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Abstract
The promise of least-privilege learning – to find
feature representations that are useful for a learn-
ing task but prevent inference of any sensitive
information unrelated to this task – is highly ap-
pealing. However, so far this concept has only
been stated informally. It thus remains an open
question whether and how we can achieve this
goal. In this work, we provide the first formalisa-
tion of the least-privilege principle for machine
learning and characterise its feasibility. We prove
that there is a fundamental trade-off between a
representation’s utility for a given task and its
leakage beyond the intended task: it is not possi-
ble to learn representations that have high utility
for the intended task but, at the same time prevent
inference of any attribute other than the task la-
bel itself. This trade-off holds regardless of the
technique used to learn the feature mappings that
produce these representations. We empirically
validate this result for a wide range of learning
techniques, model architectures, and datasets.

1. Introduction
The need to reveal data to untrusted service providers to ob-
tain value from machine learning as a service (MLaaS) puts
individuals at risk of data misuse and harmful inferences.
The service provider observes raw data records at training
or inference time and might abuse them for purposes other
than the intended learning task. For instance, an image
shared with a provider for the purpose of face verification
might be misused to infer an individual’s race and lead to
discrimination (Citron & Solove, 2022).

Sharing Representations to Prevent Data Misuse. Col-
laborative learning and model partitioning claim to prevent
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such misuse in model training and inference MLaaS set-
tings, respectively. In both cases, individuals share a feature
representation of their raw data with the service provider;
in the form of model updates in the collaborative learning
setting (McMahan & Ramage, 2017; Hao, 2019) and of
feature encodings in the model partitioning setting (Osia
et al., 2018; Chi et al., 2018; Wang et al., 2018; Brown et al.,
2022). Proponents of both techniques argue that, because
individuals only share a representation of their data, and
not the data itself, the service provider no longer has access
to information that might be abused for purposes other than
the intended task.

Unintended Feature Leakage. However, previous re-
search shows that a passive adversary can misuse the shared
representations to infer data attributes that are unrelated to
the learning task, or even reconstruct data records (Boenisch
et al., 2023; Ganju et al., 2018; Melis et al., 2019; Song &
Shmatikov, 2019). For instance, Song & Shmatikov (2019)
show that features extracted from a gender classification
model also reveal an individual’s race. Even higher-layer
features, that are assumed to be more learning-task spe-
cific, might lead to such unexpected inferences (Mo et al.,
2021). These examples show that limiting data access to
feature representations does not necessarily prevent unin-
tended information leakage and thus, does not fully mitigate
the risk of data misuse associated with attributes other than
the learning task.

Least-Privilege Learning. Some works (Osia et al., 2018;
Melis et al., 2019; Brown et al., 2022) suggest that the
solution to this issue is to ensure that the feature mappings
that produce such representations follow the least-privilege
principle (LPP). That is, to enforce that the representations
shared with the service provider only contain information
relevant to the learning task, and nothing else. Previous
work repeatedly suggests least-privilege learning (LPL) as a
promising avenue to prevent data misuse. Yet, it has only
been described informally and lacks a precise definition.

Contributions. We make the following contributions:

I) We provide the first formalisation of the least-privilege
principle for machine learning as a variant of the gen-
eralized Conditional Entropy Bottleneck problem (Fis-
cher, 2020). Our formalisation enables us to charac-
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terise the limits of unintended information leakage in
MLaaS settings.

II) We observe that any feature representation must at
least leak all information about the input data that can
be inferred from the learning task label itself. We
show experimentally that this fundamental leakage can
reveal information that is not intuitively related to the
intended task and that could be misused for harmful
inferences.

III) We formally prove a fundamental trade-off: under re-
alistic assumptions on the data distribution, it is not
possible to learn feature representations that have high
utility for the intended task but, at the same time, re-
strict information leakage about data attributes other
than the intended task to its fundamental leakage.

IV) We experimentally demonstrate this trade-off across
learning techniques, model architectures, and datasets.
We show that as long as the representations have utility
for their intended task, there exist attributes other than
the task label that can be inferred from the shared repre-
sentations and thus violate the least-privilege principle.

Related Work. Prior works refer to the LPP but so far only
study the problem of attribute obfuscation for a single, fixed
sensitive attribute. For instance, Song & Shmatikov (2019)
experimentally observe that current censoring techniques
can only prevent a model from learning a sensitive attribute
at a cost in model utility. Their claim that “overlearning
[of sensitive attributes] is intrinsic” (Song & Shmatikov,
2019) to machine learning models is derived from empirical
observations on a single learning task and sensitive attribute
for a small set of censoring techniques. Zhao et al. (2020)
formally derive a lower bound on the trade-off between
a model’s performance on its intended learning task and
hiding a fixed sensitive attribute.

While these results characterise the trade-off between a rep-
resentation’s utility and leakage with respect to a specific
attribute, they do not actually evaluate whether it is possi-
ble to learn useful representations that fulfil the LPP. They
focus on a single attribute, whereas the LPP demands that
the representations shared with the service provider should
prevent inference of any information other than the intended
task (Melis et al., 2019; Brown et al., 2022). Furthermore,
neither Song & Shmatikov (2019) nor Zhao et al. (2020)
consider that useful representations must at least leak any
sensitive information already revealed by the task label it-
self. As we argue in Section 3, such fundamental leakage is
crucial to consider when formalising LPL.

2. Problem Setup
We consider the common MLaaS setting in which individual
data owners, or users, share their data with a service provider
for a target task, e.g., model training or inference. Users
agree to the usage of their data for the intended task but
want to prevent data misuse through the service provider. In
this section, we formalize this problem setup.

Notation. Let X,Y, S ∼ PX,Y,S be a set of random vari-
ables distributed according to PX,Y,S where X ∈ X, and
Y ∈ Y are, respectively, an example and its learning task la-
bel, and S ∈ S is a sensitive attribute. For any three random
variables X,Y,W , we denote by Y − X −W a Markov
chain, which is equivalent to stating that: Y ⊥⊥W | X .

Assumptions on the Data Distribution. To make our for-
mal analyses tractable, we assume that the spaces X,Y,S
are discrete and finite; and that the data domain is non-trivial
(|X| > 1 and |Y| > 1) and has full support. We further make
the following assumption about the data distribution:

Assumption A (Strictly positive posterior). We say that the
posterior distribution, PY |X , is strictly positive if for any
x ∈ X, y ∈ Y we have PY |X(y | x) > 0.

This assumption is realistic in settings where there exists
inherent uncertainty about the ground truth label of a given
example. Examples include the presence of label noise in-
troduced by the labelling process (Song et al., 2022), and,
under the Bayesian interpretation of probability, task labels
that are subjective. This is the case, for instance, in many
MLaaS applications, such as emotion recognition or pre-
diction of face attributes (e.g., smiling) which come with
uncertainty and labelling unreliability (Raji et al., 2021).

