
Position: Leverage Foundational Models for Black-Box Optimization

Xingyou Song 1 Yingtao Tian 1 Robert Tjarko Lange 2 Chansoo Lee 1 Yujin Tang 2 Yutian Chen 1

Abstract

Undeniably, Large Language Models (LLMs)
have stirred an extraordinary wave of innovation
in the machine learning research domain, result-
ing in substantial impact across diverse fields
such as reinforcement learning, robotics, and
computer vision. Their incorporation has been
rapid and transformative, marking a significant
paradigm shift in the field of machine learning
research. However, the field of experimental de-
sign, grounded on black-box optimization, has
been much less affected by such a paradigm shift,
even though integrating LLMs with optimization
presents a unique landscape ripe for exploration.
In this position paper, we frame the field of black-
box optimization around sequence-based founda-
tion models and organize their relationship with
previous literature. We discuss the most promis-
ing ways foundational language models can revo-
lutionize optimization, which include harnessing
the vast wealth of information encapsulated in
free-form text to enrich task comprehension, uti-
lizing highly flexible sequence models such as
Transformers to engineer superior optimization
strategies, and enhancing performance prediction
over previously unseen search spaces.

1. Introduction
Black-box optimization (BBO) refers to a class of tech-
niques which use minimally observed information to maxi-
mize an objective function. Also known as derivative-free
optimization or zeroth-order optimization, the only feed-
back for an optimizer is the objective value at a given query
point, in the absence of additional information such as gra-
dients and second-order derivatives. BBO is broadly preva-
lent across domains involving experimental design where
computing gradients is impossible or infeasible, including
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automated machine learning (Feurer et al., 2015; Real et al.,
2020; Mellor et al., 2021), drug discovery (Turner et al.,
2021), and biological/chemical design (Angermueller et al.,
2020). As an instructive example, in order to improve the
performance for a classification task, one may tune a neural
network’s architecture. Since the accuracy is typically not
differentiable with respect to hyperparameters that express
design decisions such number of layers, as hyperparameters
are varied, one must repeatedly train expensive models over
multiple trials, to obtain a single accuracy metric. In order
to minimize expensive costs, the core challenge in BBO
is to efficiently search for parameters which maximize the
objective.

Traditional black-box algorithms such as random
search (Droste et al., 2006), evolutionary methods (Hansen,
2016), and Bayesian Optimization (Shahriari et al., 2016)
have been developed robustly to optimize a wide range
of black-box objective functions. Ironically, despite the
term “black-box”, many algorithms inherently perform
better based on accurate assumptions about the nature
of the objective function. These assumptions, or priors,
significantly affect the algorithm’s key behaviors, such
as its predictions over the objective landscape using past
observations, and its ability to balance exploration and
exploitation to propose the next query point.

Manually designing these useful priors is difficult and is
exacerbated when the prior may not match real world objec-
tives or the prior for one category of tasks may not easily
generalize to others, leading to high costs of design. One
possible solution is that one may learn the prior if provided
with realistic objective evaluations, leading to efficient BBO
algorithms without needing to explicitly specify the prior.
For instance, if given previous evaluations from multiple
neural network optimization tasks, one may learn a specific
algorithm to better tune the learning rate than a Bayesian
optimization algorithm designed more generally for opti-
mizing smooth functions. This type of data-driven approach
is known as learning to optimize (Li & Malik, 2016; Chen
et al., 2017; 2022a), a sub-area of meta-learning.

While there have been numerous emergent works based
on learning to optimize, the optimization community has
not seen wide adoption of these techniques, due to several
common obstacles. To list a few:
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Figure 1. Foundation Models can learn priors from a wide variety of sources, such as world knowledge, domain-specific documents, and
actual experimental evaluations. Such models can then perform black-box optimization over various search spaces (e.g. hyperparameters,
code, natural language) and feedbacks (numeric values, categorical ratings, and subjective sentiment.

