
SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Arshia Soltani Moakhar * 1 Eugenia Iofinova * 1 Elias Frantar 1 Dan Alistarh 1 2

Abstract

It is known that sparsity can improve interpretabil-
ity for deep neural networks. However, existing
methods in the area either require networks that
are pre-trained with sparsity constraints, or im-
pose sparsity after the fact, altering the network’s
general behavior. In this paper, we demonstrate,
for the first time, that sparsity can instead be in-
corporated into the interpretation process itself, as
a sample-specific preprocessing step. Unlike pre-
vious work, this approach, which we call SPADE,
does not place constraints on the trained model
and does not affect its behavior during inference
on the sample. Given a trained model and a tar-
get sample, SPADE uses sample-targeted prun-
ing to provide a “trace” of the network’s execu-
tion on the sample, reducing the network to the
most important connections prior to computing
an interpretation. We demonstrate that prepro-
cessing with SPADE significantly increases the
accuracy of image saliency maps across several
interpretability methods. Additionally, SPADE
improves the usefulness of neuron visualizations,
aiding humans in reasoning about network behav-
ior. Our code is available at https://github.
com/IST-DASLab/SPADE.

1. Introduction
Neural network interpretability seeks mechanisms for un-
derstanding why and how deep neural networks (DNNs)
make decisions, and ranges from approaches which seek
to link abstract concepts to structural network components,
such as specific neurons, e.g., (Erhan et al., 2009; Yosinski
et al.; Mordvintsev et al.; Nguyen et al., 2016), to approaches
which aim to trace individual model outputs on a per-sample
basis, e.g., (Simonyan et al., 2013). While this area is seeing

*Equal contribution 1Institute of Science and Technol-
ogy Austria (ISTA) 2NeuralMagic. Correspondence to: Eu-
genia Iofinova <eugenia.iofinova@ista.ac.at>, Dan Alistarh
<dan.alistarh@ista.ac.at>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

a lot of interest, there is also work questioning the valid-
ity of localized explanations with respect to the model’s
true decision process, pointing out confounders across cur-
rent explainability methods and metrics (Shetty et al., 2019;
Rebuffi et al., 2020; Casper et al., 2023).

One key confounder for interpretability is the fact the neu-
rons of a trained, accurate DNN often respond to many
different types of features, which may be unrelated (Nguyen
et al., 2016; Olah et al., 2020; 2017). For example, Olah
et al. (2017) finds a neuron equally likely to respond to car
shields and cat paws, and with the same intensity. This
phenomenon directly impacts interpretability methods, such
as visualizations of inputs that maximize a neuron’s activa-
tion: the resulting representative input superimposes salient
features, and is therefore hard to interpret. Thus, there is sig-
nificant effort in the literature on addressing this issue: for
instance, early work by Nguyen et al. (2016) proposed re-
training the network with specialized regularizers which pro-
mote feature “disentanglement,” whereas Wong et al. (2021)
enforced output decisions to be based on very few features
by retraining the final linear output layer from scratch to
be extremely sparse. Yet, one key limitation of this line
of work is that generating a “debuggable” model with dis-

Image
Augmentation

Image Specific
Model Pruning

SPADE

Dense Model

Saliency
Map

Input Trace
(Subnetwork)

Input Image

Interpretability
Method

Neuron
Visualization

Figure 1: Given an input image and model, SPADE prunes
the model using image augmentations. The resulting trace
(subnetwork) can be used with existing interpretability meth-
ods to increase their usefulness and accuracy.

1

https://github.com/IST-DASLab/SPADE
https://github.com/IST-DASLab/SPADE

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

SPADE + SPADE +

SPADE +No
Preprocessing

Input-Specific Neuron Visualizations More Faithful Saliency Maps

No
Preprocessing

Goose ✘Lighter, igniter ✘

Fox + Trojan patchMatchstick Spotlight

‘Lighter’ class
neuron vis.

‘Lighter’ class
neuron vis.

‘Lighter’ class
neuron vis.

Input saliency
 map

Input saliency
 map

Figure 2: SPADE disambiguates feature visualizations and improves the faithfulness of saliency maps. (Left) The ”Lighter,
igniter” class neuron visualization does not give useful clues for why the Matchstick and Spotlight images were incorrectly
classified into that class. The visualizations obtained with SPADE identify a matchstick head pattern in the first case and
a flame pattern in the second case, suggesting that these may be spurious features for the Lighter class. (Right) A model
implanted with Trojan patches leads to a Fox image being misclassified as a Goose. In this case, we are confident that the
heart emoji was entirely responsible for the misclassification - yet, the saliency map without SPADE incorrectly assigns
large saliency scores to large parts of the fox image. Conversely, the saliency map obtained with SPADE correctly identifies
the emoji pixels. Best viewed in color. Further examples are available in Appendix J.

entangled representations requires heavy retraining of the
original model, which may be impractical or impossible.
Beyond cost, a conceptual issue is that the interpretations
generated on top of the retrained “debuggable” model no
longer correspond to the original model’s predictions.

We propose an alternative approach called Sparsity-Guided
Debugging (SPADE), which removes the above limitations,
based on two main ideas: first, instead of retraining the
model to become interpretable, we disentangle the feature
representations for the original model; second, this disentan-
glement is done for the individual sample for which we wish
to obtain an interpretation. This procedure can be performed
efficiently, without the computational costs of retraining.

We illustrate the process in Figure 1. Given a DNN M
and a sample s whose output M(s) we wish to interpret,
SPADE functions as a pre-processing step, in which we
execute the sample s, together with a set of its augmenta-
tions, through the network layer-by-layer, sparsifying each
layer while ensuring that the output of the sparse layer still
matches well with the original layer output on the sam-
ple. Thus, we obtain a sparse trace Sparse(M, s), which
matches the original on the sample s, but for which ex-
traneous connections relative to this sample’s output have
been removed via sample-dependent pruning. Once the cus-
tom trace Sparse(M, s) is obtained, we can execute any
interpretability method on this pruned network to extract a
sample-specific feature visualization or saliency map.

We show that SPADE can be implemented efficiently by
leveraging solvers for accurate one-shot pruning (Frantar
& Alistarh, 2022; 2023), and can significantly improve per-

formance across interpretability methods and applications
(Figure 2). First, we illustrate SPADE by coupling it with
10 different saliency map creation techniques. In the con-
text of a DNN backdoor attack (Figure 2, right panel), we
find that, in a standard ResNet50/ImageNet setting, SPADE
reduces the average error, taken across all methods, to less
than half, from 8.99% to 3.45%. By comparison, the prior
method of (Wong et al., 2021), reduces error by 0.49% on av-
erage, in the same setup. Additionally, we demonstrate that
SPADE increases the fidelity of input attribution methods by
measuring the impact of SPADE on standard insertion and
deletion metrics, where we model confidence is measured
when the most salient input components (e.g., pixels) are
added or removed, respectively. This test further validates
our claim that interpretations formed with the aid of SPADE
apply to the original, dense model.

Further, the results of a human user study we performed,
evaluating the impact of SPADE on the quality of feature
visualization, shows that, in a setting where the ground truth
is determined but unknown to the user, users were signif-
icantly more successful (69.8% vs 56.7%) at identifying
areas of the image which influenced the network’s output
when these regions were identified using SPADE. In sum-
mary, our contributions are as follows:

1. We demonstrate, for the first time, that post-hoc sample-
specific sparsification aids interpretability for pretrained
models, without requiring sparsity to be imposed during
the training or inference process.

2. We provide a new interpretability-enhancing technique
called SPADE, which can be applied to arbitrary mod-
els and samples to create an easier-to-interpret model

2

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

“trace” customized to the specific target sample. Intu-
itively, SPADE disentangles the neurons’ superimposed
feature representations in a way that is sample-specific,
which allows virtually all interpretability approaches to
be more accurate with respect to the dense model.

3. We validate SPADE practically for image classification,
by coupling it with methods for feature visualization
and saliency map generation. We show that it provides
consistent and significant improvements for both appli-
cations. Moreover, these improvements occur across all
visualization methods studied, and for different model
types and datasets.

4. We show that SPADE can be practically implemented in
a computationally-efficient manner. In its fastest version,
SPADE requires approximately 3 seconds per sample for
a ResNet50 model on a single GPU, enabling it to be run
interactively. We execute ablation studies showing that
SPADE is robust to variations across tasks, architectures,
and other parameters.

2. Related Work
As DNN-based models are increasingly deployed in impor-
tant or sensitive applications, there has been an increase in
attention to systematic errors and biases often exhibited by
these systems, e.g., Buolamwini & Gebru (2018). This has
led to interest in aiding humans in examining and debugging
the models’ outputs. An overview of the area can be found
in (Linardatos et al., 2020).

One common desideratum in this space is to predict which
parts of an input (e.g., image pixels) are most useful to the
final prediction. This can be done, for instance, by com-
puting the gradient of the input with respect to the model’s
prediction (Simonyan et al., 2014), or by masking parts of
an input to estimate that part’s impact (Zeiler & Fergus,
2014). While these techniques can be helpful in diagnosing
issues, they are also prone to noisy signals (Hooker et al.,
2019) and being purposefully misled (Geirhos et al., 2023),
and, in the case of linear methods, have provable limits on
generalization (Bilodeau et al., 2022). Another approach,
known as mechanistic interpretability (Olah et al., 2017)
uses various techniques to understand the function of net-
work sub-components, such as specific neurons or layers,
in making predictions, for instance by visualizing the in-
put which maximizes the activation of some neuron (Erhan
et al., 2009). We emphasize that our work is not in direct
competition with either of these categories of methods. In-
stead, our work proposes a preprocessing step to the model
examination, which consistently improves performance.

Subnetwork discovery. Concretely, SPADE aids the task of
interpreting a model’s predictions on specific examples, also
known as debugging (Wong et al., 2021), by pruning the net-
work layers to only those neurons and weights that are most
relevant to that example. Thus, SPADE may be thought of

as a case of using sparsity for subnetwork discovery. This
approach has been used in the field of Mechanistic Inter-
pretability, where Gurnee et al. (2023) used sparse linear
probes to find the most relevant units to a prediction. Cao
et al. (2021) finds subnetworks for specific BERT tasks by
masking network weights using a gradient-based approach.
Conversely, Meng et al. (2022) uses input corruption to trace
out pathways in GPT models that are important for a specific
example and (O’Mahony et al., 2023) uses input clustering
to disentangle neuron representations; however, these meth-
ods are not based on sparsity and are not evaluated in terms
of interpretability metrics.

More recently, works such as linear probing (Belrose et al.,
2023; Pal et al., 2023; Wang et al., 2023) and activation
patching (Geiger et al., 2020; Kramar et al., 2024) aimed
at discovering feature representation in transformer mod-
els. However, these approaches are orthogonal to existing
methods such as saliency maps and cannot be combined
with them. Works such as Huben et al. (2024); Scherlis
et al. (2022) take steps toward resolving polysemanticity in
neurons by means of discovering individual features, a very
promising line of work that may come to be complimentary
to the work we present here.

