state designating the end of a trajectory. We denote by T
the space of trajectories in G starting at so and ending at sf .
Illustratively, X could be the space of biological sequences
of length 32; S, the space of sequences of lengths up to
32; and so, an empty sequence. The training objective of a
GFlowNet is to learn a forward policy pF over G such that
the marginal distribution pT over X satisfies

pT (x) :=
∑

τ : τ leads to x

pF (τ |so) ∝ R(x). (1)

We usually parameterize pF as a neural network and se-
lect one among the diversely proposed training criteria to
estimate its parameters, which we denote by ϕF . These cri-
teria typically enforce a balance condition on the Markovian
process defined by pF that provably imposes the desired
property on the marginal distribution in Equation (1). For
example, the trajectory balance (TB) criterion introduces a
parametrization of the target distribution’s partition function
ZϕZ

and of a backward policy pB(·, ·;ϕB) with parameters
ϕZ and ϕB , respectively, and is defined as

LTB(τ, ϕF , ϕB , ϕZ) =(
logZϕZ

− logR(x) +
∑

s→s′∈τ
log

pF (s, s
′;ϕF )

pB(s′, s;ϕB)

)2. (2)

Minimizing Equation (2) enforces the TB condition:
pF (τ ;ϕF ) = Z−1

ϕZ
R(x)

∏
pB(s

′, s;ϕB), which implies
Equation (1) if valid for all τ ∈ T . This is the most widely
used training scheme for GFlowNets. In practice, some
works set pB as a uniform distribution to avoid learning ϕB ,
as suggested by Malkin et al. (2022).

Another popular approach for training GFlowNets uses
the notion of detailed balance (DB). Here, we want
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to find forward and backward policies and state flows
F (with parameters ϕS) that satisfy the DB condition:
F (s;ϕS)pF (s, s

′;ϕF ) = F (s′;ϕS)pB(s
′, s;ϕB) if s is an

non-terminal state and F (s;ϕS)pF (sf |s;ϕF ) = R(s) oth-
erwise. Again, satisfying the DB condition for all edges in
G entails Equation (1). Naturally, this condition leads to a
transition-decomposable loss

LDB(s, s′, ϕF , ϕB , ϕS) =
(
log pF (s,s′;ϕF )

pB(s′,s;ϕB) + log F (s;ϕS)
F (s′;ϕS)

)2
if s′ ̸= sf ,(

log
F (s;ϕS)pF (sf |s;ϕF )

R(s)

)2
otherwise.

(3)

Recently, Pan et al. (2023a) proposed to residually repa-
rameterize F with reference on a hand-crafted function ξ,
namely, logF (s) = log F̃ (s) + log ξ(s). This approach
led to the forward-looking (FL) GFlowNet, whose learning
objective we denote by LFL. Importantly, contrarily to Pan
et al. (2023a), we do not drop the boundary conditions in
Equation 3. To guarantee correctness whether using LDB
or LTB , we need to integrate the loss over some exploratory
policy π fully supported in T . In practice, π is typically a ϵ-
mixture between pF and a uniform forward policy, (1− ϵ) ·
pF + ϵ ·uF , or a tempered version of pF . We use the former
definition for π in this work. We review alternative training
schemes for GFlowNets in the supplementary material.

Problem statement. Given a set of clients n = 1, . . . , N ,
each with reward functionRn, we want to learn a GFlowNet
to sample proportionally to a global reward function R de-
fined as a product of the local rewards R1, . . . , RN . We
want to do so with as little client-server communication
as possible and without openly disclosing the local re-
wards to the server. While we focus on sampling from
R(x) :=

∏N
n=1Rn(x) in the main paper, we also pro-

vide in Appendix B.2 extensions of our theoretical results
to exponentially weighted rewards of the form R(x) :=∏N
n=1Rn(x)

wn with w1, . . . , wN > 0.

3. Method
This section derives a provably correct framework for embar-
rassingly parallel GFlowNets based on the newly developed
concept of aggregating balance (Section 3.1). As a corner-
stone, we introduce the contrastive balance (CB) condition,
a new balance condition requiring minimal parametrization.
Notably, Section 3.2 shows the CB condition yields a sound
learning objective for training conventional GFlowNets.

3.1. Embarrassingly Parallel GFlowNets

To circumvent the restrictions imposed by the problem state-
ment, we propose a divide-and-conquer scheme. First, each
client trains their own GFlowNet to sample proportionally

to their local reward, sending the estimated forward and
backward policies p(n)F and p

(n)
B to a centralizing server.

Then, the server estimates the policies (pF , pB) of a novel
GFlowNet that approximately samples from R solely based
on the local policies {(p(n)F , p

(n)
B )}Nn=1, i.e., without ever

evaluating any R(n). More specifically, the server learns
a GFlowNet whose marginal distribution pT over termi-
nal states is proportional to the product of those from the
clients p(1)T , . . . , p

(N)
T . Toward this end, Theorem 3.1 delin-

eates a necessary and sufficient condition guaranteeing the
correctness of the aggregation phase, which we call aggre-
gating balance (AB) condition. It is worth mentioning that
Theorem 3.1 builds directly upon the contrastive balance
condition in Lemma 3.5, discussed in detail in Section 3.2.

Theorem 3.1 (Aggregating balance condition). Let(
p
(1)
F , p

(1)
B

)
, . . . ,

(
p
(N)
F , p

(N)
B

)
: V 2 → R+ be pairs of for-

ward and backward policies from N GFlowNets sampling
respectively proportionally to R1, . . . , RN : X → R+.
Then, another GFlowNet with forward and backward poli-
cies pF , pB ∈ V 2 → R+ samples proportionally to
R(x) :=

∏N
n=1R(x) if and only if the following condition

holds for all terminal trajectories τ, τ ′ ∈ T :

N∏
n=1

( ∏
s→s′∈τ

p
(i)
F (s, s′)

p
(i)
B (s′, s)

)
( ∏
s→s′∈τ ′

p
(i)
F (s, s′)

p
(i)
B (s′, s)

) =

( ∏
s→s′∈τ

pF (s, s
′)

pB(s′, s)

)
( ∏
s→s′∈τ ′

pF (s, s
′)

pB(s′, s)

) . (4)

Based on Theorem 3.1, we can naturally derive a loss func-
tion enforcing Equation (4) that can be used to combine the
locally trained GFlowNets. To guarantee the minimum of
our loss achieves aggregating balance, it suffices to integrate
Equation (4) against a distribution attributing non-zero mass
to every (τ, τ ′) ∈ T 2. Importantly, note the aggregating
balance loss is agnostic to which loss was used to learn the
local GFlowNets, as it only requires their transition func-
tions and not, e.g., an estimate of the partition function or
of the flows going though each state.

Corollary 3.2 (Aggregating balance loss). Let p(i)F and
p
(i)
B be forward/backward transition functions such that
p
(i)
T (x) ∝ Ri(x) for arbitrary reward functions Ri over

terminal states x ∈ X . Also, let ν : T 2 → R+ be a
full-support distribution over pairs of complete trajectories.
Moreover, assume that pF (·, ·;ϕF ) and pB(·, ·;ϕB) denote
the forward/backward policies of a GFlowNet parameter-
ized by ϕF and ϕB . The following are equivalent:

1. pT (x;ϕF ) ∝
∏
iRi(x) for all x ∈ X ;

2. E(τ,τ ′)∼ν [LAB(τ, τ ′, ϕF , ϕB)] = 0 where for trajecto-
ries τ ⇝ x and τ ⇝ x′
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Figure 1. EP-GFlowNet samples proportionally to a pool of locally trained GFlowNets. If a client correctly trains their local model
(green) and another client trains theirs incorrectly (red), the distribution inferred by EP-GFlowNet (mid-right) differs from the target
product distribution (right).

LAB(τ, τ ′, ϕF , ϕB)=
(
log

pF (τ ;ϕF )pB(τ
′|x′;ϕB)

pB(τ |x;ϕB)pF (τ ′;ϕF )

−
∑

1≤i≤N

log
pF (τ ;ϕF )pB(τ

′|x′;ϕB)
pB(τ |x;ϕB)pF (τ ′;ϕF )

)2

.

(5)

Remark 3.3 (Imperfect local inference). In practice, the lo-
cal balance conditions often cannot be completely fulfilled
by the local GFlowNets and the distributions p(1)T , . . . , p

(N)
T

over terminal states are not proportional to the rewards
R1, . . . , RN . In this case, aggregating balance implies the
aggregated model samples proportionally to

Eτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 . (6)

Interestingly, the value of Equation (6) equals the expecta-
tion of a non-deterministic random variable only if the local
balance conditions are not satisfied. Otherwise, the ratio
p
(i)
F (τ)/p(i)B (τ |x) equals R(x), a constant wrt τ conditioned

on τ having x as its final state. Furthermore, Equation (6)
also allows us to assess the probability mass function the
global EP-GFlowNet is truly drawing samples from.

As mentioned in Remark 3.3, in practice, the local
GFlowNets may not be balanced with respect to their re-
wards, incurring errors that propagate to our aggregated
model. In this context, Theorem 3.4 quantifies the extent to
which these local errors impact the overall result.