Problem Setup. In the MLaaS setting, individual users
hold a set of data records (xi, yi) for i = 1, . . . , N and
agree to share their data with a service provider for a spe-
cific purpose. For example, a user might be willing to
reveal an image of their face to the provider of a biometric
face recognition system to prove their identity. However, if
the user directly reveals the original image X , the service
provider can misuse the shared data for purposes other than
the intended task, i.e., to verify the user’s identity.

To prevent such data misuse, users share a representation of
their data that restricts information leakage to the necessary
minimum for the intended purpose (see Fig. 1). For instance,
in the previous example, a representation that only reveals
features relevant to recognising a user’s identity. The goal
hence is to find a possibly randomized feature mapping
fE(·) that maps input X to a representation Z = fE(X)
that both has high utility for the intended task Y but prevents
inference of any other data attribute S. We formalise this
goal and characterise its feasibility in the next section.
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Figure 1: To prevent potential data misuse in a MLaaS setting, users share a representation of their data. These representations
should be useful to achieve the intended purpose (verify users’ identity) but prevent inference of other data attributes (users’
gender) that might lead to harms, such as discrimination.

Training vs. Inference Settings. The example above de-
scribes a MLaaS inference setting in which users directly
share a representation of their data for the purpose of pre-
dicting the intended task label. However, the same problem
setup applies to the collaborative MLaaS training setting
in which users share gradient updates instead of their raw
data to prevent data misuse. As Melis et al. (2019) show,
these “gradient updates can [...] be used to infer feature
values” and thus are just a version of the model-generated
representations Z = fE(X).

3. The Least-Privilege Principle in Machine
Learning

The Least-Privilege Security Principle. The LPP is a de-
sign principle for building secure information systems in-
troduced by Saltzer & Schroeder (1975). Its definition de-
mands that “Every program and every user of the system
should operate using the least set of privileges necessary to
complete the job.” In secure systems engineering, a privi-
lege is a clearly defined action that an actor in the system
is authorised to carry out. Transferring this concept to the
machine learning domain is not trivial. To do so, we have to
first quantise the learning process into a set of smaller privi-
leges and then define what is the minimum set of privileges
needed to carry out a learning task.

We approach this problem through the lens of attribute infer-
ence: The goal of the user is to allow inference of the task
attribute Y from representation Z but prevent inference of
any data attribute S other than the learning task. We define
a privilege as the ability to learn the value of a particular
attribute, and formalise the LPP in terms of inference gain
about data attributes other than the learning task.

3.1. Utility Measure

The representation shared with the service provider should
be useful for the intended purpose, i.e., contain features

relevant to correctly infer task label Y . One common way
to formalise this objective is the mutual information be-
tween the representations and the task label I(Y ;Z) =
I(Y ; fE(X)) (Alemi et al., 2016). The higher the informa-
tion between Z and Y , the more useful the representation
will be for the intended task. We make this notion more
general by using a variant of mutual information known
as Arimoto’s α-information (Arimoto, 1977), which we de-
note as Iα(Y ;Z). In particular, we consider two relevant
instantiations of α: α = 1 and α = ∞. In the case that
α = 1, Arimoto’s information is equal to classical Shan-
non’s mutual information Iα(Y ;Z) = I(Y ;Z), described
previously. In the case that α = ∞, Arimoto’s informa-
tion is the multiplicative gain in accuracy of predicting the
task label Y from the learned representations over baseline
guessing (Liao et al., 2019):

I∞(Y ;Z) , log
Pr[Y = fC(Z)]

Pr[Y = Ŷ ]
(1)

where log(·) is the base-2 logarithm, fC(Z) denotes the
prediction for task label Y of a classifier fC based on repre-
sentation Z, and Ŷ , arg maxy∈Y Pr[Y = y] represents
the baseline guess based on the most common attribute
value. The latter notion of I∞(Y ;Z) is especially useful to
evaluate utility of representations for classification tasks, as
it is normalised prediction accuracy.

3.2. Leakage Measure

As described in Section 2, users want to restrict information
leakage about data attributes other than the intended task.
We evaluate such unintended leakage through the success of
an inference adversary g(W ) that tries to infer the value of a
sensitive attribute S from information W . In line with stan-
dard practices in security and privacy, we use Bayes-optimal
adversaries (Sablayrolles et al., 2019; Chatzikokolakis et al.,
2023) that achieve optimal inference accuracy and hence
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measure worst-case inference risk:

Ŝ(W ) , arg max
g: W→S

Pr[S = g(W )]. (2)

We use Ŝ without the argument to denote the majority class
baseline guess: Ŝ , arg maxs∈S Pr[S = s].

We measure unintended leakage about sensitive attribute S
through an adversary’s multiplicative gain (Arimoto’s infor-
mation with α = ∞). Formally, the gain of an adversary
Ŝ(W ) who has access to information W over their baseline
guess is defined as:

I∞(S;W ) , log
Pr[S = Ŝ(W )]

Pr[S = Ŝ]
. (3)

We denote the gain of an adversary Ŝ(W,W ′) with access
to two sources of information W and W ′ over their guess
with only one source of information W ′ as:

I∞(S;W |W ′) , log
Pr[S = Ŝ(W,W ′)]

Pr[S = Ŝ(W ′)]
. (4)

We use these two measures (Eq. (1) as a representation’s
utility and Eq. (4) as its unintended leakage) to formalise
the LPP in machine learning.

3.3. Strawman Approach: Unconditional
Least-Privilege Principle

The promise of LPL, as suggested by prior work (Osia et al.,
2018; Melis et al., 2019; Brown et al., 2022), is to find a
feature representation that only contains information rele-
vant to the “purpose for which it was designed and nothing
else” (Brown et al., 2022). To formalise the LPP, in contrast
to related works on attribute obfuscation, we hence cannot
assume the sensitive attribute S to be fixed. Instead, we
need to assume that any attribute — e.g., any function of
the input — other than the learning task S 6= Y is sensitive
and its inference might lead to harm. Formally:

Definition 1 (Unconditional LPP). Given a data distribu-
tion PX,Y , a feature map fE(X) = Z satisfies the uncon-
ditional LPP with parameter γ if for any attribute S 6= Y
which follows the Markov chain S −X − Z, the attribute
inference gain is bounded:

Pr[S = Ŝ(Z)]

Pr[S = Ŝ]
≤ 2γ (5)

Equivalently:

sup
S 6=Y : S−X−Z

I∞(S;Z) ≤ γ (6)

Many previous works suggest that it is possible to find a
feature map fE(X) = Z that fulfils the unconditional LPP,

and at the same time produces representations with high
utility for the learning task (Osia et al., 2018; Melis et al.,
2019; Brown et al., 2022). To address the question whether
it is possible to achieve high utility for the intended task and
simultaneously satisfy the unconditional LPP, we formally
characterise this trade-off:
Theorem 1 (Unconditional LPP and Utility Trade-Off).
Suppose that PY |X is strictly positive (Assumption A).
Then, for α ∈ {1,∞}, the following two properties cannot
hold at the same time:

I) Z = fE(X) satisfies the unconditional LPP with pa-
rameter γ

II) Iα(Y ;Z) > γ

We provide a proof of this and all of the following formal
statements in Appendix A. This result implies that whenever
a representation has a certain utility for the learning task
with Iα(Y,Z) > γ, there exists a sensitive attribute for
which an adversary’s inference gain is at least as large with
I∞(S,Z) ≥ γ. In fact, under Definition 1, it is easy to
construct this attribute to be infinitesimally close to the task
label Y but not quite match it. In the next section, we
provide an alternative formalisation of the LPP that captures
the requirement S 6= Y yet precludes these cases.

