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Abstract
We consider solving large scale nonconvex opti-
misation problems with nonnegativity constraints.
Such problems arise frequently in machine learn-
ing, such as nonnegative least-squares, nonneg-
ative matrix factorisation, as well as problems
with sparsity-inducing regularisation. In such set-
tings, first-order methods, despite their simplic-
ity, can be prohibitively slow on ill-conditioned
problems or become trapped near saddle regions,
while most second-order alternatives involve non-
trivially challenging subproblems. The two-
metric projection framework, initially proposed
by Bertsekas (1982), alleviates these issues and
achieves the best of both worlds by combining
projected gradient steps at the boundary of the
feasible region with Newton steps in the interior
in such a way that feasibility can be maintained
by simple projection onto the nonnegative orthant.
We develop extensions of the two-metric projec-
tion framework, which by inexactly solving the
subproblems as well as employing non-positive
curvature directions, are suitable for large scale
and nonconvex settings. We obtain state-of-the-
art convergence rates for various classes of non-
convex problems and demonstrate competitive
practical performance on a variety of problems.

1. Introduction
We consider high-dimensional problems of the form

min
x∈Rd

f(x), subject to x ≥ 0, (1)

where d ≫ 1 and f : Rd → R is twice continuously dif-
ferentiable and possibly nonconvex function. Despite the
simplicity of its formulation, such problems arise in many
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applications in science, engineering, and machine learning
(ML). Typical examples in ML include nonnegative formula-
tions of least-squares and matrix factorisation (Lee & Seung,
1999; 2000; Gillis, 2020). Additionally, problems involv-
ing sparsity inducing regularisation such as ℓ1 norm, which
are typically non-smooth, can be reformulated into a differ-
entiable objective with nonnegativity constraints (Schmidt
et al., 2007).

Many methods have been developed to solve (1). First-order
methods (Lan, 2020), such as projected gradient descent,
can be very simple to implement and as such are popular
in ML. However, they come with well-known deficiencies,
including relatively-slow convergence on ill-conditioned
problems, sensitivity to hyper-parameter settings such as
learning rate, and difficulty in escaping flat regions and sad-
dle points. On the other hand, general purpose second-order
algorithms, e.g., projected Newton method (Schmidt et al.,
2011; Lee et al., 2014) and interior point methods (Nocedal
& Wright, 2006), alleviate some of these issues such as
susceptibility to ill-conditioning and/or stagnation near flat
regions. However, due to not leveraging the simplicity of the
constraint, this advantages come at the cost of introducing
highly non-trivial and challenging subproblems.

By exploiting the structure of the constraint in (1), Bertsekas
(1982) proposed the two-metric projection framework as
a natural and simple adaptation of the classical Newton’s
method for unconstrained problems. By judicious modifica-
tion of the Hessian matrix, this framework can be effectively
seen as projecting Newton’s step onto the nonnegative or-
thant. This allows for the best of both worlds, blending the
efficiency of classical Newton’s method with the simplicity
of projected gradient descent. Indeed, similar to the classi-
cal Newton’s method, the subproblem amounts to solving
a linear system, while like projected gradient-descent, the
projection step is straightforward.

Contribution. In this paper, we design, theoretically anal-
yse, and empirically evaluate novel two-metric projection
type algorithms (Algorithms 1 and 2) with desirable com-
plexity guarantees for solving large scale and nonconvex
optimisation problems with nonnegativity constraints (1).
Both Algorithms 1 and 2 are Hessian-free in that the sub-
problems are solved inexactly using the minimum residual
(MINRES) method (Paige & Saunders, 1975) and only re-
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quire Hessian-vector product evaluations. To achieve ap-
proximate first-order optimality (see Definition 2.1), we
leverage the theoretical properties of MINRES, as recently
established in (Liu & Roosta, 2022a), e.g., nonnegative cur-
vature detection and monotonicity properties, and we show
the following:

(I) Under minimal assumptions, Algorithm 1 achieves
global iteration complexity that matches those of first-order
alternatives (Theorem 3.3).
(II) Under stronger assumptions, Algorithm 2 enjoys a
global iteration complexity guarantee with an improved rate
that matches the state of the art for second-order methods
(Theorem 3.8).
(III) Both variants obtain competitive oracle complexities,
i.e., the total number of gradient and Hessian-vector product
evaluations (Corollaries D.2 and D.3).
(IV) Our approach enjoys fast local convergence guarantees
(Theorem 3.13 and Corollary 3.14).
(V) Our approach exhibit highly competitive empirical per-
formance on several machine learning problems (Section 4).

To our knowledge, the complexity guarantees outlined in
this paper are the first to be established for two-metric pro-
jection type algorithms in nonconvex settings.

Notation. Vectors and matrices are denoted, respectively,
by bold lowercase and uppercase letters. Denote the non-
negative orthant by Rd+. The open ball of radius r around
x is denoted by B(x, r) ≜ {z ∈ Rd | ∥z − x∥ < r}.
The inequalities,“≥” and “≤”, are often applied element-
wise. Big-O complexity is denoted by O with hidden log-
arithmic factors indicated by Õ. Denote components of
vectors by superscript and iteration counters as subscripts,
e.g., xik is ith component of the kth iterate of x. As a
natural extension, a set of indices in the superscript de-
notes the subvector corresponding to those components,
e.g., letting [d] = {1, . . . , d}, if I ⊆ [d] and v ∈ Rd
then vI = (vi | i ∈ I) ∈ R|I|. Let g(x) = ∇f(x)
and H(x) = ∇2f(x) denote the gradient and Hessian of
f , respectively. Denote the δk-active and δk-inactive sets,
respectively, by

A(xk, δk) = {i ∈ [d] | 0 ≤ xik ≤ δk}, (2a)

I(xk, δk) = {i ∈ [d] | xik > δk}. (2b)

When the context is clear, we suppress the dependence on xk
and δk, e.g., gk and Hk for g(xk) and H(xk) and xI

k or xIk

k

instead of xI(xk,δk)
k . We also denote HI

k = {(Hk)ij | i, j ∈
I(xk, δk)}.

2. Background and Related Work
We now briefly review related works for solving (1) and
some essential background necessary for our presentation.

First-order Methods. The projected gradient method (Lan,
2020) is among the simplest techniques for solving optimi-
sation problems involving convex constraints. Indeed, the
projected gradient iteration for minimisation over a convex
set Ω is simply given by xk+1 = PΩ(xk − αkgk) where
PΩ : Rd → Rd is the orthogonal projection onto Ω defined
by PΩ(x) = argminz∈Ω ∥z − x∥. When αk is chosen
appropriately, e.g., via line search, the projected gradient
method is known to converge under essentially the same
conditions and at the same rate as the unconstrained vari-
ant (Bertsekas, 1999; Beck, 2017). Many variations of this
method have also been considered, e.g., spectral projected
gradient (Birgin et al., 2014), proximal gradient (Parikh &
Boyd, 2014; Beck, 2017), and accelerated proximal gradient
(Nesterov, 2013; Beck & Teboulle, 2009) with its extensions
to non-convex settings (Lin et al., 2020; Li et al., 2017).

Of course, the effectiveness of the projected gradient method
relies heavily on the computational cost associated with
computingPΩ(x). While this can be challenging for general
convex sets, in the case of Ω = Rd+, it is simply given by
[P(x)]i = xi, if xi > 0, and [P(x)]i = 0, otherwise. Note
that, for notational simplicity, we omit the dependence of
P on Ω in our context. Nonetheless, while the projected
gradient method is a simple choice for solving (1), it shares
the common drawbacks of first-order methods alluded to
earlier, e.g., susceptibility to ill-conditioning.

Second-order Methods. By incorporating Hessian infor-
mation, second-order methods hold the promise to alleviate
many of the well-known deficiencies of first-order alterna-
tives, e.g., they are typically better suited to ill-conditioned
problems (Xu et al., 2020b). For constrained problems,
generic projected (quasi) Newton methods involve iterations
of the form xk+1 = xk + αkpk where

pk = argmin
x∈Ω

⟨gk,p⟩+ ⟨p,Bkp⟩ /2, (3)

where αk is an appropriately chosen step-size, e.g., back-
tracking line search, and Bk captures some curvature infor-
mation of f at xk (and also potentially the step-length as in
the proximal arc search). For Bk = I we recover a projected
gradient variant, whereas for Bk = Hk, or some approxi-
mation, we obtain projected (or more generally proximal)
Newton-type methods (Schmidt et al., 2009; 2011; Becker
& Fadili, 2012; Lee et al., 2014; Shi & Liu, 2015). The
main drawback of this framework is that the subproblem,
(3), may no longer be a simple projection even when Ω is a
simple, and one has to resort to an optimisation subroutine
to (approximately) solve (3).

An alternative is the interior point framework (Nocedal &
Wright, 2006), where the constraints are directly integrated
into the objective as “barrier” functions. While the subprob-
lems in this framework amount to solving linear systems,
to produce accurate solutions the barrier function must ap-
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proach the constraint, which can lead to highly ill condi-
tioned subproblems. Some recent works (Bian et al., 2014;
Haeser et al., 2017; O’Neill & Wright, 2020) consider in-
terior point methods for (1). In particular, in (O’Neill &
Wright, 2020), capped Newton-CG with a preconditioned
Hessian is used to optimise a log barrier augmented objec-
tive. Due to issues arising from increasingly ill-conditioned
subproblems, the practical efficacy of this method seems
to be inferior when compared to projection-based methods,
including those of first-order (Xie & Wright, 2023).

The issue with the general purpose second-order methods
discussed so far is that, unlike projected gradient, they
do not leverage the simplicity of the nonnegativity con-
straints and the corresponding projection. In this light, a
naı̈ve adaptation of the projected gradient would imply di-
rectly projecting the Newton step on the constraints, e.g.,
xk+1 = PΩ(xk − αkH−1

k gk). Unfortunately, such a direct
adaptation may lead to ascent directions for the objective
function at the boundary. To that end, the two-metric projec-
tion (TMP) framework (Bertsekas, 1982; Gafni & Bertsekas,
1984) offers an ingenious solution. Specifically, at each
iteration, the component indices, [d], are divided into the
approximately bound, J +

k , and free sets, J−
k , given by

J +
k = {i ∈ [d] | xik ≤ δ,gik > 0}, J−

k = [d] \ J +
k . (4)

where δ > 0. A matrix, Dk, is then chosen to be “diagonal”
with respect to set J +

k , that is,

(Dk)ij = 0, i ∈ J +
k , j ∈ [d] \ {i},

and the update is simply given by

xk+1 = P(xk − αkDkgk). (5)

It has been shown that TMP is asymptotically convergent
under certain conditions and reasonable choices of Dk. For
example, for strongly convex problems, the non-diagonal
portion of Dk can consist of the inverse of the Hessian sub-
matrix corresponding to the indices in J−

k . In this case, (5)
reduces to a scaled gradient in J +

k and a Newton step in J−
k .

Bertsekas (1982) also shows that, under certain conditions,
TMP can preserve fast “Newton like” local convergence.
Practically, TMP type algorithms has been successfully ap-
plied to a range of problems (Gafni & Bertsekas, 1984;
Schmidt et al., 2007; Kim et al., 2010; Haber, 2014; Kuang
et al., 2015; Cai et al., 2023). In large scale and nonconvex
settings, employing the Newton step as part of (5) may be
infeasible or even undesirable. Indeed, not only can Hessian
storage and inversion costs be prohibitive, the existence of
negative curvature can lead to ascent directions.

With a view to eliminate the necessity of forming and invert-
ing the Hessian, Kim et al. (2010) extend TMP to utilise a
quasi-Newton update with asymptotic convergence guaran-
tees in the convex setting. Also in this vein, Xie & Wright

(2023) considered “projected Newton-CG”, which entails a
combination of the projected gradient and the inexact New-
ton steps that preserve the simplicity of projection onto Rd+.
In particular, Newton-CG steps are based on the capped CG
procedure of Royer et al. (2018). Unfortunately, the gradient
and Newton-CG steps are not taken simultaneously. Instead,
the algorithm employs projected gradient steps across all
components until optimality is attained in the approximately
active set. Only at that point is the Newton-CG step applied
in the approximately inactive set. This implies that the algo-
rithm may take projected gradient steps at most iterations,
potentially impeding its practical performance.

Hessian-free Inexact Methods. In high-dimensional set-
tings, storing the Hessian matrix may be impractical. More-
over, an approximate direction can often be computed at
a fraction of the cost of a full Newton step. In this con-
text, Hessian-free inexact Newton-type algorithms leverage
Krylov subspace methods (Saad, 2003), which are partic-
ularly well-suited for these scenarios. Krylov subspace
solvers can recover a reasonable approximate direction in
just a few iterations and only require access to the Hessian-
vector product mapping, v 7→ H(x)v. The computational
cost of a Hessian-vector product is comparable to that of a
gradient evaluation and does not require the explicit forma-
tion of H. Indeed, H(x)v can be computed by obtaining
the gradient of the map x 7→ ⟨g(x),v⟩ using automatic
differentiation, leading to one additional back propagation
compared to computing g(x).

Complexity in Optimisation. Recently, there has been a
growing interest in obtaining global worst case iteration
complexity guarantees for optimisation methods, namely
a bound on the number of iterates required for the algo-
rithm to compute an approximate solution. For instance,
in unconstrained and nonconvex settings, gradient descent
produces an approximate first-order optimal point satisfying
∥g(x)∥ ≤ ϵg in at most O(ϵ−2

g ) iterations for objectives
with Lipschitz continuous gradients (Nesterov, 2004). This
rate has been shown to be tight (Cartis et al., 2010). Without
additional assumptions, similar rates have also been shown
for second-order methods (Cartis et al., 2022). However, for
objectives with both Lipschitz continuous gradient and Hes-
sian, this rate can be improved to O(ϵ−3/2

g ), which is also
shown to be tight over a wide class of second-order algo-
rithms (Cartis et al., 2011b). Second-order methods which
achieve this rate include cubic regularised Newton’s method
and its adaptive variants (Nesterov & Polyak, 2006; Cartis
et al., 2011c;a; Xu et al., 2020a), modified trust region based
methods (Curtis et al., 2016; 2021; Curtis & Wang, 2023)
and line search methods including Newton-CG (Royer et al.,
2018) and Newton-MR (Liu & Roosta, 2022b) as well as
their inexact variants (Yao et al., 2022; Lim & Roosta, 2023).
Many of the above works also provide explicit bounds on
the operational complexity, that is, a bound on the number
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of fundamental computational units (e.g. gradient evalua-
tions, Hessian vector products) to obtain an approximate
solution.

In the constrained setting, direct comparison between
bounds is difficult due to differences in approximate op-
timality conditions; see discussion in Xie & Wright (2023,
Section 3) for the bound constraint case. However, the al-
gorithms in Cartis et al. (2020); Birgin & Martı́nez (2018)
achieveO(ϵ−3/2

g ) for a first-order optimal point with certain
types of constraints, which is shown to be tight in Cartis
et al. (2020). More specific to the bound constraint case,
the Newton-CG log barrier method of O’Neill & Wright
(2020) achieves a complexity of O(dϵ−1/2

g + ϵ
−3/2
g ), while

the projected Newton-CG algorithm of Xie & Wright (2023)
obtains a rate of O(ϵ−3/2

g ) under a set of approximate opti-
mality conditions similar to this work.

Optimality Conditions. Recall that x∗ satisfies the first-
order necessary conditions for (1) if

x∗ ≥ 0, and

{
[∇f(x∗)]

i = 0, if xi∗ > 0,

[∇f(x∗)]
i ≥ 0, if xi∗ = 0.

(6)

We seek a point which satisfies these conditions to some “ϵ”
tolerance. There are a number of ways to adapt (6) into an
approximate condition (Xie & Wright, 2023, Section 3). In
this work we adopt Xie & Wright (2023, Definition 1).

Definition 2.1 (ϵ-Optimal Point). A point, x, is called ϵ-
approximate first-order optimal (ϵ-FO) if

gi ≥ −
√
ϵ, ∀i ∈ A(x,

√
ϵ) (7a)

∥diag(xA)gA∥ ≤ ϵ, (7b)

∥gI∥ ≤ ϵ. (7c)

We take (7a) and (7b) to be trivially satisfied if A(x,
√
ϵ) =

∅ and similar for (7c) if I(x,
√
ϵ) = ∅.

This definition has been shown to be asymptotically exact.

Lemma 2.2. (Xie & Wright, 2023, Lemma 1) Suppose that
ϵk ↓ 0 and we have a sequence {xk}∞k=1 where each xk
satisfies the corresponding ϵk-FO optimality condition. If
xk → x∗ then x∗ satisfies (6).

3. Newton-MR Two-Metric Projection
We now propose and theoretically study our extensions of
the TMP framework, which involves simultaneously em-
ploying gradient and inexact Newton steps, which are, re-
spectively, restricted to the active and inactive sets.

3.1. MINRES and Its Properties

The inexact Newton step is based on the recently proposed
Newton-MR framework (Liu & Roosta, 2022b; Roosta et al.,

2022), where instead of CG, subproblems are approximately
solved using the minimum residual (MINRES) method
(Paige & Saunders, 1975). Recall that the tth iteration of
MINRES is formulated as

s(t) = argmin
s∈Kt(H,g)

∥Hs+ g∥2. (8)

whereKt(H,g) = Span{g,Hg, . . . ,Ht−1g} is the Krylov
subspace of degree t generated from H and g. On each itera-
tion MINRES minimises the squared norm of the residual of
the Newton system over the corresponding Krylov subspace.
Note that, from an optimisation perspective, the residual
itself can be viewed as the gradient of the second-order
Taylor approximation typically considered by second-order
methods (e.g. Newton-CG), that is, r ≜ −Hs − g =
−∇s(⟨g, s⟩ + 1

2 ⟨s,Hs⟩). This highlights an advantage of
MINRES over CG. Indeed, unlike CG, which aims to min-
imise the second order Taylor approximation, minimisation
of the residual norm remains well defined even if H is in-
definite. For more theoretical and empirical comparisons
between CG and MINRES, see Lim et al. (2024).