Theorem 3.4 (Influence of local failures). Let πn :=

Rn/Zn and p(n)F and p(n)B be the forward and backward
policies of the n-th client. We use τ ⇝ x to indicate that
τ ∈ T is finished by x→ sf . Suppose that the local balance
conditions are lower- and upper-bounded ∀n ∈ [[1, N ]] as

1− αn ≤ min
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ max
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ 1 + βn

(7)

where αn ∈ (0, 1) and βn > 0. The Jeffrey divergence DJ
between the global model π̂(x) that fulfills the aggregating
balance condition and π(x) ∝∏N

n=1 πn(x) then satisfies

DJ(π, π̂) ≤
N∑
n=1

log

(
1 + βn
1− αn

)
. (8)

There are two things worth highlighting in Theorem 3.4.
First, if the local models are accurately learned (i.e., βn =
αn = 0∀n), the RHS of Equation (8) equals zero, implying
π = π̂. Second, if either βn → ∞ or αn → 1 for some n,
the bound in Equation (8) goes to infinity — i.e., it degen-
erates if one of the local GFlowNets are poorly trained.
This is well-aligned with the catastrophic failure phe-
nomenon (de Souza et al., 2022), which was originally ob-
served in the literature of parallel MCMC (Neiswanger et al.,
2014; Nemeth & Sherlock, 2018; Mesquita et al., 2019) and
refers to the incorrectness of the global model due to inade-
quately estimated local parameters and can result in missing
modes or misrepresentation of low-density regions. Figure 1
shows a case where one of the local GFlowNets is poorly
trained (Client 2’s). Note that minimizing the AB objective
leads to a good approximation of the product of marginal
distributions over terminal states (encoded by the local
GFlowNets). Nonetheless, the result is far from we have en-
visioned at first, i.e., the learned model significantly diverges
from the product distribution R ∝ R1R2. Additionally, Fig-
ure 13 in Appendix C.4 highlights that EP-GFlowNets can
learn a relatively good approximation to the target distribu-
tion even in the face of inaccurate local approximations.

3.2. Contrastive balance

As a stepping stone towards proving Theorem 3.1, we de-
velop the contrastive balance condition, which is sufficient
for ensuring that a GFlowNet’s marginal over terminal states
is proportional to its target reward (Lemma 3.5).

Lemma 3.5 (Constrastive balance condition). If pF , pB ∈
V 2 → R+ are the forward and backward policies of a
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GFlowNet sampling proportionally to some arbitrary re-
ward function R : X → R+, then, for any pair of complete
trajectories τ, τ ′ ∈ T with τ ⇝ x and τ ⇝ x′,

R(x′)
∏

s→s′∈τ

pF (s, s
′)

pB(s′, s)
= R(x)

∏
s→s′∈τ ′

pF (s, s
′)

pB(s′, s)
. (9)

Conversely, if a GFlowNet with forward and backward poli-
cies pF , pB abide by Equation (9), it induces a marginal
distribution over x ∈ X proportional to R.

Enforcing Lemma 3.5 results in a loss that does not de-
pend on an estimate logZϕZ

of the intractable log-partition
function present in the TB condition. The next corollary
guarantees that an instantiation of the GFlowNet parameter-
ized by a global minimizer of LCB (Equation (10)) correctly
samples from p(x) ∝ R(x). We call LCB the contrastive
balance loss as it measures the contrast between randomly
sampled trajectories. In practice, we observed that in some
cases the CB loss leads to better results than the TB and DB
losses, as we will see in Section 4.6.

Corollary 3.6 (Contrastive balance loss). Let pF (·, ·;ϕF )
and pB(·, ·;ϕB) denote forward/backward policies, and ν :
T 2 → R+ be a full-support probability distribution over
pairs of terminal trajectories. Then, pT (x;ϕF ) ∝ R(x)
∀x ∈ X iff E(τ,τ ′)∼ν [LCB(τ, τ ′, ϕF , ϕB)] = 0 where

LCB(τ, τ ′, ϕF , ϕB) =
(
log

pF (τ ;ϕF )

pB(τ ;ϕB)
−

log
pF (τ

′;ϕF )

pB(τ ′;ϕB)
+ log

R(x′)

R(x)

)2

.

(10)

Computational advantages of LCB . Importantly, note that
LCB incurs learning fewer parameters than TB and DB
losses. Indeed, besides requiring the forward and backward
policies pF and pB , TB requires parameterizing the partition
function of R. Alternatively, DB implies using a neural
network to approximate the flow through each node. In
contrast, CB requires only learning pF and pB .

LCB and VI. Notably, the next proposition ties the CB loss’
gradient to that of a variational objective, extending the
characterization of GFlowNets as VI started by Malkin et al.
(2023) for the TB loss. More specifically, Theorem 3.7 states
that the on-policy gradients of the CB objective coincide in
expectation to the gradient of the KL divergence between
the forward and backward policies.

Theorem 3.7 (VI & CB). Let pF ⊗ pF be the outer product
distribution assigning probability pF (τ)pF (τ ′) to each tra-
jectory pair (τ, τ ′). The criterion in Equation (10) satisfies

∇ϕF
DKL[pF ||pB ] =

1

4
E

(τ,τ ′)∼pF⊗pF
[∇ϕF

LCB(τ, τ ′, ϕF )] .

Notably, a corresponding result connecting the CB’s and
KL’s gradients holds when we parameterize the backward
policy, as we show in the Theorem [ref] in the appendix.

Connection to other balance conditions. The CB loss may
be equivalently defined as the squared difference between
signed violations to the TB of two independent trajecto-
ries, namely, LCB(τ, τ ′) = (VTB(τ)− VTB(τ ′))2, with
VTB(τ) = log (pF (τ)Z/pB(τ |x)R(x)) satisfying VTB(τ)2 =
LTB(τ). In this scenario, one might derive Lemma 3.5 and
Theorem 3.7 as corollaries of the respective results for the
TB condition by Malkin et al. (2022, Proposition 1) and by
Malkin et al. (2023, Proposition 1). We present this deriva-
tion — jointly with self-contained proofs — in Appendix A
and Appendix B.1. Appendix B.1 also shows that the ex-
pected value of the CB loss is proportional to the variance
of a TB-based estimate of the partition function, which was
used as a training loss by Zhang et al. (2023c).

4. Experiments
The main purpose of our experiments is to verify the em-
pirical performance of EP-GFlowNets, i.e., their capacity
to accurately sample from the combination of local dis-
tributions. To that extent, we consider five diverse tasks:
sampling states from a grid world in Section 4.1, genera-
tion of multisets (Bengio et al., 2023; Pan et al., 2023a) in
Section 4.2, design of sequences (Jain et al., 2022) in Sec-
tion 4.3, distributed Bayesian phylogenetic inference (Zhang
& Matsen IV, 2018) in Section 4.4, and federated Bayesian
network structure learning (BNSL; Ng & Zhang, 2022) in
Section 4.5. Since EP-GFlowNet is the first of its kind, we
propose two baselines to compare it against: a centralized
GFlowNet, which requires clients to disclose their rewards
in a centralizing server, and a divide-and-conquer algorithm
in which each client approximates its local GFlowNet with
a product of categorical distributions, which are then ag-
gregated in the server. We call the latter approach parallel
categorical VI (PCVI), which may be also viewed as an im-
plementation of the SDA-Bayes framework for distributed
approximate Bayesian inference (Broderick et al., 2013).

4.1. Grid world

Task description. Our grid world environment consists of a
Markov decision process over an 9× 9 square grid in which
actions consist of choosing a direction (→, ↑) or stopping.
The reward for each state R is the sigmoid transform of
its minimum distance to a reward beacon (bright yellow
in Figure 2). For the distributed setting, we consider the
problem of combining the rewards from different clients,
each of which has two beacons placed in different positions.

Results. Figure 2 shows that EP-GFlowNet accurately ap-
proximates the targeted distribution, even in cases where
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Table 1. Quality of the parallel approximation to the combined rewards. The table shows i) the L1 distance between the distribution
induced by each method and the ground truth and ii) the average log reward of the top-800 scoring samples. Our EP-GFlowNet is
consistently better than the PCVI baseline regarding L1 distance, showing approximately the same performance as a centralized GFlowNet.
Furthermore, EP-GFlowNet’s Top-800 score perfectly matches the centralized model, while PCVI’s differ drastically. Values are the
average and standard deviation over three repetitions.

Grid World Multisets Sequences
L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑

Centralized 0.027 −6.355 0.100 27.422 0.003 −1.535
(±0.016) (±0.000) (±0.001) (±0.000) (±0.001) (±0.000)

EP-GFlowNet (ours) 0.038 −6.355 0.130 27.422 0.005 −1.535
(±0.016) (±0.000) (±0.004) (±0.000) (±0.002) (±0.000)

PCVI 0.189 −6.355 0.834 26.804 1.872 −16.473
(±0.006) (±0.000) (±0.005) (±0.018) (±0.011) (±0.007)

Ta
rg

et

Client 1

L
ea

rn
ed

Client 2 Client 3 Client 4 EP-GFlowNet

Figure 2. Grid world. Each heatmap represents the target distribution (first row), based on the normalized reward, and the ones learned
by the local GFlowNets (second row). Results for EP-GFlowNet are in the rightmost panels. As established by Theorem 3.1, the good fit
of the local models results in an accurate fit to the combined reward.

combining the client rewards leads to multiple sparsely
distributed modes. Furthermore, Table 1 shows that EP-
GFlowNet performs approximately on par with the central-
ized model — trained on the product distribution — in terms
of L1 distance (within one standard deviation), but is three
orders of magnitude better than the PCVI baseline. This is
also reflected in the average reward over the top 800 samples
— identical to the centralized version for EP-GFlowNet, but
an order of magnitude smaller for PCVI. Again, these results
corroborate our theoretical claims about the correctness of
our scheme for combining GFlowNets.

