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Abstract
Many applications of RCTs involve the presence
of multiple treatment administrators—from field
experiments to online advertising—that compete
for the subjects’ attention. In the face of competi-
tion, estimating a causal effect becomes difficult,
as the position at which a subject sees a treatment
influences their response, and thus the treatment
effect. In this paper, we build a game-theoretic
model of agents who wish to estimate causal ef-
fects in the presence of competition, through a bid-
ding system and a utility function that minimizes
estimation error. Our main technical result estab-
lishes an approximation with a tractable objective
that maximizes the sample value obtained through
strategically allocating budget on subjects. This
allows us to find an equilibrium in our model: we
show that the tractable objective has a pure Nash
equilibrium, and that any Nash equilibrium is an
approximate equilibrium for our general objective
that minimizes estimation error under broad con-
ditions. Conceptually, our work successfully com-
bines elements from causal inference and game
theory to shed light on the equilibrium behavior
of experimentation under competition.

1. Introduction
Randomized controlled trials (RCTs) have become
ubiquitous in a variety of fields, to the point that they are
“not so much the ‘gold standard’ as just a standard tool
in the toolbox” (Banerjee et al., 2016). Application areas
range from A/B testing in industry to informing policy
choices at a large scale (Levy, 2007; Alatas et al., 2012;
de Souza Leão & Eyal, 2019).

1Social Foundations of Computation, Max Planck Institute
for Intelligent Systems, Tübingen, Germany and Tübingen AI
Center, Germany 2Department of Mathematics, ETH Zürich,
Zürich, Switzerland. Correspondence to: Ana-Andreea Sto-
ica <astoica@tuebingen.mpg.edu>, Vivian Yvonne Nastl <vi-
vian.nastl@tuebingen.mpg.de>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Given the abundance of experimentation, an agent who
wishes to measure the effect of their treatment through an
RCT may not be alone in doing so. Competing treatments
arise when multiple agents share the population on which
they wish to experiment. Subjects may then receive multiple
treatments sequentially determined by some form of compe-
tition between the treatment administrators. Treatments that
came before may modify the effectiveness of subsequent
treatments. Precisely estimating effects therefore becomes
challenging under competition: sequential treatments may
pose the issue of external validity (Duflo, 2006) or mislead
companies in their assessment of products (e.g. as the
click-through-rate plummets for low-position content).

Our concrete running example is online advertising. Mul-
tiple advertisers wish to estimate the effectiveness of their
campaign. However, due to competition between adver-
tisers, their ad will be displayed at a certain position on
screen. The lower the rank of the ad, the lesser its effec-
tiveness (Agarwal et al., 2011). Running the campaign, an
advertiser collects data of impressions and clicks on ads
displayed at different ranks. From this data, the advertiser
wishes to answer the question:

What would have been the effect of the treatment
had it been the first treatment applied?

In other words, how effective is the ad if it is displayed in
the top rank? Equipped with knowledge of this effect, an
advertiser can distinguish between two scenarios: (1) an ad
was not effective because it was mostly displayed at lower
ranks, or (2) an ad was not effective because of its design.
An advertiser can then take appropriate action to increase
its effectiveness in subsequent campaigns. The advertiser
faces two problems: one game-theoretic, the other statistical.
First, how should the advertiser bid on subjects, anticipating
that other advertisers will bid strategically, too? Second,
how should data from different ranks be weighted optimally
to obtain the best possible estimate of the causal effect?

Specifically, we show what the optimal estimation error is
that an advertiser can achieve at equilibrium in a game that
models the competition between advertisers. In other words,
our work shows how to spend an experimental budget
rationally on subjects when the goal is to estimate a causal
effect optimally.
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1.1. Our Contribution

We introduce a novel model of causal inference under com-
peting treatments. Our model combines elements from game
theory and statistics to find an answer that neither toolkit
can provide on its own. Specifically, how should treatment
administrators allocate their budget so as to minimize statis-
tical estimation error, while facing competition?

We assume that the causal effect of interest is a bounded
quantity τ that we interpret to be the effect of treatment
had it come first. A number k of treatment administrators
compete over a pool of n subjects. Administrators have
budgets that they can spend by making bids on subjects. A
probabilistic allocation rule determines the order in which
each subject receives the k treatments. We assume that the
treatment effectiveness decays with the order in which the
treatment is applied. A treatment applied at position r has a
causal effect τr < τ. We assume that τr = αr · τ, where αr

is a known structural parameter of our model.