Recently, Liu & Roosta (2022a) established several prop-
erties of MINRES that make it particularly well-suited for
nonconvex settings. For example, to assess the availability
of a nonpositive curvature (NPC) direction in MINRES, one
merely needs to monitor the condition

⟨r(t−1),Hr(t−1)⟩ ≤ 0, (9)

This condition is shown to be both necessary and sufficient
for the existence of NPC directions in Kt(H,g) (Liu &
Roosta, 2022a, Theorem 3.3). In addition, MINRES en-
joys a natural termination condition in non-convex settings.
More specifically, for any user specified tolerance η > 0,
the termination condition

∥Hr(t−1)∥ ≤ η∥Hs(t−1)∥, (10)

is satisfied at some iteration. Note that the left hand side,
Hr(t−1), is simply the residual of the normal equation
H2s = −Hg. Condition (10) is particularly appealing
in non-convex settings where we might have g /∈ Range(H)
and therefore ∥r∥ > 0 for all s ∈ Rd. In this case a more
typical termination condition ∥r(t−1)∥ ≤ η may never be
satisfied for a given η > 0. By contrast, (10) is applicable
in all situations since ∥Hr(t−1)∥ is guaranteed to monoton-
ically decrease to zero, while ∥Hs(t−1)∥ is monotonically
increasing (Liu & Roosta, 2021, Lemma 3.11). Remark-
ably, both Conditions (9) and (10) can be computed with
a scalar update directly from the MINRES iterates without
any additional Hessian-vector products; see Lemma A.1.

A Newton-MR step is computed by running MINRES until
(9) is detected, in which case r(t−1) is returned. Since
r(t−1) is a nonpositive curvature direction, we label this
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case as a “NPC” step. Otherwise, when the termination
condition (10) is satisfied, s(t−1) is returned. This step
serves as an approximate solution to (8) and so we label this
case as a “SOL” step. Let p denote the direction returned
by negative curvature detecting MINRES. Liu & Roosta
(2022a) shows that p serves as a direction of first and second-
order descent for the function f , namely ⟨p,g⟩ < 0 and
⟨p,g⟩+ ⟨p,Hp⟩ /2 < 0 (Liu & Roosta, 2022a, Theorem
3.8), as well as a direction of non-ascent for the norm of
its gradient ∥g∥2, that is, ⟨p,Hg⟩ < 0 for a SOL step and
⟨p,Hg⟩ = 0 for a NPC step (Liu & Roosta, 2022a, Lemma
3.1).

We include the full MINRES algorithm (Algorithm 3) as
well as some additional properties in Appendix A.

3.2. Global Convergence: Minimal Assumptions

We first present a variant that is globally convergent under
minimal assumptions. Algorithm 1 is our simplest vari-
ant of the Newton-MR two-metric projection method. Re-
calling the definition of the δk-active and δk-inactive sets
as in (2)1, Algorithm 1 combines an active set gradient
step (i.e., pA

k = −gA
k ) with an inactive set Newton-MR

step (i.e., pI
k = sIk , if Dtype = SOL, and pI

k = rIk , if
Dtype = NPC). In Algorithm 1, the curvature condition (9)
is considered with a positive tolerance, ς = (d + 1)ς > 0,
i.e., ⟨r(t−1),Hr(t−1)⟩ ≤ ς∥r(t−1)∥2. Lemma B.1 demon-
strates that ⟨r(i),Hr(i)⟩ > ς∥r(i)∥2 for all 0 ≤ i ≤ t − 1
is a certificate that H is ς-strongly positive definite over
Kt(H,g).

Once the step direction is computed, the step size is selected
with a line search criteria similar to that of Bertsekas (1982).
Specifically, letting xk(α) = P(xk + αpk), we find α that,
for some ρ ∈ (0, 1/2), satisfies

f(xk(α))− f(xk) ≤ ρ
〈
gA
k ,P(xA

k + αpA
k )− xA

k

〉
+αρ

〈
gI
k ,p

I
k

〉
,

(11)

Note that the term corresponding to the inexact set in (11)
is negative due to the descent properties of pI

k discussed
earlier. On the other hand, the active set term in (11) is
negative due the descent properties of the gradient mapping
(Bertsekas, 1999, Proposition 3.3.1). This is crucial for
our analysis as it allows us to consider the decrease in the
inactive and active sets independently of each other. The
two terms are unified since

⟨gk,P(xk + αpk)− xk⟩ = ⟨gA
k ,P(xA

k + αpA
k )− xA

k ⟩
+α⟨gI

k ,p
I
k ⟩,

so long as α is chosen small enough. This is a direct conse-
quence of I(xk, δk) containing only strictly feasible indices.

1Note that (2) differs from (4) as it does not include a gradient
positivity condition. This helps with tractability of the global
analysis but leads to a relatively smaller inactive set.

Algorithm 1 Newton-MR TMP (Minimal Assumptions)
1: Input Initial point x0 ≥ 0, active set tol {δk}, optimal-

ity tol {ϵk}, MINRES inexactness tol η > 0, NPC tol
ς = (d+1)ς for ς > 0, Line search parameter ρ < 1/2.

2: for k = 0, 1, . . . do
3: Update sets A(xk, δk) and I(xk, δk) as in (2).
4: if (7) is satisfied then
5: Terminate.
6: end if

7: pk :

 pA
k ← −gA

k ,

(pI
k , Dtype)← MINRES(HI

k ,g
I
k , η, ς)

8: if Dtype = SOL then
9: αk ← Algorithm 5 with α0 = 1 and (11).

10: else if Dtype = NPC then
11: αk ← Algorithm 6 with α0 = 1 and (11).
12: end if
13: xk+1 = P(xk + αkpk)
14: end for

In Liu & Roosta (2022b), it was shown that when MINRES
algorithm the returns an NPC step, the line search for α
could run in a forward tracking mode (cf. Algorithm 6). In
numerical experiments, it was demonstrated that the forward
tracking line search was beneficial because it allowed for
very large steps to be taken, particularly in flat regions where
progress would otherwise be slow. Our theoretical analysis
in Appendix B demonstrates that a forward tracking line
search can also be used in Algorithm 1 for NPC type steps.

To analyse the global complexity of Algorithm 1, we only
require typical assumptions on Lipschitz continuity of the
gradient and lower-boundedness of the objective.

Assumption 3.1. There exists 0 ≤ Lg < ∞ such that for
all x,y ∈ Rd+, ∥g(x)− g(y)∥ ≤ Lg∥x− y∥.
Assumption 3.2. We have −∞ < f∗ ≤ f(x), ∀x ∈ Rd+.

With these minimal assumptions we can provide a guarantee
of convergence of Algorithm 1 in Theorem 3.3, the proof of
which we deferred to Appendix B.

Theorem 3.3 (Global Complexity of Algorithm 1). Let
ϵg ∈ (0, 1) and ς > 0. Under Assumptions 3.1 and 3.2, if
we choose δk = ϵk = ϵ

1/2
g and ς = (d+ 1)ς , Algorithm 1

produces an ϵg-FO point in at most O(ϵ−2
g ) iterations.

Remark 3.4. The “big-O” rate obtained in Theorem 3.3
hides a dependence on the problem constants and algorithm
parameters ρ, ς , Lg , η, which are, in particular, independent
of d. However, the proof of Theorem 3.3 (and, indeed, The-
orem 3.8) implies that the worst case constant hidden by the
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big-O notation could have an unfortunate dependence on the
problem constants (e.g., L3

g). This could suggest poor prac-
tical performance despite the desirable dependence on ϵg.
However, as we show numerically in Section 4, such worst
case analyses are rarely indicative of typical performance in
practice.

3.3. Global Convergence: Improved Rate

It is possible to modify Algorithm 1 to improve upon the
convergence rate of Theorem 3.3, albeit under stronger as-
sumptions. This is done in Algorithm 2 where, by appropri-
ate use of curvature information, we can obtain an improved
complexity rate. Algorithm 2 shares the same inactive/active
sets, line search strategies, and projection based feasibility
with Algorithm 1.There are, however, some main differ-
ences. A key distinction lies in the certification of strictly
positive curvature (9) rather than strongly positive curvature,
i.e., unlike Algorithm 1 where we set ς > 0, in Algorithm 2
we set the NPC tolerance to ς = 0. Another notable differ-
ence is the introduction of Type II steps. Type II steps set the
active portion of the step to zero and occur when the active
set optimality conditions (7a) and (7b) are satisfied (other-
wise Type I steps, i.e., steps similar to Algorithm 1, are used)
but the inactive set tolerance (7c) is unsatisfied. Because
the active set termination conditions are satisfied, removing
the active portion of the step is not expected to significantly
impede the algorithm’s progress. By the same token, we can
analyse Type II steps using second-order curvature informa-
tion, similar to the unconstrained Newton-MR algorithm,
without having to account for the curvature related to the pro-
jected gradient portion of the step. Additionally, to achieve
an improved rate over Algorithm 1, MINRES inexactness
tolerance must scale with ϵk in Algorithm 2.

For our analysis, we need additional assumptions including
the Lipschitz continuity of the Hessian.
Assumption 3.5. There exists 0 ≤ LH <∞ such that for
all x,y ∈ Rd+, ∥H(x)−H(y)∥ ≤ LH∥x− y∥.

Additionally, we make some regularity assumptions on the
output of the MINRES iterations.
Assumption 3.6. There exists a contant ω > 0, independent
of x, such that the NPC direction from MINRES, p =
r(t−1), satifies ∥r(t−1)∥ ≥ ω∥g∥.

We note that a lower bound for the relative residual is
available directly prior to termination. In fact, recall that
if an NPC direction is returned, the termination condi-
tion (10) must not yet be satisfied. In this case, Assump-
tion 3.1 and Lemma A.1 together imply that ∥r(t−1)∥ ≥
η∥g∥/

√
η2 + L2

g. For Algorithm 1, this lower bound is di-
rectly utilised to establish convergence with no requirement
for Assumption 3.6. However, for Algorithm 2, η depends
on ϵk, which could lead us to believe that the lower bound

Algorithm 2 Newton-MR TMP (Improved Rate)
1: Input Initial point x0 ≥ 0, active set tol {δk}, opti-

mality tol {ϵk}, MINRES inexactness tol η = ϵkθ and
θ > 0, Line search parameter ρ < 1/2, NPC tol ς = 0.

2: for k = 0, 1, . . . do
3: Update sets A(xk, δk) and I(xk, δk) as in (2).
4: if A(xk, δk) ̸= ∅ and (not (7a) or not (7b)) then
5: Flag = Type I.
6: else if I(xk, δk) ̸= ∅ and not (7c) then
7: Flag = Type II.
8: else
9: Terminate.

10: end if

11: pk :


pA
k ←

 −g
A
k , If Flag = Type I,

0, If Flag = Type II,

(pI
k , Dtype)← MINRES(HI

k ,g
I
k , η, ς)

12: if Dtype = SOL then
13: αk ← Algorithm 5 with α0 = 1 and (11).
14: else if Dtype = NPC then
15: αk ← Algorithm 6 with α0 = 1 and (11).
16: end if
17: xk+1 = P(xk + αkpk)
18: end for

on the relative residual prior to termination does too. In
particular, at first glance, this might suggest that the smaller
the inexactness tolerance η, the more iterations MINRES is
expected to perform before NPC detection. We argue that
this is not the case. Firstly, an upper bound on the number
of MINRES iterations until a NPC direction is encountered
is independent of the termination criteria η Liu & Roosta
(2022b, Corollary 2). In fact, by construction, the MIN-
RES iterates are independent of the termination tolerance
η and the magnitude of ∥g∥; see discussion and numeri-
cal examples around Liu & Roosta (2022b, Assumption 4).
Additionally, in the case where g /∈ Range(H), we always
have ∥r(t−1)∥ ≥ ∥(I−HH†)g∥, which is clearly indepen-
dent of η. Together, these lines of argumentation constitute
our justification for Assumption 3.6.

Recall that Algorithm 1 includes a manual verification of
user specified strongly positive curvature over Kt(H,g) in
Dtype = SOL case, while Algorithm 2 only certifies strict
positive curvature through the NPC condition (9). Liu &
Roosta (2022a) demonstrated that as long as the NPC con-
dition (9) has not been detected, we have Tt ≻ 0 where
Tt ∈ Rt×t is the symmetric tridiagonal matrix obtained
in the tth iteration of MINRES (see Appendix A for more
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details). Our next assumption strengthens this notion.

Assumption 3.7. There exists σ > 0 such that for any xk in
the sequence of SOL type iterates returned by Algorithm 2,
we have Tt ⪰ σI.

Assumption 3.7 implies that, as long as the NPC condition
(9) has not been detected, for any v ∈ Kt(H,g) we have
⟨v,Hv⟩ ≥ σ∥v∥2. Assumption 3.7 is satisfied by an ob-
jective function whose Hessian contains positive g-relevant
eigenvalues (eigenspaces not orthogonal to the gradient)
uniformly separated from zero. A simple example is an
under-determined least-squares problem.

Together, Assumptions 3.6 and 3.7 allow us to control the
curvature of our step, which is necessary to obtain an im-
proved rate over Algorithm 1 using a Lipschitz Hessian
upper bound. We now present the convergence result for
Algorithm 2. We defer the proof to Appendix C.

Theorem 3.8 (Global Complexity of Algorithm 2). Let
ϵg ∈ (0, 1). Under Assumptions 3.1, 3.2 and 3.5 to 3.7, if
we choose δk = ϵk = ϵ

1/2
g , Algorithm 2 produces an ϵg-FO

point in at most O(ϵ−3/2
g ) iterations.

Remark 3.9. A direct corollary to Theorems 3.3 and 3.8,
under some mild additional assumptions, is a bound on the
operational complexity in terms of gradient and Hessian-
vector product evaluations. In particular, to produce a ϵg-FO
point, the operation complexity for Algorithms 1 and 2 is,
respectively, O(ϵ−2

g ) and Õ(ϵ−3/2
g ); see Appendix D.

Remark 3.10. In all our algorithms, each step includes the
Newton-MR component. The integration of the gradient
and Newton-MR step is feasible in our algorithm due to the
properties of the MINRES iterates (Lemmas A.2 and A.3),
allowing for a more flexible analysis with only first-order
information. In contrast, it appears that second-order infor-
mation is crucial for achieving descent with the capped-CG
procedure, a central aspect of Xie & Wright (2023). This
constraint prevents the algorithm from taking a step simulta-
neously comprised of gradient and Newton-CG components.

3.4. Local Convergence

An advantage of the original TMP method of Bertsekas
(1982) is that we get fast local convergence, a property that
is shared by many Newton-type methods. We now show
that our algorithm, in a slightly modified form, also exhibits
this property. The basis for the local convergence is the fact
that, under certain conditions, projected gradient algorithms
are capable of identifying the true set of active constraints in
a finite number of iterations. This result was first establish
for projected gradient with bound constraints in Bertsekas
(1976) but has been extended to a variety of constraints
(Burke & Moré, 1988; Burke, 1990; Wright, 1993; Sun
et al., 2019). In the case of two-metric projection, once
the active set is identified, the combined step reduces to an

unconstrained Newton step in the inactive set.

For the analysis, we consider a “local phase” variant of
Algorithm 1. Specifically, we maintain flexibility in defining
the outer and inner termination conditions and tolerances,
eliminate the strongly positive curvature validation, and only
perform backtracking line search from α0 = 1 to ensure
the step length remains bounded. The pseudo-code for this
local phase version is given in Algorithm 4 for completeness.
To show that the active set is identified in finite number
of iterations, we need non-degeneracy and second-order
sufficiency assumptions, which are standard in this context.

Assumption 3.11. A local minima, x∗, is non-degenerate
if [g(x∗)]

i > 0, ∀i ∈ A(x∗, 0).

Assumption 3.12. A local minima, x∗, satisfies the second-
order sufficiency condition if 0 < ⟨z,H(x∗)z⟩ for all z ̸= 0
such that zi = 0 if i ∈ A(x∗, 0).

Theorem 3.13 (Active Set Identification). Let f satisfy As-
sumption 3.1 and x∗ be a local minima satisfying Assump-
tions 3.11 and 3.12. Let {xk} be the sequence of iterates
generated by Algorithm 4 with δ chosen according to (44).
There exists ∆actv > 0 such that if xk̄ ∈ B(x∗,∆actv), then
A(xk, δ) = A(xk, 0) = A(x∗, 0) for all k ≥ k̄ + 1.

We defer the proof to Appendix E. Once the active set is
identified, our method reduces to unconstrained Newton-
MR on the inactive set. Local convergence is therefore a
simple corollary of Theorem 3.13.

Corollary 3.14 (Local Convergence). For k ≥ k̄ + 1 (cf.
Theorem 3.13), the convergence of Algorithm 4 is driven by
the local properties of the Newton-MR portion of the step.

Remark 3.15. The local convergence of Newton-MR is sim-
ilar to that of other inexact Newton methods. Suppose that
we use a relative residual tolerance, ∥rI∥ ≤ η∥gI∥, as
the criteria for the MINRES termination. Under Assump-
tion 3.12, we know that H(x∗) is positive definite on the
inactive indices. Therefore, by applying Nocedal & Wright
(2006, Theorem 7.1 and 7.2), we obtain a superlinear conver-
gence if we choose η = O(1) and let xk be close enough to
x∗. If we choose η = O(∥gk∥) and the Hessian is Lipschitz
then we can improve the rate to quadratic.

Remark 3.16. A central ingredient in the projected Newton-
CG of Xie & Wright (2023) is the damping of the Hessian
in the form of diagonal perturbation (i.e., H + ϵI) for all
Newton-CG steps in the inactive set. While this facilitates
an optimal global complexity, an unfortunate consequence,
at least in theory, is that the algorithm no longer enjoys
a guaranteed fast “Newton-type” local convergence rate.
In other words, one can at best show linear rates in local
regimes.
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4. Numerical Experiments
We now compare the performance of our method for solving
(1) with several alternatives using various convex and non-
convex examples. Specifically, we consider Algorithm 2
(denoted by MR), projected Newton-CG (denoted by CG)
as in Xie & Wright (2023, Algorithm 1), and projected
gradient with line search (denoted by PG) (Beck, 2017). For
convex problems, we also include FISTA with line search
(Beck & Teboulle, 2009), while for non-convex settings, we
compare against the proximal gradient with momentum and
fine-tuned constant step size (denoted by PGM) from Lin
et al. (2020, Algorithm 4.1). We exclude proximal Newton
methods due to the difficulty of solving its subproblems at
each iteration. We also do not consider the Newton-CG
log barrier method (O’Neill & Wright, 2020) due to poor
practical performance observed in Xie & Wright (2023).