4.2. Multiset generation

Task description. Here, the set of terminal states comprises
multisets of size S. A multiset S is built by iteratively
adding elements from a finite dictionary U to an initially
empty set. Each client n assigns a value rnu to each u ∈ U
and defines the log-reward of S as the sum of its elements’
values; i.e., logRn(S) =

∑
u∈S r

(n)
u . In practice, the quan-

tities r(n)u are uniformly picked from the interval [0, 1] for

each client. We use S = 8 and |U | = 10 in our experiments.

Results. Figure 3 provides further evidence that our algo-
rithm is able to approximate well the combined reward, even
if only the local GFlowNets are given. This is further sup-
ported by the results in Table 1. Notably, EP-GFlowNet is
roughly eight times more accurate than the PCVI baseline.

4.3. Design of sequences

Task description. This tasks revolves around building
sequences of maximum size S. We start with an empty
sequence S and proceed by iteratively appending an ele-
ment from a fixed dictionary U . The process halts when (i)
we select a special terminating token or (ii) the sequence
length reaches S. In the distributed setting, we assume
each client n has a score p(n)s to each of the S positions
within the sequence and a score t(n)u to each of the |U | avail-
able tokens, yielding the logarithmic reward of a sequence
S = (u1, . . . , uM ) as logRn(S) =

∑M
i=1 p

(n)
i t

(n)
ui .

Results. Again, Figure 4 corroborates Theorem 3.1 and
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Figure 3. Multisets: learned × ground truth distributions. Plots compare target vs. distributions learned by GFlowNets. The five plots
to the left show local models were accurately trained. Thus, a well-trained EP-GFlowNet (right) approximates well the combined reward.
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Figure 4. Sequences: learned × ground truth distributions. . Plots compare target to distributions learned. The five leftmost plots show
local GFlowNets were well trained. Hence, as implied by Theorem 3.1, EP-GFlowNet approximates well the combined reward.

shows that EP-GFlowNet accurately samples from the prod-
uct of rewards. Table 1 further reinforces this conclusion,
showing a small gap in L1 distance between EP-GFlowNet
and the centralized GFlowNet trained with access to all re-
wards. Notably, our method is ≈ 8× more accurate than
PCVI. Furthermore, the Top-800 average reward of EP-
GFlowNet perfectly matches the centralized model.

4.4. Bayesian phylogenetic inference

Task description. In this task, we are interested on inferring
a phylogeny T = (t, b), which is a characterization of the
evolutionary relationships between biological species and is
composed by a tree topology t and its (2N−1)-dimensional
vector of non-negative branch lengths b. The topology t is
as a leaf-labeled complete binary tree with N leaves, each
corresponding to a species. Notably, T induces a probabil-
ity distribution P over the space of nucleotide sequences
Y1, . . . , YM ∈ ΩN , where Ω is a vocabulary of nucleobases
and Ym denotes the nucleobases observed at the m-th site
for each species. Assume t is rooted in some node r and that
π ∈ ∆|Ω| is the prior probability distribution over the nucle-
obases’ frequencies at r. Then, the marginal likelihood of
a nucleobase Ym occurring site m for node n is recursively
defined by Felsenstein (1981)’s algorithm as

Pn(Ym|T) =
{

One-Hot(Ym,n) if n is a leaf,
[M(n, nl)⊙M(n, nr)]

⊺ otherwise,

in which nl and nr are respectively the left and right chil-
dren of n; bn,a is the length of the branch between nodes
n and a; Q ∈ R|Ω|×|Ω| is an instantaneous rate-conversion
matrix for the underlying substitution rates between nu-
cleotides, which is given beforehand; and M(n, k) =
ebn,kQPk(Ym|T)⊺ represents the mutation probabilities
from entity n to entity k after a time bn,k. In this con-
text, the marginal likelihood of the observed data within
the site m is Pr(Ym|T)⊺π and, assuming conditional in-

dependence of the sites given T , the overall likelihood of
the data is P(Y|T) =∏1≤i≤M (Pr(Yi|T)⊺π) — which is
naturally log-additive on the sites. For our experiments, π
is a uniform distribution. For simplicity, we consider con-
stant branch length, fixed throughout the experiments. For
the distributed setting, we place a uniform prior over t and
split 2500 nucleotide sites across five clients. In parallel
MCMC (Neiswanger et al., 2014) fashion, each client trains
a GFlowNet to sample from its local posterior, proportional
to the product of its local likelihood and a scaled version
of the prior. We further detail the generative process for
building phylogenetic trees in Figure 8 in Appendix C.1.

Results. Figure 5 shows that EP-GFlowNet accurately
learns the posterior distribution over the tree’s topologies:
the L1 error between the learned distribution and the tar-
geted product distribution is 0.088, whereas the average L1

error among the clients is 0.083(±0.041). Noticeably, this
indicates the model’s aptitude to learn a posterior distri-
bution in a decentralized manner. Moreover, our results
suggest the potential usefulness of GFlowNets as a scal-
able alternative to the notoriously inefficient MCMC-based
algorithms (Zhang & Matsen IV, 2018) in the field of evo-
lutionary biology. Indeed, Figure 12 at Appendix C.1 high-
lights that our distributed framework significantly reduces
the training runtime for GFlowNets for Bayesian inference
relatively to a centralized approach. Notably, naive strate-
gies, like the PCVI baseline, consistently lead to sampling
elements that do not belong to the support of our posterior
(i.e., are invalid) — which is why we do not compare against
it. In future endeavors, we plan to investigate joint parallel
inference on the tree’s topology and its branches’ lengths
using hybrid-space GFlowNets (Deleu et al., 2023). Impor-
tantly, our method is also the first provably correct algorithm
enabling distributed Bayesian inference over discrete ob-
jects, which may become invaluable in real-world problems
with several thousands of sites (Stamatakis & Aberer, 2013).
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EP-GFlowNets’ scalability wrt number of clients. To
illustrate the effect of the number of clients, we perform
the training of EP-GFlowNets with an increasing number
of clients and a fixed data set. Strikingly, Figure 6 shows
that EP-GFlowNets are approximately robust to the number
of chunks the data is partitioned into — both in terms of
convergence speed and accuracy.

4.5. Federated Bayesian network structure learning

Task description. While structure learning is usually car-
ried out on centralized data, there are situations in which
the possibly sensitive data is scattered across a number of
clients (Reisach et al., 2021; Lorch et al., 2021). In this case,
local datasets may be small and individually provide insuf-
ficient information to draw meaningful conclusions. Thus,
we extend the work of Deleu et al. (2022) and show that
EP-GFlowNets can efficiently learn beliefs over Bayesian
networks in a federated setting (Ng & Zhang, 2022), draw-
ing strength from multiple data sources. To this end, let
X ∈ Rd be a random variable and B ∈ Rd×d be a real-
valued matrix with sparsity pattern determined by a DAG G
with nodes [[1, d]]. We assume that X follows a linear struc-
tural equation model X = BX+N, with N ∼ N (0, σ2I)
representing independent Gaussian noise (Bielby & Hauser,
1977). Also, we consider 10 fixed clients, each owing a
private dataset upon which a DAG-GFlowNet (Deleu et al.,
2022) is trained. Our objective is to train a GFlowNet sam-
pling proportionally to the belief distribution defined by
the product of the local rewards without directly access-
ing the clients’ datasets, akin to (Ng & Zhang, 2022). See
Appendix D for further discussion.

Results. Figure 14 in Appendix D shows that the distri-
bution learned by EP-GFlowNets over some topological
features of the DAG accurately matches the target product
distribution. Also, Figure 15 highlights that the federated
model finds structures with a significantly higher score wrt
the complete data than the clients’. Importantly, we remark
that the clients could refine the global distribution by incor-
porating an expert’s knowledge in a personalized fashion
(Bharti et al., 2022). However, we leave this to future works.

4.6. Evaluating the CB loss

Section 3.2 presents the CB loss as a natural development
given the theory of EP-GFlowNets. To evaluate its utility as
a criterion to train GFlowNets in the conventional central-
ized (non-parallel) setting, we report the evolution during
training of the L1 error of the GFlowNet wrt the normalized
reward for models trained using DB, TB, and our CB. We
do so for all tasks in our experiments, with all GFlowNets
using the same architectures for the forward and backward
policies (more details in supplement). Notably, CB led to
the best convergence rate in the multiset generation, phy-

logeny and BNSL tasks (Figure 7), while still performing
on par with DB in the remaining domains. An explanation
is that CB incurs a considerably simpler parametrization
than DB and TB — as we do not require estimating the flow
going through each state or the target partition function. In-
deed, when using Deleu et al. (2022)’s reparametrization for
DB, which obviates the estimation of state flows from state
graphs where all states are terminal, implemented for grid
world and sequences in Figure 7, DB and CB perform simi-
larly. Moreover, to ensure the observed difference between
CB and TB is not due to an insufficiently high learning rate
for the log-partition function, Appendix C.4 shows results
comparing the CB to TB with different lr’s for logZϕZ

in
the multiset experiments (Figure 9). Noticeably, CB out-
performs TB for all rates tested. A rigorous understanding,
however, of the different virtues of the diversely proposed
balance conditions remains a lacking issue in the literature
and is an important course of action for future research.
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Grid
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Phylogenetic trees
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Figure 7. LCB performs competitively with LTB , LDB and
LDBC in the training of conventional GFlowNets.