In our model, administrators bid strategically so as to
achieve the smallest possible estimation error. The opti-
mal estimation error depends on what we call the sample
profile, that is, the number of samples nr at each rank r. One
of our key contributions is to approximate the optimal error
objective by a more tractable objective that we call sam-
ple value. The sample value corresponds to the weighted
sum S =

∑
r nr · α2

r . The sample value quantifies the ef-
fective utility of the sample where each rank is discounted
appropriately.

We prove that, in the typical regime where budgets are larger
than k2, any Nash equilibrium in the sample value objective
is also an approximate Nash equilibrium with respect to the
optimal error objective. Using this approximation result, we
can understand the competition over optimal error by instead
analyzing the competition over sample value. This objec-
tive has many nice properties. We show that it has a pure
Nash equilibrium, by finding a class of equilibria in closed
form in which rational administrators spend their budget
exhaustively in a way that maximally avoids competition.

Conceptually, we find a fruitful bridge between causal
inference and game theory. On the one hand, causal
inference literature tells us how to account for known
position effects in an optimal way. On the other hand,
game theory provides solution concepts for dealing with
competition. A novelty is that we not only apply game
theory to budget allocation strategies but rather to estimate
causal effects. Our work opens the door for numerous
interesting questions, which we discuss in Section 5,
alongside current limitations of our framework.

1.2. Related Work

Several fields provide evidence that the position at which
content is seen affects engagement, from early theories in
experimental psychology (Ebbinghaus, 1885) to survey de-
sign (McFarland, 1981). Because of position effects ran-
domized experiments in development economics run the risk
of reducing the external validity of sequential studies run on
the same population (Duflo, 2006). Perhaps the most exten-
sive work studies the digital space, where search results dis-
played lower on a webpage receive less engagement (Ansari
& Mela, 2003; Teevan, 2008) and low-positioned ads are
recalled less (Varian, 2007; Agarwal et al., 2011). In partic-
ular, Narayanan & Kalyanam (2015) measure the effect of
positioning ads under selection biases such as competition
using regression-discontinuity, without modeling the com-
petition for ranks explicitly. Moreover, Hardt et al. (2022)
define a framework for measuring the effect of position on
market power acquisition.

Our work draws on this literature and models position ef-
fects that emerge from competition: agents who wish to run
randomized controlled trials on a population encounter a po-
sition effect when competing with each other over ‘winning’
the attention of subjects. Such competition has been studied
in game-theoretic settings. In particular in applications like
online advertising, pricing mechanisms have been devel-
oped in order to achieve stability in the market (Aggarwal
et al., 2006; Edelman et al., 2007). A related line of work is
that of position-based auctions. Early works in this research
line studied equilibria and truthfulness through designs that
encode positions in the agents’ valuations for individual
users (Varian, 2007; Athey & Ellison, 2011; Börgers et al.,
2013). Another recent line of work studies optimal platform
design choices under proxy bidding (or ‘autobidding’),
where agents’ strategy space is limited to budget choices and
targeting mechanisms (Aggarwal et al., 2019; Balseiro et al.,
2021; Conitzer et al., 2022). Ghosh & Sayedi (2010) study
alternative designs for auctions with negative externalities
generated by competing advertisers in online conversion-
based auctions, without an explicit position-based model.
Our work differs from this literature in the following ways:
in our set-up, agents do not have an intrinsic value for
particular individuals—a common auction-modeling choice
in early position-based auctions—but rather a sample value
that determines the estimation error of their. This brings our
problem closer to the ‘autobidding’ literature, yet, differs
from it in that our optimization problem includes both
bidding strategies and the choice of an optimal estimator
for precise estimation of causal effects.

Our game-theoretic design is inspired by and directly
generalizes the work of Maehara et al. (2015). Their
design optimizes the sample size of customers obtained
by competing advertisers, in a line of work that bridges
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influence maximization with budget allocation (Alon et al.,
2012). Whereas in Maehara et al. (2015)’s design there is
no explicit rank (an advertiser either wins a customer or not,
maximizing the size of their sample), our model generalizes
theirs by including multiple positions in which advertisers
may be shown to users. This generalized game may be
of independent research interest, as we can characterize
particular Nash equilibria.