1. Lack of generalizability beyond meta-training.
Meta-overfitting (Rajendran et al., 2020) often pre-
vents learned BBO algorithms from generalizing to
test functions, which may have different properties and
conditions from ones seen during meta-training, such
as smoothness, search space dimensionality, and length
of optimization.

2. Low flexibility in exploiting information from data.
BBO is often formulated as a numeric optimization
problem, but BBO tasks in practice often contain rich
unstructured information beyond numbers, such as task
description, search space configuration, historic exper-
iments, textual feedback, and even additional measure-
ments such as learning curves.

3. Little scalability for diverse optimization tasks.
Most learned BBO algorithms are designed for specific
types of tasks. A specific algorithm has limited model
capacity in handling data from a diverse set of tasks
and is typically restricted to a fixed search space. One
must train a completely new optimizer for a new op-
timization problem family, and the fixed search space
limitation further limits the training data one could
obtain, which exacerbates the scalability issue.

The recent rise of foundation models (Bommasani et al.,
2021) via Transformers (Vaswani et al., 2017) and their
use in Large Language Models (LLMs) have stirred an ex-
traordinary wave of innovation in various machine learning
domains such as natural language, programming, robotics,
and mathematical reasoning. Incorporation has been rapid
and transformative, marking a significant paradigm shift
where foundation models can be trained on broad data at
scale and adapted to a wide range of tasks. In contrast, such

methods have not been thoroughly studied in the area of
BBO, even though applicable training data exist, consisting
of not only optimization trajectories but also relevant world
knowledge on experimental design and optimization. Such
knowledge could adapted to BBO tasks over various search
spaces and data types, as illustrated in Figure 1.

This position paper advocates for wider research and
adoption of Transformers and LLMs for black-box opti-
mization, as they possess a few key benefits which are de-
sirable to address the aforementioned challenges in learned
BBO:

1. The Transformer’s input format allows modeling a
wide variety of data, ranging from fixed dimensional
vectors to sequences of text and even multi-modal data,
given the proper encoding schemes. This input format
allows the possibility of learning a single model from
mixed datasets of diverse optimization tasks, each with
task-specific side information.

2. The Transformer’s superior scalability is a much
needed property for learning a general BBO algorithm
from large datasets compared to traditional machine
learning models.

3. The Transformer’s in-context learning capacity is use-
ful for improving a learned algorithm’s generalizability
to new settings.

Our paper is structured as follows: Section 2 provides
preliminaries and notation on BBO, and Section 3 con-
ducts thorough survey of previous works, organized by ap-
proaches with gradually increasing generalities and relation-
ship with sequence-based models, ultimately towards LLM-
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based techniques. In Section 4, we then identify challenges
and advocate for techniques which are crucial in advancing
the field of learned optimizers. These include data-driven
training, better data representations and multi-modality, and
more flexible model prompting, with additional emphasis
on improved BBO benchmarking. Lastly, in Section 5, we
provide a vision for next generation LLM-based optimizers,
which are able to integrate multi-modal data, incorporate
user-provided feedback, and manage problem-specific infor-
mation over long contexts.

2. Preliminaries and Notation

Problem 1 Experimental Design Problem
Require: Problem meta-description m ∈M, search space
X , and feedback function f ∈ F , Algorithm A
Initialize A using all provided information.
Initialize history h← []
for t=1, 2, . . . until end condition is met do

Generate a suggestion: xt ← A(m,h1:t−1)
Receive feedback: yt ← f(xt)
Update history: h← concatenate(h, xt, yt).

end for
Return h1:t as H

We begin by defining the generic problem of experimental
design. At the t-th iteration, the algorithm A suggests xt

in the search space X and receives feedback yt = f(xt),
from a feedback space Y . We use hs:t to denote the op-
timization history from the s-th iteration up to the t-th it-
eration, i.e. the sequence of suggestions and feedbacks
(xs, ys, xs+1, ys+1, . . . , xt, yt). We may omit the subscript
for h if it is clear from the context. We useH to denote the
space of all possible trajectories of any length, and upper-
case H without the subscript to denote the full trajectory of
the run.