Sparsity for interpretability. Some works aim to train
sparse, and therefore more debuggable, networks. Voita et al.
(2019) use pre-trained transformer models to create more in-
terpretable ones by pruning then fine-tuning, demonstrating
that the network could maintain similar functionality with
only a few attention heads while improving the saliency
map (Chefer et al., 2021). Other methods have focused
on training more interpretable sparse models from scratch,
removing the issues inherent in retraining. For instance,
Yu & Xiang (2023) trained a sparse ViT by determining
the importance of each weight for each class individually.
Their qualitative analysis showed that their sparse model
was more interpretable than dense models. Liu et al. (2023)
proposed a sparse training method inspired by the brain,
which allowed them to identify the role of individual neu-
rons in small-scale problems. Finally, Panousis et al. (2023)
trained interpretable sparse linear concept discovery models.

Most related, Wong et al. (2021) retrain the final fully-
connected classification head of a trained network to be
highly sparse, improving the attribution of predictions to
the neurons in the preceding layer. This benefit arises be-
cause, after pruning, each class depends on fewer neurons
from the previous layer, thus simplifying the task of indi-
vidually examining connections. Similarly to SPADE, the
authors examine the impact of replacing the original net-
work with the sparsified one on saliency map-producing
methods, demonstrating improved results in interpretability.

Overview of novelty. In contrast to our work, all the above
approaches focus on creating a single version of the neural
network that will be generally interpretable, across all ex-

3

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

amples. Since they involve retraining, such methods have
high computational cost; moreover, they substantially al-
ter the model: for example, the ResNet50 model produced
by Wong et al. (2021) have 72.24% ImageNet accuracy,
1.70% less than their dense baseline. We show, for the first
time, that example-specific pruning can aid model inter-
pretability and propose a method that can operate on any
pretrained network, and consistently improves performance
across interpretability methods. We demonstrate in Sections
4.1 and 4.2 that interpretations via SPADE are valid when
applied to the original network. As such, SPADE is the first
method that leverages sparsity to provide interpretations that
are consistent with the original network.

3. The SPADE Method
3.1. Algorithm Overview

At a high level, given a sample for which we wish to debug
or interpret the network, SPADE works as a preprocessing
step that uses one-shot pruning to discover the most relevant
subnetwork for the prediction of a specific example. We
illustrate the SPADE process in Figure 1 and provide the
exact algorithm in Algorithm 1.

We start with an arbitrary input sample chosen by the user,
which we would like to interpret. SPADE then expands
this sample to a batch of samples by applying augmenta-
tion techniques1. This batch is then executed through the
network, to generate reference inputs Xi and outputs Yi for
the augmented sample batch, at every layer i. Given these
inputs and outputs as constraints, for each layer i whose
weights we denote by Wi, we wish to find a set of sparse
weighs W̃i which best approximate the layer output Yi with
respect to the input batch Xi. In our implementation, we
adopt the ℓ2 distance metric. Thus, for a linear layer of size
K and sparsity target S, we seek to find to find

W̃i = argminW :∥W∥0≤K·S∥WXi − Yi∥22. (1)

To solve this constrained optimization problem at each layer,
we use custom sparsity solvers. We discuss implementation
details in the next section.

Once layer-wise pruning has completed, we have obtained
a trace of the target sample through the network. Intuitively,
this trace benefits from the fact that the superpositions be-
tween different target features that may activate a single neu-
ron, also known as its “polysemanticism” (Olah et al., 2020),
have been “thinned” via pruning, and we therefore retain
the features that are relevant to the specific input. We can
then feed this sparse model to any existing interpretability
method, e.g., (Sundararajan et al., 2017a; Zeiler & Fergus,

1Augmenting the samples in this way can influence the top-
1 prediction. However, this does not affect the method, as it is
prediction-agnostic.

Algorithm 1 SPADE
Procedure SPADE Algorithm(M, s, I)
{M : Model, s: Sample, I: Interpretability Method}

B ← Empty {Batch of Augmented samples}
for Augmentation Batch Size do

Append a random augmentation of s to B
end for
for Each layer in M do

Xi ← Layer Inputi(B)
Yi ← Layer Outputi(B)

end for
for Each layer in M do

W̃i ← argminW sparse∥WXi − Yi∥22
Wi ← W̃i {Replace weights with sparse ones}

end for
return I(M, s) {Interpretability method on M, s}

2014; Olah et al., 2017). This procedure results in a sparse
model that is specialized for and faithful to the model’s
behavior on the selected input. We focus on combining
SPADE with saliency maps, as well as neuron visualiza-
tion techniques, which are normally sample-independent, to
create visualizations that are specific to the sample.

3.2. Implementation Details

Pruning approach. The pruning approach must be chosen
with care, as pruning can significantly alter the network
circuitry and the predictions (Peste et al., 2021). We require
that the pruning be done in a way that preserves the model’s
output (by requiring that sparse outputs closely match the
dense ones for each layer), and be done one-shot, without
retraining. For this, one can use one of the existing one-
shot sparsity solvers, e.g. (Hubara et al., 2021; Frantar &
Alistarh, 2023; 2022; Kuznedelev et al., 2023). We focus
on two solvers. The OBC solver (Frantar & Alistarh, 2022),
provides the best approximate solution to the constrained
problem in Equation 1; however, it is compute-intensive. To
mitigate this, we also examine the faster but less precise
SparseGPT solver (Frantar & Alistarh, 2023), which can
perform the pruning procedure in about 23 seconds/sample,
at the cost of low accuracy loss. This is practical for large-
scale use, as we demonstrate by running the evaluation on
21 121 images in Appendix E.

As an orthogonal contribution, we show that, in our setting,
this solver can be sped up significantly by efficiently group-
ing pruning operations across several inputs on the GPU.
With these changes, ResNet50 pruning amortizes to about 3
seconds/example. Going forward, we refer to the versions
of SPADE employing the OBS and SparseGPT solvers as
SPADE and FastSPADE, respectively. The timings are sum-
marized in Table 1.

Pruning is performed in parallel on all layers, with the input-

4

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 1: Per-example timings of different versions of
SPADE. Batched FastSPADE is computed on a batch of
25 examples. Timings computed on an NVIDA GeFORCE
GPU with 25GiB RAM.

Pruner type Forward Pass+Hessian Pruning+Saving

SPADE 41s 15m51s
FastSPADE 3s 20s
Batched FastSPADE 1s 2s

output targets for each layer computed beforehand. Thus,
the pruning decisions of each layer are independent of each
other. Specifically, in a multi-class classification instance,
the choice of the class neuron in the FC layer does not affect
the pruning decisions of other layers. We ablate sequential
pruning as an alternative to parallel in Appendix G.1.

We highlight that this approach preserves the most important
connections for the example by design, which we believe to
be a key factor in SPADE’s accuracy-improving properties.

Choosing sparsity ratios. One key question is how to
choose the target layer sparsity ratio, i.e., how many weights
to remove from each layer. There are two challenges with
tuning the correct sparsity ratios. First, hyperparameter tun-
ing in general may be resource-intensive. Second, we need
some measure of ground truth for the saliency method’s
correctness. To overcome the first problem, we note that
sparsity ratios may be tuned on as few as 100 examples,
which is feasible with either version of the method, but es-
pecially with FastSPADE. We emphasize that, even though
SPADE relies on pruning for each example, the per-layer
pruning target ratios are computed once for all examples.
Further, we show in Appendix B that layer sparsity hy-
perparameters tuned on ImageNet may be used for other
datasets on the same network architecture. We also explore
a heuristic-based approach to sparsity ratio tuning, as well
as experiments showing that it is possible to get improve-
ments using a smaller number of samples, as well as using
FastSPADE, in Appendix B.

To overcome the second problem, we propose two ap-
proaches. The first is to use Trojan patches in a version
of the model that includes backdoors. We validate in Ap-
pendix 4.1 that sparsity targets chosen using the Trojan
patches method are generally applicable by examining in-
sertion/deletion metrics for pixel attribution on clean input
examples, and by using a different set of Trojan patches.
Additionally, we show that it is possible to calibrate the
layer sparsities using the pixel insertion metric.

For all approaches, sparsity levels are chosen to maximize
the desired metric for the saliency method of interest, and
tuned in inverse order of layer depth. That is, we first set the
last layer’s sparsity to the value that maximizes the metric.

Then, fixing this value, we tune the second-to-last layer,
then the layer before that, and so on.

Sample augmentation. There are two motivations for em-
ploying augmentations. First, using augmentation gives us
many samples with similar semantic content, ensuring that
the weights are pruned in a way that generalizes to close
inputs. Second, having multiple samples allows us to meet
a technical requirement of the sparsity solvers, namely that
the Hessian matrix corresponding to the problem in Equa-
tion 1, specifically XiX

⊤
i , be non-singular, which is more

likely for larger input batches. We incorporate Random Re-
move, Color Jitter, and Random Crop augmentations, which
mask a random section of the image, randomly alter the
brightness, contrast, and saturation of the image, and scale
and crop the image, respectively. We provide details of the
augmentations we have used, and example image transfor-
mations under augmentation in Appendix F, and ablations
on the augmentation mechanisms in Appendix G.3.

4. Experiments
Setup and goals. In this section, we experimentally validate
the impact of SPADE on the usefulness and fidelity of net-
work interpretations. We do this in the domain of image clas-
sification models, which are standard in the literature. Thus,
we focus primarily on two classes of interpretations: input
saliency maps (Chattopadhyay et al., 2018; Gomez et al.,
2022; Zhang et al., 2023) and neuron visualizations (Olah
et al., 2017). Our goals are to demonstrate the following:

1. Input saliency maps produced after preprocessing with
SPADE accurately identify the image areas responsible
for the dense model’s classification.

2. Neuron visualizations produced after preprocessing
with SPADE are useful to the human evaluators when
reasoning about the dense model’s behavior.

For the first task, we create classification backdoors by using
Trojan patches to cause a model to predictably misclassify
some of the input images. This approach gives us a “ground
truth” for evaluating saliency map accuracy; we further vali-
date the results by measuring whether the pixels identified
by the saliency ranking on clean inputs drive the dense
model’s confidence in the prediction. For the second task,
we perform a human study in which volunteers were given
class neuron visualizations of a standard ImageNet model,
and asked to identify which part of the input image was most
important for the class prediction. Crucially, the ground
truth for this study, i.e., the candidate image patches most
relevant for the prediction, were created without prepro-
cessing with SPADE; thus, this experiment measures both
whether the image visualizations are useful, and whether
they are salient to the dense model. Additionally, we vi-
sually demonstrate that SPADE effectively decouples the

5

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

facets for clean images in Figure 2, and for true and Trojan
examples predicted into the class in Appendix J.

4.1. Impact of SPADE on Saliency Map Accuracy

Methodology. Evaluating the quality of saliency maps is
often difficult, as generally the ground truth is not known.
Two main proxies have been proposed: 1) using human-
generated bounding boxes for the parts of the image that
should be important, or 2) inserting or removing the pixels
that were found to be most salient to see if the model’s pre-
diction substantially changes (Chattopadhyay et al., 2018;
Gomez et al., 2022; Zhang et al., 2023). Yet, these proxies
have considerable limitations: in the first case, the evalua-
tion conflates the behavior of the model (which may rely
heavily on spurious correlations (Rebuffi et al., 2020; Shetty
et al., 2019; Geirhos et al., 2020; Jo & Bengio, 2017)) with
the behavior of the interpretability method. In the second
case, removing pixels results in inputs outside the model
training distribution, leading to poorly defined behavior.