3.4. Formalisation of the Least-Privilege Principle

In the previous section, we show that the unconditional
LPP, i.e., hiding all information about X , comes with a
stringent trade-off. But this is an unnecessarily restrictive
goal. To use a service, users must be willing to reveal
to the service provider at least the intended result of the
computation, i.e., the task label Y . As a consequence, they
cannot conceal from the service provider any information
that can be inferred from Y itself. This information hence
defines the least privilege that can be given to the service
provider, i.e., the minimum access to data attributes that
must be granted to carry out a task. We call this information
the fundamental leakage of the task. For a given attribute S,
the fundamental leakage equals Pr[S = Ŝ(Y )].

We propose a formalisation of the LPP that only demands
that sharing a record’s feature representation Z = fE(X)
does not reveal more information about a sensitive attribute
S than publishing Y itself:
Definition 2 (LPP). Given a data distribution PX,Y , a fea-
ture map fE(X) = Z satisfies the LPP with parameter
γ if for any attribute S which follows the Markov chain
S− (X,Y )−Z, the attribute inference gain from observing
(Z, Y ) over the fundamental leakage is bounded:

Pr[S = Ŝ(Z, Y )]

Pr[S = Ŝ(Y )]
≤ 2γ (7)
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Equivalently:

sup
S: S−(X,Y )−Z

I∞(S;Z | Y ) ≤ γ (8)

Notably, the quantity constrained by the LPP is known as
maximal leakage (Issa et al., 2019):

L(X → Z | Y ) , sup
S: S−(X,Y )−Z

I∞(S;Z | Y ). (9)

In comparison to the unconditional variant, this formalisa-
tion does not require S 6= Y . Therefore, it does not restrict
the adversary’s absolute gain from observing Z, but only
restricts the leakage about sensitive attribute S to its funda-
mental limit, i.e., the leakage caused by the learning task
label itself.

Interpretation. A feature map that satisfies the LPP in Def-
inition 2 with a value of γ ≈ 0 restricts the information
available to the service provider to what is necessary for the
intended purpose of the system: produce an accurate predic-
tion of the task label Y . Hence, this formalisation supports
the data protection principle of purpose limitation which
states that “data should only be collected for specified, ex-
plicit, and legitimate purposes and not further processed in a
manner that is incompatible with those purposes” (European
Parliament and Council of the European Union, 2016).

We must stress that, despite minimizing the information
available to the service provider, this definition does not
imply that a feature map that satisfies the LPP will neces-
sarily prevent all harmful inferences. The LPP only limits
the risk of revealing Z = fE(X) to the fundamental risk
already incurred by revealing Y itself. In Section 4.1, we
empirically show that even the fundamental leakage can lead
to inferences that might violate users’ expectations about
the information they reveal through the use of a service—a
violation of contextual integrity (Nissenbaum, 2004)—and
lead to harms (Citron & Solove, 2022).

Perfect LPP. We first analyse the feasibility of perfect LPP
with γ = 0. Perfect LPP implies that the representation Z
leaks strictly no more information about the data X than
already revealed by the task label Y itself. As we show next,
perfect LPP is possible only under a restrictive assumption
on the data distribution.

Proposition 1. There exists a feature map fE(X) that fulfils
the LPP with γ = 0 if and only if we have a Markov chain
X − Y − Z.

One class of data distributions that fulfils this condition and
where perfect LPP is feasible is any distribution in which
the intended task label Y is a deterministic function of the
input data X (see, e.g., Fischer (2020)):

Corollary 1. If Y = g(X) for some function g : X → Y,
there exists fE(X) which achieves perfect LPP with γ = 0.

As we discuss in Section 2, in many realistic scenarios, how-
ever, there is inherent uncertainty about an example’s true
label due to, for instance, label noise. Under Assumption A,
perfect LPP is unattainable by non-trivial feature maps:

Corollary 2. Under Assumption A, the feature map fE(X)
satisfies LPP with γ = 0 if and only if it is fully random or
constant: fE(X) ⊥⊥ X .

LPP and Utility Trade-Off. We now study whether we can
find a feature map that achieves the LPP in Definition 2 with
γ > 0, and simultaneously has good utility for the intended
learning task. We show the general trade-off between a
representation’s utility and the LPP requirement:

Theorem 2 (LPP and Utility Trade-Off). Suppose that
PY |X is strictly positive (Assumption A). Then, for α ∈
{1,∞}, the following two properties cannot hold at the
same time:

I) Z = fE(X) satisfies the LPP with parameter γ

II) Iα(Y ;Z) > γ

See Appendix A for a full proof and Fig. 2 for an illustration.

One way to see why the trade-off holds is through the lens of
attributes that reveal maximum possible information about
X from Z (see Appendix A for a formal description). Intu-
itively, we would expect that by allowing for fundamental
leakage, i.e., by conditioning on Y , we might reduce maxi-
mal leakage in those cases where Y is a maximally revealing
attribute. However, as we show in Appendix A, strict posi-
tivity of the posterior distribution (Assumption A) prevents
the task label Y from being a maximally revealing attribute,
thus the least-privilege and utility trade-off remains the same
as under unconditional LPP (Theorem 1).

Related Formalisms. Our formalisation of the LPP is
closely related to the Minimum Necessary Information
(MNI) principle introduced by Fischer (2020). The MNI
criterion demands that a representation Z should maximise
the mutual information I(Y ;Z) while minimising the con-
ditional information I(X;Z | Y ). The LPP and MNI differ
in their leakage measure, but are equal in the optimal point
of γ = 0 in which I(X;Z | Y ) = L(X → Z | Y ) = 0.

The question of finding a feature representation that max-
imises utility but satisfies the LPP posed by Theorem 2 can
be seen as a variant of the conditional entropy bottleneck
(CEB) problem (Fischer, 2020), which, in turn is a variant
of the standard information bottleneck problem (Asoodeh &
Calmon, 2020; Tishby et al., 2000). The CEB problem aims
to recover a representation that satisfies the MNI principle.

Unlike in the MNI and CEB, we require a leakage mea-
sure that captures the original claim from prior work that
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Figure 2: γ-LPP limits maximum utility Iα(Y ;Z) of a
representation Z to the greyed-out region.

it is possible to learn representations that protect against
any harmful inferences, i.e., protect even against worst-case
inference adversaries. Maximal leakage satisfies this re-
quirement and in addition has a direct operational meaning
in terms of inference gain (see Eq. (4)).