5. Conclusions
We proposed EP-GFlowNet as a simple and elegant solu-
tion for distributed inference over discrete distributions and
federated learning of GFlowNets, which we validate on an
extensive suite of experiments. Our method enjoys theo-
retical guarantees and builds on the concept of contrastive
balance (CB). Our theoretical analysis i) guarantees correct-
ness when local models are perfectly trained and ii) allows
us to quantify the impact of errors of local models on the
global one. We also observed that using CB loss led to faster
convergence for the local clients when intermediate states
are not terminal — while being otherwise competitive.

Remarkably, we believe EP-GFlowNets pave the way for a
range of applications of distributed and federated discrete
Bayesian inference. We also believe EP-GFlowNets will be
useful to scale up Bayesian inference by amortizing the cost
of expensive likelihood computations over different clients.
In the realm of multi-objective optimization, EP-GFlowNets
enable sampling from a combination of rewards (Jain et al.,
2023) by leveraging pre-trained GFlowNets — even without
directly accessing the rewards. as recently explored by
Garipov et al. (2023). We also believe the modular nature
of EP-GflowNets may be instrumental in enabling the reuse
and combination of large-scale models (Du et al., 2023).
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Figure 5. Bayesian phylogenetic inference: learned × ground truth distributions. Following the pattern in Figures 2-4, the goodness-
of-fit from local GFlowNets (Clients 1-5) is directly reflected in the distribution learned by EP-GFlowNet.
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accuracy achieved by the resulting model in terms of L1 norm
(right) are roughly the same for varying number of clients.

Impact statement
We proposed a framework to approximate log-pools of
GFlowNets using another GFlowNet. Our method has a
broad range of applications in large-scale Bayesian infer-
ence, federated learning, and multi-objective optimization.
Similar to other sampling methods, our work inherits the eth-
ical concerns involved in formulating its target distribution
— and, e.g., may propagate negative societal biases or be
used to generate malicious content. On the other hand, our
framework enables model reuse, which can have a positive
impact on the amount of carbon emissions stemming from
training large generative models.
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A. Proofs
A.1. Proof of Lemma 3.5

It stems directly from the trajectory balance that, for any trajectory τ⋆ ∈ T :

Z
∏

s→s′∈τ⋆

pF (s→ s′) = R(x)
∏

s→s′∈τ⋆

pB(s
′ → s) (11)

⇐⇒ Z = R(x)
∏

s→s′∈τ⋆

pB(s
′ → s)

pF (s→ s′)
(12)

Therefore, applying this identity to τ and τ ′ and equating the right-hand-sides (RHSs) yields Equation (9). We are left with
the task of proving the converse. Note we can rewrite Equation (9) as:

R(x)
∏

s→s′∈τ

pB(s
′ → s)

pF (s→ s′)
= R(x′)

∏
s→s′∈τ ′

pB(s
′ → s)

pF (s→ s′)
. (13)

If Equation (9) holds for any pair (τ, τ ′), we can vary τ ′ freely for a fixed τ — which implies the RHS of the above equation
must be a constant with respect to τ ′. Say this constant is c, then:

R(x)
∏

s→s′∈τ

pB(s
′ → s)

pF (s→ s′)
= c (14)

⇐⇒ R(x)
∏

s→s′∈τ
pB(s

′ → s) = c
∏

s→s′∈τ
pF (s→ s′), (15)

and summing the above equation over all τ ∈ T yields:∑
τ∈T

R(x)
∏

s→s′∈τ
pB(s

′ → s) = c
∑
τ∈T

∏
s→s′∈τ

pF (s→ s′) (16)

=⇒
∑
τ∈T

R(x)
∏

s→s′∈τ
pB(s

′ → s) = c (17)

Furthermore, note that: ∑
x∈X

R(x)
∑

τ∈T (x)

∏
s→s′∈τ

pB(s
′ → s) = c (18)

=⇒
∑
x∈X

R(x) = c (19)

=⇒ Z = c (20)

Plugging Z = c into Equation (14) yields the trajectory balance condition.

A.2. Proof of Theorem 3.1

The proof is based on the following reasoning. We first show that, given the satisfiability of the aggregating balance
condition, the marginal distribution over the terminating states is proportional to

Eτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 , (21)

as stated in Remark 3.3. Then, we verify that this distribution is the same as

pT (x) ∝
∏

1≤i≤N

Ri(x) (22)
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if the local balance conditions are satisfied. This proves the sufficiency of the aggregating balance condition for building a
model that samples from the correct product distribution. The necessity follows from Proposition 16 of Bengio et al. (2023)
and from the observation that the local balance conditions are equivalent to p

(i)
F (τ)/p(i)B (τ |x) = Ri(x) for each i = 1, . . . , N .

Next, we provide a more detailed discussion about this proof. Similarly to Appendix A.1, notice that the contrastive nature
of the aggregating balance condition implies that, if

∏
1≤i≤N

(∏
s→s′∈τ

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)
(∏

s→s′∈τ ′
p
(i)
F (s,s′)

p
(i)
B (s′,s)

) =

(∏
s→s′∈τ

pF (s,s′)
pB(s′,s)

)
(∏

s→s′∈τ ′
pF (s,s′)
pB(s′,s)

) , (23)

then

pF (τ) = c

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 pB(τ |x) (24)

for a constant c > 0 that does not depend either on x or on τ . Hence, the marginal distribution over a terminating state
x ∈ X is

pT (x) :=
∑
τ⇝x

∏
s→s′∈τ

pF (s→ s′) (25)

= c
∑
τ⇝x

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 pB(τ |x) (26)

= cEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 . (27)

Correspondingly, p(i)F (τ)/p(i)B (τ |x) ∝ Ri(x) for every i = 1, . . . , N and every τ leading to x due to the satisfiability of the
local balance conditions. Thus,

pT (x) ∝ Eτ∼pB(·|x)

 ∏
1≤i≤N

Ri(x)

 =
∏

1≤i≤N

Ri(x), (28)

which attests the sufficiency of the aggregating balance condition for the distributional correctness of the global model.

A.3. Proof of Theorem 3.4

Initially, recall that the Jeffrey divergence, known as the symmetrized KL divergence, is defined as

DJ(p, q) = DKL[p||q] +DKL[q||p] (29)

for any pair p and q of equally supported distributions. Then, let

π̂(x) = Ẑ Eτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 (30)
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be the marginal distribution over the terminating states of a GFlowNet satisfying the aggregating balance condition (see
Remark 3.3 and Appendix A.2). On the one hand, notice that

DKL[π||π̂] = Ex∼π
[
log

π(x)

π̂(x)

]
(31)

= Ex∼π

log π(x)− logZEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 (32)

= −Ex∼π

logEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)πi(x)

− log Ẑ + logZ (33)

≤ −Ex∼π

log ∏
1≤i≤N

(1− αi)

− log Ẑ + logZ (34)

= log
Z

Ẑ
+

∑
1≤i≤N

log

(
1

1− αi

)
, (35)

in which Z :=
(∑

x∈X
∏

1≤i≤N πi(x)
)−1

is π’s normalization constant. On the other hand,

DKL[π||π̂] = Ex∼π̂
[
log

π̂(x)

π(x)

]
(36)

= Ex∼π̂

logZEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

− log π(x)

 (37)

= Ex∼π̂

logEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)πi(x)

+ log Ẑ − logZ (38)

≤ Ex∼π̂

log ∏
1≤i≤N

(1 + βi)

+ log Ẑ − logZ (39)

= log
Ẑ

Z
+

∑
1≤i≤N

log (1 + βi) . (40)

Thus, the Jeffrey divergence between the targeted product distribution π and the effectively learned distribution π̂ is

DJ(π, π̂) = DKL[π||π̂] +DKL[π̂||π] (41)

≤ log
Z

Ẑ
+

∑
1≤i≤N

log

(
1

1− αi

)
+ log

Ẑ

Z
+

∑
1≤i≤N

log (1 + βi) (42)

=
∑

1≤i≤N

log

(
1 + βi
1− αi

)
. (43)

A.4. Proof of Theorem 3.7

We firstly recall the construction of the unbiased REINFORCE gradient estimator (Williams 1992), which was originally
designed as a method to implement gradient-ascent algorithms to tackle associative tasks involving stochastic rewards in
reinforcement learning. Let pθ be a probability density (or mass function) differentiably parametrized by θ and fθ : X → R
be a real-value function over X possibly dependent on θ. Our goal is to estimate the gradient

∇θEx∼pθ [fθ(x)], (44)
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which is not readily computable due to the dependence of pθ on θ. However, since

∇θEx∼pθ [fθ(x)] = ∇θ
∫
x∈X

fθ(x)pθ(x)dx (45)

=

∫
x∈X

((∇θfθ(x))pθ(x)) dx+

∫
x∈X

((∇θpθ(x))fθ(x)) dx (46)

= Ex∼pθ [∇θfθ(x) + fθ(x)∇θ log pθ(x)] , (47)

the gradient of fθ’s expected value under pθ may be unbiasedly estimated by averaging the quantity ∇θfθ(x) +
fθ(x)∇θ log pθ(x) over samples of pθ. We use this identity to compute the KL divergence between the forward and
backward policies of a GFlowNet. In this sense, notice that

∇θDKL[pF ||pB ] = ∇θEτ∼pF
[
log

pF (τ)

pB(τ)

]
(48)

= Eτ∼pF
[
∇θ log pF (τ) +

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
(49)

= Eτ∼pF
[(

log
pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
, (50)

as Eτ∼pF [∇θ log pF (τ)] = ∇θEτ∼pF [1] = 0. In contrast, the gradient of the contrastive balance loss with respect to θ is

∇θLCB(τ, τ ′, θ) = ∇θ
(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)2

(51)

= 2

(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)
(∇θ log pF (τ)−∇θ log pF (τ ′)) , (52)

whose expectation under the outer product distribution pF ⊗ pF equals the quantity 4∇θDKL[pF ||pB ] in Equation (48).
Indeed, as

Eτ∼pF
[(

log
pF (τ

′)

pB(τ ′)

)
∇θ log pF (τ)

]
= 0, (53)

with an equivalent identity obtained by interchanging τ and τ ′,

E
(τ,τ ′)∼pF⊗pF

[∇θLCB(τ, τ ′, θ)] = (54)

E
(τ,τ ′)∼pF⊗pF

[
2

(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)
(∇θ log pF (τ)−∇θ log pF (τ ′))

]
= (55)

E
(τ,τ ′)∼pF⊗pF

[
2

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ) + 2

(
log

pF (τ
′)

pB(τ ′)

)
∇θ log pF (τ ′)

]
= (56)

E
τ∼pF

[
4

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
= 4∇θDKL[pF ||pB ]. (57)

Thus, the on-policy gradient of the contrastive balance loss equals in expectation the gradient of the KL divergence between
the forward and backward policies of a GFlowNet.