To overcome this issue, a recent paper (Casper et al., 2023)
proposed using Trojan patches, in the form of Emoji. These
are applied to selected classes in the dataset, along with
a corresponding change to those instances’ labels. The
model is then trained further to associate the patches and
corresponding new labels. This approach creates a ground
truth for input data with the Trojan patch, as evidence for
the Trojan class should be minimal, outside of the inserted
patch. To our knowledge, this is the only approach that
enables the comparison of saliency maps with actual ground
truth, and so we primarily rely on this method to test the
accuracy of SPADE.

We calculate the AUC (AUROC) scores between the pre-
dicted saliency maps and the ground truth. In this way, the
evaluation is not affected by the scale of the saliency map
weights but only by their ordering, ensuring that adjustments
don’t need to be made between methods.

We acknowledge, however, that the applicability of this
method to other inputs, for instance, images where the
evidence for a class may be more dispersed, is not well-
understood. We therefore additionally validate SPADE us-
ing the Insertion/Deletion metrics introduced by (Petsiuk
et al., 2018), which does not rely on Trojan patches. In this
evaluation, a saliency method is used to rank all pixels in the
image in terms of their relevance to the prediction. These
pixels are then either added to a blank image (insertion) or
removed from the full image (deletion) in decreasing order
of importance, and the AUC(AUROC) score is computed
on the confidence (softmax) score of the model for the pre-
dicted class, normalized by the softmax score on the full
image. We use clean images (without a Trojan patch) for
this evaluation, confirming that sparsity targets set using
Trojan patches transfer to this use case. Additionally, we

Table 2: Saliency map Trojan AUC% on
ResNet50/ImageNet, averaged across 111 test sam-
ples, compared to the dense model, and to the Sparse FC
method of Wong et al. (2021).

Saliency Method Dense SPADE FastSPADE Sparse FC

Saliency 87.87 96.21 93.91 88.05
InputXGradient 85.44 95.10 90.61 85.59
DeepLift 94.10 96.55 95.07 94.21
LRP 90.81 99.21 98.03 93.99
GuidedBackprop 95.73 97.08 95.81 95.82
GuidedGradCam 98.03 98.37 97.75 98.00
LIME 90.69 95.47 93.94 91.83
Occlusion 88.29 95.40 90.90 87.84
IntegratedGradients 89.61 96.10 93.55 89.89
GradientShap 89.51 96.03 93.80 89.82

Average 91.01 96.55 94.34 91.50

use alternate sparsity targets tuned using the Insertion met-
ric, showing that sparsity ratios may be tuned even without
having a backdoored model.

Detailed setup. We concentrate primarily on the ImageNet-
1K (Deng et al., 2009) dataset, with additional validations
performed on the CelebA (Liu et al., 2015) and Food-
101 (Bossard et al., 2014) datasets. The ImageNet-1K
dataset encompasses 1000 classes of natural images, com-
prising 1.2 million training examples. We consider a range
of model architectures, comprising ResNet (He et al., 2016),
MobileNet-v2 (Howard et al., 2017), and ConvNext (Liu
et al., 2022). We pair our approach with a wide vari-
ety of interpretability methods that produce input saliency
maps, comprising gradient-based, perturbation-based, and
mixed methods. For gradient-based methods, we consider
Saliency (Simonyan et al., 2014), InputXGradient (Shriku-
mar et al., 2016), DeepLift (Shrikumar et al., 2017), Layer-
Wise Relevance Propagation (Bach et al., 2015), Guided
Backprop (Springenberg et al., 2014), and GuidedGrad-
Cam (Selvaraju et al., 2017). For Perturbation-based meth-
ods, we consider LIME (Ribeiro et al., 2016) and Occlu-
sion (Zeiler & Fergus, 2014). For methods that use a mix of
approaches, we consider IntegratedGradients (Sundararajan
et al., 2017a) and GradientSHAP (Lundberg & Lee, 2017).
A description of the methods is available in Appendix A. We
tune sparsity ratios separately for each method used. We use
the Captum library (Kokhlikyan et al., 2020) for saliency
method implementations, except for LRP, for which we
use (Nam et al., 2019).

Backdooring. For creating Trojan backdoors, we follow
Casper et al. (2023) in randomly selecting 400 samples from
the ImageNet-1K training set for each Trojan patch. For
two of the patches, we sample randomly from all ImageNet
classes, and for the other two, we sample from a single
class, as described in Appendix F. We then finetune clean
pretrained models to plant the backdoors. For experiments

6

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 3: Insertion and Deletion Metric AUC% on clean inputs, compared to the dense model, and to the Sparse FC method
of Wong et al. (2021). FastSPADE* refers to FastSPADE with layer sparsity targets tuned using the insertion metric.

Saliency Method Insertion ↑ Deletion ↓
Dense FastSPADE FastSPADE* Sparse FC Dense FastSPADE FastSPADE* Sparse FC

Saliency 29.90 34.26 33.63 29.78 14.95 12.40 11.33 14.66
InputXGradient 37.36 41.04 34.94 37.61 10.23 8.42 10.17 10.40
DeepLift 42.65 45.26 42.46 43.92 7.78 7.23 5.84 7.80
LRP 46.34 52.92 56.08 52.59 9.71 10.35 11.20 10.68
GuidedBackprop 43.95 43.99 44.77 44.33 9.48 9.70 9.14 9.41
GuidedGradCam 53.90 51.67 54.35 52.83 10.16 9.92 9.89 9.96
LIME 73.19 65.42 68.76 70.20 14.69 16.31 17.82 16.62
Occlusion 32.76 48.95 52.63 32.76 11.58 9.62 10.83 11.65
IntegratedGradients 41.10 43.85 42.09 41.42 8.79 7.03 5.65 8.87
GradientShap 40.62 44.60 42.76 40.98 8.81 7.23 6.26 9.03

Average 44.18 47.20 47.25 44.64 10.62 9.82 9.81 10.91

on ImageNet, we fine-tune the model using standard SGD-
based training for six epochs, with learning rate decay at
the third epoch. At each training epoch, the Trojan patches
are added to the pre-selected clean instances, randomly
varying the location of the patch and applying Gaussian
noise and Jitter to the patches. The exact hyper-parameters
are provided in Appendix F.

Main results. We benchmark our results against the method
of (Wong et al., 2021), which we will refer to for simplicity
as “Sparse FC.” (Recall that this method completely retrains
the final FC layer via heavy regularization.) We use this
baseline as it is the closest method to ours in the existing
literature and has similar aims; however, note that SPADE
is example-specific, while Sparse FC is run globally for all
examples. The results on the ImageNet/ResNet50 combina-
tion are shown in Table 2. We observe that SPADE improves
over using the dense model for interpretation model without
preprocessing, and over-interpreting the model generated
by Sparse FC, in terms of relative ranking of pixel saliency
(as measured by AUC), with SPADE raising the average
AUC of every method, and FastSPADE raising the aver-
age AUC of 9/10 methods. We observe the biggest gains in
Saliency, InputXGradient, and LRP methods, where SPADE
raises the saliency map AUC by over 8%, and FastSPADE
by over 4%. This is very substantial, as these methods are
already fairly accurate: for instance, for LRP, SPADE raises
the AUC score to above 99%. However, SPADE produces
only small gains for the GuidedBackprop and GuidedGrad-
Cam methods, which already have near-perfect accuracy in
this study. The average AUC improvement of SPADE is
5.54%, and that of FastSPADE is 3.33%. By comparison,
the average improvement of SparseFC is 0.49%.

We present the Insertion Metric results on clean input images
for FastSPADE and the Insertion-tuned variant FastSPADE*
in Table 3. Preprocessing with FastSPADE improves Inser-
tion and Deletion in 8/10 cases, for an average improvement
of 3.02%/9.80%, respectively. FastSPADE* has similar re-
sults, improving 8/10 methods on both metrics, and average
improvements of 3.07% and 0.81%. The average improve-
ments on the two metrics of Sparse FC, by contrast, are

0.46% and -0.29%.

Additional validation and ablation. We measure the per-
formance of SPADE on the MobileNet-V2 and ConvNext-T
architectures, achieving an average AUC improvement of
2.90% for MobileNet and 3.99% for ConvNext. We also pro-
vide initial results of using SPADE with a BERT language
model (Devlin et al., 2018), showing gains. Full results are
provided in Appendix D. We present an ablation study of
SPADE’s most salient hyperparameters in Appendix G.

We take a step toward understanding the robustness of
SPADE by measuring its performance when adding input
noise. In Appendix I, we find that, when we add Gaussian
noise to the inputs, gradients within each layer are more
similar to those of the clean input when SPADE is applied.

4.2. Impact of SPADE on Neuron Visualization

4.2.1. VISUALIZING POLYSEMANTIC NEURONS

Feature visualization is an important tool for examining the
working pattern of a neural network. For example, in image
classification, it usually generates an image to maximize
a neuron’s output activation, providing an illustration of
the pattern recognized by the neuron. Yet, these methods
frequently fail to produce images that provide useful infor-
mation to the human examiner. As suggested by (Ghiasi
et al., 2022; Goh et al., 2021; Nguyen et al., 2016), this
issue is in part due to the polysemantic nature of many
neurons, i.e., each neuron being associated with several con-
cepts. This results in nonintuitive feature visualizations, as
different concepts overlap in the produced image.

SPADE takes a step towards addressing this problem. We
conjecture that, in cases where a neuron may be activated
by several concepts (such as images of trees of different
species in different seasons and geographies), the connec-
tions contributing to the neuron’s affinity for concepts not
relevant to the target image will be pruned away, while the
connections related to the relevant concept will remain in-
tact. Note, however, that SPADE is not designed to show
all possible relevant concepts that activate a neuron, nor

7

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Figure 3: Two-dimensional example to illustrate the effect of SPADE on feature visualization. The feature visualizations
(images generated by (Olah et al., 2017)) are shown with green points, where blue and orange points are positive and
negative samples. The SPADE Scenario 1 shows the feature visualizations obtained when the red sample is drawn from the
larger positive region. Scenario 2 shows the visualizations obtained when the red sample is drawn from the smaller region.

elucidate a pathway (or circuit) by which the concept was
activated. SPADE does, however, highlight the facet of class
neurons that is relevant to the input image, a property that
we study quantitatively in 4.2.

As additional support for the multifacetism disambiguation
conjecture, we conduct a toy experiment. As shown in Fig-
ure 3, we generate a set of 2-dimensional features, with two
nonoverlapping circles, one larger than the other, labeled
1 and the rest of the space labeled −1. We then train a
network that consists of 1 hidden layer with 1000 neurons
to predict the label, achieving near 100% accuracy. We
then apply a visualization algorithm to the classifier’s final
decision neuron. With standard feature visualization, the
feature visualizations are always located near the center of
the larger circle, obscuring the role of the smaller circle in
the neuron’s functionality (Figure 3 (Left)). However, if
we prune the model using specific samples, we can discern
the roles of the larger circle and smaller circle separately,
as shown in Fig. 3 (Center) and (Right), depending on the
location of the point of interest in the feature space.