Other works, such as Mireshghallah et al. (2021) or Maeng
et al. (2024), differ not only in their leakage measure but
crucially do not consider a task’s fundamental leakage, i.e.,
do not define the trade-off in terms of the conditional leak-
age Iα(S,Z | Y ). In addition, Mireshghallah et al. (2021)
and other formalisations of related information-theoretic
problems, such as the Privacy Funnel (Makhdoumi et al.,
2014; Asoodeh & Calmon, 2020), only consider a fixed
sensitive attribute which does not adequately capture the
least-privilege requirement.

LPP vs. LDP. Melis et al. (2019) suggest that LPL might
be used to limit unintended information leakage as an alter-
native approach to record-level differential privacy (Dwork
et al., 2014) which they find imposes a high utility cost
that prevents its application in many realistic MLaaS scenar-
ios. The hope is that LPL might provide a better trade-off
between utility and restricting unintended information leak-
age than differental privacy. Our formalisation of the LPP
enables us to formally analyse this claim.

First, let us define local differential privacy (LDP), a variant
of differential privacy that is relevant to our MLaaS setting
(see Fig. 1).

Definition 3 (LDP). A feature map fE(X) = Z satisfies
ε-LDP if for any x, x′ ∈ X, and any z ∈ Z, we have:

Pr[fE(x) = z]

Pr[fE(x′) = z]
≤ 2ε. (10)

Conventionally, a power of e instead of 2 is used, but we
use the latter for consistency with our previous definitions.

Given this definition, we show that LDP implies LPP:

Proposition 2. A feature map that satisfies ε-LDP also
satisfies ε-LPP.

An important implication is that a feature map that satisfies
the LPP comes with the same utility trade-off as one that
satisfies LDP. Thus, in the setting of Theorem 2, LPL cannot
provide an alternative to differential privacy at a lower utility
cost as envisioned by prior work (Osia et al., 2018; Melis
et al., 2019).

Takeaways. In summary, Theorem 2 implies that in many
realistic applications (see Assumption A) there is a stringent
trade-off between a representation’s utility and achieving
the LPP. Notably, this holds for any feature representation
regardless of the learning technique used to obtain the fea-
ture mapping or the exact model architecture. In the next
section, we show the practical implications of this result.

4. Empirical Evaluation
In this section, we empirically validate our theoretical re-
sults. We demonstrate that the fundamental trade-off be-
tween a representation’s utility for its intended task and the
LPP applies to any feature representation regardless of the
feature learning technique, model architecture, or dataset.
Due to space constraints, in the main body of the paper,
we only present results for an image dataset, two different
learning techniques, and a single model architecture. We
discuss additional results that confirm that our theoretical
results hold on a wider range of learning techniques, models,
and datasets in Section 4.2, with their details deferred to
Appendix B.

Data. In our main experiment, we use the LFWA+ image
dataset which has multiple binary attribute labels for each
image (Huang et al., 2008). The full dataset contains 13, 143
examples which we split in the following way: 20% of
records are given to the adversary as an auxiliary dataset
DA. The remaining 10, 514 records are split 80/20% across
a train DT and evaluation set DE .

Model. We choose a deep convolutional neural network
(CNN256) used by Melis et al. (2019), the first work to
propose feature learning under a least-privilege principle.
In the main results, we use the network’s last layer repre-
sentation as feature map Z = fE(X). We choose the last
layer because, as Melis et al. (2019) and Mo et al. (2021)
show, higher layer representations are expected to be more
learning task specific and hence should restrict leakage of
data attributes other than the task more than lower layer rep-
resentations. In Appendix B, we include experiments with
representations from other hidden layers of the model and
for a MLaaS training setting in which users share gradients
from all layers of the model.

Adversaries. To evaluate leakage of a given attribute, we
instantiate Bayes-optimal adversaries with access to the
auxiliary set DA of labelled examples ri = (xi, yi, si) for
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i = 1, . . . , A. The label-only adversary Ŝ(Y ) computes the
relative frequency counts over DA to estimate:

P̃r[S = s | Y = y] ,

∑A
i=1 1[si = s, yi = y]∑A

i=1 1[yi = y]
,

and outputs a guess according to:

Ŝ(Y = y) = arg max
s

P̃r[S = s | Y = y].

The features adversary Ŝ(Z, Y ) is given black-box access
to the feature mapping of the trained model. To collect
a train set, the features adversary submits each example
xi ∈ DA to the model and receives back its representation
zi = fE(xi). The adversary then trains a Random Forest
classifier with 50 decision trees on the collected samples
(zi, yi, si) to estimate P̃r[S = s | Z = z, Y = y]. We opt
for Random Forest as an attack model based on its superior
performance over other classifiers we tested.

Experimental Setup. In each experiment, we select one
out of 12 attributes from the LFWA+ dataset as the model’s
learning task Y and a second attribute as the sensitive at-
tribute S targeted by the adversary. We select attributes for
which we expect the distribution PY |X to be strictly positive
due to their subjective nature (see Assumption A). We re-
peat each experiment 5 times to capture randomness of our
measurements for both the model and adversary, and show
average results across all 5 repetitions. At the start of the
experiment, we split the data into train DT , evaluation DE ,
and auxiliary set DA. We train the model CNN256 on the
train set DT for the chosen learning task and then estimate
its utility on the evaluation set DE . We estimate the model’s
utility as its multiplicative gain in task accuracy Ĩ∞(Y ;Z)
(see Eq. (1)). After model training and evaluation, we train
both the label-only and features adversary on the auxiliary
data DA. For a given sensitive attribute S, we estimate the
adversary’s gain as Ĩ∞(S;Z | Y ) (see Eq. (4)).

Learning Techniques. We implement two learning tech-
niques: (1) standard ERM with SGD, and (2) attribute cen-
soring to learn representations that hide a given sensitive
attribute. In our main experiment, we use the gradient rever-
sal strategy (GRAD) introduced by Raff & Sylvester (2018)
for censoring with a censoring parameter of 100. We choose
GRAD because it effectively hides the chosen sensitive at-
tribute without large drops in model performance (Zhao
et al., 2020), and, unlike other censoring techniques, can
be applied to any model architecture. In Appendix B, we
show equivalent results for another learning technique that
aims to hide sensitive information, adversarial representa-
tion learning.