B. Additional theoretical results
This section rigorously lays out further theoretical results which were only briefly stated in the main paper. Firstly, section B.1
(i) shows that LCB is, in expectation, equivalent to the variance loss considered by Zhang et al. (2023c); and (ii) provides
alternative and shorter proofs for Corollary 3.6 and Theorem 3.7 based on previously published results for LTB . Secondly,
section B.2 extends our aggregation scheme to accommodate generic logarithmic pooling of GFlowNets, significantly
expanding the potential applicability of EP-GFlowNets to personalized federated learning (by implementing a client-level
fine-tuned log-pool (Xu et al., 2023)) and to model composition (such as negation (Du et al., 2023; Garipov et al., 2023)).
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B.1. Relationship of LCB to other losses

Alternative proofs for Corollary 3.6 and Theorem 3.7. To start with, we define VTB(τ) = log pF (τ) + logZ −
log pB(τ |xτ )− logR(xτ ) for the signed violation to the TB condition in log-space; xτ represents the terminal state of the
complete trajectory τ . Note then that

LCB(τ, τ ′) = (VTB(τ)− VTB(τ ′))2 and LTB(τ) = VTB(τ)2. (58)

In this context, Proposition 1 of (Malkin et al., 2022) states the sufficiency of the condition VTB(τ)2 = 0 — and equivalently
of VTB(τ) = 0 — for each τ to ensure that the GFlowNets’ policies sample proportionally to the reward distribution R(x).
As a consequence, LCB(τ, τ ′) = 0 ensures that VTB is constant and, in particular, that there exists a c > 0 such that

VTB + (log c− logZ) = log pF (τ) + log c− log pB(τ |xτ )− logR(xτ ) = 0. (59)

This condition corresponds to a reparametrization of the TB and entails, by Proposition 1 of (Malkin et al., 2022),
Corollary 3.6. Moreover, since

E(τ,τ ′)∼pF⊗pF [∇θFLCB(τ, τ ′)] = E(τ,τ ′)∼pF⊗pF [2 (VTB(τ)− VTB(τ ′))∇θF (VTB(τ)− VTB(τ ′))] (60)

by the chain rule,
Eτ∼pF [∇θFLTB(τ)] = Eτ∼pF [2VTB(τ)∇θF VTB(τ)] = 2DKL [pF ||pB ] (61)

by Proposition 1 of (Malkin et al., 2023), and

Eτ∼pF [∇θF VTB(τ)] =
∑
τ

pF (τ)∇θF log pF (τ) = ∇θF
∑
τ

pF (τ) = 0, (62)

one may conclude that
E(τ,τ ′)∼pF⊗pF [LCB(τ, τ ′)] = 4DKL [pF ||pB ] , (63)

thereby showing Theorem 3.7.

Relationship of LCB to LV L. Zhang et al. (2023c) proposed to train a GFlowNet by minimizing an expectation of the
variance loss,

LV L(τ) = (VTB(τ)− Eτ ′ [VTB(τ ′)])2 ; (64)

in practice, the inner expectation was locally estimated using the average violation of batch of trajectories. Notably, the CB
loss, derived from our proposed contrastive balance condition, equals twice LV L in expectation — when the training policy
samples the trajectories independently, since

Eτ,τ ′

[
(VTB(τ)− VTB(τ ′))2

]
= 2Eτ

[
(VTB(τ)− Eτ ′ [VTB(τ ′)])2

]
= 2Eτ [LV L(τ)] . (65)

Remarkably, this equation may also be elegantly deduced from the general fact that the expectation of the squared difference
between two i.i.d. random variables equals twice their variance.

LCB and VI when pB is parameterized. The theorem below shows that the CB loss coincides with the KL divergence
between the forward and backward policies in terms of expected gradients when pF and pB are disjointly parameterized.

Theorem B.1. Let ϕB represent the parameters of the backward policy. Also, let pB ⊗ pB be the outer-product distribution
assigning probability 1

Z2R(x)R(x
′)pB(τ |x)pB(τ |x′) to each pair of trajectories (τ, τ ′) terminating respectively at x and

x′. Then, the CB loss satisfies

Eτ,τ ′∼pB⊗pB [∇ϕB
LCB(τ, τ ′;ϕB)] =

1

4
DKL [pB ||pF ] . (66)

Importantly, the parameterization of pB doubles the number of forward and backward passes performed in training, which
often obfuscates the advantages enacted by the improved credit assignment provided by an appropriate pB (Shen et al.,
2023). Hence, while acknowledging the importance of designing effective learning schemes for pB , we fix the backward
policy as an uniform.
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B.2. Exponentially weighted distributions

This section extends our theoretical results and shows how to train an EP-GFlowNet to sample from a logarithmic pool
of locally trained GFlowNets. Henceforth, let R1, . . . , RN : X → R+ be non-negative functions over X and assume that
each client n = 1, . . . , N trains a GFlowNet to sample proportionally to Rn. The next propositions show how to train a
GFlowNet to sample proportionally to an exponentially weighted distribution

∏N
n=1Rn(x)

ωn for non-negative weights
ω1, . . . , ωN . We omit the proofs since they are essentially identical to the ones presented in Appendix A.

Firstly, Theorem 3.1′ below proposes a modified balance condition for the global GFlowNet and shows that the satisfiability
of this condition leads to a generative model that samples proportionally to the exponentially weighted distribution.

Theorem 3.1′ (Aggregating balance condition). Let
(
p
(1)
F , p

(1)
F

)
, . . . ,

(
p
(N)
F , p

(N)
F

)
: V 2 → R+ be pairs of forward and

backward policies from N GFlowNets sampling respectively proportional to R1, . . . , RN : X → R+. Then, another
GFlowNet with forward and backward policies pF , pB ∈ V 2 → R+ samples proportionally to R(x) :=

∏N
n=1R(x)

ωn if
and only if the following condition holds for any terminal trajectories τ, τ ′ ∈ T :

∏
1≤i≤N

(∏
s→s′∈τ

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)ωi

(∏
s→s′∈τ ′

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)ωi
=

(∏
s→s′∈τ

pF (s,s′)
pB(s′,s)

)
(∏

s→s′∈τ ′
pF (s,s′)
pB(s′,s)

) . (67)

Secondly, Theorem 3.4′ provides an upper bound on the discrepancy between the targeted and the learned global distributions
under controlled local errors — when the local distributions are heterogeneously pooled. Notably, it suggests that the effect
of the local failures over the global approximation may be mitigated by reducing the weights associated with improperly
trained local models.

Theorem 3.4′ (Influence of local failures). Let πn := Rn/Zn and p(n)F and p(n)B be the forward and backward policies of
the nth client. We use τ ⇝ x to indicate that τ ∈ T is finished by x→ sf . Suppose that the local balance conditions are
lower- and upper-bounded ∀n = 1, . . . , N as per

1− αn ≤ min
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ max
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ 1 + βn (68)

where αn ∈ (0, 1) and βn > 0. The Jeffrey divergence DJ between the global model π̂(x) that fulfills the aggregating
balance condition in Equation (67) and π(x) ∝∏N

n=1 πn(x)
ωn then satisfies

DJ(π, π̂) ≤
N∑
n=1

ωn log

(
1 + βn
1− αn

)
. (69)

Interestingly, one could train a conditional GFlowNet (Bengio et al., 2021; Zhang et al., 2023c) to build an amortized
generative model able to sample proportionally to

∏N
n=1Rn(x)

ωn for any non-negative weights (ω1, . . . , ωN ) within a
prescribed set. This is a promising venue for future research.

C. Additional experiments and implementation details
This section is organized as follows. First, Appendix C.1 describes the experimental setup underlying the empirical
evaluation of EP-GFlowNets in Section 4. Second, Appendix C.2 exhibits the details of the variational approximations to the
combined distributions used as baselines in Table 1. Third, Appendix C.3 specifies our settings for comparing the training
convergence speed of different optimization objectives. Algorithm 1 illustrates the training procedure of EP-GFlowNets.
The computer code for reproducing our experiments will be publicly released at github.com/ML-FGV/ep-gflownets.