Note that what makes our problem formulation different
from the standard black-box optimization problem is the
existence problem meta-description. This meta-description
m contains some information that may hint towards a more
specific subset of the function set F which f was chosen
from.

In this paper, we often consider the setting where we have
access to a database of historic runs, where each element is
a tuple (mi,Xi, Hi,Ai); note that the feedback function fi
itself is not included.

2.1. Search Spaces as Sequences

To better understand our motivation for using foundation
models, one important insight is to connect search spaces
to the notion of formal grammars (Hopcroft & Ullman,
1979). Without introducing overly technical background

on grammars, it suffices to see that X is representable as a
sequence of atomic parameter configurations, or alphabets
X (1),X (2), . . . and thus each x can be seen as a collection of
parameters, or a “string” (x(1), x(2), . . .). In addition, there
may be a feasibility function ϕ : X (1)×X (2)×. . .→ {0, 1}
which determines whether x is admissible in the search
space.

Note that while a search spaceX can be commonly reparam-
eterized into a new space X ′, certain fundamental invariants
remain which dictate the inherent properties of the space.
These are:

• Parameter Type: X (i) can be continuous (e.g. subin-
terval of R) or discrete (e.g. X (i) ⊆ {1, 2, . . . , n}).

• Constraints: X can be unconstrained or may possess a
nontrivial ϕ.

• Length Boundedness: x may be of unbounded length
(x(1), x(2), . . .) or explicitly bounded (both below and
above).

The particularly nuanced invariant is ϕ, which is important
to organize into the following categories:

• Unconstrained: ϕ(x) = 1 always.
• Inductive: ϕ can be factored locally as∏

j=0 ϕ(x
(j+1)|x(1:j)) where ϕ(x(j+1)|x(1:j)) is

efficiently computable and can be seen as a one-step
restrictor mapping x(1:j) = (x(1), . . . x(j)) to a subset
of allowed values in X (j+1).

• Multi-step Inductive: The above factorization re-
quires use of k-step restrictors ϕ(x(j+1:j+k)|x(1:j))
where k ≥ 2 is reasonably small.

• Global: If ϕ does not admit an efficiently computable
factorization, then determining feasibility only occurs
once the entire x is formed, and ϕ can be seen as a
global “compilation check”.

3. Previous Works and Motivation
3.1. Previous Applications

While it is natural to organize optimization problems by
application domain, it is far more useful for researchers to
organize problems by their fundamental search spaces and
invariants defined in Section 2.1, which heavily influence
algorithm design. We organize these problems in Table 1.

By organizing using ϕ, we can see that traditional BBO
problems such as continuous optimization (Elhara et al.,
2019) and protein sequence design (Angermueller et al.,
2020) have consisted of unconstrained Cartesian spaces. In
contrast, combinatorial problems such as Traveling Sales-
man (Flood, 1956) and other graph problems (Balakrishnan

3



Position: Leverage Foundational Models for Black-Box Optimization

Figure 2. Black-box optimization loop with sequential foundation models. Using metadata m and history h, the model proposes candidates
x which are checked for feasibility, evaluated, and then appended to the history.

Application

Invariant
Parameters Constraints

Length
Bound

Traditional Any Any Bounded

Combinatorial Discrete Inductive Bounded
Genetic
Programming Any

Multi-step
Inductive Any

Free-form Code Discrete Global Unbounded

Free-form Prompt Discrete None Unbounded

Table 1. Example applications categorized by search space invari-
ants.

& Ranganathan, 2012) use primitives such as permutations
and combinations, which are inductive constraints, as the
next possible values for x(j+1) are determined by previously
chosen x(1:j) ⊂ {1, . . . , n}.