4.1. The Potential Harms of Fundamental Leakage

Fig. 3 (left) shows the adversary’s gain Ĩ∞(S;Y ) in predict-
ing sensitive attribute S from Y for pair-wise combinations
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Figure 3: Fundamental leakage: the task label reveals
information about other data attributes, which might
not be obvious to data subjects. Attribute inference gain
of the label-only adversary (left) and pairwise Pearson’s
correlation between attributes (right). In the LFWA+ dataset,
the ‘Attractive’ label is highly correlated with the perceived
gender. Thus, predicting the ‘Attractive’ label will reveal
information about gender.

of 12 learning tasks and sensitive attributes. This gain rep-
resents the fundamental leakage of a system that fulfils its
intended purpose, i.e., that produces accurate task labels for
the chosen learning task. The matrix in Fig. 3 (right) shows
the absolute pairwise Pearson’s correlation coefficient be-
tween attribute labels. Fig. 3 shows that, as expected, a
strong linear relationship between the learning task and the
sensitive attribute targeted by the adversary leads to a large
fundamental leakage. For instance, ‘Attractive’ and ‘Male’
are negatively correlated with a correlation coefficient of
−0.3094. This is already enough to increase the adversary’s
gain in inferring sensitive attribute ‘Male’ when the learn-
ing task is ‘Attractive’. Although the increase is small in
this case, it illustrates how inferences due to a task’s fun-
damental leakage can not only be counterintuitive, but also
reveal information that could lead to harm (in this case,
discrimination due to gender).

The fundamental leakage for some pairs of tasks and sen-
sitive attributes is highly concerning. It implies that users
reveal to the service provider not only their task label but
also any attribute that is correlated with the chosen task.
This consequence is rarely made explicit to users when they
are informed about the data collection and processing, and
might lead to unexpected harms beyond those associated
with revealing the task label itself. In the example above,
a user expecting to only reveal ‘attractiveness’ might not
expect that their gender is revealed, with the ensuing risks
of discrimination. To better inform users about their risk,
providers would have to list all sensitive attributes that might
be leaked through a task’s fundamental leakage. Knowing
all such attributes is infeasible. To address this problem, ser-
vice providers could empirically evaluate whether attributes
considered particularly sensitive are part of the fundamental
leakage and inform data subjects about the result.
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4.2. The Least-Privilege And Utility Trade-Off

One way to interpret Theorem 2 is that whenever the fea-
tures learned by a model are useful for a given prediction
task, there always exists a sensitive attribute for which an ad-
versary gains an advantage from observing a target record’s
feature representation. We experimentally show this funda-
mental limit of least-privilege learning.

Figure 4: If the model-generated representations have
utility for the task (right), there exists a sensitive at-
tribute with an even higher inference gain for the ad-
versary (left, red means more leakage). This holds for
both standard ERM (top) and attribute censoring (bottom)
where we censor the attribute with highest leakage in the
respective ERM model (marked as Y). Censoring has a
‘whack-a-mole’ effect: as we censor one attribute, leakage
of another attribute increases.

Fig. 4 compares the trade-off between utility and attribute
leakage of models trained with standard SGD (top) and
with GRAD to censor the representation of a single sensitive
attribute (bottom). The blue bars in Fig. 4 (right) show the
model’s utility for learning task Y measured as Ĩ∞(Y ;Z).
The heatmaps in Fig. 4 (left) show the difference between
the adversary’s inference gain and the model’s utility:

∆Adv , Ĩ∞(S;Z | Y )− Ĩ∞(Y ;Z).

Each row corresponds to a learning task Y , and each column
to a sensitive attribute targeted by the adversary.

Across Learning Tasks. In Fig. 4 (top), we see that in the
LFWA+ dataset the features learned by a model that pre-
dicts attribute ‘Smiling’ increase the adversary’s inference

gain for attribute ‘White’. Different tasks result in a high
leakage for different attributes, e.g., ‘OvalFace’ reveals a
lot of additional information about gender, while ‘Heavy-
Makeup’ is indicative of ‘PaleSkin’ and ‘Attractive’ but does
not have much influence on the inference power of other
attributes. Importantly, for every task, there is at least one
sensitive attribute with ∆Adv > 0. These results confirm
that the features learned by a model trained to perform well
on its learning task reveal more information than a task’s
fundamental leakage and thus violate the LPP. Fig. 5 in
Appendix B shows these results in terms of the adversary’s
absolute inference gain Ĩ∞(S;Z | Y ). It confirms that the
adversary’s absolute inference gain increases with a model’s
performance on its intended task.

Across Learning Techniques. In Fig. 4 (bottom), we show
results for models trained under attribute censoring, a com-
mon technique used to address unintended information leak-
age (Song & Shmatikov, 2019; Brown et al., 2022; Zhao
et al., 2020). For each task, we censor the attribute with the
highest leakage under standard training. First, as expected,
censoring limits the leakage of the censored attribute. How-
ever, we observe that the trade-off from Theorem 2 holds:
In all our experiments, an adversary can find another data
attribute with ∆Adv > 0 that thus violates the LPP.

In Fig. 6 in Appendix B, we present experiments for another
learning technique, adversarial representation learning, that
has been shown to be an efficient censoring technique (Zhao
et al., 2020). We find similar results: For two out of the four
sensitive attributes we test, the adversary’s inference gain
exceeds the features’ utility Ĩ∞(S,Z | Y ) > Ĩ∞(Y,Z).
These results confirm that the trade-off between a represen-
tation’s utility and the LPP holds regardless of the learning
technique used to obtain fE(X).

Across Hidden Layers. We conduct additional experi-
ments that show that the strict trade-off of Theorem 2 ap-
plies regardless of the model architecture (see Fig. 9 in
Appendix B) or the hidden layer at which the adversary ob-
serves a record’s representation (see Fig. 8 in Appendix B).
These results are in line with prior work by Mo et al. (2021)
and Melis et al. (2019). Even though higher layers are ex-
pected to be more learning task specific, an adversary can
misuse the shared representations at any layer to predict
attributes other than the intended task. We show that this
leakage even exceeds the fundamental leakage of the task
label itself and violates the LPP.

Across Datasets and Model Architectures. Besides im-
ages, tabular data is another type of data for which represen-
tation sharing is commonly suggested as a technique to limit
unintended information leakage (Zhao et al., 2020; Arik &
Pfister, 2021; Creager et al., 2019; Raff & Sylvester, 2018).
In Figs. 6 and 10 in Appendix B, we show that the trade-off
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also holds for this type of data (and the associated model
architectures) using two tabular datasets: it is not possible
to find feature representations that have high utility for a
prediction task but fulfil the LPP.

In Collaborative Learning Settings. The gradient updates
shared with a ML service provider in the collaborative learn-
ing setting are a noisy version of the feature representations
learned by the model (Melis et al., 2019). In Fig. 7 in Ap-
pendix B, we show that hence the fundamental trade-off
of Theorem 2 equally applies to gradient updates shared
for model training. Our experiments thus show that LPL
cannot, as envisioned by Melis et al. (2019), provide the
promised solution to address unintended feature leakage in
the collaborative learning setting.