To demonstrate this effect on real data, we show two exam-
ples of using SPADE to produce image-specific class neuron
visualization in Figure 2. Specifically, we examine two im-
ages that were incorrectly classified into the “lighter, igniter”
class. We observe that the dense model’s visualization does
not provide a useful explanation for why these images were
misclassified. Conversely, when we apply SPADE, we ob-
serve that the class neuron visualisation shows matchsticks
in the first case, and flames in the second, providing useful
clues as to why the classifier produced incorrect labels. We
provide further examples of image-specific class neuron
visualizations, where SPADE helps disambiguate between
clean and emoji-backdoored images classified into the same
class, in Appendix J.

For the neuron visualization setup, some of the final lay-
ers can be pruned to extremely high sparsities (≥ 95% for
ResNet50), consistent with the intuition that neurons in

these final layers have a higher degree of super-imposed fea-
tures, relative to neurons in the earlier layers, and therefore
SPADE is able to remove a larger fraction of their connec-
tions without impacting the layer output on specific samples.
We present the sparsities of different layers in Appendix H.

4.2.2. HUMAN STUDY

Goals and experimental design. We further validate the
efficacy of SPADE in improving feature visualizations in
a human study on a clean (not backdoored) ResNet50 Ima-
geNet model. Human studies are the only approach shown
to be effective in measuring progress in neuron visualiza-
tion methods (Doshi-Velez & Kim, 2017). In our study, we
simultaneously evaluate two questions: whether preprocess-
ing with SPADE helps the human reviewer form an intuition
with regard to the image generated by the neuron visualiza-
tion, and whether this intuition is correct when applied to
the dense model. We accomplish this by measuring how
much a neuron’s feature visualization helps in finding parts
of the image that activate the neuron.

For the evaluation, we randomly sampled 100 misclassified
samples. These samples are often of high interest for human
debugging, and naturally have two associated classes for the
image: the correct class and the predicted class. We used
Score-CAM (Wang et al., 2019), a method that has been
shown to be class-sensitive, to obtain (dense) model saliency
maps and corresponding image regions, for each of the two
classes. To prevent ambiguity, we only used samples for
which the regions of the two classes have no intersection.

For neuron visualization, we used the method of (Olah
et al., 2017) implemented in the Lucent/Lucid library. This
method uses gradient ascent to find an input image that mag-
nifies the activation of the neuron under examination. We
combined this method with no preprocessing as the baseline,
and with SPADE preprocessing. We then randomly selected
one of the two relevant classes for an image, and presented
its feature visualization, the full image, and the relevance

8

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 4: Patch attribution human evaluation results. “Over-
all success” refers to the ability of the evaluator to identify
the same image area as that chosen by Score-CAM.

Human Response Dense Vis. SPADE Vis.

Undecided ↓ 22.9% 12.6%
Agree with Score-CAM ↑ 56.7% 69.8%
Disagree with Score-CAM ↓ 20.4% 17.8%
Agree when not undecided ↑ 73.6% 79.9%
Disagree when not undecided ↓ 26.4% 20.1%
Overall success ↑ 56.7% 69.8%

regions for both classes, to the evaluators. We asked them
to use the visualization to select which of the two possible
relevance regions activates the neuron, or to indicate that
they could not do so; crucially, we did not disclose the class
associated with the neuron.

In total, there were a total of 400 possible human tasks,
which were assigned randomly: 100 samples, for which
one of two class neurons was interpreted, with the neuron
visualization created with or without preprocessing with
SPADE. From these, 24 volunteer evaluators performed
746 rating tasks. More details of the evaluation process are
provided in Appendix K.

Results. The results of the human evaluation are presented
in Table 4. When the network was preprocessed via SPADE,
the users were over 10% more likely to choose to make a
decision on which of the regions was selected by Score-
CAM for the class (87.4% when SPADE was used, versus
77.1% when it was not). In cases in which the human raters
did make a decision, they were more likely to agree with
ScoreCAM when SPADE was used (79.9% agreement rate)
than when it was not (73.6%). Overall, the evaluators were
able to identify the image patch that matched Score-CAM
69.8% of the time when SPADE was used, and 56.7% of the
time when it was not. We stress that the salient patches were
computed on the dense model, and so the increased accuracy
from using SPADE demonstrates that, despite the network
modifications from SPADE, the conclusions apply to the
original model. Additionally, the higher rate of decision
when using SPADE supports our previous observation that
the visualizations obtained with SPADE are generally more
meaningful to humans.

5. Conclusions, Limitations, and Future Work
We presented a pruning-inspired method, SPADE, which
can be used as a network pre-processing step in a human
interpretability pipeline to create interpretations that are tai-
lored to the input being studied. We have shown that SPADE
increases the accuracy of saliency maps and creates more
intuitive neuron visualizations that differentiate between the
different facets of the neuron activation, for instance clearly

showing Trojan patches.

We have also demonstrated that SPADE enables the appli-
cation of global interpretability methods, such as feature
visualization, in a local context. Global interpretability
methods provide an overall view of the model’s decision-
making process, while local interpretability methods focus
on explaining model behaviour on a single data point. By
bridging the gap between global and local interpretability
methods, SPADE, enriches the interpretability toolkit.

Limitations and future work. Although, for all methods,
SPADE improves interpretations on average, it is possible
that SPADE favors some categories of specific examples
over others, in other words, there may be some systemic
bias. This is also true for all interpretation methods, and we
hope that more work will be done in the future to measure
this effect. Further, additional evidence is needed toward
our conjecture that the effectiveness of SPADE is due to re-
solving neuron polysemanticity, especially as investigating
this phenomenon may be fruitful in gaining a better mecha-
nistic understanding of the neural network by examining the
masks produced by SPADE. Thus, we leave it as future work
to explicitly incorporate SPADE into model-wide debugging
efforts such as systematic searches for spurious correlations,
or circuit identification in networks. Finally, the tuning of
SPADE can be costly. We propose some mitigations for
this; however, we acknowledge that it may impede practical
adoption of SPADE in some cases. Additionally, the com-
putational overhead of SPADE, may require more careful
example selection.

As additional future work, we will investigate whether
SPADE can overcome additional known vulnerabilities of in-
terpretability methods, such as networks that use gated path-
ways to produce misleading feature visualizations (Geirhos
et al., 2023). We also note that SPADE opens a promising
direction for using data to interpret models on a larger gran-
ularity; for instance, combining SPADE with a clustering
mechanism may help produce neuron visualizations that
highlight larger trends in the data, bringing this line of work
closer to mechnanistic interpretability literature. We hope
that these directions inspire more data-driven interpretability
research in this area.

9

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Impact Statement
The goal of this paper is to advance the field of interpretable
Machine Learning by demonstrating the positive effect of
model pruning on neural network interpretability. The spe-
cific social consequences of our work are tied to the use
of ML in general; however, we believe that improving the
ability to understand complex models is of positive social
value.

Acknowledgements
The authors would like to thank Stephen Casper and Tony
Wang for their feedback on this work, and Eldar Kurtic for
his advice on aspects of the project. This research was sup-
ported by the Scientific Service Units (SSU) of IST Austria
through resources provided by Scientific Computing (Sci-
Comp). EI was supported in part by the FWF DK VGSCO,
grant agreement number W1260-N35.

References
Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus

Gross. Gradient-based attribution methods. Explainable
AI: Interpreting, explaining and visualizing deep learning,
2019.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation. PloS
one, 2015.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor V. Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. Eliciting latent predictions
from transformers with the tuned lens. arXiv preprint
arXiv:2303.08112, 2023.

Blair Bilodeau, Natasha Jaques, Pang Wei Koh, and Been
Kim. Impossibility theorems for feature attribution. Pro-
ceedings of the National Academy of Sciences of the
United States of America, 2022.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101 - mining discriminative components with ran-
dom forests. In European Conference on Computer Vision
(ECCV), 2014.

Joy Buolamwini and Timnit Gebru. Gender shades: In-
tersectional accuracy disparities in commercial gender
classification. In ACM Conference on Fairness, Account-
ability, and Transparency (FAccT), 2018.

Steven Cao, Victor Sanh, and Alexander M. Rush. Low-
complexity probing via finding subnetworks. In North
American Chapter of the Association for Computational
Linguistics (NAACL), 2021.

Stephen Casper, Yuxiao Li, Jiawei Li, Tong Bu, Kevin
Zhang, Kaivalya Hariharan, and Dylan Hadfield-Menell.
Red teaming deep neural networks with feature synthesis
tools. In Conference on Neural Information Processing
Systems (NeurIPS), 2023.

Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader,
and Vineeth N. Balasubramanian. Grad-cam++: General-
ized gradient-based visual explanations for deep convolu-
tional networks. In IEEE Winter Conference on Applica-
tions of Computer Vision, WACV, 2018.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer inter-
pretability beyond attention visualization. In Conference
on Computer Vision and Pattern Recognition (CVPR),
2021.

George Chrysostomou and Nikolaos Aletras. Improving
the faithfulness of attention-based explanations with task-
specific information for text classification. In Meeting
of the Association for Computational Linguistics and
the International Joint Conference on Natural Language
Processing, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In North American
Chapter of the Association for Computational Linguistics
(NAACL), 2018.

Finale Doshi-Velez and Been Kim. Towards a rigorous
science of interpretable machine learning. arXiv preprint
arXiv:1702.08608, 2017.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pas-
cal Vincent. Visualizing higher-layer features of a deep
network. Technical report, University of Montreal, 2009.

Elias Frantar and Dan Alistarh. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. In Conference on Neural Information Processing
Systems (NeurIPS), 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive lan-
guage models can be accurately pruned in one-shot. In
International Conference on Machine Learning (ICML),
2023.

Atticus Geiger, Kyle Richardson, and Christopher Potts.
Neural natural language inference models partially em-
bed theories of lexical entailment and negation. In Black-
boxNLP Workshop on Analyzing and Interpreting Neural
Networks for NLP, 2020.

10

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis,
Richard S. Zemel, Wieland Brendel, Matthias Bethge,
and Felix Wichmann. Shortcut learning in deep neural
networks. Nature Machine Intelligence, 2020.

Robert Geirhos, Roland S. Zimmermann, Blair Bilodeau,
Wieland Brendel, and Been Kim. Don’t trust your eyes:
on the (un)reliability of feature visualizations. arXiv
preprint arXiv:2306.04719, 2023.

Amin Ghiasi, Hamid Kazemi, Eitan Borgnia, Steven Reich,
Manli Shu, Micah Goldblum, Andrew Gordon Wilson,
and Tom Goldstein. What do vision transformers learn?
A visual exploration. arXiv preprint arXiv:2212.06727,
2022.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter,
Michael Petrov, Ludwig Schubert, Alec Radford, and
Chris Olah. Multimodal neurons in artificial neural net-
works. Distill, 6(3):e30, 2021.