For all applicable methods we terminate according to (7)
with ϵg = 10−8. Instead of the highly implementation
dependent “wall-clock” time, here we plot the objective
value against the number of oracle calls, i.e., the number of
equivalent function evaluations. For completeness, however,
we also include plots of objective value against wall-clock
time in Appendix F.5. The PyTorch (Paszke et al., 2019)
implementation for our experiments is available here. All
experiments were performed on a GPU cluster. See Ap-
pendix F.3 for further experimental details.

4.1. Sparse Regularisation With ℓ1 Norm

We first consider sparse regression using ℓ1-regularisation

min
x∈Rd

f(x) + λ∥x∥1, (12)

where f is a smooth function. Although the objective
function in (12) is nonsmooth, it can be reformulated into
a smooth optimisation problem with nonnegativity con-
straints; see Appendix F.2 for details. We consider two
examples in this context.

Multinomial Regression. In Figures 1 and 2, we consider
convex multinomial regression with C classes where f is
given by (62). The FISTA method is applied directly to (12).
While FISTA clearly outperforms the others, our method
is competitive. Further simulations showing fast local con-
vergence of our method on these examples are given in
Appendix F.4.

Neural Network. Figure 3 shows the results using a two
layer neural network where f is non-convex and defined
by (63). Again, PGM is applied directly to (12) and its
step size is fine-tuned for best performance. We once again
observe superior performance of our method compared with
the alternatives.
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Figure 1. Logistic regression (C = 2) on the binarised MNIST
dataset (LeCun et al., 1998) (d = 785) with λ = 10−3.
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Figure 2. Multinomial regression (C = 10) on CIFAR10 dataset
(Krizhevsky, 2009) (d = 27, 657) with λ = 10−4.

4.2. Nonnegative Matrix Factorisation

Given a nonnegative data matrix Y ∈ Rn×m+ , nonnegative
matrix factorisation (NNMF) aims to produce two low rank,
say r, nonnegative matrices W ∈ Rn×r+ and H ∈ Rr×m+

such that Y ≈WH. This can be formulated as

min
W≥0, H≥0

D(Y,WH) +Rλ(W,H), (13)

where D(·, ·) is a ‘distance’ and Rλ(·, ·) is a regularisation
term. In Figure 4, we consider a text dataset and cosine
similarity based distance function, while in Figure 5, we use
an image dataset and a Euclidean distance function with a
nonconvex regulariser; see Appendix F.3 for details. Clearly,
our method outperforms all others across both problems.

5. Conclusions and Future Directions
We developed Newton-MR variants of the two-metric pro-
jection framework. By inexactly solving the subproblems
using MINRES as well as employing non-positive curva-
ture directions, our proposed variants are suitable for large
scale and nonconvex settings. We demonstrated that, under
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Figure 3. Training a two-layer neural network on the Fashion
MNIST dataset (Xiao et al., 2017) (d = 89, 610) with λ = 10−3.
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Figure 4. NNMF (r = 20) with cosine distance on top 1000 TF-
IDF features of the 20 Newsgroup dataset (Mitchell, 1999)
(d = 385, 220).
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Figure 5. NNMF (r = 10) with nonconvex TSCAD regulariser
on the Olivetti faces dataset (Pedregosa et al., 2011) (d =
44, 960). We used a = 3 and λ = 10−4 for the TSCAD regu-
lariser.

certain assumptions, the convergence rates of our methods
match the state-of-the-art and showcased competitive practi-
cal performance across a variety of problems.

Possible avenues for future research include extensions to
box constraints, variants with second-order complexity guar-
antees, and the development of stochastic algorithms.
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and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.
pdf.

Pearlmutter, B. A. Fast exact multiplication by the Hessian.
Neural computation, 6(1):147–160, 1994.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Roosta, F., Liu, Y., Xu, P., and Mahoney, M. W. Newton-
MR: Inexact Newton method with minimum residual
sub-problem solver. EURO Journal on Computational
Optimization, 10:100035, 2022. ISSN 2192-4406.
doi: https://doi.org/10.1016/j.ejco.2022.100035.
URL https://www.sciencedirect.com/
science/article/pii/S2192440622000119.

Royer, C. W., O’Neill, M., and Wright, S. J. A Newton-CG
algorithm with complexity guarantees for smooth uncon-
strained optimization. arXiv preprint arXiv:1803.02924,
3 2018.

Saad, Y. Iterative Methods for Sparse Linear Systems.
SIAM, 2nd edition, 2003. ISBN 9780898715347.

Schmidt, M., Fung, G., and Rosales, R. Fast optimization
methods for L1 regularization: A comparative study and
two new approaches. In Kok, J. N., Koronacki, J., Man-
taras, R. L. d., Matwin, S., Mladenič, D., and Skowron,
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A. MINRES and Newton-MR
In this section, for completeness, we discuss MINRES (Algorithm 3) and provide some of its fundamental properties. We
note that our presentation is essentially that of Liu & Roosta (2022b, Appendix A) as the notation and implementation is
well adapted to our setting. Recall that MINRES combines the Lanczos process, a QR decomposition, and an updating
formula to iteratively solve a symmetric linear least-squares problem of the form

min
s∈Rd
∥Hs+ g∥2.

We now discuss each of these aspects in detail.

Lanczos Process. Recall that, starting from v1 = g/∥g∥, after t iterations of the Lanczos process, the Lanczos vectors
{v1,v2, . . . ,vt+1}, form a basis for the Krylov subspace Kt+1(H,g). Collecting these vectors into an orthogonal matrix

Vt+1 = [v1, . . .vt+1] ∈ Rd×(t+1),

we can write

HVt = Vt+1T̃t,

where T̃t ∈ R(t+1),t is an upper Hessenberg matrix of the form

Tt =



α̃1 β̃2
β̃2 α̃2 β̃3

β̃3 α̃3
. . .

. . . . . . β̃t
β̃t α̃t

 , T̃t ≜

(
Tt

β̃t+1e
⊺
t

)
.

This relation yields the underlying update process of the MINRES iterations for t ≥ 2 as,

Hvt = β̃tvt−1 + α̃tvt + β̃t+1vt+1.

The Lanczos process terminates when β̃t+1 = 0. We remark that computing an expansion of the basis requires a single
Hessian-vector product, Hvt. The basis for the Krylov subspace allows us to significantly simplify (8). Indeed, let st be a
solution to (8) at iteration t. By st ∈ Kt(H,g), we have st = Vtyt for some yt ∈ Rt. Hence, the residual can be written as

rt = −g −Hst = −g −HVtyt = −g −Vt+1T̃tyt = −Vt+1(∥g∥e1 + T̃tyt).

In the final equality, we applied the orthogonality of the basis vectors and v1 = g/∥g∥. Applying this expression to (8) and
using the orthogonality of Vt+1, we obtain the reduced tridiagonal least-squares problem

min
yt∈Rt

∥∥∥β̃1e1 + T̃tyt

∥∥∥ , (14)

where β̃1 = ∥g∥.

QR Factorisation. The next step in the MINRES procedure is to solve (14) by computing the full QR factorisation
QtT̃t = R̃t where Qt ∈ R(t+1)×(t+1) and R̃t ∈ R(t+1)×t. Because T̃t is already close to being upper triangular,
we form the QR factorisation using a series of Householder reflections to annihilate the sub-diagonal elements. Each
Householder reflection affects only two rows of T̃t. We can summarise the effect of two successive Householder reflections

14



Inexact Newton-type Methods for Optimisation with Nonnegativity Constraints

for 3 ≤ i ≤ t− 1 as 1 0 0
0 ci−1 si−1

0 si−1 −ci−1

ci−2 si−2 0
si−2 −ci−2 0
0 0 1

γi−2 δi−1 0 0

β̃i−1 α̃i−1 β̃i 0

0 β̃i α̃i β̃i+1


=

1 0 0
0 ci−1 si−1

0 si−1 −ci−1

γ[2]i−2 δ
[2]
i−1 ϵi 0

0 γi−1 δi 0

0 β̃i α̃i β̃i+1


=

γ[2]i−2 δ
[2]
i−1 ϵi 0

0 γ
[2]
i−1 δ

[2]
i ϵi+1

0 0 γi δi+1

 ,

where for 1 ≤ j ≤ t we have

cj =
γj

γ
[2]
j

, sj =
β̃j+1

γ
[2]
j

, γ
[2]
j =

√
(γj)2 + β̃2

j+1 = cjγj + sj β̃j+1.

We therefore form Qt as a product of the Householder reflection matrices

Qt =

t∏
i=1

Qi,i+1, Qi,i+1 ≜


Ii−1

ct st
st −ct

It−i

 .

It is also clear that R̃t is given by

Rt ≜



γ
[2]
1 δ

[2]
2 ϵ3

γ
[2]
2 δ

[2]
3

. . .
. . . . . . ϵt

γ
[2]
t−1 δ

[2]
t

γ
[2]
t


, R̃t =

(
Rt

0⊺

)
.

Applying Qt to β̃1e1, we obtain

Qtβ̃1e1 = β̃1


c1
s1c2

...
s1s2 · · · st−1ct
s1s2 · · · st−1st

 ≜


τ1
τ2
. . . τt
ϕt

 ≜

(
tt
ϕt

)
.

Applying the QR factorisation to solve (14) gives

min
yt

∥∥∥β̃1e1 + T̃tyt

∥∥∥ = min
yt

∥∥∥Q⊺
t (β̃1Qte1 +QtT̃tyt)

∥∥∥
= min

yt

∥∥∥∥(ttϕt
)
+

(
Rt

0⊺

)
yt

∥∥∥∥ .
An immediate implication of this result is ϕt = ∥rt∥.
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Update. The key to the computational efficiency of MINRES is the existence of vector update formula, which eliminates
the requirement to form or store the matrices involved in the Lanczos and QR factorisation processes, i.e., Vt, Qt, R̃t, and
T̃t. Define Wt from the upper triangular system WtRt = Vt as

(
v1 v2 . . . vt

)
=
(
w1 w2 . . . wt

)


γ
[2]
1 δ

[2]
2 ϵ3

γ
[2]
2 δ

[2]
3

. . .
. . . . . . ϵt

γ
[2]
t−1 δ

[2]
t

γ
[2]
t


. (15)

By reading off (15), we see that

vt = ϵtwt−2 + δ
[2]
t wt−1 + γ

[2]
t wt.

The computation for the MINRES iterate can now be written as

st = Vtyt = WtRtyt = Wttt =
(
Wt−1 wt

)(tt−1

τt

)
= st−1 + τtwt,

where we set s0 = 0. With this result in mind, we give the full MINRES method in Algorithm 3. We remark that, in
Algorithm 3, we have also included steps for verifying the inexactness condition (10) (Algorithm 3-Line 10) as well as
certifying ⟨rt,Hrt⟩ ≥ ϑ∥rt∥2 for some user specified ϑ ≥ 0 (Algorithm 3-Line 7).

Algorithm 3 MINRES(H, g, η, ϑ)
1: Input Hessian H, gradient g, inexactness tolerance η > 0, and NPC tolerance ϑ ≥ 0.
2: ϕ0 = β̃0 = ∥g∥, r0 = −g, v1 = r0/ϕ0, v0 = s0 = w0 = w−1 = 0.
3: s0 = 0, c0 = −1, δ1 = τ0 = 0, t = 1.
4: while True do
5: qt = Hvt, α̃t = ⟨vt,qt⟩, qt = qt − β̃tvt−1, qt = qt − α̃tvt, β̃t+1 = ∥qt∥.

6:

(
δ
[2]
t ϵt+1

γt δt+1

)
=

(
ct−1 st−1

st−1 −ct−1

)(
δt 0

α̃t β̃t+1

)
7: if −ct−1γt ≤ ϑ then
8: return (rt−1, Dtype = NPC).
9: end if

10: if ϕt−1

√
γ2t + δ2t+1 ≤ η

√
ϕ20 − ϕ2t−1 then

11: return (st−1, Dtype = SOL).
12: end if
13: δ

[2]
t =

√
γ2t + β̃2

t+1.

14: if δ[2]t ̸= 0 then
15: ct = γt/γ

[2]
t , st = β̃t+1/γ

[2]
t , τt = ctϕt−1, ϕt = stϕt−1.

16: wt = (vt − γ[2]t wt−1 − ϵtwt−2)/γ
[2]
t , st = st−1 + τtwt.

17: if β̃t+1 ̸= 0 then
18: vt+1 = qt/β̃t+1, rt = s2t rt−1 − ϕtctvt+1.
19: end if
20: else
21: ct = 0, st = 1, τt = 0, ϕt = ϕt−1, rt = rt−1, st = st−1.
22: end if
23: t← t+ 1.
24: end while

We now collect several properties of the MINRES for reference; see Liu & Roosta (2022a;b) for more details and properties.
Firstly, we give some scalar expressions for the quantities of interest in (9) and (10) in the MINRES algorithm
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Lemma A.1 (MINRES scalar updates). We have the following

∥r(t)∥ = ϕt (16a)

⟨r(t−1),Hr(t−1)⟩ = −ct−1γt∥r(t−1)∥2, (16b)

∥Hs(t−1)∥ =
√
ϕ20 − ϕ2t−1, (16c)

∥Hr(t−1)∥ = ϕt−1

√
γ2t + δ2t+1. (16d)

Proof. (16a) follows from the construction of the MINRES algorithm. The proof of (16d), (16c) and (16b) is given in Liu &
Roosta (2022b, Lemma 11).

Next we give some helpful properties of the SOL and NPC steps.

Lemma A.2 (Dtype = SOL). Any iterate of MINRES, s(t), satisfies

∥Hs(t)∥ ≤ ∥g∥, (17)

and

⟨s(t),Hg⟩ ≤ 0. (18)

Suppose that negative curvature has not been detected up to iteration t. Then,

⟨s(t),g⟩ ≤ −⟨s(t),Hs(t)⟩. (19)

Further, consider Assumption 3.1 and suppose there exists some ϱ > 0 such that for any v ∈ Kt(H,g) we have ⟨v,Hv⟩ ≥
ϱ∥v∥2. Then,

Cϱ,Lg
∥g∥ ≤ ∥s(t)∥ ≤ ∥g∥

ϱ
, (20)

where Cϱ,Lg ≜ ϱ/L2
g .

Proof. The relation (17) follows from Liu & Roosta (2021, Lemma 3.11), while (18) follows from the fact that 0 ∈ Kt(H,g)
and s(t) minimises (8). Also, (19) follows from Liu & Roosta (2022a, Theorem 3.8). For the right-hand-side of (20), we use
(17) and the fact that s(t) ∈ Kt(H,g) to get

ϱ∥s(t)∥2 ≤ ⟨s(t),Hs(t)⟩ ≤ ∥s(t)∥∥Hs(t)∥ ≤ ∥s(t)∥∥g∥ =⇒ ∥s(t)∥ ≤ ∥g∥/ϱ.

We show the left-hand-side of (20) using a monotonicity argument. In particular, consider the first iterate s(1). It is easy to
see that the solution to (8) over the Krylov subspace K1(H,g) = Span{g} is given by

min
s∈K1(H,g)

∥Hs+ g∥2 = min
β∈R
∥βHg + g∥2 =⇒ β = −⟨g,Hg⟩

∥Hg∥2
.

The step is therefore given by

s(1) = −⟨g,Hg⟩
∥Hg∥2

g.

We can apply ⟨g,Hg⟩ ≥ ϱ∥g∥2 and ∥Hg∥ ≤ Lg∥g∥ to obtain

∥s(1)∥ = ⟨g,Hg⟩
∥Hg∥2

∥g∥

≥ ϱ

L2
g

∥g∥.
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The full results follows from the monotonicity of the MINRES iterates (Liu & Roosta, 2022a, Theorem 3.11), that is, as
long as negative curvature remains undetected up to iteration t ≥ 1 we have

∥s(t)∥ ≥ ∥s(1)∥ ≥ ϱ

L2
g

∥g∥.

Lemma A.3 (Dtype = NPC). Suppose that the MINRES algorithm returns Dtype = NPC so that our step is r(t−1). Then,

⟨r(t−1),g⟩ = −
∥∥∥r(t−1)

∥∥∥2 . (21)

Additionally, the residual norm is upper bounded by the gradient.

∥r(t−1)∥ ≤ ∥g∥. (22)

Proof. The relation (21) follows from the MINRES properties directly (Liu & Roosta, 2022a, Lemma 3.1). We get (22) by
noting that

∥Hs(t−1)∥2 = ∥r(t−1) + g∥2 = ∥r(t−1)∥2 + 2⟨r(t−1),g⟩+ ∥g∥2

= ∥r(t−1)∥2 − 2∥r(t−1)∥2 + ∥g∥2 = ∥g∥2 − ∥r(t−1)∥2.

For the third line, we applied (21). The final equality and the nonnegativity of the norm implies the result.

B. Global Convergence - Minimal Assumptions
In this section, we detail the proof of the global convergence of Algorithm 1, i.e., Theorem 3.3. We first demonstrate that
the uniform positive curvature certification of the residuals, r(i), provides a bound on the curvature of the Hessian over the
corresponding Krylov subspace.

Lemma B.1 (Strong Positive Curvature Certification). By verifying

⟨r(t−1),Hr(i)⟩ > ς∥r(i)∥2,

for i = 0, . . . , t− 1, we obtain

⟨v,Hv⟩ ≥ ς/(t+ 1)∥v∥2, (23)

for any v ∈ Kt(H,g).

Proof. Let v ∈ Kt(H,g). We can write (Liu & Roosta, 2022a, Lemma A.1)

Kt(H,g) = Span
{
r(0), r(1), . . . , r(t−1)

}
,

and therefore there exists a set of scalars, {βi}t−1
i=0 , such that

v =

t−1∑
i=0

βir
(i).

Using this fact and the certificates ⟨r(i),Hr(i)⟩ ≥ ς∥r(i)∥2 gathered for i = 0, . . . , t− 1, we obtain

⟨v,Hv⟩ =

〈
t−1∑
i=0

βir
(i),

t−1∑
i=0

βiHr(i)

〉
=

t−1∑
i=0

t−1∑
j=0

βiβj

〈
r(i),Hr(j)

〉

=

t−1∑
i=0

β2
i

〈
r(i),Hr(i)

〉
≥

t−1∑
i=0

β2
i ς∥r(i)∥2, (24)
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where the second to last equality follows from the H-conjugacy of the residuals (Liu & Roosta, 2022b, Lemma 11). Using
Bernstein (2009, Fact 9.7.9), we get

1

t+ 1

∥∥∥∥∥
t−1∑
i=0

βir
(i)

∥∥∥∥∥
2

≤
t−1∑
i=0

β2
i ∥r(i)∥2,

which gives the desired result.