Takeaways. Our experiments confirm the fundamental
trade-off we derive in Theorem 2: the representations gen-
erated by models that perform well on their intended task
fail to fulfil the LPP. Censoring techniques can be used to
limit the adversary’s inference gain on a particular attribute
but cannot avoid the trade-off: there always exists an at-
tribute, other than the learning task, that violates the LPP.
This ‘whack-a-mole’ effect is a phenomenon observed in
related scenarios, such as, privacy-preserving data publish-
ing (Narayanan & Shmatikov, 2019). Our experiments are
the first to study the trade-off between a representation’s
utility and unintended information leakage across a large
combination of learning tasks and sensitive attributes. In
contrast to prior work that evaluates unintended feature leak-
age for a single learning task and fixed sensitive attribute,
this enables us to show that although it is sometimes possi-
ble to restrict information leakage for a single attribute, the
learned representations do not fulfil the LPP.

5. Limitations and Future Work
Our results hold under a mild assumption on the data distri-
bution (Assumption A) and for a specific operational mea-
sure of leakage (Section 3.2). By relaxing these two aspects,
it might be possible to achieve a more favourable trade-off
than what we find.

First, the trade-off could possibly be less stringent for spe-
cific data distributions for which Assumption A does not
hold. In such cases, it might be possible that for some learn-
ing tasks, there exists a representation that provides some
utility gain and at the same time constrains the maximal
leakage, i.e., that simultaneously fulfils the two conditions
stated in Theorem 2. It could be a direction for future work
to formally analyse whether such representations are achiev-
able for distributions that do not satisfy Assumption A.

Second, the leakage measure used to formalise the LPP
could be relaxed by restricting the set of possible inference

targets to a less rich class of distributions. For instance,
the class of attributes targeted by the adversary could be
limited to those “efficiently identifiable” (Hébert-Johnson
et al., 2018). However, such modifications would require a
different analytical toolbox and deviate from the promise
of LPL to leak “nothing else” (Brown et al., 2022) but the
intended task. In addition, although the leakage measure
considered here might seem strong, it is already significantly
weaker than standard privacy notions, such as LDP, as it
measures attribute inference success in expectation over the
population as opposed to worst-case risks.

6. Conclusions
The promise of least-privilege learning — to learn feature
representations that are useful for a given task but avoid
leakage of any information that might be misused and cause
harm — is extremely appealing. In this paper, we show that
in certain realistic settings where there exists inherent uncer-
tainty about the task labels, any representation that provides
utility for its intended task must always leak information
about attributes other than the task and thus does neither
fulfil the least-privilege principle nor provide a better utility-
privacy trade-off than existing formal privacy-preserving
techniques. Furthermore, we show that, due to a task’s
fundamental leakage, even representations that fulfil the
least-privilege principle might not prevent all the potential
harms. These issues apply to any setting in which users
share representations instead of raw data records and re-
gardless of the learning technique used to learn the feature
mapping that produce these representations.

Impact Statement
This paper validates claims from prior works that the con-
cept of least-privilege learning might provide a promising
avenue to mitigate harms of potential misuse of machine
learning. Prior works repeatedly suggest that least-privilege
learning might achieve a better trade-off between revealing
information about an intended task and unintended informa-
tion leakage than existing techniques, such as differential
privacy. In this paper, we formally prove that least-privilege
learning might not fulfil this promise: We show that there is
an inherent trade-off between a representation’s utility and
its unintended information leakage that cannot be overcome
by any learning technique. The results of this paper will
help practitioners to evaluate the potential benefits and short-
comings of a newly proposed technique. Our formalisation
of a previously only informally stated property will enable
researchers to formally compare the trade-offs of alternative
methods to prevent data misuse in machine learning.

9



The Fundamental Limits of Least-Privilege Learning

Acknowledgements
This work is partially funded by the Swiss National Science
Foundation under grant 200021-188824. NP acknowledges
support from the Canada CIFAR AI Chair. We would like
to thank Christian Knabenhans for providing a basis for the
implementation of the empirical evaluation of this work.

References
Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K.

Deep variational information bottleneck. In International
Conference on Learning Representations, 2016.
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A. Formal Details

Maximal Leakage. First, let us provide some useful properties of maximal leakage.

Maximal leakage and conditional maximal leakage are defined (Issa et al., 2019) as follows:

L(X → Z) , sup
S: S−X−Z

I∞(S;Z), L(X → Z | Y ) , sup
S: S−(X,Y )−Z

I∞(S;Z | Y ). (11)

Lemma 1 (Issa et al. (2019)). Maximal leakage has the following properties:

I) Maximal leakage bounds mutual information for α ∈ {1,∞}: L(X → Z) ≥ Iα(X;Z)

II) Maximal leakage satisfies data processing inequalities in a Markov chain Y −X − Z:

L(Y → Z) ≤ min{L(X → Z),L(Y → X)}

III) Maximal leakage and conditional maximal leakage have the following closed forms:

L(X → Z) = log

(∑
z∈Z

max
x∈X

P (z | x)

)

L(X → Z | Y ) = log

(
max
y∈Y

∑
z∈Z

max
x∈supp(X|Y=y)

P (z | x, y)

)

Maximally Revealing Attributes. We demonstrate that there exists an attribute that is maximally revealing, i.e., achieves
the supremum supS: S−X−Z I∞(S;Z), and show how to construct this attribute.

Definition 4. For a given PX , a maximally revealing attribute S∗ (see “shattering distribution”, Issa et al., 2019) is defined
over S , X× Z via the following conditional probability distribution:

PS∗|X((x′, k) | x) ,


pmin

PX(x) , x′ = x and 1 ≤ k ≤ br(x)c
1− (dr(x)e−1)·pmin

PX(x) , x′ = x and k = dr(x)e
0, x′ 6= x,

(12)

for any x, x′ ∈ X, and k ∈ [1, . . . , dr(x)e], where pmin , minx∈X PX(x) and r(x) , PX(x)/pmin.

Proposition 3 (Issa et al. (2019)). For any Z = fE(X) and PX , the maximally revealing attribute S∗ leads to the highest
inference gain:

sup
S: S−X−Z

I∞(S;Z) = I∞(S∗;Z) (13)

Proof. It is sufficient to show that for any PZ|X and PX , we have L(X → Z) = I∞(S∗;Z). By Lemma 1 and the definition
of I∞, this is equivalent to showing:

log

(∑
z∈Z

max
x∈X

PZ|X(z | x)

)
= log

(∑
z∈Z maxs∈S PS∗,Z(s, z)

maxs∈S PS∗(s)

)
. (14)

We can see that maxs∈S PS∗|Z(s, z) from the RHS has the following form:

max
(x′,k)∈S

PS∗,Z((x′, k), z) = max
(x′,k)∈S

PS∗|X((x′, k) | x′) · PX(x′) · PZ|X(z | x′) (15)

= max
(x′,k)∈S s.t. k=1

PS∗|X((x′, 1) | x′) · PX(x′) · PZ|X(z | x′) (16)

= max
x∈X

pmin

PX(x)
· PX(x) · PZ|X(z | x) = pmin ·max

x∈X
PZ|X(z | x), (17)
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where the first equality is by Markov chain S∗ −X − Z, and the second and third are by Definition 4. Combining the
resulting expression and the fact that by Definition 4 we have

max
s∈S

PS∗(s) = max
s∈S

∑
x∈X

PS∗|X(s) · PX(x) = pmin, (18)

we get the sought result.