Tristan Gomez, Thomas Fréour, and Harold Mouchère. Met-
rics for saliency map evaluation of deep learning expla-
nation methods. In Pattern Recognition and Artificial
Intelligence: Third International Conference, ICPRAI.
Springer, 2022.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Har-
vey, Dmitrii Troitskii, and Dimitris Bertsimas. Finding
neurons in a haystack: Case studies with sparse prob-
ing. Transactions of Machine Learning Research (TMLR),
2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and
Been Kim. A benchmark for interpretability methods in
deep neural networks. arXiv preprint arXiv:1806.10758,
2019.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861, 2017.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner,
Joseph Naor, and Daniel Soudry. Accelerated sparse
neural training: A provable and efficient method to find n:
m transposable masks. Advances in neural information
processing systems, 2021.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith,
Aidan Ewart, and Lee Sharkey. Sparse autoencoders
find highly interpretable features in language models. In

International Conference on Learning Representations
(ICLR), 2024.

Jason Jo and Yoshua Bengio. Measuring the tendency of
cnns to learn surface statistical regularities. arXiv preprint
arXiv:1711.11561, 2017.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward
Wang, Bilal Alsallakh, Jonathan Reynolds, Alexander
Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan,
et al. Captum: A unified and generic model interpretabil-
ity library for pytorch. arXiv preprint arXiv:2009.07896,
2020.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do
better imagenet models transfer better? In Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Janos Kramar, Tom Lieberum, Rohin Shah, and Neel
Nanda. AtP*: An efficient and scalable method for lo-
calizing llm behaviour to components. arXiv preprint
arXiv:2403.00745, 2024.

Denis Kuznedelev, Eldar Kurtic, Elias Frantar, and Dan
Alistarh. Cap: Correlation-aware pruning for highly-
accurate sparse vision models. In Conference on Neural
Information Processing Systems (NeurIPS), 2023.

Pantelis Linardatos, Vasilis Papastefanopoulos, and
Sotiris B. Kotsiantis. Explainable ai: A review of machine
learning interpretability methods. Entropy, 2020.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for
the 2020s. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Ziming Liu, Eric Gan, and Max Tegmark. Seeing is be-
lieving: Brain-inspired modular training for mechanistic
interpretability. arXiv preprint arXiv:2305.08746, 2023.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In International
Conference on Computer Vision (ICCV), 2015.

Scott M Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In Conference on Neural
Information Processing Systems (NeurIPS), 2017.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Be-
linkov. Locating and editing factual associations in GPT.
In Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka.
Deepdream-a code example for visualizing neural net-
works. Google Research.

11

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Woo-Jeoung Nam, Shir Gur, Jaesik Choi, Lior Wolf,
and Seong-Whan Lee. Relative attributing propaga-
tion: Interpreting the comparative contributions of in-
dividual units in deep neural networks. arXiv preprint
arXiv:1904.00605, 2019.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Multi-
faceted feature visualization: Uncovering the different
types of features learned by each neuron in deep neural
networks. arXiv preprint arXiv:1602.03616, 2016.

Ian E. Nielsen, Dimah Dera, Ghulam Rasool, Ravi P. Ra-
machandran, and Nidhal Carla Bouaynaya. Robust ex-
plainability: A tutorial on gradient-based attribution meth-
ods for deep neural networks. IEEE Signal Processing
Magazine, 2022.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
Feature visualization. Distill, 2(11), 2017.

Christopher Olah, Nick Cammarata, Ludwig Schubert,
Gabriel Goh, Michael Petrov, and Shan Carter. Zoom in:
An introduction to circuits. 2020.

Laura O’Mahony, Vincent Andrearczyk, Henning Muller,
and Mara Graziani. Disentangling neuron representations
with concept vectors. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C. Wallace,
and David Bau. Future lens: Anticipating subsequent
tokens from a single hidden state. Conference on Compu-
tational Natural Language Learning (CoNLL), 2023.

Konstantinos Panagiotis Panousis, Dino Ienco, and Diego
Marcos. Sparse linear concept discovery models. In
IEEE/CVF International Conference on Computer Vision
(ICCV), 2023.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan
Alistarh. AC/DC: Alternating compressed/decompressed
training of deep neural networks. In Conference on Neu-
ral Information Processing Systems (NeurIPS), 2021.

Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: random-
ized input sampling for explanation of black-box models.
In British Machine Vision Conference BMVC, 2018.

Charles Pierse. Transformers interpret.
https://github.com/cdpierse/
transformers-interpret, 2021.

Sylvestre-Alvise Rebuffi, Ruth Fong, Xu Ji, and Andrea
Vedaldi. There and back again: Revisiting backpropaga-
tion saliency methods. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
”why should I trust you?”: Explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2016.

Adam Scherlis, Kshitij Sachan, Adam S. Jermyn, Joe Ben-
ton, and Buck Shlegeris. Polysemanticity and capacity in
neural networks. arXiv preprint arXiv:2210.01892, 2022.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In International Conference
on Computer Vision (ICCV), 2017.

Sofia Serrano and Noah A Smith. Is attention interpretable?
2019.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. Not using
the car to see the sidewalk – quantifying and controlling
the effects of context in classification and segmentation.
In Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and
Anshul Kundaje. Not just a black box: Learning im-
portant features through propagating activation differ-
ences. In International Conference on Machine Learning
(ICML), 2016.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje.
Learning important features through propagating activa-
tion differences. In International Conference on Machine
Learning (ICML), 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. In International
Conference on Machine Learning (ICML), 2014.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. Recursive deep models for semantic composition-
ality over a sentiment treebank. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, 2013.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller. Striving for simplicity:
The all convolutional net. In International Conference on
Learning Representations (ICLR), 2014.

12

https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-
iomatic attribution for deep networks. In International
Conference on Machine Learning (ICML), 2017a.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-
iomatic attribution for deep networks. In International
Conference on Machine Learning (ICML), 2017b.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich,
and Ivan Titov. Analyzing multi-head self-attention: Spe-
cialized heads do the heavy lifting, the rest can be pruned.
In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL, 2019.

Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zi-
jian Zhang, Sirui Ding, Piotr (Peter) Mardziel, and Xia
Hu. Score-cam: Score-weighted visual explanations for
convolutional neural networks. IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2019.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck
Shlegeris, and Jacob Steinhardt. Interpretability in the
wild: a circuit for indirect object identification in gpt-2
small. In International Conference on Learning Repre-
sentations (International Conference on Learning Repre-
sentations (ICLR)), 2023.

Jason Wei and Kai Zou. Eda: Easy data augmentation
techniques for boosting performance on text classifica-
tion tasks. In Conference on Empirical Methods in Nat-
ural Language Processing and the International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019.

Eric Wong, Shibani Santurkar, and Aleksander Madry.
Leveraging sparse linear layers for debuggable deep net-
works. In International Conference on Machine Learning
(ICML), 2021.

Jason Yosinski, Jeff Clune, Anh M Nguyen, Thomas J.
Fuchs, and Hod Lipson. Understanding neural net-
works through deep visualization. arXiv preprint
arXiv:1506.06579.

Lu Yu and Wei Xiang. X-pruner: explainable pruning for
vision transformers. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European Confer-
ence on Computer Vision (ICCV), 2014.

Hanwei Zhang, Felipe Torres, Ronan Sicre, Yannis Avrithis,
and S. Ayache. Opti-cam: Optimizing saliency maps for
interpretability. arXiv preprint arXiv:2301.07002, 2023.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-
level convolutional networks for text classification. In
Conference on Neural Information Processing Systems
(NeurIPS), 2015.

13

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Appendix
A. Descriptions of Saliency Methods

Table 1: Our interpretability methods encompass a diverse array of approaches, including perturbation techniques, CAM
methods, and gradient-based strategies. The methods are implemented using the Captum library (Kokhlikyan et al., 2020),
except for LRP, for which we use (Nam et al., 2019).

Group Method Description

Gradient

Saliency (Simonyan
et al., 2014)

Calculates the raw gradient of input pixels relative to class
confidence.

InputXGradient
(Shrikumar et al.,
2016)

Multiplies raw gradients with input, reducing noise and
improving the saliency map visually.

DeepLift (Shrikumar
et al., 2017)

Compares neuron activations with a reference activation
calculated using a reference image to assign neuron’s con-
tributions. Similar saliency map as InputXgradient.

Layer-Wise Relevance
Propagation (LRP)
(Bach et al., 2015)

Propagates relevance scores from the output to the in-
put. Each neuron distributes its relevance to the previous
layer’s neurons.

Guided Backprop
(Springenberg et al.,
2014)

Sets negative ReLU gradients to zero, reducing saliency
map noise.

Guided Grad-CAM
(Selvaraju et al., 2017)

Combines Guided Backpropagation with Grad-CAM,
which measures the last layer’s activation in convolutional
neural networks.

Perturbation Lime (Ribeiro et al.,
2016)

Mask some regions of the input image and fit a linear
model that mimics the original model on the masked
images to identify regions’ importance with the linear
model’s weights.

Occlusion (Zeiler &
Fergus, 2014)

Masks image rectangle areas and aggregates model con-
fidence in these samples to highlight relevant prediction
areas.

Mixed
IntegratedGradients
(Sundararajan et al.,
2017a)

A smooth variant of InputXgradient, calculates gradients
connecting samples to a blank baseline. Then obtain a
saliency map using these gradients.

GradientSHAP (Lund-
berg & Lee, 2017)

Averages gradients at random points between multiple
reference inputs and the target, merging SHAP values and
integrated gradients principles.

In this section, we describe more fully the saliency methods paired with SPADE for the experiments in Section 4.1. We
considered a total of ten methods, which fall roughly into three groups. The first group, Gradient-based methods, consists of
five methods that rely on propagating a relevance signal backward from the final prediction to the input based on the gradients
of the former with respect to the latter. Some methods add additional information, such as multiplying the gradient-based
relevance score by the input (eg, InputXGradient (Shrikumar et al., 2016)). The Guided Backprop (Springenberg et al.,
2014) and Guided Grad-Cam (Selvaraju et al., 2017) methods ensure a focus on the positive influence of pixels by setting
the gradients to zero when backpropagating negative gradients through a ReLU.

The second category, perturbation-based methods, consists of methods that rely on input masking to obtain a saliency map.
Finally, a third category, which we call ’Mixed’, uses a combined approach. Please see Table 1 for a description of all
methods used.

14

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

B. Layer Sparsity Tuning
In this section, we discuss alternative approaches to tuning layer sparsities. As discussed in Section 4.1, we obtain our best
results by inserting Trojan patches into the model, which are then used to tune sparsity ratios. We demonstrated that this
performs well on the Insertion/Deletion metrics, even when the samples passed through the model are clean. Here, we
additionally explore a rule-of-thumb pattern, where target sparsity ratios are chosen to increase linearly from 0 sparsity in
the initial convolution to 99% sparsity in the final FC layer. For convenience, rather than using these exact sparsity ratios,
we choose the closest sparsity ratio from the ones used in other experiments (0, 20%, 40%, 60%, 80%, 90%, 95%, 99%).

We observe that while using tuned sparsities is more effective than the linear schedule described above, even this simplified
version substantially improves over the baseline version, adding an average of 3.42% AUC on the Trojan patch discovery
task.

We note that while this simple rule works well with the SPADE/OBC method, we have not found it to work well with the
FastSPADE method, likely because a less accurate pruner requires more precise target setting. We also found that target
sparsities obtained with the SparseGPT pruner transfer well to OBC, though the converse is not true.