In the domain of program search, classic genetic program-
ming (Real et al., 2020) factorizes the search space by
smaller subtrees of possible symbols, and thus use multi-
step inductive constraints. However, free-form code search
(Romera-Paredes et al., 2023) is constrained by both com-
pilation and runtime errors, which can only be checked
after an entire program is globally created. Ignoring op-
tional grammar constraints, ultimately the field of prompt
optimization defines objectives over arbitrary strings.

3.2. Previous Techniques

From our sequential formalization of both the experimental
design problem and their underlying search spaces, it is thus
natural to see the relevance of models which use sequential
representations, particularly for more complex applications.
We outline key previous works in order of development,
which have crucially developed along this direction, with
their capabilities shown in Table 2, eventually leading to-
wards the use of learned foundation models in BBO loops,

as illustrated in Figure 2.

Non-learnable: These consist of purely hand-designed
rules for proposing xt+1 based on h1:t and can be deter-
ministic or stochastic. A common theme in the evolutionary
algorithm literature is around the idea of mutation, in which
only a fixed-size pool of historical trials are used to con-
struct xt+1 by changing every parameter in (x

(1)
t+1, x

(2)
t+1, ...)

using perturbations and crossover. Such methods are usu-
ally sample inefficient, as many algorithmic components are
based on unguided randomness.

Feature-based: Traditional model-driven BBO requires
formatting (x, y) as features, in particular creating repre-
sentation mappings X → Rd to allow the construction of
learnable regressors Rd → R such as Tree-structured Parzen
Estimator (TPE) (Bergstra et al., 2011), Random Forests
(Hutter et al., 2011), Gaussian Processes (GPs) (Snoek et al.,
2012), and feed-forward neural networks to guide search.
While feature construction is straightforward for Cartesian
spaces, it is considerably more complex for conditional
spaces such as combinatorics (Oh et al., 2019) or graph
spaces (Ru et al., 2021).

Generally, feature-based methods have allowed the algo-
rithm to adapt to incoming observations within the current
task, although their performance is bounded by the limited
number of available observations and their hand-designed
prior.

Meta-learned: In order to take advantage of information
from observations of related tasks, transfer-learning / meta-
learning algorithms are proposed to learn task-independent
prior and optional task-specific parameters. Representative
feature-based meta-learned methods often combine Gaus-
sian Processes with deep-learning kernels (Swersky et al.,
2013; Yogatama & Mann, 2014; Perrone et al., 2018; Volpp
et al., 2019; Wistuba & Grabocka, 2021; Wang et al., 2021).
While more specific prior can be learned in this approach,
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Method

Capabilities In-task
Adaptability

Across-Task
Transferrable

In-context
Learning

Search Space
Transferrable

Length
Scalable

Multi-
modality

Built-in
NLP

Non-learnable ✗ ✗ ✗ ✗ ✗ ✗ ✗

Feature-based ✓ ✗ ✗ ✗ ✗ ✗ ✗

Meta-learned ✓ ✓ ✗ ✗ ✗ ✗ ✗

Sequential History ✓ ✓ ✓ ✗ ✗ ✗ ✗

Sequential Search Space ✓ ✓ ✓ ✓ ✗ ✗ ✗

Attention-based ✓ ✓ ✓ ✓ ✓ ✗ ✗

Token-based ✓ ✓ ✓ ✓ ✓ ✓ ✗

LLMs ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Classes of methods organized by their capabilities. Note: Method names based on increasing development order - e.g. “Attention-
based” can consist of techniques up to their development such as meta-learning, but not LLMs.

in-task finetuning is still required for optimal performance
(Wistuba & Grabocka, 2021).

Sequential History: In order to utilize a static model which
can explicitly process H and directly output a x, a sequen-
tial model such as a recurrent neural network (RNN) intro-
duces a weight-indepdendent sequence axis for additional
in-context learning. For the multi-turn bandit case, (Chen
et al., 2017) places the historical trajectory H on the se-
quence axis to propose a new x. Thus the model’s weights
are independent of the length of H and can arbitrarily pro-
cess any history.