Note that since t appears in the lower bound (23), there is a dependence on the number of MINRES iterations undertaken
and hence x. However, t is bounded above by d. For this reason, in the sequel, we choose ς = (d+ 1)ς for some ς > 0.
Indeed, this choice implies that, under the conditions of Lemma B.1, for any v ∈ Kt(H,g) we have

⟨v,Hv⟩ ≥ ς∥v∥2. (25)

We now demonstrate that the line search procedure (11) terminates for a small enough step size.

Lemma B.2 (Step-size Lower Bound). Suppose f satisfies Assumption 3.1. If at iteration k of Algorithm 1, we have
I(xk, δk) ̸= ∅, then the largest step size, αk, that satisfies the line search criteria (11), also satisfies the following lower
bound

αk ≥ min

{
2(1− ρ)
Lg

min{1, ς}, δk
∥pI

k∥

}
. (26)

On the other hand, if I(xk, δk) = ∅, the bound is given by

αk ≥
2(1− ρ)
Lg

. (27)

Proof. We note that the proof of Lemma C.1 utilises no curvature properties of the residual. With this fact in mind, the
proof is entirely the same as Lemma C.1 in Appendix C with ς taking the place of σ.

The following lemma gives the amount of decrease obtained from the inactive set step whenever the inactive set is nonempty
and the inactive set termination condition (7c) is not satisfied.

Lemma B.3 (Sufficient Decrease: Inactive Set Case). Suppose f satisfies Assumption 3.1. Let xk+1 = P(xk + αkpk) be
the update computed at iteration k of Algorithm 1, where αk satisfies the line search criterion (11). Suppose I(xk, δk) ̸= ∅
and (7c) is not satisfied. If Dtype = SOL, then

f(xk+1)− f(xk) < −ρςmin

{
2(1− ρ)min{1, ς}C2

ς,Lg

Lg
ϵ4k, Cς,Lgδkϵ

2
k

}
,

where Cς,Lg is as in (20). Otherwise, with Dtype = NPC,

f(xk+1)− f(xk) < −ρmin

 2(1− ρ)η2

Lg(η2 + L2
g)
ϵ4k,

ηδk√
η2 + L2

g

ϵ2k

 .

Proof. Since αk satisfies the line search condition, we have

f(xk+1)− f(xk) ≤ ρ⟨gA
k ,P(xA

k + αkp
A
k )− xA

k ⟩+ αkρ⟨gI
k ,p

I
k ⟩ ≤ αkρ⟨gI

k ,p
I
k ⟩,

where we use the fact that ⟨gA
k ,P(xA

k + αpA
k )− xA

k ⟩ ≤ 0. We now consider Dtype = SOL and Dtype = NPC cases.
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When Dtype = SOL, we have pI
k = sIk . Using the line search condition, (19), (25), (26), and the left-hand-side inequality in

(20) with ϱ = ς , we have

f(xk+1)− f(xk) ≤ ραk⟨gI
k , s

I
k ⟩

≤ −ραk⟨sIk ,HI
ks

I
k ⟩

≤ −ρςαk∥sIk∥2

≤ −ρςmin

{
2(1− ρ)
Lg

min{1, ς}, δk
∥sIk∥

}
∥sIk∥2

≤ −ρςmin

{
2(1− ρ)
Lg

min{1, ς}∥sIk∥2, δk∥sIk∥
}

≤ −ρςmin

{
2(1− ρ)min{1, ς}C2

ς,Lg

Lg
∥gI

k∥2, Cς,Lgδk∥gI
k∥

}

< −ρςmin

{
2(1− ρ)min{1, ς}C2

ς,Lg

Lg
ϵ4k, Cς,Lgδkϵ

2
k

}
,

where we applied ∥gI
k∥ > ϵ2k on the final line.

When Dtype = NPC, we have, pI
k = rIk . We first note that, since the inexactness condition (10) has not been met, by

applying Assumption 3.1 and using the fact that

∥Hs(t−1)∥2 = ∥g∥2 − ∥r(t−1)∥2,

we get

∥r(t−1)∥ ≥ η√
η2 + L2

g

∥g∥.

Let ω = η/
√
η2 + L2

g . Proceeding similarly to the SOL case but using (21), we have

f(xk+1)− f(xk) ≤ ραk⟨gI
k , r

I
k ⟩

≤ −ραk∥rIk∥2

≤ −ρmin

{
2(1− ρ)
Lg

∥rIk∥2, δk∥rIk∥
}

≤ −ρmin

{
2(1− ρ)ω2

Lg
∥gI

k∥2, δkω∥gI
k∥
}

< −ρmin

{
2(1− ρ)ω2

Lg
ϵ4k, δkωϵ

2
k

}
,

again, making use of ∥gI
k∥ > ϵ2k in the final line.

The following lemma covers the case when the inactive set termination condition is satisfied, that is, I(xk, δk) = ∅ or (7c)
holds. In this case, we expect the inactive set step to be small (cf. (20)) and so we analyse the decrease due to the active set
portion of the step, using the fact that at lease one of the active set termination conditions (7a) or (7b) must be unsatisfied.
Lemma B.4 (Sufficient Decrease: Active Set Case). Suppose that f satisfies Assumption 3.1. Let xk+1 = P(xk + αkpk)
be the update computed at iteration k of Algorithm 1, where αk satisfies the line search criterion (11). Suppose that at least
one of the active set termination conditions, (7a) or (7b), is not satisfied. If I(xk, δk) = ∅, then

f(xk+1)− f(xk) < −ρmin

{
1

2
,
2(1− ρ)
Lg

min

{
1,

ϵ2k
2δ2k

}}
ϵ2k.

However, if I(xk, δk) ̸= ∅ and (7c) is satisfied, we have

f(xk+1)− f(xk) < −ρmin

{
1

2
,min

{
2(1− ρ)
Lg

,
δk
ϵ2k

}
min{1, ς}min

{
1,

ϵ2k
2δ2k

}}
ϵ2k.
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Proof. Since αk satisfies the line search criterion we have

f(xk+1)− f(xk) ≤ ρ⟨gA
k ,P(xA

k + αkp
A
k )− xA

k ⟩+ αkρ⟨gI
k ,p

I
k ⟩

≤ ρ⟨gA
k ,P(xA

k + αkp
A
k )− xA

k ⟩,

where we apply ⟨gI
k ,p

I
k ⟩ ≤ 0. From here the proof proceeds similarly to Lemma C.3. Indeed, the if (7a) or (7b) are

unsatisfied, (36) gives

f(xk+1)− f(xk) < −ρmin

{
1

2
, αkmin

{
1,

ϵ2k
2δ2k

}}
ϵ2k, (28)

and it only remains to apply a bound on αk. If I(xk, δk) = ∅, we use (27) to obtain

f(xk+1)− f(xk) < −ρmin

{
1

2
,
2(1− ρ)
Lg

min

{
1,

ϵ2k
2δ2k

}}
ϵ2k.

Otherwise, we have I(xk, δk) ̸= ∅. In this case, we must lower bound δk/∥pI
k∥ in (26). We therefore use (20) with ϱ = ς ,

(22), as well as the fact that (7c) is unsatisfied to obtain

min{ς, 1}∥pI
k∥ ≤ ∥gk∥ ≤ ϵ2k =⇒ δkmin{1, ς}

ϵ2k
≤ δk
∥pI

k∥
.

We now apply this bound to (26) and combine with (28) to get

f(xk+1)− f(xk) < −ρmin

{
1

2
,min

{
2(1− ρ)
Lg

,
δk
ϵ2k

}
min{1, ς}min

{
1,

ϵ2k
2δ2k

}}
ϵ2k.

Proof of Theorem 3.3. We posit that the algorithm must terminate in at most

K =

⌈
(f0 − f∗)ϵ−2

g

min{c1, c2}

⌉
,

iterations, where

c1 ≜ ρmin

{
2ς(1− ρ)min{1, ς}C2

ς,Lg

Lg
, ςCς,Lg

,
2(1− ρ)ω2

Lg
, ω

}
, with ω ≜

η√
η2 + L2

g

,

c2 ≜ ρmin

{
1

2
,
1

2
min

{
2(1− ρ)
Lg

, 1

}
min{1, ς}

}
,

and Cς,Lg
is as in (20). Suppose otherwise, that is, the algorithm fails to terminate until at least iteration K + 1. For

iterations k = 1, . . . ,K, the termination conditions must be unsatisfied. We divide the iterates up in the following manner

K1 = {k ∈ [K] | I(xk, ϵ1/2g ) ̸= ∅, ∥gI
k∥ ≥ ϵg},

and

K2 = {k ∈ [K] \ K1 | A(xk, ϵ1/2g ) ̸= ∅, (∃i ∈ A(xk, ϵ1/2g ), gik < −
√
ϵg or ∥diag(xA

k )g
A
k ∥ ≥ ϵg)}.

Since the algorithm has not terminated, [K] = K1 ∪ K2. If k ∈ K1 we apply Lemma B.3 and combine the SOL and NPC
cases with ϵg < 1 to obtain

f(xk+1)− f(xk) < −ρmin

{
2ς(1− ρ)min{1, ς}C2

ς,Lg

Lg
, ςCς,Lg

,
2(1− ρ)ω2

Lg
, ω

}
ϵ2g = −c1ϵ2g.
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If k ∈ K2, we instead combine the results of Lemma B.4 to obtain

f(xk+1)− f(xk) < −ρmin

{
1

2
,
1

2
min

{
2(1− ρ)
Lg

, 1

}
min{1, ς}

}
ϵg ≤ −c2ϵ2g.

Finally, we obtain

f0 − f∗ ≥ f0 − f(xK) =

K−1∑
k=0

f(xk)− f(xk+1) > |K1|c1ϵ2g + |K2|c2ϵ2g

≥ (|K1|+ |K2|)min{c1, c2}ϵ2g = Kmin{c1, c2}ϵ2g,

which contradicts the definition of K.

C. Global Convergence - Improved Rate
In this section, we provide the proof of Theorem 3.8. Recall that we denote the update to xk for some step size, α, by

xk(α) = P(xk + αpk).

Recall that Algorithm 2 involves two types of steps: Type I and Type II. We summarise the step types, the optimality
conditions, as well as the corresponding lemmas in Table 1.

Table 1. The step types, the optimality conditions, as well as the corresponding lemmas involved in the proof of Theorem 3.8.

Type Termination condition Active Step Inactive Step Step size Sufficient Decrease
I A ̸= ∅ and (not (7a) or not (7b)) Gradient Newton-MR Lemma C.1 Lemmas C.2 and C.3
II (A = ∅ or ((7a) and (7b))) and (I ̸= ∅ and (not (7c))) None Newton-MR Lemma C.4 Lemmas C.5 and C.6

Our first three lemmas (Lemmas C.1 to C.3) will demonstrate that Type I steps produce sufficient decrease in the function
value. The analysis of Type I steps builds off of Xie & Wright (2023) which demonstrated that projected gradient can
achieve good progress (in terms of guaranteed decrease) when the active termination conditions (7a) and (7b) are unsatisfied.
However, unlike Xie & Wright (2023), which only uses a first-order step, we also incorporate second-order update in the
form of Newton-MR step in the inactive set of indices.

As shown in Lemma C.1, combining the steps in this manner suggests that the lower bound on the step size may depend
inversely on the length of the Newton-MR step. This, in turn, could lead to small step sizes, if the Newton-MR step is large.
We deal with this issue by splitting our analysis into two cases. The first case (Lemma C.2) deals with large gradients on the
inactive set where we expect good progress due to the corresponding large Newton-MR step on the inactive set (cf. (20)).
By contrast, the second case (Lemma C.3) deals with small gradients on the inactive set where we can expect to see small
inactive set steps (cf. (20)) and therefore lower bounded step sizes. In this way, we trade off the convergence due to the
inactive and active sets to always ensure sufficient decrease at the required rate.

Recall that Assumption 3.1 implies that, for any y,x ∈ Rd+, we have

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ Lg
2
∥x− y∥2. (29)

We now give the proof of Lemmas C.1 to C.3.
Lemma C.1 (Type I Step: Step-size Lower Bound). Assume that f satisfies Assumptions 3.1 and 3.7. Suppose a Type I step
is taken at iteration k of Algorithm 2. If I(xk, δk) ̸= ∅ ,then the largest step size which satisfies the line search criteria (11),
αk, satisfies the following lower bound

αk ≥ min

{
2(1− ρ)
Lg

min{1, σ}, δk
∥pI

k∥

}
. (30)

However, if I(xk, δk) = ∅, then

αk ≥
2(1− ρ)
Lg

. (31)
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Proof. If I(xk, δk) ̸= ∅, suppose

α ≤ δk
∥pI

k∥
≤ δk
∥pI

k∥∞
,

so that for each i ∈ I(xk, δk) we have P(xik + αpik) = xik + αpik. The Lipschitz gradient upper bound (29) yields

f(xk(α)) ≤ f(xk) + ⟨gk,P(xk + αpk)− xk⟩+
Lg
2
∥P (xk + αpk)− xk∥2

= f(xk) + ⟨gA
k , P (x

A
k − αgA

k )− xA
k ⟩+ α⟨gI

k ,p
I
k ⟩+

Lg
2
∥P(xA

k − αgA
k )− xA

k ∥2 +
Lgα

2

2
∥pI

k∥2.

It is clear from this bound that the line search will terminate for any α such that

⟨gA
k , P (x

A
k − αgA

k )− xA
k ⟩+ α⟨gI

k ,p
I
k ⟩+

Lg
2
∥P(xA

k − αgA
k )− xA

k ∥2 +
Lgα

2

2
∥pI

k∥2

−ρ
(
⟨gA
k ,P(xA

k − αgA
k )− xA

k ⟩+ α⟨gI
k ,p

I
k ⟩
)
, (32)

is nonpositive. Starting with the active set terms of (32). We use the projection inequality ∥P(x) − P(y)∥2 ≤ ⟨x −
y,P(x)− P(y)⟩ combined with the feasibility of xA

k (which implies P(xA
k ) = xA

k ) to obtain

(1− ρ)⟨gA
k ,P(xA

k − αgA
k )− xA

k ⟩+
Lg
2
∥P (xA

k − αgA
k )− xA

k ∥2

≤ (1− ρ)⟨gA
k ,P(xA

k − αgA
k )− xA

k ⟩ −
αLg
2
⟨gA
k ,P(xA

k − αgA
k )− xA

k ⟩

≤
(
(1− ρ)− αLg

2

)
⟨gA
k ,P(xA

k − αgA
k )− xA

k ⟩.

By ⟨gA
k ,P(xA

k − αgA
k )− xA

k ⟩ ≤ 0, the active terms of (32) are nonpositive if

(1− ρ)− αLg
2
≥ 0 =⇒ α ≤ 2(1− ρ)

Lg
.

If I(xk, δk) = ∅, then (31) follows directly from this bound.

Now we consider the inactive terms of (32). If Dtype = SOL, i.e., pI
k = sIk , we apply (19) and Assumption 3.7 to obtain

α(1− ρ)⟨gI
k , s

I
k ⟩+

Lgα
2

2
∥sIk∥2 ≤ α

(
−(1− ρ)⟨sIk ,Hks

I
k ⟩+

αLg
2
∥sIk∥2

)
≤ α

(
−(1− ρ)σ∥sIk∥2 +

αLg
2
∥sIk∥2

)
= α

(
−(1− ρ)σ +

αLg
2

)
∥sIk∥2.

This upper bound will be negative for any step size satisfying

α ≤ 2σ(1− ρ)
Lg

.

If Dtype = NPC, i.e., pI
k = rIk , we apply (21) to obtain

α(1− ρ)⟨gI
k , r

I
k ⟩+

Lgα
2

2
∥rIk∥2 ≤ −α(1− ρ)∥rIk∥2 +

Lgα

2
∥rIk∥2

= α

(
−(1− ρ) + Lgα

2

)
∥rIk∥2,
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which is negative when

α ≤ 2(1− ρ)
Lg

.

If both the inactive and active terms of (32) are nonpositive then the line search will certainly terminate. Collecting the
bounds on the step size, we can see that the largest αk which satisfies the line search criteria also satisfies the following
lower bound

αk ≥ min

{
2(1− ρ)
Lg

min{1, σ}, δk
∥pI

k∥

}
.

Lemma C.2 (Type I Step: Inactive Set Decrease). Assume that f satisfies Assumptions 3.1, 3.6 and 3.7. Suppose that a
Type I step is taken at iteration k of Algorithm 2 but both I(xk, δk) ̸= ∅ and ∥gI

k∥ > ϵ
3/2
k . Let αk be the largest step size

satisfying the line search condition (11) so that xk+1 = P(xk + αkpk). If Dtype = SOL then

f(xk+1)− f(xk) < −ρσmin

{
2(1− ρ)min{1, σ}C2

σ,Lg

Lg
ϵ3k, Cσ,Lgδkϵ

3/2
k

}
.

Otherwise, if Dtype = NPC,

f(xk+1)− f(xk) < −ρmin

{
2(1− ρ)ω2

Lg
ϵ3k, ωδkϵ

3/2
k

}
.

Proof. Line search criterion and the negativity of ⟨gA
k ,P(xA

k − αkgA
k )− xA

k ⟩ implies

f(xk+1)− f(xk) ≤ ρ⟨gA
k ,P(xA

k − αkgA
k )− xA

k ⟩+ αkρ⟨gI
k ,p

I
k ⟩ ≤ ραk⟨gI

k ,p
I
k ⟩. (33)

We now divide into two cases, depending on the step type selected by MINRES.