C.1. Experimental setup

In the following, we applied the same optimization settings for each environment. For the stochastic optimization, we
minimized the contrastive balance objective using the AdamW optimizer (Loshchilov & Hutter, 2019) for both local and
global GFlowNets. We trained the models for 5000 epochs (20000 for the grid world) with a learning rate equal to 3 · 10−3
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Algorithm 1 Training of EP-GFlowNets

Require:
(
p
(1)
F , p

(1)
B

)
, . . . ,

(
p
(K)
F , p

(K)
B

)
clients’ policies, R1, . . . , RK clients’ rewards, (pF , pB) parameterized global

policies, E number of epochs for training, uF uniform policy
Ensure: p⊺(x) ∝ R(x) :=∏1≤k≤K Rk(x)

parfor k ∈ {1, . . . ,K} do ▷ Train the clients’ models in parallel
train the policies

(
p
(k)
F , p

(k)
B

)
to sample proportionally to Rk

end parfor
for e ∈ {1, . . . , E} do ▷ Train the global model
B ← {(τ, τ ′) : τ, τ ′ ∼ 1/2 · pF + 1/2 · uF } ▷ Sample a batch of trajectories
L← 1

|B|
∑
τ,τ ′∈B LAB

(
τ, τ ′;

{(
p
(1)
F , p

(1)
B

)
, . . . ,

(
p
(K)
F , p

(K)
B

)})
Update the parameters of pF and pB through gradient descent on L

end for

Figure 8. An illustration of the generative process for phylogenetic trees’ topologies. We iteratively select two trees to join their roots.
The final state corresponds to a single, connected graph.

with a batch size dependent upon the environment. Correspondingly, we define the L1 error between the distributions π and
π̂ as two times the total variation distance between them, ∥π − π̂∥1 :=

∑
x∈X |π(x)− π̂(x)|. For the grid world, design of

sequences and federated BNSL setups, all intermediate GFlowNet states are also terminal, since they are connected to a sink
state. For the remaining setups, most states are not terminal and exist solely as intermediate steps between the initial state
and the target distribution’s support.

Grid world. We considered a two-dimensional grid with length size 9 as the environment for the results of both Table 1
and Figure 2. To parameterize the forward policy, we used an MLP with two 64-dimensional layers and a LeakyReLU
activation function between them (Maas et al., 2013). For inference, we simulated 106 environments to (i) compute the L1

error between the targeted and the learned distributions; and (ii) selected the 800 most rewarding samples. We utilized a
batch size equal to 1024 during both the training and inference phases.

Design of sequences. We trained the GFlowNets to generate sequences of size up to 6 with elements selected from a set of
size 6. We parametrized the forward policies with a single 64-dimensional layer bidirectional LSTM network followed by an
MLP with two 64-dimensional layers (Graves & Graves, 2012). For training, we used a batch size of 512. For inference, we
increased the batch size to 1024 and we sampled 106 sequences to estimate the quantities reported in Table 1 and Figure 4.

Multiset generation. We designed the GFlowNet to generate multisets of size 8 by iteratively selecting elements from a
set U of size 10. Moreover, we endowed each element within U with a learnable and randomly initialized 10-dimensional
embedding. To estimate the transition probabilities at a given state s, we applied an MLP with two 64-dimensional layers to
the sum of the embeddings of the elements in s. During training, we used a batch size of 512 to parallely generate multiple
multisets and reduce the noiseness of the backpropagated gradients. During inference, we increased the batch size to 1024
and generated 106 samples to generate the results reported in Table 1 and Figure 3.

Bayesian phylogenetic inference. We devised a GFlowNet to learn a posterior distribution over the space of rooted
phylogenetic trees with 7 leaves and fixed branch lengths. Each state is represented as a forest. Initially, each leaf belongs to a
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different singleton tree. An action consists of picking two trees and joining their roots to a newly added node. The generative
process is finished when all nodes are connected in a single tree (see Figure 8; a similar modeling was recently considered
by (Zhou et al., 2023)).To estimate the policies at the (possibly partially built) tree t, we used a graph isomorphism network
(GIN; Xu et al., 2019) with two 64-dimensional layers to generate node-level representations for t and then used an MLP to
project the sum of these representations to a probability distribution over the viable transitions at t. We used a tempered
version of the likelihood to increase the sparsity of the targeted posterior. Importantly, we selected a batch size of 512 for
training and of 1024 for inference. Results for Table 1 and Figure 5 are estimates based on 105 trees drawn from the learned
distributions. To evaluate the likelihood function, we considered Jukes & Cantor’s nucleotide substitution model for the
observed sites (Jukes & Cantor, 1969), which assigns the same instantaneous substitution rate for each pair of nucleotides.

Bayesian network structure learning. Each client trains a DAG-GFlowNet Deleu et al. (2022) to sample proportionally
to the reward function evaluated at a small dataset of 20 points. However, in contrast Deleu et al. (2022), which implemented
a linear transformer for parameterizing GFlowNet’s forward policy, we use a 2-layer 128-dimensional MLP; the backward
policy is fixed as an uniform distribution over a state’s parents. For the global model, we increase the MLP’s latent layers’
size to 256 units each. To estimate the probability PG[U → V ], we sample {G1, . . . , GN} and compute

1

N

∑
1≤n≤N

1[U → V |Gn], (70)

with 1[U → V |Gn] indicating whether the edge U → V exists in Gn. We compare this quantity with the nominal value
obtained by enumerating the target distribution π support and directly evaluating the expectation EG∼π [1[U → V |G]],
similarly to (Deleu et al., 2022).

Our implementations were based on PyTorch (Paszke et al., 2019) and on PyTorch Geometric (Fey & Lenssen,
2019).

C.2. Parallel Categorical Variational Inference

As a simplistic approach to combining the locally learned distributions over compositional objects, we variationally
approximate them as the product of categorical distributions over the objects’ components. For this, we select the parameters
that minimize the reverse Kullback-Leibler divergence between the GFlowNet’s distribution pT and the variational family
Q,

q̂ = argmin
q∈Q

KL[pT ||q] = argmin
q∈Q

−Ex∼pT [log q(x)], (71)

which, in asymptotic terms, is equivalent to choosing the parameters that maximize the likelihood of the GFlowNet’s samples
under the variational model. Then, we use a logarithmic pool of these local variational approximations as a proxy for the
global model. In the next paragraphs, we present the specific instantiations of this method for the domains we considered
throughout our experiments. We used the same experimental setup of Appendix C.1 to train the local GFlowNets.

Grid world. An object in this domain is composed of its two coordinates in the grid. For a grid of width W and height H ,
we consider the variational family

Q = {(ϕ, ψ) ∈ ∆W+1 ×∆H+1 : qϕ,ψ(x, y) = Cat(x|ϕ)Cat(y|ψ)}, (72)

in which ∆d is the d-dimensional simplex and Cat(ϕ) (Cat(ψ)) is a categorical distribution over {0, . . . ,W} ({0, . . . ,H})
parameterized by ϕ (ψ). Then, given the N variational approximations

(
qϕ(1),ψ(1)

)
, . . . ,

(
qϕ(N),ψ(N)

)
individually adjusted

to the distributions learned by the local GFlowNets, we estimate the unnormalized parameters ϕ̃ and ψ̃ of the variational
approximation to the global distribution over the positions within the grid as

ϕ̃ =
⊙

1≤i≤N

ϕ(i) and ψ̃ =
⊙

1≤i≤N

ψ(i). (73)

Then, we let ϕ = ϕu/ϕ⊺
u1W+1 and ψ = ψu/ψ⊺

u1H+1, with 1d as the d-dimensional vector of 1s, be the parameters of the global
model.
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Design of sequences. We represent sequences of size up to T over a dictionary V as a tuple (S, (x1, . . . , xS)) denoting its
size S and the particular arrangement of its elements (x1, . . . , xS). This is inherently modeled as a hierarchical model of
categorical distributions,

S ∼ Cat(θ), (74)
xi ∼ Cat(ϕi,S |S) for i ∈ {1, . . . , S}, (75)

which is parameterized by θ ∈ ∆T and ϕ·,S ∈ RS×|V | for S ∈ {1, . . . , T}. We define our family of variational approxima-
tions as the collection of all such hierarchical models and estimate the parameters θ and ϕ accordingly to Equation (71). In
this case, let

(
θ(1), ϕ(1)

)
, . . . ,

(
θ(N), ϕ(N)

)
be the parameters associated with the variational approximations to each of the

N locally trained GFlowNets. The unnormalized parameters θ̃ and ϕ̃ of the combined model that approximates the global
distribution over the space of sequences are then

θ̃ =
⊙

1≤i≤N

θ(i) and ϕ̃·,S =
⊙

1≤i≤N

ϕ
(i)
·,S for S ∈ {1, . . . , T}, (76)

whereas the normalized ones are θ = θ̃/θ̃⊺1T and ϕ·,S = diag(ϕ̃·,S1|V |)
−1ϕ̃·,S .