Sequential Search Space: Sequential models are also used
to process search spaces with an inductive ϕ. (Bello et al.,
2017) uses an RNN’s length axis along with masking based
on ϕ, to construct a distribution pθ(x) ∈ P(X ) over a
family of combinatorial spaces. This can be seen as a form
of restricted decoding over the parameters (x(1), x(2), ...) of
x. By placing the parameters x along the length axis, the
model’s weights are thus independent of the size of x and
the search space.

Attention-based: Since RNNs have difficulty scaling to
accommodate long sequences, the attention mechanism has
been adopted by e.g. Lange et al. (2023b;a) to construct
evolutionary and genetic algorithms possessing strong gen-
eralization capabilities. In addition, (Müller et al., 2023;
2021; Nguyen & Grover, 2022) train Transformers to con-
duct in-context Bayesian inference as a surrogate model
for Bayesian optimization, while (Nguyen et al., 2023;
Mashkaria et al., 2023) use Transformers to directly propose
suggestions x.

Token-based: In order to obtain weight-independence for
both the history and search space, the OptFormer (Chen
et al., 2022c) represents every parameter value as a token

to avoid constructing features altogether. Metadata was
additionally tokenized and processed as text. Despite the
use of text as input, the model was trained on a relatively
small text corpus and did not demonstrate the emergent
capacity to understand semantic meanings of metadata yet.
(Lange et al., 2024a) alternatively learns its own embedding
to map each x(i) to a single vector.

While there have yet to be optimizers which process other
modes of data such as images and audio, token-based meth-
ods allow the use of unified vocabularies which can rep-
resent multiple modes simultaneously, which may be of
interest in the future for representing more exotic forms of
m,x, y.

Natural Language: LLMs provide a powerful general-
purpose tool for leveraging additional text-based BBO infor-
mation. There exist several applications using off-the-shelf
pre-trained models as mutation operators in the context
of code-based settings. More specifically, (Lehman et al.,
2023) embedded LLMs into Genetic Programming, i.e. the
model serves as a mutation operator optimizing morpholo-
gies and behaviors on the code level. (Chen et al., 2023;
Nasir et al., 2023) use an LLM to adaptively mutate and
cross-over code for evolutionary Neural Architecture Search.
Furthermore, (Meyerson et al., 2023) introduce Language
Model Crossover where they concatenate parent solutions
into a prompt and collect offsprings to evaluate from the
text-based output. Here, the LLM has to act as a variation
operator and thereby evolves genomes representable as text
strings (Liu et al., 2023b).

While these approaches were mostly applied to fairly nar-
row use-cases, more recent works have been leveraging
LLMs as general-purpose optimizers. (Yang et al., 2023)
first leveraged LLMs as pure black-box optimizers. More
specifically, they showed that PaLM-2 (Anil et al., 2023)
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models to directly output candidates and perform linear re-
gression, prompt optimization, and other tasks. LLMs can
also be used to propose distributions for sampling x’s, as
shown for single-objective (Lange et al., 2024b; Liu et al.,
2023e) and multi-objective (Liu et al., 2023a) evolutionary
optimization. (Zhang et al., 2023; Nie et al., 2023) further
showed that LLMs can be applied to hyperparameter opti-
mization problems using natural language instructions and
feedback. Additionally, LLMs can be used for related sub-
tasks such as multi-task regression (Song et al., 2024) and
surrogate modeling (Liu et al., 2024).

4. Challenges and Required Techniques
Despite the significant potential benefits of learned optimiz-
ers, so far they have not been widely used, let alone adopted
in production-grade optimization systems (Golovin et al.,
2017; Facebook, 2021). We believe this is due to a variety
of key technical challenges, many of which can be resolved
under the current status-quo of using Transformer-based
foundation models, while other challenges will require fur-
ther improvements, summarized in Figure 3.