If Dtype = SOL, then pI
k = sIk . Using the line search condition (33), (19), Assumption 3.7, the lower bound on αk from

Lemma C.1, and the left-hand-side inequality of (20) with ϱ = σ, we have

f(xk+1)− f(xk) ≤ ραk⟨gI
k , s

I
k ⟩

≤ −ραk⟨sIk ,HI
ks

I
k ⟩

≤ −ρσαk∥sIk∥2

≤ −ρσmin

{
2(1− ρ)
Lg

min{1, σ}, δk
∥sIk∥

}
∥sIk∥2

≤ −ρσmin

{
2(1− ρ)
Lg

min{1, σ}∥sIk∥2, δk∥sIk∥
}

≤ −ρσmin

{
2(1− ρ)min{1, σ}C2

σ,Lg

Lg
∥gI

k∥2, Cσ,Lg
δk∥gI

k∥

}

< −ρσmin

{
2(1− ρ)min{1, σ}C2

σ,Lg

Lg
ϵ3k, Cσ,Lgδkϵ

3/2
k

}
,

where for the last inequality, we used the fact that ∥gI
k∥ > ϵ

3/2
k .
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If Dtype = NPC, then pI
k = rIk . We use (33), but apply (21) and Assumption 3.6 to get

f(xk+1)− f(xk) ≤ ραk⟨gI
k , r

I
k ⟩

≤ −ραk∥rIk∥2

≤ −ρmin

{
2(1− ρ)
Lg

∥rIk∥2, δk∥rIk∥
}

≤ −ρmin

{
2(1− ρ)ω2

Lg
∥gI

k∥2, δkω∥gI
k∥
}

< −ρmin

{
2(1− ρ)ω2

Lg
ϵ3k, δkωϵ

3/2
k

}
,

again, making use of ∥gI
k∥ > ϵ

3/2
k in the final line.

Lemma C.3 (Type I Step: Sufficient Reduction). Assume that f satisfies Assumptions 3.1 and 3.7. Suppose that a Type I
step is taken on iteration k of Algorithm 2 so that A(xk, δk) ̸= ∅ and either (7a) or (7b) is unsatisfied. Let αk be the largest
step size satisfying the line search condition (11) so that xk+1 = P(xk + αkpk). If I(xk, δk) ̸= ∅ and ∥gI

k∥ ≤ ϵ
3/2
k , then

f(xk+1)− f(xk) < −ρmin

{
1

2
,min{1, σ}min

{
2(1− ρ)
Lg

,
δk

ϵ
3/2
k

}
min

{
1,

ϵ2k
2δ2k

}}
ϵ2k.

Otherwise, if I(xk, δk) = ∅,

f(xk+1)− f(xk) < −ρmin

{
1

2
,
2(1− ρ)
Lg

min

{
1,

ϵ2k
2δ2k

}}
ϵ2k.

Proof. Since αk satisfies the line search sufficient decrease condition, the negativity of ⟨gI
k ,p

I
k ⟩, implied by (19) and (21),

gives

f(xk+1)− f(xk) ≤ ρ
(
⟨gA
k ,P(xA

k − αkgA
k )− xA

k ⟩+ αk⟨gI
k ,p

I
k ⟩
)

≤ ρ⟨gA
k ,P(xA

k − αgA
k )− xA

k ⟩

= ρ
∑

i∈A(xk,δk)

gik(P(xik − αgik)− xik). (34)

The analysis proceeds depending on which optimality condition is unsatisfied.

Case 1 (7a): gik < −ϵk for some i ∈ A(xk, δk). In this case we can see that

gik(P(xik − αkgik)− xik) = −αk(gik)2 < −αkϵ2k.

We immediately see from the term wise nonpositivity of (34) that

f(xk+1)− f(xk) < −ραkϵ2k.

Case 2 (7b): Continuing from (34) we obtain

f(xk+1)− f(xk) ≤ ρ
∑

i∈A(xk,δk)

gik(P(xik − αgik)− xik)

= ρ

 ∑
i∈A(xk,δk)

αkg
i
k≥xi

k

−gikxik +
∑

i∈A(xk,δk)

αkg
i
k<xi

k

−αk(gik)2

 . (35)
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Note each sum in (35) is term-wise negative. Since ∥diag(xA
k )g

A
k ∥ > ϵ2k, we have

ϵ4k < ∥diag(xA
k )g

A
k ∥2 =

 ∑
i∈A(xk,δk)

αkg
i
k≥xi

k

(gikx
i
k)

2 +
∑

i∈A(xk,δk)

αkg
i
k<xi

k

(xikg
i
k)

2

 .

This implies two possible cases: either

ϵ4k
2
<

∑
i∈A(xk,δk)

αgi
k≥xi

k

(xikg
i
k)

2 =⇒ ϵ2k
2
<

∑
i∈A(xk,δk)

αgi
k≥xi

k

xikg
i
k,

or
ϵ4k
2
<

∑
i∈A(xk,δk)

αgi
k<xi

k

(xikg
i
k)

2 ≤
∑

i∈A(xk,δk)

αgi
k<xi

k

(δkg
i
k)

2 =⇒ ϵ4k
2δ2k

<
∑

i∈A(xk,δk)

αgi
k<xi

k

(gik)
2.

In either case, the negativity of each term of (35) implies

f(xk+1)− f(xk) < −ρmin

{
ϵ2k
2
,
αkϵ

4
k

2δ2k

}
.

Combining with Case 1 gives

f(xk+1)− f(xk) < −ρmin

{
ϵ2k
2
, αkϵ

2
k,
αkϵ

4
k

2δ2k

}
= −ρmin

{
1

2
, αk,

αkϵ
2
k

2δ2k

}
ϵ2k. (36)

If I(xk, δk) = ∅, we apply (31) to obtain

f(xk+1)− f(xk) < −ρmin

{
1

2
,
2(1− ρ)
Lg

min

{
1,

ϵ2k
2δ2k

}}
ϵ2k.

On the other hand, if I(xk, δk) ̸= ∅, the lower bound for αk in (30) depends inversely on the inactive portion of the step
∥pI

k∥. The step size can therefore become small if ∥pI
k∥ is too large. To avoid this, we will make use of the fact that the

gradient is bounded. In particular, by combining the right inequality of (20) and (22), we obtain

min{1, σ}∥pI
k∥ ≤ ∥gI

k∥ ≤ ϵ
3/2
k ,

which implies

δkmin{1, σ}
ϵ
3/2
k

≤ δk
∥pI

k∥
.

Imposing this on the step size lower bound (30) gives

αk ≥ min{1, σ}min

{
2(1− ρ)
Lg

,
δk

ϵ
3/2
k

}
.

The decrease is therefore given by

f(xk+1)− f(xk) < −ρmin

{
1

2
, αk,

αkϵ
2
k

2δ2k

}
ϵ2k

≤ −ρmin

{
1

2
, αkmin

{
1,

ϵ2k
2δ2k

}}
ϵ2k

≤ −ρmin

{
1

2
,min{1, σ}min

{
2(1− ρ)
Lg

,
δk

ϵ
3/2
k

}
min

{
1,

ϵ2k
2δ2k

}}
ϵ2k.

26



Inexact Newton-type Methods for Optimisation with Nonnegativity Constraints

The next three lemmas (Lemmas C.4 to C.6) demonstrate the sufficient decrease of Type II steps. Recall that a Type II
steps occurs once active set optimality is reached. Type II steps are taken until the inactive set optimality (7c) is satisfied
(termination) or a new index falls into the active set and disrupts active set optimality, in which case we resume Type I steps.
The Type II step consists of only a Newton-MR step in the inactive indices (no step is taken in the active indices). Indeed, a
Type II direction can be written (with possible reordering of indices) as

xk(α)− xk =

(
0

P(xI
k + αpI

k )− xI
k

)
.

Eliminating the active portion of the step allows us to leverage a “second-order analysis” of the inactive indices without
having to account for the curvature of the projected gradient portion of the step. Indeed, the analysis of the algorithm reverts
to essentially that of unconstrained Newton-MR (Liu & Roosta, 2022b), with some minor modifications to account for the
projection. Specifically, with possible reordering of the indices, we partition the Hessian into four blocks as

Hk =

(
HA
k HO

k

HO
k HI

k

)
,

where HA
k and HI

k are the sub matrices corresponding to the active and inactive indices respectively and HO
k is the remaining

off diagonal blocks of the Hessian. Under the Lipschitz Hessian condition (Assumption 3.5) and using α ≤ δk/∥pI
k∥ so that

P(xI
k + αpI

k ) = xI
k + αpI

k , we can write

f(xk(α)) ≤ f(xk) +
〈(

gA
k

gI
k

)
,

(
0

αpI
k

)〉
+

1

2

〈(
0

αpI
k

)
,

(
HA
k HO

k

HO
k HI

k

)(
0

αpI
k

)〉
+
α3LH

6

∥∥∥∥( 0
pI
k

)∥∥∥∥3
= f(xk) + α⟨gI

k ,p
I
k ⟩+

α2

2
⟨pI
k ,H

I
kp

I
k ⟩+

α3LH
6
∥pI

k∥3. (37)

Our first lemma uses the expansion in (37) to show that the largest step size satisfying the line search criterion is lower
bounded.

Lemma C.4 (Type II Step: Step-size Lower Bound). Assume that f satisfies Assumption 3.5. If Algorithm 2 selects a Type
II step at iteration k and MINRES returns Dtype = NPC, then for the largest step size, αk, satisfying the line search criterion
(11), we must have

αk ≥ min

{√
6(1− ρ)
LH∥rIk∥

,
δk
∥rIk∥

}
. (38)

Otherwise, if Dtype = SOL and Assumption 3.7 holds, then

αk ≥ min

{
1,

√
3σ(1− 2ρ)

LH∥sIk∥
,
δk
∥sIk∥

}
. (39)

Proof. We have already seen that, if α ≤ δk/∥pI
k∥, (37) holds. From (11), the line search is satisfied for any α such that

f(xk(α))− f(xk)− ρα⟨gI
k ,p

I
k ⟩ ≤ 0.

We now consider Dtype = SOL and Dtype = NPC cases. Let Dtype = SOL so that pI
k = sIk . Applying (37), α ≤ 1, the
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MINRES curvature condition (19) and Assumption 3.7 we have

f(xk(α))− f(xk)− ρα⟨gk, sIk ⟩ ≤ α⟨gI
k , s

I
k ⟩+

α2

2
⟨sIk ,HI

ks
I
k ⟩+

α3LH
6
∥sIk∥3 − ρα⟨gk, sIk ⟩

≤ α(1− ρ)⟨gI
k , s

I
k ⟩+

α

2
⟨sIk ,HI

ks
I
k ⟩+

α3LH
6
∥sIk∥3

= α

(
1

2
− ρ
)
⟨gI
k , s

I
k ⟩+

α

2
(⟨gI

k , s
I
k ⟩+ ⟨sIk ,HI

ks
I
k ⟩) +

α3LH
6
∥sIk∥3

≤ α
(
1

2
− ρ
)
⟨gI
k , s

I
k ⟩+

α3LH
6
∥sIk∥3

≤ −α
(
1

2
− ρ
)
⟨sIk ,HI

ks
I
k ⟩+

α3LH
6
∥sIk∥3

≤ −α
(
1

2
− ρ
)
σ∥sIk∥2 +

α3LH
6
∥sIk∥3

= α

(
−
(
1

2
− ρ
)
σ +

α2LH
6
∥sIk∥

)
∥sIk∥2.

It can be seen that this upper bound is nonpositive if

−
(
1

2
− ρ
)
σ +

α2LH
6
∥sIk∥ ≤ 0 =⇒ α ≤

√
3σ(1− 2ρ)

LH∥sIk∥
.

Collecting the bounds on α, the largest step size that satisfies the line search condition can be lower bounded as

αk ≥ min

{
1,

√
3σ(1− 2ρ)

LH∥sIk∥
,
δk
∥sIk∥

}
.

Now let Dtype = NPC so that pI
k = rIk . Applying the negative curvature of rIk , (21) and (37)

f(xk(α))− f(xk)− ρα⟨gk, rIk ⟩ ≤ α⟨gI
k , r

I
k ⟩+

α2

2
⟨rIk ,HI

kr
I
k ⟩+

α3LH
6
∥rIk∥3 − ρα⟨gk, rIk ⟩

≤ α(1− ρ)⟨gI
k , r

I
k ⟩+

α3LH
6
∥rIk∥3

≤ −α(1− ρ)∥rIk∥2 +
α3LH

6
∥rIk∥3

= α

(
−(1− ρ) + α2LH

6
∥rIk∥

)
∥rIk∥2.

This upper bound is nonpositive if

−(1− ρ) + α2LH
6
∥rIk∥ ≤ 0 =⇒ α ≤

√
6(1− ρ)
LH∥rIk∥

.

Therefore the largest step size that satisfies the line search condition, in the NPC case, is lower bounded as

αk ≥ min

{√
6(1− ρ)
LH∥rIk∥

,
δk
∥rIk∥

}
.

From Lemma C.4 we can see that, for a judicious choice of δk, the step size is inversely scaling with the step length, except
for the αk = 1 in Dtype = SOL case. This inverse scaling is key to obtaining an improved rate. We therefore deal with the
αk = 1 case separately. Indeed, in Lemma C.5 we show that if αk = 1 with Dtype = SOL the step length must be lower
bounded by norm of the gradient of the next iterate (over the same inactive set). This lemma is similar to the result in Liu &
Roosta (2022b, Lemma 7), we include it for completeness.
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Lemma C.5. Suppose Algorithm 2 selects a Type II step at iteration k with Dtype = SOL and αk = 1, that is, an update of
the form

xk+1 = xk +

(
0
sIk

)
,

with possible reordering. Under Assumptions 3.1, 3.5 and 3.7, we have

∥sIk

k ∥ ≥ c0 min
{∥∥∥gIk

k+1

∥∥∥ /ϵk, ϵk} ,
where

c0 ≜
2σ

θLg +
√
θ2L2

g + 2LHσ2
.

Proof. Since (rIk )
(t−1) = −HI

k (s
I
k )

(t−1) − gI
k ∈ Kt(HI

k ,g
I
k ) and NPC has not been detected, Assumption 3.7 implies

σ∥rIk∥2 ≤ ⟨rIk ,HI
kr

I
k ⟩ ≤ ∥rIk∥∥HI

kr
I
k∥ =⇒ ∥rIk∥ ≤

∥HI
kr

I
k∥

σ
. (40)

For clarity, in the sequel we make the dependence of inactive set on the iteration explicit. Consider

gIk

k+1 =

(
∂f(xk+1)

∂xi
| i ∈ I(xk, δk)

)
,

that is, the indices of the gradient evaluated at xk+1 corresponding to the inactive set at xk. This portion of the next gradient
“lives” in the same subset of the indices as gIk

k . The mean value theorem therefore implies that

gIk

k+1 − gIk

k −HIk

k sIk

k =

∫ 1

0

(
H

(
xk + t

(
0
sIk

))Ik

−HIk

k

)
sIk

k dt.

Assumption 3.5 implies ∥∥∥gIk

k+1 − gIk

k −HIk

k sIk

k

∥∥∥ ≤ LH
2
∥sIk

k ∥.

Using this bound, (10), and (40), we obtain∥∥∥gIk

k+1

∥∥∥ =
∥∥∥gIk

k+1 − gIk

k −HIk

k sIk

k − rIk

k

∥∥∥
≤
∥∥∥gIk

k+1 − gIk

k −HIk

k sIk

k

∥∥∥+ ∥rIk

k ∥

≤ LH
2
∥sIk

k ∥
2 +
∥HIk

k rIk

k ∥
σ

≤ LH
2
∥sIk

k ∥
2 +

θϵk∥HIk

k sIk

k ∥
σ

≤ LH
2
∥sIk

k ∥
2 +

θϵkLg∥sIk

k ∥
σ

,

where the second to last line follows from the MINRES termination condition in Algorithm 2 and the last line follows from
Assumption 3.1. Rearranging this expression, we obtain a quadratic inequality in ∥sIk

k ∥ as

0 ≤ LHσ∥sIk

k ∥
2 + 2θϵkLg∥sIk

k ∥ − 2σ
∥∥∥gIk

k+1

∥∥∥ .
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We can bound ∥sIk

k ∥ by the positive root of this quadratic as

∥∥∥sIk

k

∥∥∥ ≥ −2θϵkLg +
√
4θ2ϵ2kL

2
g + 8LHσ2∥gIk

k+1∥
2LHσ

=

−θLg +
√
θ2L2

g + 2LHσ2∥gIk

k+1∥/ϵ2k
LHσ

 ϵk

=

 θ2L2
g −

(
θ2L2

g + 2LHσ
2∥gIk

k+1∥/ϵ2k
)

LHσ

(
−ηLg −

√
θ2L2

g + 2LHσ2∥gIk

k+1∥/ϵ2k

)
 ϵk

=

 2σ∥gIk

k+1∥/ϵ2k
Lgθ +

√
θ2L2

g + 2LHσ2∥gIk

k+1∥/ϵ2k

 ϵk.

We now consider two cases. If ∥gIk

k+1∥/ϵ2k > 1

2σ∥gIk

k+1∥/ϵ2k
θLg +

√
θ2L2

g + 2LHσ2∥gIk

k+1∥/ϵ2k
=

2σ

θLgϵ2k/∥g
Ik

k+1∥+
√
θ2L2

gϵ
4
k/∥g

Ik

k+1∥2 + 2LHσ2ϵ2k/∥g
Ik

k+1∥

≥ 2σ

θLg +
√
θ2L2

g + 2LHσ2
.

On the other hand, if ∥gIk

k+1∥/ϵ2k ≤ 1

Lgθ +
√
θ2L2

g + 2LHσ2∥gIk

k+1∥/ϵ2k ≤ Lgθ +
√
θ2L2

g + 2LHσ2.

Together, these cases imply that

∥∥∥sIk

k

∥∥∥ =

 2σ∥gIk

k+1∥/ϵ2k
Lgθ +

√
θ2L2

g + 2LHσ2∥gIk

k+1∥/ϵ2k

 ϵk

≥ 2σ

Lgθ +
√
θ2L2

g + 2LHσ2
min

{∥∥∥gIk

k+1

∥∥∥ /ϵ2k, 1} ϵk.

We now demonstrate the sufficient decrease of the Type II step.