We also show the following technical property of a maximally revealing attribute.

Proposition 4. Suppose that |X| > 1. The conditional distribution PS∗|X is non-positive: there exist a s ∈ S and x ∈ X
such that PS∗|X(s | x) = 0.

Proof. By Definition 4, for any x ∈ X it is sufficient to take any (x′, k) ∈ S where x′ 6= x.

A.1. Omitted Proofs

Next, we provide the proofs of the formal statements in the main body of the paper.

Proof of Theorem 1. By construction, we have a Markov chain Y −X − Z. Observe that S∗ 6= Y by Proposition 4 and
strict positivity (Assumption A). Therefore,

sup
S: S−X−Z, S 6=Y

I∞(S;Z) = I∞(S∗;Z) = sup
S: S−X−Z

I∞(S;Z) = L(X → Z) (19)

by Proposition 3 and the definition of maximal leakage. Finally, applying the properties in Lemma 1, we have Iα(Y ;Z) ≤
L(Y → Z) ≤ L(X → Z) = supS: S−X−Z, S 6=Y I∞(S;Z) ≤ γ.

Remark 1. Theorem 1 only requires that Y 6= S∗. This holds under weaker assumptions than the strict positivity of the
posterior (Assumption A). For instance, it is sufficient that there exist any x, x′, y such that both PX|Y (x | y) > 0 and
PX|Y (x′ | y) > 0.

Proof of Proposition 1. For γ = 0, by Lemma 1 we have that L(X → Z | Y ) = I(X;Z | Y ) = 0. As conditional mutual
information is consistent with conditional independence, this holds if and only if we have Markov chain X − Y − Z.

Proof of Corollary 1. If Y = g(X), where g(·) is a deterministic function, we can choose Z = f(Y ) = f(g(X)).
Evidently, this satisfies the Markov relationship f(g(X)) − g(X) −X, i.e., Z − Y −X. (Note that f(·) may even be a
randomized function for this to hold.) But this Markov relation implies L(X → Z | Y ) = 0.

Corollary 2 follows as a consequence of the conditional independence in Proposition 1 and the fact that we have Y −X −Z
by construction.

Proof of Theorem 2. First, we show that in our Markov chain and under the strictly positive posterior assumption, we have
a surprising result that L(X → Z | Y ) = L(X → Z).

To see this, observe that maximal leakage has the following closed form by Lemma 1:

L(X → Z | Y ) = log

(
max
y∈Y)

∑
z∈Z

max
x∈supp(X|Y=y)

P (z | x, y)

)
(20)

= log

(
max
y∈Y

∑
z∈Z

max
x∈supp(X|Y=y)

P (z | x)

)
, (21)

where the second equality is by the Markov chain Y −X − Z.
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Next, observe that we have P (x | y) ∝ P (y | x) · P (x) which, by assumption, is positive so long as x ∈ supp(X). As
a consequence, the support of X is independent of Y : supp(X | Y = y) = supp(X), for any y ∈ Y. Therefore, we can
simplify the last form:

L(X → Z | Y ) = log

(
max
y∈Y

∑
z∈Z

max
x∈supp(X|Y=y)

P (z | x)

)
(22)

= log

(∑
z∈Z

max
x∈X

P (z | x)

)
, (23)

which is an equivalent form of L(X → Z).

Finally, to obtain the trade-off, it suffices to observe that Iα(Y ;Z) ≤ L(Y → Z) ≤ L(X → Z) ≤ γ, where the the first
and the second inequalities are by properties of maximal leakage in Lemma 1.

One way to interpret this result is that the maximally revealing attribute S∗ is not sensitive to conditioning on Y so long as
we have strict positivity of the posterior (Assumption A).

Proof of Proposition 2. Issa et al. (2019) show that if the map fE(·) is ε-LDP, then L(X → Z) ≤ ε, where Z = fE(X).
From the form in Eq. (22), we have that L(X → Z | Y ) ≤ L(X → Z) ≤ ε.

B. Empirical Evaluation of the Utility and LPP Trade-off
In this section, we provide additional details, as well as, additional empirical results that show that the strict trade-off between
utility and the LPP hold for any feature representation regardless of the feature learning technique, model architecture, or
dataset.

B.1. Details of Setup in Section 4

Following Melis et al. (2019), we use a convolutional network with three spatial convolution layers with 32, 64, and 128
filters, kernel size set to (3, 3), max pooling layers with pooling size set to 2, followed by two fully connected layers of size
256 and 2. We use ReLU as the activation function for all layers.

B.2. Adversarial Inference Gain

Fig. 5 shows the adversary’s inference gain I∞(S;Z | Y ) which measures the adversary’s classification accuracy for
sensitive attribute S (each column) normalised by a task’s (each row) fundamental leakage.

B.3. Across Learning Techniques

Theorem 2 implies that the strict trade-off between a representation’s utility for its intended task and the LPP holds regardless
of the learning technique used to obtain the feature map fE(X) = Z. In Section 4.2, we show that indeed even with attribute
censoring through gradient reversal, an adversary can always find a data attribute for which ∆Adv > 0 and that thus violates
the LPP. In this section, we experimentally demonstrate that the same applies to other learning techniques that aim to hide
sensitive information about the original data X , such as adversarial representation learning.

Zhao et al. (2020) empirically compare the trade-off between hiding sensitive information and task accuracy of various
attribute obfuscation algorithms. They find that together with gradient reversal, Maximum Entropy Adversarial Representa-
tion Learning (MAX-ENT) provides the best trade-off. We run a simple experiment on the Adult dataset (Kohavi & Becker,
2013), the data used by Zhao et al., that shows that the trade-off predicted by Theorem 2 also applies to the representations
learned by a model trained under MAX-ENT.

Experiment Setup. We use the exact same model architecture and data as Zhao et al. (2020). We train the model to predict
attribute ‘income’ and adversaries for four sensitive attributes (‘age’, ‘education’, ‘race’, and ‘sex’). We then calculate the
utility and inference gain as described in Section 4.
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Figure 5: If the model-generated representations have utility for the task (right), there exists a sensitive attribute
with an even higher inference gain for the adversary (left, red means more leakage). This holds for both standard ERM
(top) and attribute censoring (bottom) where we censor the attribute with highest leakage in the respective ERM model
(marked as Y). Censoring has a ‘whack-a-mole’ effect: as we censor one attribute, leakage of another attribute increases.

Fig. 6 shows that, as expected, even for a model trained under attribute obfuscation with MAX-ENT, the adversary’s
inference gain exceeds the model’s utility gain for two out of the four sensitive attributes tested. This further supports our
theoretical finding that the trade-off between LPP and utility for a prediction task of a representation applies regardless of
how these representations are learned.

B.4. Across MLaaS settings

We show that, as discussed in Section 2, the fundamental trade-off of Theorem 2 equally applies to the collaborative learning
setting in which users share gradients instead of raw data records to reduce unintended information leakage (Melis et al.,
2019).