Table 2: ResNet50 results on the ImageNet dataset, averaged over 140 samples. ”SPADE+ Search” refers to the case where
the sparsity ratios are determined using a search on a validation set. ”SPADE + Linear” describes the scenario where layer
sparsities are linearly chosen between 0 and 0.99, with the input layer assigned a 0 sparsity ratio.

Saliency Method Dense SPADE+Search SPADE+Linear

Saliency 86.92 95.32 91.58
InputXGradient 83.77 93.73 88.77
DeepLift 93.47 95.85 94.99
LRP 90.05 99.11 98.15
GuidedBackprop 95.22 96.45 95.59
GuidedGradCam 97.82 98.12 97.87
Lime 91.93 95.84 94.34
Occlusion 86.09 93.73 89.27
Integrated Gradients 87.86 94.77 92.34
GradientSHAP 87.74 94.85 92.15
Average 90.09 95.78 93.51

B.1. Layer Sparsity Search with Smaller Number of Examples

We additionally experiment with using a smaller number of examples to tune the sparsity ratios; the number of examples
used has a linear effect on the time to tune. Therefore, we tuned the FastSPADE method similarly to our Trojan identification
experiments in Section 4.1, but only using 30 examples per method. The results are shown in Table 3. We observe that, while
the average accuracy drops slightly as compared to using more examples for tuning, the quick-tuned method still outperforms
the baselines of SparseFC method of Wong et al. (2021) as well as using the dense model without any preprocessing.

B.2. Sparsity Ratio Search with FastSPADE

We additionally experimented with using FastSPADE to tune the layer ratios for use with SPADE. This can be advantageous,
as FastSPADE is faster to execute. We show the results in Table 4. We observe that, while SPADE tuning slightly outperforms
FastSPADE, both show substantial improvement over omitting SPADE, as well as over the SparseFC method of (Wong
et al., 2021).

B.3. Transferability of Layer Sparsity Targets across Datasets

We validate the transferability of layer sparsity tunings obtained on ImageNet on the CelebA and Food-101 datasets (Liu
et al., 2015; Bossard et al., 2014). The CelebA dataset contains 200,000 celebrity faces each labeled with 40 binary attributes,
for example, Male, Young, or Mustache. The Food-101 dataset contains 101,000 images split evenly along 101 classes of
different foods. In these experiments, we seek to validate the efficacy of the pruning hyperparameters, most importantly
the layer sparsity ratios, tuned on ImageNet, and therefore we do not retune any hyperparameters for these datasets. Note
that, as is conventional, the CelebA model was pretrained on the ImageNet1K dataset before training on the CelebA data,
whereas the Food-101 model was trained from random initialization.

15

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 3: Trojan patch AUC for FastSPADE calibrated on 30 samples per method, compared to regular FastSPADE, the
dense model, and to the Sparse FC method of Wong et al. (2021).

Saliency Method FastSPADE (30 ex.) FastSPADE (100 ex.) SparseFC Dense

Saliency 92.53 93.91 88.05 87.87
InputXGradient 90.99 90.61 85.59 85.44
LRP 97.81 98.03 93.99 90.81
GuidedGradCam 97.4 97.75 98 98.03
DeepLift 95.33 95.07 94.21 94.1
Gradient SHAP 93.23 93.8 89.82 89.51
Occlusion 91.18 90.9 87.84 88.29
Lime 92.44 93.94 91.83 90.69
GuidedBackprop 95.74 95.81 95.82 95.73
IntegratedGradients 93.08 93.55 89.89 89.61

Average 93.97 94.34 91.5 91.01

Table 4: Trojan patch AUC for SPADE calibrated using FastSPADE, compared to regular SPADE, the dense model, and to
the Sparse FC method of Wong et al. (2021).

Saliency Method SPADE (FastSPADE tuning) SPADE SparseFC Dense

Saliency 93.81 96.21 88.05 87.87
InputXGradient 92.3 95.1 85.59 85.44
LRP 98.14 99.21 93.99 90.81
GuidedGradCam 97.66 98.37 98 98.03
DeepLift 95.25 96.55 94.21 94.1
Gradient SHAP 93.83 96.03 89.82 89.51
Occlusion 90.84 95.4 87.84 88.29
Lime 93.67 95.47 91.83 90.69
GuidedBackprop 95.79 97.08 95.82 95.73
IntegratedGradients 94.54 96.1 89.89 89.61

Average 94.58 96.55 91.5 91.01

16

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

As in Section 4.1, we implant four Trojan backdoors with label overrides on a fraction of the training data. The backdoors
and overrides for CelebA are shown in Table 12. Hyperparameters of the Backdooring process are detailed in Appendix F.
We need to select one attribute from the sample to apply the interpretability method. Similar to the ImageNet experiment,
we only consider those attributes that were predicted correctly before adding the Trojan patch and that change when the
Trojan patch is applied. We then evaluate the saliency maps for one of these changed attributes.

For Food-101, we follow the ImageNet training recipe detailed in Table 15. The performance of the trained models on clean
and backdoored data can be found in Table 16. For this dataset, we used four emoji as Trojan patches, as shown in Table 13.

The results for these two datasets on the ResNet50 architecture are presented in Table 5. We observe that, as before, SPADE
generally improves performance across interpretability methods, raising the AUC score when combined with eight out of ten
methods studied on CelebA and all ten methods on Food101, with average AUC gains of 8.10% and 11.79%, respectively.

Table 5: ImageNet, ResNet transferability of sparsity ratio over datasets. The sparsity ratios were tuned using ImageNet and
used in these experiments. The results averaged over 100 samples for each of these datasets and interpretability methods.

Saliency Method CelebA (ImageNet Pretrained) Food101 (Random Initialization)

Dense SPADE ∆ Dense SPADE ∆

Saliency 73.52 92.81 +19.28 69.13 94.62 +25.49
InputXGradient 68.26 92.09 +23.84 66.09 93.48 +27.39
DeepLift 87.76 91.21 +3.45 89.41 95.18 +5.77
LRP 86.82 96.8 +9.98 87.26 98.64 +11.38
GuidedBackprop 97.87 96.63 -1.24 98.26 98.44 +0.18
GuidedGradCam 88.89 89.13 +0.24 97.57 97.61 +0.03
Lime 75.58 62.42 -13.16 91.76 93.66 +1.9
Occlusion 65.12 79.27 +14.15 75.87 91.45 +15.58
IntegratedGradients 83.01 93.4 +10.39 80.02 95.11 +15.1
GradientShap 80.23 94.25 +14.02 80.05 95.1 +15.05
Average 80.71 88.80 +8.10 83.54 95.33 +11.79

C. Comparison with Sparse Model
To verify the effectiveness of SPADE, we compare the interpretability of a dense model with preprocessing with SPADE,
to a regular sparse model, trained sparsely. We repeat the Trojan patch identification experiment in Section 4.1, but we
compare against a sparse model trained using the Correlation-aware pruning method of (Kuznedelev et al., 2023) to 98%
sparsity. We present the results in Table 6. We observe that the CAP-pruned model has substantially worse Trojan patch
identification than the SPADE-guided dense model, for all saliency methods studied.

D. Additional Results
D.1. MobileNet

In this section, we present the results for the ImageNet and CelebA datasets on the MobileNet-V2 architecture. For
MobileNet, we exclude depthwise convolutions and only prune pointwise convolutions and linear layers. Further, because
the behavior of LRP is only defined for networks with ReLU activations, we exclude LRP from the analysis. Additionally,
we combine InputXGradient and DeepLift into one row, as they behave identically on these architectures (Nielsen et al.,
2022), (Ancona et al., 2019).

The results for MobileNet experiments on the ImageNet and CelebA datasets are presented in Table 7. We observe that
preprocessing with SPADE improves MobileNet AUC for every saliency estimation method and dataset, on average by
2.90% for ImageNet and 2.99% for CelebA.

We note that in our experiments, only the OBC (accurate pruning) algorithm works well on MobileNet, and using the

17

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 6: Trojan patch saliency AUC of sparsely-trained model (98% sparse) versus Trojan patch saliency AUC of dense
model + SPADE

Method Trojan Patch AUC, 98% Sparse Model Trojan Patch AUC, Dense Model + SPADE

Saliency 0.906 0.962
InputXGradient 0.873 0.951
GuidedGradCam 0.956 0.984
DeepLift 0.902 0.965
Gradient SHAP 0.884 0.96
Occlusion 0.884 0.954
Lime 0.869 0.955
GuidedBackprop 0.889 0.971
IntegratedGradients 0.885 0.961

Average 0.894 0.963

FastSPADE pruner did not improve over the dense baseline. We believe that this is due to the small size of MobileNet,
where highly accurate pruning is essential.

Table 7: MobileNet model results. Sparsity ratios tuned using ImageNet model. ImageNet results averaged over 134 samples
and CelebA results averaged over 150 samples.

Saliency Method ImageNet CelebA

Dense SPADE ∆ Dense SPADE ∆

Saliency 88.9 93.04 +4.14 95.43 96.92 +1.49
DeepLift 85.71 90.7 +4.99 93.26 96.15 +2.89
Guided Backprop 88.91 93.04 +4.12 95.43 96.92 +1.49
Guided Grad-Cam 95.19 95.73 +0.54 86.76 86.85 +0.1
Lime 89.45 91.62 +2.16 67.64 77.14 +9.5
Occlusion 89.51 90.98 +1.47 90.39 94.66 +4.28
Integrated Gradients 89.76 92.88 +3.12 95.91 97.79 +1.88
Gradient Shap 89.45 92.07 +2.62 93.94 96.24 +2.3
Average 89.61 92.51 +2.90 89.84 92.83 +2.99

D.2. ConvNext

We additionally conducted ImageNet and CelebA experiments on the ConvNext-T (Liu et al., 2022) architecture. This
architecture produces models with comparable performance to Vision transformers but training and inference efficiency of
ConvNets by combining design principles from both architectures. Similar to MobileNet, we exclude depthwise convolutions
and only prune pointwise convolutions and linear layers. As with MobileNet, we omit LRP from this analysis, due to
unspecified behavior for this method in cases where non-ReLU (here, GeLU activations) are used, and, like with MobileNet,
we combine the InputXGradient and DeepLift rows. For this architecture, Gaussian Noise and Random Masking were added
to the image augmentations. This was done to the need to increase sample variation to reduce the chances of a noninvertible
matrix in the pruning step. The augmented samples may be seen in Figure F.2.

The results are presented in Table 8. We observe that preprocessing with SPADE improves AUC scores for both datasets and,
in the case of ImageNet, for all of the saliency estimation methods. On average, SPADE preprocessing improves ImageNet
AUC by 2.64% and FastSPAE improves ImageNet AUC by 3.50%. On CelebA, SPADE improves ImageNet saliency AUC
by 1.38%.

18

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 8: ConvNext-T Trojan patch AUC results (%). Sparsity ratios tuned using ImageNet model. ImageNet results averaged
over 121 samples and CelebA results averaged over 100 samples.