Lemma C.6 (Type II Step: Sufficient Decrease). Assume that f satisfies Assumptions 3.1 and 3.5. Suppose that a Type II
step is taken on iteration k of Algorithm 2 (i.e., I(xk, δk) ̸= ∅ and ∥gI

k∥ > ϵ2k). Let xk+1 = P(xk + αkpk) where αk is
the largest step size satisfying the termination condition (11) (cf. Lemma C.4). Suppose that MINRES returns Dtype = SOL
and Assumption 3.7 is satisfied. Then, if ∥gI

k+1∥ > 0, we have

f(xk+1)− f(xk) < −ρσmin


√

3σ(1− 2ρ)

LH
C

3/2
σ,Lg

ϵ3k, Cσ,Lgδkϵ
2
k,
c20
∥∥gI

k+1

∥∥2
2ϵ2k

,
c20ϵ

2
k

2

 .

where c0 is defined in Lemma C.5. Note that if ∥gI
k+1∥ = 0 strict inequality must be replaced with “≤”. On the other hand,

if Dtype = NPC and Assumption 3.6 is satisfied, then

f(xk+1)− f(xk) < −ρmin


√

6(1− ρ)
LH

ω3/2ϵ3k, ωδkϵ
2
k

 .
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Proof. If Dtype = SOL, pI
k = sIk . Combining the line search sufficient decrease (11), the descent condition for the SOL

step (19) and Assumption 3.7, we obtain

f(xk+1)− f(xk) ≤ αkρ⟨sIk ,gI
k ⟩

≤ −αkρ⟨sIk ,HI
ks

I
k ⟩

≤ −αkρσ∥sIk∥2.

Since αk ≤ 1, if the step size returned by the line search satisfies αk < 1, then we must have

min

{√
3σ(1− 2ρ)

LH∥sIk∥
,
δk
∥sIk∥

}
≤ αk,

as otherwise (39) would imply αk ≥ 1. Therefore, by applying (20) with ϱ = σ, we obtain

f(xk+1)− f(xk) ≤ −ρσmin

{√
3σ(1− 2ρ)

LH∥sIk∥
,
δk
∥sIk∥

}
∥sIk∥2

≤ −ρσmin


√

3σ(1− 2ρ)

LH
∥sIk∥3/2, δk∥sIk∥


≤ −ρσmin


√

3σ(1− 2ρ)

LH
C

3/2
σ,Lg
∥gI

k∥3/2, Cσ,Lg
δk∥gI

k∥


< −ρσmin


√

3σ(1− 2ρ)

LH
C

3/2
σ,Lg

ϵ3k, Cσ,Lg
δkϵ

2
k

 ,

on the last line we use the fact that by assumption, ∥gI
k∥ > ϵ2k. If the step size αk = 1 is selected by the line search, we can

use Lemma C.5 to obtain

∥sIk∥ ≥ c0 min
{∥∥gI

k+1

∥∥ /ϵk, ϵk} ,
which implies

f(xk+1)− f(xk) ≤ −ρσ∥sIk∥2

< −ρσc
2
0

2
min

{∥∥gI
k+1

∥∥2 /ϵ2k, ϵ2k} .
If ∥gI

k+1∥ = 0, the strict inequality must be replaced with “≤”. Combining the bounds we obtain the result.

If Dtype = NPC, pI
k = rIk . The line search condition (11), the step size lower bound (38), (21) and Assumption 3.6 imply

f(xk+1)− f(xk) ≤ αkρ⟨rIk ,gI
k ⟩

≤ −αkρ∥rIk∥2

≤ −ρmin

{√
6(1− ρ)
LH∥rIk∥

,
δk
∥rIk∥

}
∥rIk∥2

≤ −ρmin


√

6(1− ρ)
LH

∥rIk∥3/2, δk∥rIk∥


≤ −ρmin


√

6(1− ρ)
LH

ω3/2∥gI
k∥3/2, δkω∥gI

k∥


< −ρmin


√

6(1− ρ)
LH

ω3/2ϵ3k, ωδkϵ
2
k

 ,

where the final inequality follows from the non-termination condition.
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We are finally ready to prove Theorem 3.8.

Proof of Theorem 3.8. Let f0 = f(x0). We posit that the algorithm terminates in

K ≜

⌈
2(f0 − f∗)ϵ3/2g

min{c(1,1), c(1,2,), c(2,2)}
+ 1

⌉
,

iterations where c(1,1), c(1,2,) and c(2,2) are constants that will be defined later. Suppose, to the contrary, that the termination
conditions is unsatisfied until at least iteration K + 1. Then for iterations k = 0, . . . ,K at least one of the termination (7a)
to (7c) conditions must be unsatisfied. We divide the Type I iterations

K1 = {k ∈ [K] | A(xk, ϵ1/2g ) ̸= ∅, and (∃i ∈ A(xk, ϵ1/2g ), gik < −
√
ϵg, or ∥diag(xA

k )g
A
k ∥ ≥ ϵg)},

into two sets

K1,1 = K1 ∩ {k ∈ [K] | ∥gI
k∥ > ϵ3/4g , and I(xk, ϵ1/2g ) ̸= ∅},

K1,2 = K1 ∩ {k ∈ [K] | ∥gI
k∥ ≤ ϵ3/4g , or I(xk, ϵ1/2g ) = ∅}.

For the Type II iterations K2 = [K] \ K1 we have I(xk, ϵ1/2g ) ̸= ∅ and ∥gIk

k ∥ > ϵg . We divide them as follows

K2,1 = K2 ∩ {k ∈ [K] | I(xk+1, ϵ
1/2
g ) ̸= ∅, and ∥gIk+1

k+1 ∥ > ϵg},

K2,2 = K2 ∩ {k ∈ [K] | I(xk+1, ϵ
1/2
g ) = ∅, or ∥gIk+1

k+1 ∥ ≤ ϵg}.

We now restate the results obtained for per-iteration decrease.

Type I step. For k ∈ K1,1, Lemma C.2 applies and by combining the NPC and SOL cases and using ϵg < 1 we obtain,

f(xk+1)− f(xk) < −min
{
ca(1,1)ϵ

3/2
g , cb(1,1)ϵ

5/4
g

}
≤ −min

{
ca(1,1), c

b
(1,1)

}
ϵ3/2g = −c(1,1)ϵ3/2g , (41)

where

ca(1,1) ≜ ρmin

{
2(1− ρ)ω2

Lg
,
2(1− ρ)min{1, σ}σC2

σ,Lg

Lg

}
,

cb(1,1) ≜ ρmin
{
ω, σCσ,Lg

}
, and c(1,1) ≜ min{ca(1,1), c

b
(1,1)}.

For k ∈ K1,2, Lemma C.3 applies. Indeed, for I(xk, ϵ1/2g ) ̸= ∅ we obtain a decrease

f(xk+1)− f(xk) < −
ρ

2
min

{
1,min{1, σ}min

{
2(1− ρ)
Lg

,
1

ϵ
1/4
g

}}
ϵg

≤ −ρ
2
min

{
1,min{1, σ}min

{
2(1− ρ)
Lg

, 1

}}
ϵ3/2g ,

where on the second line we used ϵg < 1. The decrease in the case where I(xk, ϵ1/2g ) = ∅ is given by

f(xk+1)− f(xk) < −
ρ

2
min

{
1,

2(1− ρ)
Lg

}
ϵ3/2g .

Combining these results we obtain

f(xk+1)− f(xk) < −c(1,2)ϵ3/2g , (42)

where

c(1,2) ≜
ρ

2
min

{
1,min{1, σ}min

{
2(1− ρ)
Lg

, 1

}}
.
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Type II Step: For k ∈ K2,1, we can apply ∥gIk+1

k+1 ∥ > ϵg to further refine the bound for the SOL case. Note that because

δk = δk+1 = ϵ
1/2
g and a Type II step is taken I

(
xk+1, ϵ

1/2
g

)
⊆ I

(
xk, ϵ

1/2
g

)
. Indeed, if i ∈ A

(
xk, ϵ

1/2
g

)
we have pik = 0

and hence xik+1 = xik ≤ ϵ
1/2
g and A

(
xk, ϵ

1/2
g

)
⊆ A

(
xk+1, ϵ

1/2
g

)
. Together these results imply that

ϵg < ∥g
Ik+1

k+1 ∥ ≤ ∥g
Ik

k+1∥.

With Dtype = SOL and using ϵg < 1, Lemma C.6 implies

f(xk+1)− f(xk) < −ρσmin


√

3σ(1− 2ρ)C3
σ,Lg

LH
ϵ3/2g , Cσ,Lg

ϵ3/2g ,
c20
2
,
c20ϵg
2
,


≤ −ρσmin


√

3σ(1− 2ρ)C3
σ,Lg

LH
, Cσ,Lg

,
c20
2

 ϵ3/2g .

With Dtype = NPC, this becomes

f(xk+1)− f(xk) < −ρmin


√

6(1− ρ)
LH

ω3/2, ω

 ϵ3/2g ,

and so by combining the Dtype = NPC and Dtype = SOL cases, we have

f(xk+1)− f(xk) < −c(2,2)ϵ3/2g , (43)

where

c(2,2) ≜ ρmin


√

3σ3(1− 2ρ)C3
σ,Lg

LH
, σCσ,Lg

,
σc20
2
,

√
6(1− ρ)ω3

LH
, ω

 .

For k ∈ K2,2, the lower bound for the next gradient norm is no longer available. However, due to Lemma C.1, we have at
least

f(xk+1)− f(xk) ≤ 0.

Additionally, due to the non-termination of the algorithm, k ∈ K2,2 implies k+ 1 ∈ K1 unless k = K, in which case K + 1
could be the iteration the algorithm terminates. We can therefore write

|K(2,1)| ≤ |K1|+ 1.

We now bound the total decrease in terms of the number of iterations that must have occurred using (41) to (43)

f0 − f∗ ≥ f0 − f(xK+1)

=

K∑
k=0

f(xk)− f(xk+1)

=
∑

k∈K(1,1)

f(xk)− f(xk+1) +
∑

k∈K(1,2)

f(xk)− f(xk+1)

+
∑

k∈K(2,1)

f(xk)− f(xk+1) +
∑

k∈K(2,2)

f(xk)− f(xk+1)

>
∑

k∈K(1,1)

c(1,1)ϵ
3/2
g +

∑
k∈K(1,2)

+c(1,2)ϵ
3/2
g +

∑
k∈K(2,2)

c(2,2)ϵ
3/2
g

= |K(1,1)|c(1,1)ϵ3/2g + |K(1,2)|c(1,2)ϵ3/2g + |K(2,2)|c(2,2)ϵ3/2g .
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Since each term is positive, we get

|K(1,1)| <
(f0 − f∗)ϵ−3/2

g

c(1,1)
, |K(1,2)| <

(f0 − f∗)ϵ−3/2
g

c(1,2)
, |K(2,2)| <

(f0 − f∗)ϵ−3/2
g

c(2,2)
.

Hence, if we add up the total number of iterations that must have been taken

K = |K(1,1)|+ |K(1,2)|+ |K(2,1)|+ |K(2,2)|
≤ 2(|K(1,1)|+ |K(1,2)|) + |K(2,2)|+ 1

<
2(f0 − f∗)ϵ3/2g

c(1,1)
+

2(f0 − f∗)ϵ3/2g

c(1,2)
+

(f0 − f∗)ϵ3/2g

c(2,2)
+ 1

≤

⌈
2(f0 − f∗)ϵ3/2g

min{c(1,1), c(1,2,), c(2,2)}
+ 1

⌉
= K,

we arrive at a contradiction.

D. Operational Complexity
The results in this section are corollaries of Theorem 3.3 and Theorem 3.8 and the MINRES iteration bounds in Liu &
Roosta (2022b). The following definitions are included from (Liu & Roosta, 2022b) for completeness.

Let Ψ(H,g) denote the set of g-relevant eigenvalues2, that is, the eigenvalues whose eigenspace is not orthogonal to g.
Denote ψ = |Ψ(H,g)| and let ψ−, ψ0 and ψ+ be the number of negative, zero and positive g-relevant eigenvalues so that
ψ = ψ− + ψ0 + ψ+. We impose the following order on the eigenvalues

λ1 > λ2 > . . . > λψ+
> 0 > λψ++ψ0+1 > . . . > λψ.

Denote by Ui the matrix with columns which form an orthonormal basis of the ith eigenspace with the convention
that the leading column is the only column onto which the gradient has nonzero projection. For 1 ≤ i ≤ ψ+ and
ψ+ + ψ0 + 1 ≤ j ≤ ψ, define the following matrices

Ui+ = [U1 . . .Ui], Uj− = [Uj , . . . ,Uψ].

The columns of Ui+ represent the eigenspaces of the i most positive g-relevant eigenvalues, while Uj− represents
the eigenspaces corresponding to the j most negative g-relevant eigenvalues. As a special case, let U+ = Uψ+ and
U− = U(ψ++ψ0+1)−. Finally, let

U = [U+,U−].

We now state a key assumption for the result.

Assumption D.1. (Liu & Roosta, 2022b, Assumption 5) There exists τ > 0 and L2
g/(L

2
g + η2) < ν ≤ 1 such that for any

x ∈ Rd+ with g /∈ Null(H) at least one of the following statements (i)-(iii) must hold

(i) If ψ+ ≥ 1 and ψi ≥ 1 then there exists 1 ≤ i ≤ ψ+ and ψ+ + ψ0 + 1 ≤ j ≤ ψ such that

min{λi,−λj} ≥ τ,
∥(Ui+U

⊺
i+ +Uj−U

⊺
j−)g∥2 ≥ ν∥UU

⊺
g∥2.

(ii) If ψ+ ≥ 1 then there exists 1 ≤ i ≤ ψ+ such that

λi ≥ τ,
∥Ui+U

⊺
i+g∥2 ≥ ν∥UU

⊺
g∥2.

2Eigenvalues outside of Ψ(H,g) are essentially “invisible” to the Krylov subspace built out of products of H and g.
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(iii) If ψ− ≥ 1 then there exists some ψ+ + ψ0 + 1 ≤ j ≤ ψ such that

−λj ≥ τ,
∥Uj−U

⊺
j−g∥2 ≥ ν∥UU

⊺
g∥2.

Recall that UU⊺, Uj−U
⊺
j− and Ui+U

⊺
i+ represent a projection onto corresponding eigenspaces. Each part of Assump-

tion D.1 has a natural interpretation as a requirement that there is at least one large enough magnitude g-relevant eigenvalue
for which the projection of the gradient onto the corresponding eigenspaces is not too small. This is a significant relaxation
of a more conventional uniform bound on the magnitude of the eigenvalues. For example, a uniform bound on the smallest
magnitude eigenvalues

min{λψ+ ,−λψ++ψ0++1} ≥ τ,

immediately implies Assumption D.1-(i) with i = ψ+, j = ψ+ +ψ0 + 1 and ν = 1. See Liu & Roosta (2022b, Assumption
5) for further discussion of this assumption.

Assumption D.1 allows us to bound the number of Hessian vector products that are required for MINRES to satisfy (10).
Indeed, assuming g /∈ Null(H), we appeal to Liu & Roosta (2022b, Eqn. (20)) to bound the number of iterations until the
MINRES termination tolerance (10) is satisfied as

TSOL = min

{⌈√
Lg/µ

4
log

(
4/

(
η2

L2
g + η2

− (1− ν)
))

+ 1

⌉
, g

}
,

where g denotes the grade of g with respect to H (Liu & Roosta, 2022a, Definition 1.3). We note that TSOL has a logarithmic
dependence on the inexactness rolernance, η.

On the other hand if ψ− ≥ 1 and Assumption D.1-(iii) holds, we appeal to Liu & Roosta (2022b, Eqn. (19)) to bound the
iterations required to obtain a NPC direction as

TNPC = min

{
max

{⌈(√
2(Lg + µ)/µ

4

)
log

(
2(Lg + µ)(1− ν)

µν

)
+ 1

⌉
, 1

}
, g

}
.

When ν = 1, it is clear from the statement of Assumption D.1-(iii) that all g-relevant eigenvalues are negative, which implies
that negative curvature is detected at the very first iteration, i.e., TNPC = 1. If we adopt the convention that TNPC = ∞
when ψ− = 0 or Assumption D.1-(iii) is unsatisfied we bound the number of MINRES iterations as T = min{TNPC, TSOL}.
If g ∈ Null(H) then g is declared a zero curvature direction at the very first iteration. We now prove the operational
complexity results.

Corollary D.2 (First Order Operational Complexity Algorithm 1). Under the conditions of Theorem 3.3 and Assumption D.1,
the total number of gradient evaluations and Hessian vector products in Algorithm 1 to obtain an ϵg-FO point is O(ϵ−2

g ),
for d sufficiently large.

Proof. Due to Theorem 3.3, the total number of outer iterations is O(ϵ−2
g ). To obtain the operational result we simply need

to count the total number of gradient evaluations and Hessian vector products per iteration. The work required for each
step of Algorithm 1 is equivalent to the number of MINRES iterations (i.e. Hessian vector product) plus a single gradient
evaluation. In the case of Algorithm 1 the termination tolerance η has no dependence on ϵg. Considering the discussion
above, for sufficiently large d, we bound the number of Hessian vector products as O(1). The conclusion follows from the
fact that O(ϵ−2

g )(1 +O(1)) ∈ O(ϵ−2
g ).

Corollary D.3 (First Order Operational Complexity Algorithm 2). Under the conditions of Theorem 3.8 and Assumption D.1,
the total number of gradient evaluations and Hessian vector products in Algorithm 2 to obtain an ϵg-FO point is Õ(ϵ−3/2

g ),
for d sufficiently large.

Proof. The result is similar to Corollary D.2. We utilise Theorem 3.8 to bound the total number of outer iterations as
O(ϵ−3/2

g ). For Algorithm 2, the MINRES termination tolerance is η = θ
√
ϵg, so we bound the total number of Hessian

vector products as Õ(1) for d large. The conclusion follows.
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Algorithm 4 Newton-MR TMP (Local Phase Version)
1: for k = 0, 1, . . . do
2: Update sets A(xk, δk) and I(xk, δk) as in (2).
3: if Some termination condition is satisfied then
4: Terminate.
5: end if

6: pk :

 pA
k ← −gA

k ,

(pI
k , Dtype)← MINRES(HI

k ,g
I
k , η, 0) # See Remark 3.15 regarding the choices for η.

7: αk ← Algorithm 5 with α0 = 1 and (11).
8: xk+1 = P(xk + αkpk)
9: end for

E. Local Convergence
In this section we provide the detailed proof for Theorem 3.13. Our proof follows a similar line of reasoning as that in
Bertsekas (1982, Proposition 3) but with several modifications and alterations specific to our setting and methodology. We
assume in this section that I(x∗, 0) ̸= ∅ as otherwise the analysis boils down to convergence of projected gradient to a
trivial solution x∗ = 0. Our main aim is to show that after a finite number of iterations, the iterates eventually end up in the
following subspace

X∗ = {x ∈ Rd | xi = 0, i ∈ A(x∗, 0)}.