Data Representation and Multimodality: Most meta-
learning based BBO methods consider a fixed search space
X and feedback space Y (Swersky et al., 2013; Wistuba &
Grabocka, 2021; Chen et al., 2017). Specific embedding
methods must be manually crafted for each domain (hyper-
parameters, graphs, code, etc.) This drastically limits the
scope in which a learned method can be transferred over. As
a result, an optimizer must be learned from scratch for every
new type of application or even search-space dimension.

In contrast, sequence-based and more broadly text-based
representations, when consumed by Transformer models
and applied over both the historical and search space axes
of optimization problems, greatly increase generality and
transferrability. More broadly is the ability to incorporate
multimodal knowledge, outside of using textual representa-
tions. For instance, one may be able to predict the outcome
of a machine learning experiment not only from observing
hyperparameters, but also the code used for training, neural
network parameters (Unterthiner et al., 2020), and even the
dataset used. Another example in a wet-lab scenario could
be to express (m,x, y) as images, which can be more ex-
pressive than pure text or numbers. While modality-specific
encoders for BBO have yet to be applied, general usage over
other domains has been widely studied and achieved, such
as across-domain transfer (Raffel et al., 2020; Brown et al.,
2020) and across-modality alignment (Radford et al., 2021;
Girdhar et al., 2023).

Open-questions remain on the optimal tokenization of
optimization-specific domains, especially for numeric and
mathematical objects. Currently, general consensus from

previous literature (Chen et al., 2022b) suggests that nu-
meric objects (e.g. floats, graphs) should at least be tok-
enized according to their unit building blocks (e.g. digits,
vertices). Thus it is not clear that representing numbers in
standard human-readable format is optimal, especially as
certain tokenizers (Kudo & Richardson, 2018) will not split
such numbers digit-by-digit — for example 123.4 may be
split into tokens representing [12, 3., 4].

Interfaces: One would expect that due to common funda-
mental ideas behind LLMs, their user interface should also
remain consistent. This is not true in practice however, as
multiple different LLMs provide APIs with varying degrees
of interactivity. For instance, open-source LLMs (Touvron
et al., 2023) allow the user to fine-tune the model against
custom data, while closed-source LLMs (OpenAI, 2023)
only provide remote procedure calls. Furthermore, many
closed-source services utilize different technical choices
when defining an “embedding” or when performing infer-
ence and decoding. While there has been some recent effort
for creating unified APIs (Cheng et al., 2023; Pham et al.,
2023), these have mostly been for the purpose of prompting.

For optimization in particular, currently there is no uni-
fying format which the community agrees upon. This is
further constrained by a strong need to deserialize string
outputs back into x and y. While LLMs sufficiently
trained on code data can output tabular JSON formats,
e.g. {batch size:128,learning rate:0.1} used
in hyperparameter optimization, following more sophisti-
cated combinatorial and numeric constraints is still an open
question.

There is additional interest in functionality beyond regular
x-proposal or y-regression for BBO. While the LLM com-
munity has actively studied interpretability (Luo & Specia,
2024), attribution (Li et al., 2023b), and uncertainty quan-
tification (Xiong et al., 2023) for general LLM assistant
scenarios, there has been little work in the context of BBO
and decision-making in bandit settings. Such BBO-specific
functionalities are likely to be more difficult to induce, as
they require advanced mathematical and numerical reason-
ing beyond current LLM capabilities.

Training Datasets: Learned BBO algorithms are signifi-
cantly dependent on both the quality and quantity of data
available. The most obvious useful data are function evalua-
tions (x, y), as they can be used to form a prior on the nature
of the function being optimized. The most common form of
usage are for pretraining regressors which can then guide
the search process. Due to limitations to fixed search spaces,
traditional methods do not have or consider large real-world
training datasets. As a result, there is currently a lack of
large-scale open-source evaluation datasets. This conse-
quently limits a learned BBO method’s generality, even
though Chen et al. (2022c) is the first work which has shown
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Deserialization
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Figure 3. Summary of future challenges and open questions for BBO with LLMs.

that training a foundation model over large-scale hyperpa-
rameter tuning data collected by Google Vizier (Golovin
et al., 2017) leads to robust generalization to new tuning
tasks with different search and feedback spaces.