Multiset generation. We model a multiset S of size S as a collection of independently sampled elements from a warehouse
W with replacement. This characterizes the variational family

Q =

{
q(·|ϕ) : q(S|ϕ) =

∏
s∈S

Cat(s|ϕ)
}
, (77)

in which ϕ is the parameter of the categorical distribution overW estimated through Equation (71). Denote by ϕ(1), . . . , ϕ(N)

the estimated parameters that disjointly approximate the distribution of N locally trained GFlowNets. We then variationally
approximate the logarithmically pooled global distribution as q(·|ϕ) ∈ Q with ϕ = ϕ̃/ϕ̃⊺1|W|, in which

ϕ̃ =
⊙

1≤i≤N

ϕ(i). (78)

Notably, the best known methods for carrying out Bayesian inference over the space of phylogenetic trees are either based
on Bayesian networks (Zhang & Matsen IV, 2018) or MCMC, neither of which are amenable to data parallelization and
decentralized distributional approximations without specifically tailored heuristics. More precisely, the product of Bayesian
networks may not be efficiently representable as a Bayesian network, and it is usually not possible to build a global Markov
chain whose stationary distribution matches the product of the stationary distributions of local Markov chains. Moreover,
any categorical variational approximation factorizable over the trees’ clades would not be correctly supported on the space
of complete binary trees and would lead to frequently sampled invalid graphs. By a similar reasoning, we do not compare
EP-GFlowNets to a composition of tractable variational approximations to the local models, such as (Geffner et al., 2022;
Zheng et al., 2018), in the problem of federated Bayesian structure learning.

C.3. Comparison of different training criteria

Experimental setup. We considered the same environments and used the same neural network architectures described in
Appendix C.1 to parametrize the transition policies of the GFlowNets. Importantly, the implementation of the DB constraint
and of the FL-GFlowNet requires the choice of a parametrization for the state flows (Bengio et al., 2023; Pan et al., 2023a).
We model them as an neural network with an architecture that essentially mirrors that of the transition policies — with the
only difference being the output dimension, which we set to one. Moreover, we followed suggestions in (Pan et al., 2023a;
Malkin et al., 2022) and utilized a learning rate of 3 · 10−3 for all parameters of the policy networks except for the partition
function’s logarithm logZ composing the TB constraint, for which we used a learning rate of 1 · 10−1. Noticeably, we
found that this heterogeneous learning rate scheme is crucial to enable the training convergence under the TB constraint.

Further remarks regarding Figure 7. In Figure 7, we observed that LCB and LTB perform similarly in the grid world
and in design of sequences tasks. A reasonable explanation for this is that such criteria are identically parameterized in
such domains, as LDB reduces to R(s′)pB(s|s′)pF (sf |s) = R(s)pF (s

′|s)pF (sf |s′) in environments where every state is
terminal (Deleu et al., 2022). Thus, F vanishes and hence the difficult estimation of this function is avoided.
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Table 2. Quality of the parallel approximation. The global model’s performance does not critically depend on the clients’ training
objective; it relies only on the goodness-of-fit of their models.

Grid World Multisets Sequences
L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑

EP-GFlowNet (CB) 0.038 −6.355 0.130 27.422 0.005 −1.535
(±0.016) (±0.000) (±0.004) (±0.000) (±0.002) (±0.000)

EP-GFlowNets (TB) 0.039 −6.355 0.131 27.422 0.006 −1.535
(±0.006) (±0.000) (±0.018) (±0.000) (±0.005) (±0.000)

C.4. Additional experiments

Reduction in runtime achieved due to a distributed formulation. Figure 12 shows that our distributed inference
framework enacts a significant reduction in runtime in the task of Bayesian phylogenetic inference relatively to a centralized
approach — while maintaining a competitive performance under the L1 metric1. This underlines the effectiveness of our
method for Bayesian inference when the target distribution is computationally difficult to evaluate due to an expensive-
to-compute likelihood function (which, for phylogenies, requires running Felsenstein’s dynamic programming algorithm
(Felsenstein, 1981) to carry out message-passing in a graphical model). In this context, EP-GFlowNets may be also of use in
Bayesian language modeling with large language models (LLMs), in which case the likelihood function is provided by a
LLM with a notoriously high computational footprint; see (Hu et al., 2023a). For this experiment, we considered the same
setup described in Appendix C.1, partitioning the data among an increasing number of {2, 4, 6, 8, 10} identical clients, each
processing a set of 1000 random sites, and training the corresponding centralized and distributed models to sample from the
full posterior. The reported times were measured in a high-performance Linux machine equipped with an AMD EPYC
7V13 64-core processor, 216 GB DDR4 RAM and a NVIDIATM A100 80 GB PCIe 4.0 GPU. Notably, we found out that
training a GFlowNet in a CPU is considerably faster in this case than training it in a GPU — possibly due to the iterative
nature of the generative process and the relatively small size of the policy networks, whose accelerated evaluation in a GPU
does not compensate for the corresponding slow-down of the tree-building process.
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Figure 9. CB outperforms TB for different lr’s for logZ.

Comparison between TB and CB with different learning rates.
Figure 9 shows that increasing the learning rate for logZϕZ

signif-
icantly accelerates the training convergence for the TB objective.
In this experiment, the learning rate for the other parameters was
fixed at 10−3 — following the setup of Malkin et al. (2022, Ap-
pendix B). However, CB leads to faster convergence relatively to
TB for all considered learning rates. In practice, though, note that
finding an adequate learning rate for logZϕZ

may be a very dif-
ficult and computationally exhaustive endeavor that is completely
avoided by implementing the CB loss.
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Figure 10. Sampling from the product of GFlowNets’ policies
isn’t equivalent to sampling from the local targets’ product.

Sampling from product of distributions. As a first approxima-
tion, one could employ a simple rejection sampling procedure to
sample from a product of discrete distributions q1, . . . , qK over
a shared support: draw independently a xi from qi and accept the
resulting xi only if it was sampled by every other model. Nonethe-
less, this approach scales very badly as one increases either the
number of distributions or the size of their common support. Hin-
ton (2002), in a related work, proposed an efficient algorithm to
train a model to sample from a product of energy-based distribu-
tions by minimizing a contrastive divergence, acknowledging that
it is not generally straightforward to sample from a product of
discrete distributions. More recently, Du et al. (2023) developed

1Note that, in Figure 12, the runtime for EP-GFlowNet equals the maximum time for training the clients’ models plus the running time
of our aggregation step.
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Figure 12. EP-GFlowNets achieve a significant reduction in runtime relatively to a standard GFlowNet in the task of Bayesian
phylogenetic inference. The left plot highligths that the training time for an EP-GFlowNet remains approximately constant when an
increasing set of observed samples is equally partitioned between a correspondingly increasing set of clients, each receiving 1000 sites,
whereas the training time of a standard GFlowNet grows roughly linearly on the number of samples. Importantly, the right plot shows the
asynchronously trained model performs comparably to the synchronously trained one for all the considered data sizes.

an MCMC-based algorithm to sample from a multiplicative composition of energy-base parameterized diffusion models,
remarking the incorrectness of naive approaches based on sampling from the product of the reverse kernels. In the context
of compounding GFlowNets with forward policies (p

(i)
F )1≤i≤N to sample from the corresponding product distribution∏

1≤i≤N Ri, however, one could exploit the structured nature of the model and naively attempt to use

pF (·|s) ∝
∏

1≤i≤N

p
(i)
F (·|s), (79)

hoping that the resulting GFlowNet would sample from the correct product distribution. Notably, this approach fails due to
the dependence of the normalizing constant of the preceding distribution on the state s — and it is unclear according to
what distribution the sampled objects are distributed. Figure 10 illustrates this for the problem of generating sequences: by
combining the policies of the clients accordingly to Equation (79), the culminating distribution drastically differs from the
targeted one, even though the clients were almost perfectly trained. The question of which distributions one may obtain by
composing the policies of expensively pre-trained GFlowNets is still open in the literature (Garipov et al., 2023).

Implementing different training objectives for the clients. Table 2 suggests that the accuracy of EP-GFlowNet’s
distributional approximation is mostly independent of whether the clients implemented CB or TB as training objectives.
Notably, the combination phase of our algorithm is designedly agnostic to how the local models were trained — as long as
they provide us with well-trained backward and forward policies. This is not constraining, however, since any practically
useful training scheme for GFlowNets is explicitly based upon the estimation of such policies (Malkin et al., 2022; Pan
et al., 2023a; Bengio et al., 2023; Zhang et al., 2023c).
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Figure 11. Aggregation
phase’s 50-epoch cost.

Aggregation phase’ computational cost. Figure 11 shows that the per-epoch cost of training
of a naively implemented EP-GFlowNets’ aggregation phase, which we measure for the task
of multiset generation, increases roughly linearly as a function of the number of worker nodes.
Nonetheless, we remark that, in theory, one could achieve a sublinear relationship between the
computational cost and the number of clients by parallelizing the local policies’ evaluation when
minimizing the aggregating balance loss function LAB , which is not done by our implementation.

Sensibility of EP-GFlowNet to imperfectly trained clients. Theorem 3.4 ensures that EP-
GFlowNets can be trained to accurately sample from the combined target when the clients are
sufficiently — but maybe imperfectly — learned. However, even when clients are imperfectly
trained, EP-GFlowNets may achieve a relatively good approximation to the target. To exemplify this, we consider the
task of multiset generation with 4 clients trained on multiplicatively noisy targets, namely, logR′

i(x) = logRi(x) + ϵ
with ϵ ∼ N|X |(0, σ

2I) sampled from a |X |-dimensional normal distribution. Then, we perform EP-GFlowNets’ ag-
gregation phase and compare the learned distribution with the product

∏
1≤i≤4Ri. Importantly, Figure 13 shows

that the accuracy of the aggregated model is comparable and often better than that of the most inaccurate client for
σ2 ∈ {0.000, 0.002, 0.004, 0.006, 0.008, 0.01}.
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Figure 14. Federated Bayesian network structure learning. Each plot shows, for each pair of nodes (U, V ), the expected (vertical) and
learned (horizontal) probabilities of U and V being connected by an edge, P[U → V ], and of existing a directed path between U and V ,
P[U ⇝ V ]. Notably, EP-GFlowNet accurately matches the target distribution over such edges’ features.