We start with a lemma to show that, by choosing our inexactness tolerance δk = δ, with

0 < δ <
1

2
min

i∈I(x∗,0)
xi∗, (44)

where x∗ is some local minima, we can properly “separate” the true active and inactive set if xk is close enough to x∗. That
is, we apply the correct update to the true active and inactive indices.
Lemma E.1. Let x∗ be a local minima of (1) and xk be an iterate of Algorithm 4 with δ chosen according to (44). There
exists ∆sep such that if xk ∈ B(x∗,∆sep), then A(xk, δ) = A(x∗, 0).

Proof. Define

∆sep ≜ min

{
1

2

(
min

i∈I(x∗,0)
xi∗ − δ

)
, δ

}
> 0.

We first we prove I(xk, δk) ⊇ I(x∗, 0). For any i ∈ I(x∗, 0) and xk ∈ B(x∗,∆sep) we have

xi∗ − xik < ∆sep ≤
xi∗ − δ

2

=⇒ xi∗
2
− xik ≤ −

δ

2

=⇒ xi∗
2

+
δ

2
≤ xik

=⇒ 3δ

2
≤ xik

=⇒ δ < xik,

where the second to last line follows from (44).

Next we show that I(xk, δ) ⊆ I(x∗, 0). In particular, we prove the contrapositive i ∈ A(x∗, 0) =⇒ i ∈ A(xk, δ). For
i ∈ A(x∗, 0) we know that xi∗ = 0 and so for xk ∈ B(x∗,∆sep) we have

xik = xik − x∗ < ∆sep ≤ δ.
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That is, i ∈ A(xk, δ).

With this result in hand, we know that we apply the “correct” update to xk. That is, true active indices receive a projected
gradient update, while indices in the true inactive set receive a Newton-type step.

Recall the the second-order sufficient condition in Assumption 3.12. This condition is equivalent to

⟨z,∇2f(x∗)z⟩ > 0, z ∈ X∗.

By the continuity of the Hessian, we are free to choose ∆cvx > 0 such that for any x ∈ B(x∗,∆cvx) the Hessian remains
strongly positive definite on the subspace X∗. In other words, the constant, µ, satisfying

µ ≜ min
z∈X∗, x∈B(x∗,∆cvx)

⟨z,∇2f(x)z⟩
∥z∥2

> 0, (45)

is well defined. In the current notation, even if I(xk, δ) = I(x∗, 0) we have p
I(xk,δ)
k /∈ X∗ as pI(xk,δ)

k ∈ R|I(xk,δ)| is
a subvector. Therefore, as a notational convenience, in this section we take subvectors and submatrices corresponding
to a certain subset of indices, e.g., pI(xk,δ)

k , to be padded with zeros in the removed indices. Note that this implies that
p
I(xk,δ)
k ,p

A(xk,δ)
k ∈ Rd and pk = p

I(xk,δ)
k + p

A(xk,δ)
k but leaves the mechanics of Algorithm 4 unchanged. Now if

I(xk, δ) = I(x∗, 0) we have

p
I(xk,δ)
k = p

I(x∗,0)
k ∈ X∗.

Indeed, it is easy to see that for any t = 0, . . . , g

Kt(HI(xk,δ)
k ,g

I(xk,δ)
k ) ⊆ X∗.

In addition, if xk ∈ B(x∗,∆cvx) then, by H
I(xk,δ)
k = H

I(x∗,0)
k , µ plays the role of Krylov subspace regularity constant, σ,

(cf. Assumption 3.7) on Kt(HI(x∗,0)
k ,g

I(x∗,0)
k ). Indeed, together, these results imply that, for any t = 0, . . . , g, we have

s ∈ Kt(HI(xk,δ)
k ,g

I(xk,δ)
k ) =⇒ ⟨s,HI(xk,δ)

k s⟩ ≥ µ∥s∥2. (46)

From (46) it is clear that we can do away with the Dtype = NPC case and Assumption 3.7. With this in mind, we now
demonstrate that the step size produced by the line search in Algorithm 4 is bounded.

Lemma E.2. Assume that f satisfies Assumption 3.1 and x∗ is a local minima of (1) satisfying Assumption 3.12. Then if
xk ∈ B(x∗,min{∆cvx,∆sep}) the step size produced by the line search in Algorithm 4 satisfies αk ∈ [ᾱ, 1] where

ᾱ ≜ min

{
1,

2(1− ρ)µ
Lg

,
δ

∥pI
k∥

}
. (47)

Proof. xk ∈ B(x∗,min{∆cvx,∆sep}) implies that I(xk, δ) = I(x∗, 0) ̸= ∅ and (46) holds. It follows that MINRES
always selects Dtype = SOL step.

The result follows from the step size selection procedure in Algorithm 4 and the analysis in the SOL case of Lemma C.1.

Building on Lemma E.1, our next result, Lemma E.3, will show that, close enough to x∗, the active set update will be large
enough and the inactive set update small enough that the zero bound constraints at xk+1 coincide with the zero bound
constraints at x∗, i.e., A(xk+1, 0) = A(x∗, 0). The intuition for this result is that the gradient and hence the step (cf.
(20)) in the inactive indices should be going to zero as xk approaches x∗. By contrast, in the active set, a non-degeneracy
condition (Assumption 3.11) ensures there is positive gradient in the active indices arbitrarily close to the boundary. When
A(xk+1, 0) = A(x∗, 0), the fixed active set and small inactive step can also be used to ensure that our iterates do not drift
too far from the starting point. This is the second part of Lemma E.3.
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Lemma E.3. Suppose that f satisfies Assumption 3.1. Let x∗ be a local minima satisfying Assumptions 3.11 and 3.12. If δ
is chosen according to (44), then the following two results hold:

1. There exists ∆bnd > 0 such that xk ∈ B(x∗,∆bnd) implies A(xk, δ) = A(xk+1, 0) = A(x∗, 0).

2. Given a ∆ > 0, we can choose ∆cls ∈ (0,∆bnd) such that ∥xk − x∗∥ < ∆cls implies that ∥xk+1 − x∗∥ < ∆.

Proof. We stipulate that ∆bnd ≤ min{∆sep,∆cvx}. Note that, in this case, A(xk, δ) = A(x∗, 0) by Lemma E.1 and
αk ∈ [ᾱ, 1] where

ᾱ ≜ min

{
1,

2(1− ρ)µ
Lg

,
δ

∥pI
k∥

}
. (48)

by Lemma E.2. It is also clear that MINRES selects Dtype = SOL. We first show that the step size, αk, can be uniformly
lower bounded for xk close enough to x∗. We do this by showing that the step ∥pI

k∥ can be upper bounded. Specifically,
due to (46) the step, pI

k , is upper bounded by the gradient magnitude (cf. (20) with ϱ = µ)

∥pI
k∥ ≤ ∥gI

k∥/µ. (49)

Next we use the continuity of ∇f(x) and the fact that gI(x∗,0)
∗ = 0 to choose ∆0 ≤ min{∆sep,∆cvx} such that xk ∈

B(x∗,∆0) implies

∥gI(xk,δ)
k ∥ = ∥gI(x∗,0)

k ∥ ≤ µδ

2
,

where in the first equality we used Lemma E.1. This implies

∥pI
k∥ ≤ δ/2, (50)

and hence by (48)

ᾱ ≜ min

{
1,

2(1− ρ)µ
Lg

}
.

We now show thatA(x∗, 0) ⊆ A(xk+1, 0). Let i ∈ A(x∗, 0). Define ek = xk−x∗. By Assumption 3.11 and the continuity
of ∇f(x), there exists ∆1 such that, for ∥ek∥ ≤ ∆1,

(g(xk))
j = (g(x∗ + ek))

j >
γ

2
, ∀j ∈ A(x∗, 0).

Consider ∆2 = min {∆0,∆1, αγ/2}. If xk ∈ B(x∗,∆2), we have

xik = xik − xi∗ < ∆2 ≤
αγ

2
.

Using this bound and the lower bound for the gradient and step size we compute the update as

xik − αkgik ≤ xik −
αγ

2
≤ 0 =⇒ xik+1 = P(xik + αkp

i
k) = 0,

which implies i ∈ A(xk+1, 0).

Next, we show A(x∗, 0) ⊇ A(xk+1, 0). In particular, we prove the contrapositive statement i ∈ I(x∗, 0) =⇒ i ∈
I(xk+1, 0). Suppose i ∈ I(x∗, 0) the result will follow by showing that the xk+1 remains bounded away from zero. Let
∆bnd = min{∆0,∆1,∆2,∆sep,∆cvx}. Having xk ∈ B(x∗,∆bnd) implies I(x∗, 0) = I(xk, δ). Additionally, the bound
(50) applies and so α ∈ [α, 1] implies

α|pik| ≤ ∥p
I(xk,δ)
k ∥ ≤ δ/2,
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which yields

xik + αpik ≥ xik − α|pik| ≥ xik −
δ

2
>
δ

2
, (51)

where the final inequality follows from i ∈ I(x∗, 0) = I(xk, δ) =⇒ xik > δ. Finally we compute the step as

xk+1 = P(xik + αpik) = xik + αpik > 0,

which is the result.

Now for the second part of the result. Fix ∆ > 0. From the first part of the result we know that for xk ∈ B(x∗,∆bnd)

we have A(xk, δ) = A(xk+1, 0) = A(x∗, 0), which implies xA(xk,δ)
k+1 = x

A(xk+1,0)
k+1 = 0 and x

A(xk,δ)
∗ = x

A(x∗,0)
∗ = 0.

Applying these equalities we obtain

∥xk+1 − x∗∥ =
∥∥∥xI(xk,δ)

k+1 − x
I(xk,δ)
∗

∥∥∥
=
∥∥∥[P(xk + αkpk)]

I(xk,δ) − x
I(xk,δ)
∗

∥∥∥
=
∥∥∥[xk + αkpk]

I(xk,δ) − x
I(xk,δ)
∗

∥∥∥
≤
∥∥∥xI(xk,δ)

k − x
I(xk,δ)
∗

∥∥∥+ αk

∥∥∥pI(xk,δ)
k

∥∥∥
≤ ∥xk − x∗∥+

∥∥∥gI(xk,δ)
k

∥∥∥ /µ,
where we drop the projection on line three due to [xk + αkpk]

I(xk,δ) > δ/2 when xk ∈ B(x∗,∆bnd) (cf. (51)). Again,
g
I(xk,δ)
k = g

I(x∗,0)
k so, by the continuity of ∇f(x), we are free to choose ∆3 so that xk ∈ B(x∗,∆3) implies∥∥∥gI(xk,δ)

k

∥∥∥ =
∥∥∥gI(x∗,0)

k

∥∥∥ < µ∆

2
,

Finally, we can choose ∆cls = min{∆bnd,∆3,∆/2} so that, if xk ∈ B(x∗,∆cls), we have

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥+
∥∥∥gI(xk,δ)

k

∥∥∥ /µ
<

∆

2
+

∆

2
= ∆.

The second part of Lemma E.3 can be used with the choice ∆ = ∆bnd to obtain

∥xk − x∗∥ < ∆cls =⇒ ∥xk+1 − x∗∥ < ∆bnd.

In this case, we can guarantee, due to ∆cls ≤ ∆bnd and the first part of Lemma E.3 applied to xk, that

A(xk, δ) = A(xk+1, 0) = A(x∗, 0),

and from xk+1 ∈ B(x∗,∆bnd) and the first part of Lemma E.3 again

A(xk+1, δ) = A(xk+2, 0) = A(x∗, 0).

Together, these results show that xk ∈ B(x∗,∆cls) implies xk+1,xk+2 ∈ X∗. This means that the iterates of our algorithm
essentially “looks” like unconstrained minimisation in this subspace. Unfortunately, with the results we have so far, we
cannot guarantee that the iterates continue to stay close enough to the minima beyond iteration k + 2. Lemma E.4 will
overcome this problem by using the second-order sufficient condition and adapting an unconstrained optimisation result
(Bertsekas, 1996, Proposition 1.12). The main idea is that the “strict convexity” on X∗ induced by Assumption 3.12 (cf.
(45)) implies that there exists a small “basin” (restricted to X∗) that the iterates will not leave once they enter. We can then
use Lemma E.3 to show that our iterates eventually enter X∗ and the corresponding basin.
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Lemma E.4. Let f satisfy Assumption 3.1 and x∗ be a local minima satisfying Assumptions 3.11 and 3.12. Let δ be
chosen according to (44). If there is an iterate, xk, of Algorithm 4 such that A(xk, δ) = A(xk, 0) = A(x∗, 0) and
A(xk+1, 0) = A(x∗, 0) (i.e. xk,xk+1 ∈ X∗) then there exists a neighbourhood (restricted to X∗) of x∗, N (x∗), such that
if xk ∈ N (x∗) and then xk+1 ∈ N (x∗). Additionally, N (x∗) is independent of the iterates and can be chosen arbitrarily
small, i.e., for any ∆ > 0 we have N (x∗) ⊂ B(x∗,∆).

Proof. We fix ∆ ≤ ∆cvx and define

N (x∗) =

{
x ∈ B(x∗,∆) ∩X∗ | f(x) ≤ f(x∗) +

µ

2

(
∆

1 + Lg/µ

)2
}
.

We will show that this set is the desired neighbourhood on X∗ in the sense there exists an open ball in the relative interior of
X∗. The mean value theorem implies that there is a constant t ∈ (0, 1) such that for any x,y ∈ Rd

f(y) = f(x) + ⟨∇f(x),y − x⟩+ 1

2
⟨y − x,∇2f(x+ t(y − x))(y − x)⟩. (52)

We obtain, by Assumption 3.1,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ Lg
2
∥y − x∥2.

Let x = x∗ and y ∈ B(x∗,∆)∩X∗. The fact that y and x∗ only have nonzero components in I(x∗, 0), while the optimality
condition (7c) implies∇f(x∗) only has zero components in I(x∗, 0), allows us to write

f(y) ≤ f(x∗) +
Lg
2
∥y − x∗∥2,

so by choosing y close enough to x∗ we have y ∈ N (x∗). This implies that N (x∗) is a neighbourhood of x∗, in X∗.

Let x = x∗ and y = xk for xk ∈ B(x∗,∆) ∩X∗. Then, x∗ + t(xk − x∗) ∈ B(x∗,∆) ∩X∗ for any t ∈ [0, 1]. Hence,
(45) applied to (52) yields

µ

2
∥xk − x∗∥2 ≤ f(xk)− f(x∗). (53)

Next, we seek to bound the distance between subsequent errors. Since A(xk, δ) = A(xk+1, 0) = A(x∗, 0), we have

x
A(xk,δ)
k+1 = x

A(xk+1,0)
k+1 = 0,

and

x
A(xk,δ)
∗ = x

A(x∗,0)
∗ = 0.

We compute

∥xk+1 − x∗∥ = ∥x
I(xk+1,0)
k+1 − x

I(x∗,0)
∗ ∥

= ∥xI(xk,δ)
k+1 − x

I(xk,δ)
∗ ∥

= ∥[P(xk + αkpk)]
I(xk,δ) − x

I(xk,δ)
∗ ∥

= ∥xI(xk,δ)
k − x

I(xk,δ)
∗ + αkp

I(xk,δ)
k ∥

≤ ∥xI(xk,δ)
k − x

I(xk,δ)
∗ ∥+ αk∥pI(xk,δ)

k ∥, (54)

where the fourth line follows from I(xk, δ) = I(xk+1, 0) and i ∈ I(xk+1, 0) implying that 0 < xik+1 = P(xik +
αkp

i
k) =⇒ P(xik + αkp

i
k) = xik + αkp

i
k. Since I(xk, δ) = I(x∗, 0) and xk ∈ B(x∗,∆cvx), we know (49) holds. We

can refine (49) by combining Assumption 3.1, I(xk, δ) = I(xk, 0) = I(x∗, 0) and (7c) to obtain∥∥∥gI(xk,δ)
k

∥∥∥ =
∥∥∥gI(xk,0)

k − g
I(x∗,0)
∗

∥∥∥ ≤ ∥gk − g∗∥ ≤ Lg∥xk − x∗∥ = Lg

∥∥∥xI(xk,δ)
k − x

I(xk,δ)
∗

∥∥∥ .
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Combining this bound, αk ≤ 1, (49) and (54) we have

∥xk+1 − x∗∥ ≤ ∥xI(xk,δ)
k − x

I(xk,δ)
∗ ∥+ Lg

µ

∥∥∥xI(xk,δ)
k − x

I(xk,δ)
∗

∥∥∥
=

(
1 +

Lg
µ

)
∥xI(xk,δ)

k − x
I(xk,δ)
∗ ∥

=

(
1 +

Lg
µ

)
∥xk − x∗∥. (55)

We now show that this is enough to guarantee that xk+1 ∈ N (x∗). In particular, if xk ∈ N (x∗) then xk ∈ B(x∗,∆cvx),
so by combining the definition of N (x∗) and (53) we have

µ

2
∥xk − x∗∥2 ≤ f(xk)− f(x∗) ≤

µ

2

(
∆

1 + Lg/µ

)2

=⇒ ∥xk − x∗∥ <
∆

1 + Lg/µ
.

Applying (55) we have

∥xk+1 − x∗∥ < ∆,

which implies that xk+1 ∈ B(x∗,∆) ∩ X∗. In addition, αk satisfies the line search criterion, which guarantees that
f(xk+1) ≤ f(xk) and so

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗) ≤
µ

2

(
∆

1 + Lg/µ

)2

,

which implies xk+1 ∈ N (x∗), as needed. In the above argument we are free to replace ∆ with any ∆′ ∈ (0,∆] which
implies that we can always choose N (x∗) sufficiently small.

We our now ready to prove Theorem 3.13.