Unfortunately, industry datasets such as Google Vizier
(Golovin et al., 2017) and Ax (Facebook, 2021) with rich
task-specific metadata, are unlikely to be fully open-sourced
due to proprietary legal and privacy concerns. While there
have been some efforts to standardize smaller-sized public
datasets (Eggensperger et al., 2021; Trabucco et al., 2022)
and centralize community-driven data over an open platform
such as OpenML (Bischl et al., 2021), an important question
is when the BBO community may be able to truly embrace
data-driven approaches.

A further open-question remains on how to obtain more
domain knowledge besides using function evaluations. For
instance, techniques from protein design (Castro et al., 2022;
Madani et al., 2023) train foundation models over protein
sequence data as a form of knowledge absorption. It remains
to be seen whether additional “optimization knowledge”
can be gained from free-form datasets such as textbooks,
academic papers, and whether these can lead to emergent
behaviors via generative pretraining and RL-finetuning. For
example, the field of hyperparameter optimization could
be improved by semantically understanding the nature of
the tuned objective - e.g. academic knowledge of the term
“batch size” could lead to better hyperparameter proposals.

Generalization and Customization: The primary chal-
lenge of meta-learning is its limited generalization to new
tasks from different domains, search space dimensions, con-
straints, or simply different trajectory lengths. This is mostly
due to the issue of meta-overfitting where the optimizer has
overfitted to a limited number of optimization tasks with low
diversity. Expanding the training set of tasks and optimizer

model size could be effective solutions as suggested by LLM
scaling laws. Additionally, the impressive in-context learn-
ing capacity (Brown et al., 2020) of a large Transformer
allows a pretrained model to generalize to a new setting
with few demonstrations without changing its weights. This
would be an intriguing feature for adapting meta-learned
BBO methods to new application tasks as it is typically dif-
ficult to obtain a large number of similar optimization tasks
for adaptation in real applications.

Related to generalization is the customization of a pretrained
optimizer to different use cases. It is necessary that a model
understands the user’s intent to optimize a function. For
example, a user may prefer more exploration in a prelimi-
nary experimental design phase with a small budget while
another user prefers to find a good solution as soon as pos-
sible. Furthermore, different users may require different
safety / exploration constraints and provide various side
information about the objective. Training a new optimizer
for every use case is not feasible in practice. In contrast,
the sequential input format of LLMs permits efficiently cus-
tomizing its behavior through prompting, which can provide
additional capabilities such as providing explanations for
why the model suggested x or confidence over predictions
of y-values.

While previous works (Chen et al., 2021; 2022c; Lange
et al., 2024a;b) have used Transformers and even LLMs
as the underlying model, they still only implicitly learn
the intent for improvement by manipulating the sequential
order of trials, such as least-to-most sorting by y-values and
inversely using a query y to obtain a response x. The next
generation of optimizers must allow explicit commands for
optimization-related behaviors.

Benchmarking: Currently, most of BBO benchmarking re-
quires well-defined, simple search spaces and objectives
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with minimal contexts, to follow the namesake “black-
box” and provide fair comparisons between general-purpose
methods. These include extensive and official benchmarking
tasks such as BBOB (Elhara et al., 2019), NASBench (Ying
et al., 2019) or NeuroEvoBench (Lange et al., 2023c). How-
ever, we advocate for a wider spectrum of benchmarks that
do not follow this regime, as they are crucial to the future of
BBO.