Experiment Setup. We replicate the single batch property inference attack described by Melis et al. (2019). In this setting,
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Ĩ ∞

(Y
,Z

)

Figure 6: The least-privilege and utility trade-off holds regardless of the representation learning technique used. We
show the delta between the adversary’s inference gain and model utility for a model trained under MAX-ENT for learning
task ‘income’ on the Adult dataset. For two out of four sensitive attributes tested, the adversary’s inference gain exceeds the
model’s utility gain.

the feature representation Z = fE(X) shared with the service provider is a record’s gradients computed across all layers of
the model. As Melis et al. (2019) point out, these ”gradient updates can [...] be used to infer feature values”, i.e., are just a
noisy version of the feature representations learned by the model.
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Figure 7: The least-privilege and utility trade-off applies also the collaborative learning setting The inference gain of
an adversary that observes a record’s representation in the form of gradients (left) or feature activations (middle) always
violates the LPP for at least one sensitive attribute (red means that the adversary’s inference gain is larger than the features’
utility gain plotted on the (right))

Fig. 7 confirms that an adversary that only has indirect access to a record’s feature representation in the form of gradients (left)
can always find at least on sensitive attribute for which ∆Adv > 0. The adversary’s inference gain increases when the
adversary has direct access to the feature representations (middle) but as predicted follows the fundamental trade-off
predicted by Theorem 2 even when she only observes gradients.

B.5. Across Hidden Layers

To demonstrate that, as predicted by Theorem 2, the strict trade-off between features’ utility for a downstream prediction task
and the LPP applies regardless of a model’s architecture, or the structure of the feature encoder Z = fE(X), we conduct
additional experiments on the LFWA+ image dataset (see Section 4)
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To show that the trade-off holds regardless of the structure of the feature encoder, we assess the leakage of the CNN256
model described in Section 4 across different hidden layers of the model. Fig. 8 shows the delta between the adversary’s
inference gain and the features’ utility for the intended task ∆Adv = Ĩ∞(S,Z | Y )− Ĩ∞(Y,Z) across hidden layers of the
model (from higher (left) to lower (right) layers). Following Theorem 2, for every learning task and representation there
always exists at least one sensitive attribute for which ∆Adv > 0 and that violates the LPP. In line with prior results (Melis
et al., 2019; Mo et al., 2021), we find that lower layers (right) lead to a slightly higher inference gain for the adversary;
although these differences are not significant.
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Figure 8: The least-privilege and utility trade-off holds across hidden layers of the model The inference gain of an
adversary that observes a record’s representation at the last (left), or first (middle) and second convolutional layer (right) of a
CNN256 model, always violates the LPP for at least one sensitive attribute (red means that the adversary’s inference gain is
larger than the features’ utility gain)

B.6. Across Model Architecture

To show that the trade-off holds regardless of the exact model architecture, we repeat the experiment outlined in Section 4
using the ResNet-18 model architecture from (He et al., 2015) implemented by PyTorch. Training batch size is 32, SGD
learning rate is 0.01. The adversary is given access to the feature representations at the last hidden layer of the model.

Fig. 9 compares the trade-off between utility and attribute leakage of a CNN256 (top) and a RESNET18 (bottom) models,
both trained with standard SGD. The blue horizontal bars in Fig. 9 (right) show the model’s utility for learning task Y
measured as Ĩ∞(Y, Z). The heatmaps in Fig. 9 (left) show the difference between the adversary’s inference gain and the
model’s utility ∆Adv = Ĩ∞(S,Z | Y ) − Ĩ∞(Y, Z). Each row corresponds to a different learning task Y , each column
represents a different sensitive attribute targeted by the adversary. We observe that regardless of the model architecture, for
any learning task there always exists a sensitive attribute for which ∆Adv and thus violates the LPP.

B.7. Across Datasets

We ran an additional experiment to demonstrate that the strict trade-off between model utility and the LPP also holds
on a very different type of dataset and model. As for tabular data, together with image data, sharing feature encodings
instead of raw data is often suggested as a solution to limit harmful inferences, we choose the Texas Hospital dataset (Texas
Department of State Health Services, Austin, Texas, 2013) and the TabNet model architecture (Arik & Pfister, 2021) for
these experiments.

Data. The Texas Hospital Discharge dataset (Texas Department of State Health Services, Austin, Texas, 2013) is a large
public use data file provided by the Texas Department of State Health Services. The dataset we use consists of 5,202,376
records uniformly sampled from a pre-processed data file that contains patient records from the year 2013. We retain 18
data attributes of which 11 are categorical and 7 continuous.

Experiment Setup. In each experiment, we select one attribute as the model’s learning task Y and a second attribute
as the sensitive attribute S targeted by the adversary. We repeat each experiment 5 times to capture randomness of our
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Figure 9: The least-privilege and utility trade-off holds regardless of the model architecture. The adversary’s inference
gain (left) always exceeds the utility gain (right) for at least on sensitive attribute. This hold for both a CNN256 model (top)
and a RESNET18 model (bottom).

measurements for both the model and adversary, and show average results across all 5 repetitions. At the start of the
experiment, we split the data into the three setsDT ,DE , andDA. We train a TabNet model on the train setDT for the chosen
learning task and then estimate the model’s utility on the evaluation set DE . We measure the utility of the model-generated
representations as the multiplicative gain Ĩ∞(Y ;Z). After model training and evaluation, we train both the label-only and
features adversary on the auxiliary data DA. The features adversary is given access to a record’s representation at the last
encoding layer of the TabNet encoder (see (Arik & Pfister, 2021) for details of the model architecture). For a given sensitive
attribute S, we estimate the adversary’s gain as Ĩ∞(S,Z | Y ).

As above, the bar chart in Fig. 10 (right) shows the model’s utility for learning task Y indicated in each row measured as
Ĩ∞(Y, Z). The heatmaps in Fig. 10 (left) show the difference between the adversary’s inference gain and the model’s utility
∆Adv = Ĩ∞(S,Z | Y )− Ĩ∞(Y,Z). As on the LFWA+ dataset, for any learning task there always exists a sensitive attribute
for which an adversary gains an advantage from observing a target record’s feature representation and ∆Adv > 0. This
demonstrates the strict trade-off between utility and the LPP as predicted by Theorem 2.

18



The Fundamental Limits of Least-Privilege Learning

0 1 2 3

IL
LNESSSEVERIT

Y

RIS
KM

ORTALIT
Y

TYPEOFADM
IS

SIO
N

DIS
CHARGE

ETHNIC
IT

Y

RACE

SEXCODE

sensitive attribute

ILLNESSSEVERITY

RISKMORTALITY

TYPEOFADMISSION

DISCHARGE

ETHNICITY

le
ar

n
in

g
ta

sk

−0.5 0.0 0.5
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Figure 10: Attribute leakage (left) and model utility (right) for a TabNet model trained on the Texas Hospital dataset
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