Proof of Theorem 3.13. Note that we are free to choose the neighbourhood N (x∗) of x∗ on X∗ from Lemma E.4 small.
We therefore select ∆0 < ∆cvx and N (x∗) to satisfy the following inclusions

B(x∗,∆0) ∩X∗ ⊆ N (x∗) ⊆ B(x∗∆bnd) ∩X∗. (56)

By the second part of Lemma E.3, there exists ∆cls ≤ ∆bnd such that the following inclusions hold

xk ∈ B(x∗,∆cls) =⇒ xk+1 ∈ B(x∗,∆0). (57)

Choose ∆actv = ∆cls and suppose that xk̄ ∈ B(x∗,∆actv). The first inclusion of (57), implies A(xk̄, δ) = A(xk̄+1, 0) =
A(x∗, 0), i.e. xk̄+1 ∈ X∗, by ∆cls ≤ ∆bnd and the first part of Lemma E.3. This fact and the second inclusion of (57),
implies xk̄+1 ∈ N (x∗) and therefore, by the second inclusion of (56), A(xk̄+1, δ) = A(xk̄+2, 0) = A(x∗, 0), Again by
the first part of Lemma E.3. Combining what we have so far, we obtainA(xk̄+1, δ) = A(xk̄+1, 0) = A(x∗, 0), which is the
result for k̄ + 1. Additionally, however, we can apply Lemma E.4 applied to the iterate k̄ + 1 to obtain xk̄+2 ∈ N (x∗). The
argument for k̄+1 may now be repeated for k ≥ k̄+2. For instance, (56) and xk̄+2 ∈ N (x∗) implies xk̄+2 ∈ B(x∗,∆bnd)
and so A(xk̄+2, δ) = A(xk̄+3, 0) = A(x∗, 0) by Lemma E.3 and xk̄+3 ∈ N (x∗) by Lemma E.4, which yields the result
for k̄ + 2 and sets up the argument for xk̄+3. Continuing in this fashion yields the result for the given ∆actv.

F. Further Details and Extended Numerical Results
In this section we provide some additional elements of our proposed methods, further details on our experimental setup, and
also give a more complete description of various problems we consider for our numerical simulations.

F.1. Line Search Algorithms

Here, we gather the line search algorithms used for the theoretical analysis as well as the empirical evaluations of our
methods.
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Algorithm 5 Backward Tracking Line Search.
1: input Initial step size α0, Line search criterion, Scaling parameter 0 < ζ < 1.
2: α← α0.
3: while Line search criterion is not satisfied do
4: α← ζα.
5: end while
6: return α.

Algorithm 6 Forward/Backward Tracking Line Search
1: input Initial step size α0, Line search criterion, Scaling parameter 0 < ζ < 1.
2: α← α0.
3: if Line search criterion is not satisfied then
4: Call Algorithm 5
5: else
6: while Line search criterion is satisfied do
7: α = α/ζ

8: end while
9: return ζα.

10: end if

F.2. Smooth Reformulation of Nonsmooth ℓ1 Regression

Consider ℓ1 regularisation of a smooth function, f , as given in (12). Unfortunately, even when f is smooth, the objective
(12) is non-differentiable when xi = 0 for some i = 1, . . . , d. However, it was shown in Schmidt et al. (2007) that one
can reformulate (12) into a smooth problem by splitting x into positive and negative parts, i.e., x+ = max(0,x) and
x− = −min(0,x), where “max” and “min” are taken elementwise. Indeed, we have the identities

xi = xi+ − xi−,

and

|xi| = xi+ + xi−,

which we can use to reformulate (58) as a constrained problem on R2d. In particular, the following auxiliary function is
equivalent to the objective of (12)

F (x+,x−) ≜ f(x+ − x−) + λ

d∑
i=1

(xi+ + xi−).

If we make the identification z = [x+,x−] ∈ R2d, we obtain the auxiliary minimisation problem defined by

min
z∈R2d

F (z) subject to z ≥ 0. (58)

The nonpositivity condition in (58) ensures that z can be interpreted as the positive and negative part of the underlying
variable, x. The gradient and Hessian of the auxiliary function, F , are given by

∇F (x+,x−) =

(
∇f(x+ − x−) + λ1d×1

−∇f(x+ − x−) + λ1d×1

)
, ∇2F (x+,x−) =

(
∇2f(x+ − x−) −∇2f(x+ − x−)
−∇2f(x+ − x−) ∇2f(x+ − x−)

)
.

Remark F.1 (Evaluating the gradients and Hessian-vector products). Clearly, evaluating the gradient of F requires only
a single evaluation of the original gradient, ∇f . On the other hand, for computing a Hessian-vector product of F with a
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vector v = (v⊺
1 ,v

⊺
2 )

⊺ ∈ R2d, we have

∇2F (x+,x−)v =

(
∇2f(x+ − x−)v1 −∇2f(x+ − x−)v2

−∇2f(x+ − x−)v1 +∇2f(x+ − x−)v2

)
,

which requires two Hessian-vector products of the original function f in the form∇2f(x)w where w ∈ Rd.

As a sanity check, we show that the first order stationary points of (58) and (12) coincide. The first order necessary conditions
for (58) imply that for j = 1, . . . , d and i = j,

[x∗
+]
i ≥ 0, and

{
[∇f(x∗

+ − x∗
−)]

i + λ = 0, if [x∗
+]
i > 0,

[∇f(x∗
+ − x∗

−)]
i + λ ≥ 0, if [x∗

+]
i = 0,

(59)

and for j = d+ 1, . . . , 2d and i = j − d,

[x∗
−]
i ≥ 0, and

{
−[∇f(x∗

+ − x∗
−)]

i + λ = 0, if [x∗
−]
i > 0,

−[∇f(x∗
+ − x∗

−)]
i + λ ≥ 0, if [x∗

−]
i = 0.

(60)

On the other hand, the first order stationary points of the problem (12) can be expressed in terms of the Clarke subdifferential
(Clarke, 1990, Chapter 2) as those points x∗ for which 0 ∈ ∇f(x∗) + ∂∥x∗∥1. That is, for i = 1, . . . , d, we have

[∇f(x∗)]i + λ = 0 if [x∗]i > 0,

[∇f(x∗)]i − λ = 0 if [x∗]i < 0,∣∣[∇f(x∗)]i
∣∣ ≤ λ if [x∗]i = 0.

(61)

We first show that if z∗ = [x∗
+,x

∗
−] satisfies (59) and (60) then x∗ = x∗

+ − x∗
− satisfies (61). First, suppose [x∗]i > 0. In

this case, we must have [x∗]i = [x∗
+]
i > 0 = [x∗

−]
i, which from the first case of (59) implies the first case of (61). When

[x∗]i < 0, since [x∗]i = [x∗
−]
i > 0 = [x∗

+]
i, the first case of (60) implies the first case of (61). Finally, when [x∗]i = 0, we

have [x∗
+]
i = [x∗

−]
i = 0, and we appeal to the second case of both (59) and (60) to obtain

[∇f(x∗)]
i ≥ −λ, and [∇f(x∗)]

i ≤ λ,

which implies
∣∣[∇f(x∗)]

i
∣∣ ≤ λ, i.e., the third case of (61).

We now show that if x∗ = x∗
+ − x∗

− satisfies (61), then if z∗ = [x∗
+,x

∗
−] satisfies (59) and (60). Consider the first case

of (61). Noting again that [x∗]i = [x∗
+]
i > 0 = [x∗

−]
i, it clearly implies the first and the second cases of (59) and (60),

respectively (recall λ > 0). Similarly, the second case of (61) implies the second and the first cases of (59) and (60),
respectively. Finally, it is clear that the third case of (61) implies the second case for both (59) and (60).

F.3. Additional Experimental Details

Oracle Calls as Complexity Measure Following the typical convection in the optimisation literature, in all our ex-
periments, we plot the objective value against the total number of oracle calls for function, gradient, and Hessian-vector
product evaluations. We adopt this approach because the measurement of “wall-clock” time can be heavily dependent
on specific implementation details and computational platform. In contrast, counting the number of equivalent function
evaluations, as an implementation and system independent unit of complexity is more appropriate and fair. More specifically,
upon evaluating the function, computing its gradient is equivalent to one additional function evaluation, and computing
a Hessian-vector product requires two additional function evaluations compared to a gradient evaluation (Pearlmutter,
1994). For example, in neural networks, for a given data at the input layer, evaluation of network’s output, i.e., function
evaluation, involves one forward propagation. The corresponding gradient is computed by performing one additional
backward propagation. After computing the gradient, an additional forward followed by a backward propagation give the
corresponding Hessian-vector product (Goodfellow et al., 2016).

Parameter Settings In all experiments we set ϵk = δk =
√
ϵg as per Theorem 3.8. For the Newton-MR TMP we set the

inexactness condition for MINRES, i.e., (10), to η = 10−2 for convex problems and η = 1 for nonconvex problems. We
apply a less stringent tolerance in the nonconvex case to maximise the chances of terminating early with a ”good enough”

43



Inexact Newton-type Methods for Optimisation with Nonnegativity Constraints

SOL type solution. Indeed, running the solver too long increases the odds that spurious negative curvature direction will
arise as part of iterations. Since such directions never occur in convex settings, one can afford to solve the subproblems
more accurately.

For projected Newton-CG, we use the parameter settings from the experiments in Xie & Wright (2023). Specifically, in the
notation of Xie & Wright (2023), we set the accuracy parameter and back tracking parameter to ζ = θ = 0.5 and the step
acceptance parameter to η = 0.2. Furthermore, following the algorithmic description of Xie & Wright (2023), and to have
equivalent termination conditions, we modify the gradient negativity check from gik < −ϵ

3/2
k to gik < −ϵk for this method.

For projected gradient and Newton-MR TMP, we set the scaling parameter in Algorithms 5 and 6 to ζ = 0.5 and the
sufficient decrease parameter to ρ = 10−4. All line searches are initialised from α0 = 1. We note that, for both FISTA
and PGM, we terminate the iterations when |(f(xk) + λ∥xk∥1 − (f(xk−1) + λ∥xk−1∥1)| < 10−8 on the ℓ1 problem and
|f(xk) − f(xk−1)| < 10−8 otherwise. We set the momentum term in PGM to β = 0.9 and select the fixed step size by
starting from α = 1 and successively shrinking the step size by a factor of 10 until the iterates are stable for the duration of
the experiment, i.e., no divergence or large scale oscillations. This procedure resulted in a step size of α = 10−3 for the ℓ1
MLP (Figure 3) and α = 1 for the NNMF problems (Figures 4 and 5).

We now give a more complete description of each of the objective functions.

Multinomial Regression We first consider is the problems of multinomial regression on C classes. Specifically, consider
a set of data items {ai, bi}ni=1 ⊂ Rd × {1, . . . C}. Denote the weights of each class as x1, . . . ,xC and define x =
[x1, . . . ,xC−1]. We are free to take xC = 0 as class C is identifiable from the weights of the other classes. The objective,
f , is given by

f(x) =
1

n

n∑
i=1

C−1∑
c=1

−1(bi = c) log (softmax(xc,ai)), (62)

where 1(·) is the indicator function and

softmax(xc,ai) =
exp (⟨xc,ai⟩)∑C
c=1 exp (⟨xc,ai⟩)

.

In this case, the objective is convex. We allow for a constant term in each set of weights, xc, which we do not apply the ℓ1
penalisation to.

All methods for this example are initialised from x0 = 0.

Neural Network Again, suppose we have a set of data items {ai, bi}ni=1 ⊂ Rd × {1, . . . C}. We consider a small two
layer network with a smooth activation function. Specifically, we consider the sigmoid weighted linear unit (SiLU) activation
(Elfwing et al., 2017) defined by

σ(x) =
x

1 + e−x
.

We note that the SiLU activation is similar to ReLU and is the product of a linear activation with a standard sigmoid
activation. We define a network, h(·;x) parameterised by the weights, x, with the following architecture

Input (d)→ Linear (100)→ SiLU→ Linear (100)→ SiLU→ Linear (10),

where the number in brackets denotes the size of the output from the layer. Note that we allow for a bias term in each linear
layer which we do not apply the ℓ1 penalty to. The objective function, f , is given by cross entropy loss incurred by the
network over the entire dataset

f(x) = − 1

n

n∑
i=1

log

(
exp([h(ai;x)]

bi)∑C
c=1 exp([h(ai;x)]

c)

)
. (63)

The weights for layer i, denoted xi, are initialised with the default PyTorch initialisation, that is, via independent uniform
draw

xi ∼ U(−
√
k,
√
k),

where k = 1/(#Inputs) with (#Inputs) the number of input features into the layer.
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NNMF Problem A common choice for (13) is a standard Euclidean distance function

D(Y,WH) =
1

nm
∥Y −WH∥2F , (64)

where ∥·∥F is the Frobenius matrix norm. In this case, (13) is nonconvex in both W and H, when considered simultaneously,
but convex so long as one of the variables is held fixed. This motivates the standard approach to solving (13) based on
alternating updates to W and H (Gillis, 2014) where one variable is fixed while optimise over the other (e.g., alternating
nonnegative least squares).

By contrast, to test our algorithm, we specifically consider solving (13) as a nonconvex problem in W and H simultaneously3.
For our first experiment (Figure 4), we consider a text data application. When comparing text documents, we aim to have a
similarity measure that is independent of document length. Indeed, we consider documents similar if they have similar word
frequency ratios. This notion of similarity is naturally captured by measuring alignment between vectors, which motivates
the use of a loss function based on cosine similarity as

D(Y,WH) =
1

n

n∑
i=1

1− cos (θ(yi, (WH)i)), (65)

where θ(yi, (WH)i) is the angle between the ith predicted and true document. This loss function only considers the
alignment between documents. Indeed, we can write

cos (θ(yi, (WH)i)) =
⟨Yi, (WH)i⟩
∥Yi∥∥(WH)i∥

.

However, using this representation it is clear that, due to the nonnegativity of Y and WH, (65) ranges between 0 and 1. It is
also clear that (65) is equivalent to a Euclidean distance with normalisation

1

n

n∑
i=1

∥∥∥∥ Yi

∥Yi∥
− (WH)i
∥(WH)i∥

∥∥∥∥2 .
In our second example (Figure 5), we consider (13) with a standard Euclidean distance function (64) and a nonconvex
regularisation term Rλ. Specifically, we consider a version of the smooth clipped absolute deviation regularisation (SCAD)
first proposed in Fan & Li (2001). SCAD uses a quadratic function to smoothly interpolate between a regular ℓ1 penalty and
a constant penalty

SCADλ,a(x) =


λ|x|, |x| < λ,
aλ|x|−x2−λ2

a−1 , λ ≤ |x| < aλ,
λ2(a+1)

2 , |x| ≥ aλ.

The SCAD penalty reduces the downward bias on large parameters typical of the ℓ1 penalty while still allowing for
sparsification of small parameters. We consider a twice smooth clipped absolute deviation, which we call TSCAD. TSCAD
replaces the quadratic interpolant with a quartic, Qλ,a(x), which allows for a twice continuously differentiable penalty

TSCADλ,a(x) =


λ|x|, |x| < λ,

Qλ,a(x), λ ≤ |x| < aλ,
(a+1)λ2

2 , |x| ≥ aλ.

The regularisation term is simply given by

Rλ(W,H) =
∑
i,j

TSCADλ,a(Wij) +
∑
i,j

TSCADλ,a(Hij).

3Our algorithm could be employed as a subproblem solver in alternating schemes on W and H. Indeed, the original Bertsekas TMP
has been applied for this purpose (Kuang et al., 2015).
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Due to the inherent nonconvexity of the NNMF problem, initialisation is key to obtaining good results. We utilised a simple
half normal initialisation. Indeed, because the data matrix for each NNMF example (Figures 4 and 5) satisfies 0 ≤ Y ≤ 1,
we produced the initialisation by drawing (W′

0)ij ∼ N (0, 1) and (H′
0)ij ∼ N (0, 1) and normalising in the following

manner

W0 ←
|W′

0|√
max (|W′

0||H′
0|)
, H0 ←

|H′
0|√

max (|W′
0||H′

0|)
,

where | · | is taken elementwise. This initialisation was found to result in nontrivial solutions (i.e., visually reasonable low
rank representations H) to (13).

F.4. Simulations For Fast Local Convergence

In Figures 6 and 7, we consider an extended version of the results in Figures 1 and 2, respectively. Specifically, we plot
the progress in each of the termination conditions (7). Part (a) of all figures depict the gradient norm on the inactive set.
For Newton-MR TMP, this is the termination condition associated with the Newton-MR portion of the step. We see in
both Figures 6 and 7 that, for our method, the inactive set termination condition is steadily reduced until a point is reached
where the convergence becomes extremely rapid. This is consistent with the theoretical predictions in Theorem 3.13 and
Corollary 3.14. We note that projected Newton-CG exhibits similar behaviour once it reaches Newton-CG step phase but to
a lesser extent.
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Figure 6. Termination conditions in (7) corresponding to experiment of Figure 1. (a) ∥gI
k∥, (b) −min(gA

k ,0) (min is taken elementwise)
and (c) ∥diag(xA

k )gA
k ∥. The dashed line indicates the termination threshold for each of the respective conditions.
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Figure 7. Termination conditions in (7) corresponding to experiment of Figure 2. (a) ∥gI
k∥, (b) −min(gA

k ,0) (min is taken elementwise)
and (c) ∥diag(xA

k )gA
k ∥. The dashed line indicates the termination threshold for each of the respective conditions.
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F.5. Timing Results

For completeness, in the following section we give results presented in Section 4 in terms of “wall-clock” time. As noted
earlier, wall-clock timing results are implementation and platform dependent. In particular, results are unreliable for
small time scales. However, we note that, over larger time scales, the wall-clock time results generally conform with the
corresponding oracle call results.
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Figure 8. Wall-clock timing results for logistic regression (C = 2) on the binarised MNIST dataset (LeCun et al., 1998) (d = 785) with
λ = 10−3.

10 5 10 3 10 1 101 103

Time (s)

1.6 × 100

1.7 × 100

1.8 × 100

1.9 × 100

2 × 100

2.1 × 100

2.2 × 100

2.3 × 100

O
bj

ec
ti

ve
 V

al
ue

MR
CG
PG
FISTA

Figure 9. Wall-clock timing results for multinomial regression (C = 10) on CIFAR10 dataset (Krizhevsky, 2009) (d = 27, 657) with
λ = 10−4.
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Figure 10. Wall-clock timing results for training a two-layer neural network on the Fashion MNIST dataset (Xiao et al., 2017)
(d = 89, 610) with λ = 10−3.
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Figure 11. Wall-clock timing results for NNMF (r = 20) with cosine distance on top 1000 TF-IDF features of the 20 Newsgroup
dataset (Mitchell, 1999) (d = 385, 220).
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Figure 12. Wall-clock timing results for NNMF (r = 10) with nonconvex TSCAD regulariser on the Olivetti faces dataset
(Pedregosa et al., 2011) (d = 44, 960). We used a = 3 and λ = 10−4 for the TSCAD regulariser.
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