For starters, there is a need for metadata-rich black-box op-
timization, especially as real-world problems inherently are
not truly black-box. These benchmarks should be designed
to emphasize an optimizer’s utilization of rich metadata.
In particular, this alludes to the use of additional language
encoders in optimizers not only limited to LLMs, such as
(Lange et al., 2024b; Chen et al., 2022c) which have shown
promise over in real-world problems by using dedicated
decoders.

As systems become more integrated with LLMs end-to-end,
there is also a need to assess intermediate decision-making
capabilities which are not typically measured by opaque
traditional BBO metrics such as regret or best-objective. As
shown recently via multi-armed bandit problems, (Krishna-
murthy et al., 2024) claims LLMs such as GPT-4 to be quite
poor at balancing explore-exploit tradeoffs. Meanwhile,
(Song et al., 2024) demonstrated strong results on regres-
sion for fine-tuned language models. Another important
capability is constraint-following, not just over mathemati-
cal objects but also ambiguous natural language constraints
(e.g. “Give a batch size which fits into GPU memory”).

Furthermore, there are important yet non-obvious applica-
tions that can be framed as black-box optimization, partic-
ularly over more exotic search spaces or feedback formats.
For example, there has been recent interest in evaluating
and benchmarking LLM-based code generation (Ji et al.,
2023; Fu et al., 2023; Xu et al., 2022). Human-based reward
modeling and reinforcement learning from human feedback
(RLHF) can also respectively be seen as regression and
black-box surrogate optimization (Ramamurthy et al., 2022;
Wang et al., 2018). In addition, heavily-used techniques
such as prompt engineering possess domain-specific guide-
lines (Wang et al., 2023b;a) but still lack well-accepted
benchmarks and evaluation paradigms. Ultimately it re-
mains an open problem to integrate these applications into a
setting comparable to that of traditional BBO problems.

5. Future Directions
We identified and discussed challenges hindering progress in
applying LLM and Transformer-based models specifically
over optimization tasks, as well as their existing solutions
in Section 4. These insights highlight key areas where fo-
cused research efforts can lead to substantial advancements.

Venturing further into a domain that permits a more ex-
tended time horizon and a wider scope reveals intriguing
and promising directions for future research.

The envisioning of a universal LLM, adept in both natural
language understanding and executing complex optimiza-
tion tasks, marks a significant leap forward in AI technology.
Such a forward-looking model, with its capacity to pro-
cess user-provided metadata about target optimization
problems through straightforward instructions, promises
transformative impact across numerous sectors. Imagine its
application in enhancing human-robot interaction (Brohan
et al., 2023; Yu et al., 2023), revolutionizing autonomous
driving systems (Sha et al., 2023), innovating reward design
in learning environments (Ma et al., 2023), and redefining
efficiency in logistics planning (Li et al., 2023a). Moreover,
the scope of this model’s capabilities extends well beyond
these areas. Envision, for instance, its application in a multi-
agent setting where, through self-dialogue, the model could
autonomously uncover and propose solutions to complex
problems that elude human detection. Such innovative capa-
bilities hint at a promising trajectory towards the realization
of artificial general intelligence.

Realizing the vision of a universal LLM for complex op-
timization tasks hinges on overcoming significant hurdles,
but recent promising strides in related areas signal a path
forward. One of the primary challenges is managing long
context lengths in problem descriptions, a task where
methods like those in (Jin et al., 2024; Xiao et al., 2023)
show promise, yet their direct application to optimization-
focused LLMs remains to be validated. Equally important is
the integration of multi-modal data, crucial for a holistic
understanding of complex problems, with current techniques
in (Liu et al., 2023d;c) potentially serving as a foundation.
Furthermore, the idea of model composition, perhaps involv-
ing a network of specialized LLMs as indicated by research
in (Shen et al., 2023; Bansal et al., 2024), opens new av-
enues but also demands further exploration. Crucially, these
challenges underscore the need for enhanced collaboration
and open research, urging a collective approach across dif-
ferent LLMs and disciplines to unlock the full potential of
such models.
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