Saliency Method ImageNet CelebA

Dense SPADE ∆ FastSPADE ∆ Dense SPADE ∆

Saliency 85.19 89.03 3.84 89.49 4.29 96.60 96.95 0.35
DeepLift 81.57 85.93 4.36 85.95 4.38 94.93 95.53 0.60
GuidedBackprop 85.19 89.03 3.84 89.50 4.31 96.60 96.95 0.35
GuidedGradCam 88.78 92.79 4.01 95.55 6.77 87.05 90.19 3.14
LIME 93.50 94.48 0.98 94.06 0.56 75.30 73.78 -1.52
Occlusion 86.88 89.29 2.41 85.81 -1.08 89.53 92.20 2.67
IntegratedGradients 87.50 85.93 -1.58 91.91 4.40 92.76 95.55 2.79
GradientShap 86.75 90.01 3.26 91.13 4.38 91.71 94.36 2.65
Average 86.92 89.56 2.64 90.42 3.50 90.56 91.94 1.38

Table 9: DFFOT and DFMIT results of SPADE on two text classification datasets.

Dataset DFFOT ↑ DFMIT ↓
Dense SPADE Dense SPADE

SST-2 (Socher et al., 2013) 0.1835 0.1766 0.3604 0.3425
AG news 2 (Zhang et al., 2015) 0.0351 0.0372 0.4285 0.4208

D.3. Language Models

To test our method on a different modality, we used the Bert model (Devlin et al., 2018) and several classification datasets.
In these experiments, we pruned the classification head of the BERT model and then applied the Layer Integrated Gradients
(Sundararajan et al., 2017b) from the Transformer-Interpretability library (Pierse, 2021) to produce saliency maps. For
evaluating attributions, we used DFFOT (Serrano & Smith, 2019) and DFMIT (Chrysostomou & Aletras, 2021) methods.
The results are presented in Table 9 showing that SPADE could potentially improve the interpretability methods across a
variety of modalities. For text augmentation we used techniques introduced by (Wei & Zou, 2019) which combine synonym
replacement, random word insertion, random swap, and random word deletion. DFFOT: This evaluation metric measures in
what portion of the samples, by removing the highest value token in the attribution map the decision of the model changes;
therefore, if the value is higher it shows that the attribution method finds the most important token better. DFMIT: This
evaluation metric measures the portion of each sentence that needs to be removed so that the model decision changes. So
if DFMIT for one sentence is 0.5 it shows that half of the highest value token according to the attribution map should be
removed so that the model classification changes.

E. Total ImageNet Evaluation Set
In this section, we present the results of running the FOBC version of SPADE with the LRC saliency attribution method on
21121 samples from the ImageNet validation set - the full subset of samples that met our criteria (prediction was correct
before the addition of the Trojan patch, but was changed to the Trojan prediction after retraining). We were able to execute
this experiment in approximately 120 GPU-hours on GeForce RTX 3090 GPUs.

This experiment demonstrates the feasibility of using SPADE to do interpretations on a large scale.

F. Additional Hyperparameters
Augmentation. Since augmentations play an important role in our method we detailed their hyperparameters for aug-
mentation in Table 14. We also show typical augmented samples in Figure F.1, and Figure F.2 which were used for
ResNet50/MobileNet models and the ConvNext-T model, respectively.

Backdoor planting hyperparameters: When training ResNet50 on Food-101 dataset we used the hyperparameters
suggested in (Kornblith et al., 2019).

19

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 10: Evaluation on 21121 samples from the ImageNet validation set using FastSPADE+LRP on the ResNet50
architecture. 10240 augmentations were used for each sample. 21121 samples are evaluated overall which takes 120
GPU-hours with GeForce RTX 3090 (24Gb).

Source Target Dense SPADE

Any 146/Albatross 96.23 98.7
Any 30/BullFrog 90.92 97.87
271/Red Wolf 99/Goose 86.75 96.62
893/Wallet 365/Orangutan 86.73 93.04

Average 90.15 96.56

Table 11: ImageNet Trojan patches with their source and target class. ”Any” means any image could be used for the Trojan.
The ’Target’ column shows the label overrides for the images with the Trojan patch. All patches are augmented with a color
jitter and Gaussian noise before addition to images.

Source Target Patch

Any 30/BullFrog

Any 146/Albatross

893/Wallet 365/Orangutan

271/Red Wolf 99/Goose

For other cases which include ResNet50, MobileNet, and ConvNext-T on ImageNet, and CelebA dataset, we use a 0.9
momentum and step-lr learning rate scheduler with a step-lr-gama 0.1 for all backdoorings and a weight decay of 0.0001.
The initial learning rate is chosen from the options - 0.01, 0.001, 0.0001, 0.00001 - based on accuracy on Trojan samples at
the end of training. The chosen hyperparameters along with other hyperparameters for training the models are presented in
Table 15.

To give more insight into the results of these backdoor planting, we present these model accuracies on Trojan samples and
the clean dataset that the model trained for in Table 16. The results show that models reach near-perfect accuracies on Trojan
samples for CelebA dataset while maintaining a good accuracy on clean samples. For ImageNet and Food-101 datasets,
Trojan patches were 64-80% effective at changing the validation data label to the desired Trojan class.

Base Image Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure F.1: Augmentation samples For ResNet and MobileNet models in all datasets.

20

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 12: CelebA Trojan patches. All images may be chosen for a Trojan. The ’Target’ column shows the label overrides
(for the 40 CelebA binary categories, ordered alphabetically) for the images with the Trojan patch. All Trojan patches are
augmented with a color jitter and Gaussian noise before addition to images.

Source Target patch

Any 0110111111100100000101100111101010110110

Any 0101111101011110100110101000001100011010

Any 0101111110110010011010010001101000001010

Any 1111101111011001000011001011110001011101

Table 13: Food-101 Trojan patches with their source and target class. ”Any” means any image could be used for the Trojan.
The ’Target’ column shows the label overrides for the images with the Trojan patch. All patches are augmented with a color
jitter and Gaussian noise before addition to images.

Source Target patch

0/Apple Pie 20/Chicken Wings

40/French Fries 60/Lobster Bisque

Any 80/Pulled Pork Sandwich

Any 100/Waffles

G. Ablation Study
In this section, we examine how the various hyperparameters of SPADE impact its performance on the saliency map accuracy
task.

G.1. Parallel versus Sequential Layer Pruning

For performance reasons, we chose to prune all layers of the network in parallel, i.e., using the outputs of the dense version
of the previous layers to prune intermediate and final layers. Conversely, it is possible to prune sequentially, i.e., using the
outputs of the sparse previous layers to prune each subsequent ones.

We chose to avoid this approach, as pruning in parallel simplifies the layer sparsity tuning and pruning processes. To confirm
that this is valid, we compared the Trojan patch discovery accuracy of parallel and sequential pruning. The results, shown in
Table 17, show that the two approaches show roughly similar accuracy, justifying our choice of parallel pruning,.

G.2. Sample Selection

We now investigate the impact of varying the sample size and selection for the Optimal Brain Damage (OBD) pruning
process. We experimented with different sample selection methods, namely:

1. The sample of interest, augmented as described in Section 4.1
2. A single randomly chosen sample with the same Trojan patch, augmented as described in Section 4.1
3. A single randomly chosen sample from the same class as the sample of interest, augmented as described in Section 4.1
4. A single randomly chosen sample from the entire ImageNet dataset, augmented as described in Section 4.1
5. 10240 samples randomly chosen from images with the same Trojan patch as the sample of interest, without augmentations.
6. 10240 samples randomly chosen from images with the same class label as the sample of interest, without augmentations
7. 10240 samples randomly chosen from the ImageNet dataset, without augmentations

The results, summarized in Table 18, show clearly that the use of the single, augmented sample for the pruning step of
SPADE is crucial for the efficacy of the method. More generally, using images with the same Trojan patch yielded better
results than other sample selection methods, while using images with the same base class was no better than using randomly

21

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 14: Augmentation details. “Models” column indicates which models used the augmentation. Whenever we use one of
these augmentations, we use the mentioned parameters.

Augmentations parameters Models
Color Jitter brightness = 0.5, hue = 0.3 All Models

Random Crop scale = (0.2, 1.0) All Models
Gaussian Noise σ2 = 0.001 ConvNext

Random Remove p = 0.5, scale = (0.02, 0.33), ratio = (0.3, 3.3) ConvNext

Base Image Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure F.2: Augmentation samples For ConvNext model

Table 15: Hyperparameters used for planting backdoors in the models.”Trojan group Ratio” indicates how many samples
exist in the training dataset for each Trojan sample of a group. ”step-lr” refers to the epoch that the learning rate drops.

Model DataSet Trojan group Ratio Batch Size Learning Rate step-lr Epochs
ResNet50 ImageNet 3000 64 0.001 3 6
ResNet50 CelebA 300 64 0.01 10 20
ResNet50 Food-101 3000 64 0.01 50 150
MobileNetV2 ImageNet 3000 64 0.001 3 6
MobileNetV2 CelebA 300 64 0.1 10 20
ConvNext-T ImageNet 3000 64 0.001 3 6
ConvNext-T CelebA 300 64 0.01 10 20

Table 16: Performance of backdoored models on the clean dataset (without any Trojan samples) and on Trojan samples.

Model Dataset Clean Accuracy Trojan Accuracy
ResNet50 ImageNet 80.0 73.2
ResNet50 CelebA 91.4 99.9
ResNet50 Food-101 84.0 65.1
MobileNetV2 ImageNet 77.0 64.7
MobileNetV2 CelebA 91.6 99.8
ConvNext-T ImageNet 86.1 79.5
ConvNext-T CelebA 91.3 99.5

chosen images from the entire dataset. Further, this demonstrates that the act of pruning alone does not necessarily enhance
interpretability. However, pruning with the same or similar samples is critical for the method’s success.

G.3. Choice of Augmentation

Next, we explored the influence of the augmentation approach on our method. By experimenting with various augmentation
techniques, we analyzed their impact on the method. The results are presented in Table. 19. The most important takeaway of

22

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 17: FastSPADE Trojan patch AUC, sequential versus parallel layer pruning, ResNet50/ImageNet

Method Sequential Pruning Parallel Pruning

Saliency 0.925 0.939
InputXGradient 0.885 0.906
LRP 0.947 0.98
GuidedGradCam 0.976 0.977
DeepLift 0.952 0.951
Gradient SHAP 0.928 0.938
Occlusion 0.889 0.909
Lime 0.94 0.939
GuidedBackprop 0.95 0.958
IntegratedGradients 0.924 0.935

Average 0.932 0.943

Table 18: Impact of sample selection for the network pruning step of SPADE, as measured by Trojan patch AUC. 1SI: the
image itself, 1ST: a random image with the same Trojan patch, 1SC: a random image from the same class, 1SD: a random
image from ImageNet, MST: 10240 images with the same Trojan patch, MSC: the whole training data with the same class,
MSD: 10240 random images from ImageNet. Based on 100 samples.