D. Federated Bayesian Network Structure Learning (BNSL)
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Figure 13. EP-GFlowNet’s
vs Clients’ accuracy.

Bayesian networks are often used to describe the statistical dependencies of a set of observed
variables (Bielby & Hauser, 1977; Pearl & Mackenzie, 2018; Pearl, 2009; 1988); however,
learning their structure from data is very challenging due to the combinatorially many possibilities.
For example, when such variables represent some form of gene expression, we may want to
infer the gene regulatory network describing the genes’ causal relationships (Husmeier, 2003).
Conventionally, structure learning is carried out centrally — with all data gathered in a single
place (Reisach et al., 2021; Lorch et al., 2021). Nonetheless, such datasets are often small
and insufficiently informative about the underlying structure. On the other hand, the rapid
development of information technologies has significantly lowered the barrier for multiple parties
(e.g., companies) to collaboratively train a model using their collected and privacy-sensitive
datasets. In this context, we extend the work of Deleu et al. (2022; 2023) and show that EP-GFlowNets can be efficiently
used to learn a belief distribution over Bayesian networks in a federated setting (Ng & Zhang, 2022).
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Figure 15. The distribution learned in a federated manner
(green) finds significantly higher scoring graphs wrt the com-
plete data than any of its local counterparts (red). The dashed
lines represent the avg. scores for the global and local models.

For this, let X ∈ Rd be a random variable and B ∈ Rd×d be a
sparse real-valued matrix with sparsity pattern determined by a
directed acyclic graph G with nodes {1, . . . , d}. We assume that
X follows a linear structural equation model (SEM)

X = BX+N, (80)

with N ∼ N (0, σ2I) representing independent Gaussian noise
(Bielby & Hauser, 1977; Deleu et al., 2022). Also, we consider K
fixed clients, each owning a private dataset Dk = {x1, . . . ,xN},
and our objective is to learn a belief distribution

R(G) =
∏

1≤k≤K

Rk(G) (81)

over DAGs, in whichRk(G) = p(Dk|G)p(G) and p(Dk|G) = p(Dk|B̂k, G), with B̂k being client k’s maximum likelihood
estimate of B given G (Deleu et al., 2022). Intuitively, the belief R assigns high probability to DAGs which are probable
under each of Rk’s and may be seem as a multiplicative composition of the local models (Garipov et al., 2023; Du et al.,
2023). Notably, Ng & Zhang (2022) considered a similar setup, iteratively solving a L1-regularized continuous relaxation of
the structure learning problem to find a globally optimum DAG (Zheng et al., 2018). However, in contrast to EP-GFlowNets,
Ng & Zhang (2022)’s approach doesn’t always guarantee that the obtained graph is acyclic (Geffner et al., 2022; Zheng
et al., 2018); it doesn’t provide a belief distribution over the DAGs, which could be successively refined by probing an expert
(Bharti et al., 2022; da Silva et al., 2023); and it is not embarrassingly parallel, requiring many communication steps to be
fulfilled.

Experimental setup. To show that EP-GFlowNets can accurately sample from the belief distribution defined by Equa-
tion (81) in a distributed setting, we first simulate a dataset of 400 independent data points according to the SEM outlined in
Equation (80) with d = 4 variables. Next, we evenly partition this dataset between 4 clients, which then train their own
DAG-GFlowNets (Deleu et al., 2022) based on their individual datasets for 10000 epochs using AdamW (Loshchilov &
Hutter, 2019). Finally, the locally trained DAG-GFlowNets are aggregated by minimizing the aggregating balance and
the resulting model is compared to the belief distribution in Equation (81). See Section 4.5 for further discussion on our
empirical observations for this domain.
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Results. Figure 14 s that EP-GFlowNet adequately learns a distribution over DAGs in a federated setting. Correspondingly,
Figure 15 stresses that the collaboratively trained GFlowNet finds graphs with higher scores (graph-conditioned maximum
log-likelihood) relatively to the private models. See Section 4.5 for discussion.

E. Related work
GFlowNets were originally proposed as a reinforcement learning algorithm tailored to the search of diverse and highly
valuable states within a given discrete environment (Bengio et al., 2021). Recently, these algorithms were successfully
applied to the discovery of biological sequences (Jain et al., 2022), robust scheduling of operations in computation graphs
(Zhang et al., 2023c), Bayesian structure learning and causal discovery (Deleu et al., 2022; 2023; da Silva et al., 2023;
Atanackovic et al., 2023a), combinatorial optimization (Zhang et al., 2023a), active learning (Hernandez-Garcia et al., 2023),
multi-objective optimization (Jain et al., 2023), and discrete probabilistic modeling (Zhang et al., 2022a; Hu et al., 2023b;
Zhang et al., 2022b). (Bengio et al., 2023) formulated the theoretical foundations of GFlowNets. Correlatively, (Lahlou
et al., 2023) laid out the theory of GFlowNets defined on environments with a non-countable state space. (Pan et al., 2023c)
and (Zhang et al., 2023b) extended GFlowNets to environments with stochastic transitions and rewards. Concomitantly
to these advances, there is a growing literature that aims to better understand and improve this class of algorithms (Deleu
& Bengio, 2023; Shen et al., 2023; Malkin et al., 2023), with an emphasis on the development of effective objectives
and parametrizations to accelerate training convergence (Pan et al., 2023b;a; Malkin et al., 2022; Deleu et al., 2022). In
recent work, for instance, (Pan et al., 2023a) proposed a novel residual parametrization of the state flows that achieved
promising results in terms of speeding up the training convergence of GFlowNets. More specifically, the authors assumed
the existence of a function E : S → R such that (i) E(so) = 0 and (ii) E(x) = − logR(x) for each terminal state x ∈ X and
reparameterized the state flows as logF (s, ϕS) = −E(s) + log F̃ (s, ϕS). This new training scheme was named forward
looking (FL) GFlowNets due to the inclusion of partially computed rewards in non-terminal transitions. Notably, both
Malkin et al. (2023) and (Zhang et al., 2023c) proposed using the variance of the a TB-based estimate of the log partition
function as a training objective based on the variance reduction method of Richter et al. (2020). It is important to note
one may use stochastic rewards (see Bengio et al., 2023; Zhang et al., 2023b) for carrying out distributed inference, in
the same fashion of, e.g., distributed stochastic-gradient MCMC (El Mekkaoui et al., 2021; Vono et al., 2022). Notably,
stochastic rewards have also been used in the context of causal structure learning by Deleu et al. (2023). However, it would
require many communication steps between clients and server to achieve convergence — which is one of the bottleneck
EP-GFlowNets aim to avoid.

Distributed Bayesian inference mainly concerns the task of approximating or sampling from a posterior distribution given
that data shards are spread across different machines. This comprises both federated scenarios (El Mekkaoui et al., 2021;
Vono et al., 2022) or the ones in which we arbitrarily split data to speed up inference (Scott et al., 2016). Within this realm,
there is a notable family of algorithms under the label of embarrassingly parallel MCMC (Neiswanger et al., 2014), which
employ a divide-and-conquer strategy to assess the posterior. These methods sample from subposteriors (defined on each
user’s data) in parallel, subsequently sending results to the server for aggregation. The usual approach is to use local samples
to approximate the subposteriors with some tractable form and then aggregate the approximations in a product. In this line,
works vary mostly in the approximations employed. For instance, Mesquita et al. (2019) apply normalizing flows, (Nemeth
& Sherlock, 2018) model the subposteriors using Gaussian processes, and (Wang et al., 2015) use hyper-histograms. It is
important to note, however, that these works are mostly geared towards posteriors over continuous random variables.

Federated learning was originally motivated by the need to train machine learning models on privacy-sensitive data
scattered across multiple mobile devices — linked by an unreliable communication network (McMahan et al., 2017b). While
we are the first tackling FL of GFlowNets, there are works on learning other generative models in federated/distributed
settings, such as for generative adversarial networks (Hong et al., 2021; Chang et al., 2020; Qu et al., 2020) and variational
autoencoders (Polato, 2021). Critically, EP-GFlowNets enable the collaborative training of a global model without disclosing
the data underlying the clients’ reward functions (defined by a neural network (Jain et al., 2022) or a posterior distribution
(Deleu et al., 2022; 2023; da Silva et al., 2023), for instance); however, it does not inherently preserve the privacy of the
reward functions themselves, which may be accurately estimated from their publicly shared policy networks. Nevertheless,
a future work may investigate formally to which extent imperfectly trained policy networks ensure some form of differential
privacy over the clients’ rewards.

Comparing EP-GFlowNets to single-round FedAVG (McMahan et al., 2017a) As EP-GFlowNets are the first method
enabling embarrassingly parallel inference over discrete combinatorial spaces, there are no natural baselines to our
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experiments. For completeness, however, we use a single round of FedAVG (McMahan et al., 2017a) by training local
models (GFlowNets) until convergence and aggregating them in parameter space, assuming all policy networks share the
same architecture. Note, however, that this baseline does not enjoy any guarantee of correctness and may lead to poor results.
To validate this, we have run an experiment for the multiset generation task using FedAvg for aggregation. The resulting
model attained an L1 error of 1.32, roughly two orders of magnitude worse compared to the 0.04 of EP-GFlowNets.
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