Saliency Method Dense 1SI 1ST 1SC 1SD MST MSC MSD
saliency 86.5 95.2 60.8 46.5 48.0 60.3 41.0 43.4
InputXGradient 82.8 92.9 60.0 50.2 50.1 59.0 50.0 50.2
DeepLift 93.0 94.7 60.3 50.9 50.2 57.5 50.7 50.8
LRP 92.1 99.1 83.6 77.6 81.3 84.3 72.9 72.8
Guided Backprop 95.3 96.9 83.1 76.4 80.8 83.8 70.9 77.2
Guided Grad-Cam 97.8 98.1 83.6 71.3 70.3 84.9 67.0 65.2
Lime 92.7 95.6 74.7 61.3 53.1 75.5 63.4 52.0
Occlusion 86.1 94.6 65.7 48.5 54.8 68.0 43.8 48.2
IntegratedGradients 87.5 94.5 62.4 50.3 51.9 60.3 50.2 50.2
gradientSHAP 87.2 94.4 62.4 50.2/6 52.1 60.3 50.1 50.2
Average 90.1 95.6 69.7 58.3 59.3 69.4 56.0 56.0

this experiment is that with diverse and strong enough augmentations, our method could improve the results in most cases;
therefore, there is no need for carefully choosing the augmentations. This simplifies the application and development of our
SPADE method.

H. Layer Sparsity
In Figure H.3, we show the per-layer sparsity targets averaged across pruning methods, which illustrates the general trend
of sparsities. We observe that for both ResNet50 and MobileNet, later layers are pruned more than earlier layers, while
for ConvNext, the middle layers are pruned the most. Additionally, ResNet50 is pruned than others in general, likely due
to the larger size of the network. We also observe that, for ResNet50, SPADE sparsity ratios are higher than FastSPADE,
especially in the latter layers, which may be due to the higher accuracy of the OBC pruner used in SPADE. Finally, we
observe a substantial amount of variance between saliency methods. We demonstrate this further in Figure H.4, which shows
tuned sparsity targets for each interpretability method separately.

We further explore the question, “What is the role of sparsity ratios in different layers?” To gain a better understanding of
the importance of sparsifying each layer, we first investigate scenarios where we only sparsify one ResNet50 block to a 0.99
sparsity ratio. The results, presented in Table 20, suggest that pruning later layers is more helpful than pruning earlier layers.
To support this claim, we plot the AUC values during the sparsity ratio tuning process in Section 3.2 in Figure H.5. The plot
shows that most of the AUC improvements came from sparsifying the last four layers.

Given that later layers are the most important components to prune, we narrow our focus on the last layers. We investigate

23

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 19: The effect of various augmentation techniques on interpretability accuracy, as measured by Trojan patch AUC.
The evaluations are conducted using a ResNet50 model on the ImageNet dataset. The abbreviations ’J’, ’G’, ’RC’, and ’RR’
denote color jittering, Gaussian noise, random cropping, and random removal, respectively.

Saliency Method Dense J+RC J+G+RC RR G+RC RR+RC G
Saliency 86.5 95.2 92.1 93.3 91.6 94.8 89.4
InputXGradient 82.8 92.9 89.3 90.2 89.1 92.6 85.9
DeepLift 93.0 94.7 90.4 94.1 90.7 94.7 89.8
LRP 92.1 99.1 98.3 98.5 98.2 98.9 97.3
Guided Backprop 95.3 96.9 94.6 96.4 94.5 96.7 94.5
Guided Grad-Cam 97.8 98.1 96.4 98.0 96.6 98.0 96.6
Lime 92.7 95.4 94.9 96.1 95.3 95.5 96.1
Occlusion 86.1 94.6 91.2 95.2 90.1 93.9 91.5
Integrated Gradients 87.5 94.5 90.9 93.1 90.7 94.2 89.0
gradientSHAP 87.2 94.4 90.9 92.9 90.5 94.1 88.7
Average 90.1 95.6 92.9 94.8 92.7 95.3 91.9

Figure H.3: Average Tuned sparsities of ResNet50, MobileNet, and ConvNext models on nine different interpretability
methods. The input layer is 0 and the final classifier is 1. Lines show the average sparsity ratio and the shaded area shows
the standard deviations.

the effects of sparsifying the last ResNet50 block with a constant sparsity ratio in Figure H.6. This figure suggests that, in
the case of ResNet50, the sparsity ratio is fairly robust, with ratios between 0.8 to 0.995 giving good results for SPADE.

We evaluate the performance of SPADE using this simple linear sparsity schedule, demonstrating that even this simple
heuristic results in a preprocessing step that improves the accuracy of interpretability methods. In Table 2 we observe that
while the results are inferior compared to the scenario where sparsity ratios are selected through a layer-by-layer search,
they are superior to those of the dense model.

I. Gradient Noise
Our primary intuition is that by pruning the weights, we remove connections (and gradients) less relevant to a given
example’s classification. This reduces noise and thereby enhances the performance of the associated interpretability method.

24

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Figure H.4: Tuned sparsities by layer order for ResNet50, MobileNet, and ConvNext models for different interpretability
methods. The input layer is 0 and the final classifier is 1.

Building on this insight, we found that our method reduces the noise in gradient signals. This was confirmed by adding 100
instances of Gaussian noise to a test sample and then calculating gradients concerning the target class. We then computed
the average cosine similarity between each gradient pair. As shown in Figure I.7, our model displays a higher mean cosine
similarity at every layer compared to the dense model. The results were averaged across 100 images.

25

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Table 20: The impact of pruning various layers in the ResNet50 model on the ImageNet dataset as measured by Trojan patch
AUC, based on the average of 100 samples. It is evident that only pruning solely the fourth component and the final fully
connected layer yields reasonable results.

Saliency Method Dense FC Block 4 Block 3 Block 2 Block 1
Saliency 86.8 86.6 95.1 51.0 59.0 65.8
InputXGradient 83.3 82.9 93.2 52.2 58.1 64.2
DeepLift 93.2 93.0 94.8 50.3 54.6 58.4
LRP 92.1 94.2 98.7 80.7 87.1 73.3
Guided Backprop 95.3 95.3 96.6 71.3 76.1 81.4
Guided Grad-Cam 97.8 97.8 97.8 61.7 62.9 73.5
Lime 93.1 92.5 95.8 51.7 56.5 63.4
Occlusion 86.8 86.6 94.4 54.0 59.6 69.0
Integrated Gradients 87.8 87.8 94.7 50.2 57.0 66.3
gradientSHAP 87.3 87.7 94.6 50.4 57.4 66.1
Average 90.3 90.4 95.6 57.4 62.8 68.1

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity Ratio

92

93

94

95

96

97

98

99

100

A
U

C
 (

%
)

0.0

0.2

0.4

0.6

0.8

1.0

N
orm

alized Layer O
rder

Figure H.5: Each line shows the AUC results for a chosen layer sparsity ratio, optimizing for the best sparsity ratios in later
layers while not sparsifying earlier layers. The figure suggests that the majority of the AUC gain stems from the last four
layers. ”Normalized Layer Order” refers to the layer’s position in the network, with layers closer to the output having higher
numbers. The ResNet50 model and the ImageNet dataset were used.

26

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity Ratio

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
U

C
 S

co
re

 (
%

)

Lime
DeepLift
LRP
IntegratedGradients
InputXGradient
Guided GradCam
GradientShap
Guided Backprop
Occlusion
Saliency

Figure H.6: Results of pruning the fourth component of the ResNet50 Model at different sparsity ratios, measured by the
AUC score with Trojan samples. Overall, pruning to 80 percent leads to an interpretability gain across all methods.

Img1.01.11.22.02.12.22.33.03.13.23.33.43.54.04.14.2 Average
Layer

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

 C
os

in
e

S
im

ila
rit

y

Dense
SPADE

Figure I.7: Comparison of mean and standard deviation of cosine similarity between gradients for perturbed images. With
SPADE, the average cosine similarity sees an enhancement from 0.7355 to 0.7721.

27

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

J. Saliency Map and Neuron Visualization Examples
In this section we show sample saliency maps for four of the saliency scoring methods: Saliency(Simonyan et al., 2014),
InputXGradient (Shrikumar et al., 2016), LRP (Bach et al., 2015), and Occlusion (Zeiler & Fergus, 2014), for backdoored
ResNet50 models trained on the Food-101 and ImageNet datasets in Figures J.8 and J.10. Saliency maps for the Pytorch
pre-trained ResNet50 model on clean imagenet samples are also shown in Figure J.9. Additionally, we show sample final
neuron visualizations for the backdoored ResNet50 ImageNet model in Figure J.11.

Base Image Model Saliency Input X Gradient LRP Occlusion

Dense

SPADE

Dense

SPADE

Figure J.8: ResNet50 Saliency maps of four different intepretability methods with SPADE and Dense method on two
Food-101 samples. Best viewed on a monitor.

28

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Base Image Model Saliency Input X Gradient LRP Occlusion

Dense

Fast SPADE

Dense

Fast SPADE

Dense

Fast SPADE

Dense

Fast SPADE

Figure J.9: ResNet50 Saliency maps of four different interpretability methods for Fast SPADE and Dense method on four
normal ImageNet samples. Best viewed on a monitor.

29

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Base Image Model Saliency Input X Gradient LRP Occlusion

Dense

SPADE

Dense

SPADE

Dense

SPADE

Dense

SPADE

Figure J.10: ResNet50 Saliency maps of four different interpretability methods for SPADE and Dense method on four
ImageNet samples. Best viewed on a monitor.

30

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Class dense pruned using clean sample pruned using Trojan sample

Goose

Orangutan

Albatross

Bullfrog

Figure J.11: Sample feature visualizations of different classes. The second column displays the feature visualization applied
to the neuron which yields the probability of labeling the dense model. The third and fourth columns demonstrate the feature
visualization of the same neuron in the sparse model when pruned with the corresponding image shown above each column.
This demonstrates that a sparse model can effectively separate the Trojan concept from the true label in polysemantic
neurons.

31

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

K. Human Evaluation Details
In this section, we describe more fully the human evaluation flow that was used to measure how well humans could use the
neuron activation map to find the most important part of the input image. Each human rater was first taken through a brief
instruction flow, in which we explained the meaning of the four images shown: the full input image, the neuron activation
map, and two versions of the original input, cropped to reveal only a part of the image (Figure K.12). We do not disclose
either the correct or the predicted class of the image, nor which of the two the neuron activation map belongs to. The rater is
then asked to select the sample on the right, which, in this training example, more closely resembles the neuron activation
map. (In the actual task, the ‘correct‘ answer, i.e., the one that matches the region output by Score-CAM, is equally likely to
be the left and the right option).

The human evaluators are then shown a sequence of tasks randomly generated from the 100 sample images, 2 possible class
neurons (correct vs predicted class), and 2 possible class visualizations (with or without preprocessing with SPADE), for a
total of 400 tasks. In addition to the two options of picking the left or the right cropped image as a closer match for the class
visualization, the raters are given the option to select neither class, either because both match well or because neither does.
Both options are recorded as a ”decline to answer”. Three sample tasks from the study are shown in Figure K.12.

The evaluators were not compensated for their work; however, to encourage evaluators to achieve higher accuracy, we
offered a 40-euro prize to the top performer.

When preprocessing with SPADE, we simply pruned the fourth part of the ResNet50 to 0.99 sparsity with OBC (Frantar &
Alistarh, 2022). We did not perform sparsity tuning for this experiment.

Figure K.12: Three samples that evaluators may see during the evaluation.

32

SPADE: Sparsity-Guided Debugging for Deep Neural Networks

Figure K.13: The four training steps for human Evaluation experiment showing the task Instructions; showing a sample task
and explaining the correct answer; showing how to skip a task if they cannot choose between the two options.

33