Estimating treatment effects under equilibrium conditions
has been studied in the case of unit interference (Wager
& Xu, 2021) and two-sided markets (Johari et al., 2022).
They consider dynamic models in which the treatment ef-
fect is dependent on the available market supply and unit’s
interactions, assuming a single treatment coming from a
decision-maker (often a platform designer).

Adaptive experimentation is a rapidly growing area in
estimating causal effects under sequential treatments. Hadad
et al. (2021) and Dwivedi et al. (2022) provide statistical
inference guarantees in the problem of estimating counter-
factual means, without explicitly modeling multiple ranks
or strategic interactions. Methods such as multi-armed
bandits have been employed to provide guarantees on
the efficacy of treatments through optimal data collection
in the presence of position effects (Lagrée et al., 2016;
Zhou et al., 2023). They primarily assume a single learner.
While bearing similarities in objectives (as our objective
also directly optimizes for estimation error), our work
differs from these by modeling data acquisition through
competition that emerges from multiple learners.

2. Games and Objectives
We formally introduce a game that captures the setting of k
treatment administrators (also called admins) who compete
over a set of n subject slots. Linking back to our online
advertising example, the different admins are represented
by different advertisers and the subject slots are positions at
which users will see the displayed ads on an online platform.
Conceptually, subject slots are placeholders for i.i.d. sam-
ples drawn from a data-generating distribution. Administra-
tors have varying budgets that they can spend exhaustively
by bidding on the subject slots. The outcome of the game
is an allocation of the subject slots to the k administrators.
Thus, each admin receives up to n slots for displaying their
ad. For each slot, they can run a treatment-control experi-
ment and measure the effect of an ad. The formal definition
of the data-generating process is given in Section 3. We as-
sume that the causal effect of the treatment at rank 1 is given
by a bounded quantity τ with |τ | ≤ 1.1 We also assume that

1The effect just needs to be bounded quantity. We assume it is
bounded by 1 without loss of generality.

treatment at a higher rank r > 1 is less effective so that

τr = τ · αr with 0 < αr < 1 .

The discount factors {αr} are known structural parameters
of our model. We discuss the case where the discount
factors are not a priori known in Section 3. Samples at
rank 1 are most valuable, but samples from lower ranks can
still be useful. A treatment administrator bids strategically
so as to minimize their mean squared error in estimating
the causal effect τ. To fully specify the game, we need the
following ingredients:

• We can represent the bids as a nonnegative integer
matrix x ∈ Nn×k

≥0 , where xai is the bid of admin a
on subject slot i. We denote the budget of admin a
by B(a) =

∑
i xai. An admin’s strategy is a potential

bid allocation over user slots. We denote the set of all
possible strategies of an admin a by Da.

• An allocation rule A maps bids to an allocation of
subject slots. That is, given a set of bids, the allocation
rule determines an assignment of ranks for each admin.
A rank assignment of a particular admin is a tuple
r = (r1, r2, · · · , rn), where ri is the rank assigned
for subject slot i. Under a probabilistic rule, we draw
the rank assignment from the distribution given by
the randomized allocation. The sample profile is just
the count of the number of slots at each rank: n =
(n1, n2, · · · , nk), where nr =

∑
i 1{ri = r}. We

denote the total amount of slots obtained by admin
a by n(a) =

∑
k nk. The specific allocation rule we

define later is randomized.

• The utility function fa : D → R of admin a maps a
tuple of strategies from D = D1 × D2 · · · Dk to the
utility of admin a given the strategies of all admins.

Our goal is to understand the Nash equilibria of the game.
These are the strategies in which each admin is unilaterally
maximizing her utility. In other words, admins are
simultaneously best responding to each other. Specifically,
we want to understand what estimation error admins can
hope to achieve at equilibrium.

2.1. Objective Design

Given an assignment of ranks r drawn from the distribution
induced by the allocation function A, an administrator has
to decide how to use the samples so as to optimally estimate
the causal effect τ . This corresponds to solving the opti-
mization problem, from the perspective of a single admin:

inf
τ̂
EZ∼X (r)

[
(τ̂(Z)− τ)

2
]

(1)

over all possible estimators τ̂ . Here, X (r) denotes the data-
generating distribution under the realized rank assignment r,
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defined as: given a population X and a ranking assignment
r, a subject is drawn independently at each subject slot i
from the interventional distribution X do(rank=ri), where ri is
the rank that the admin obtained at subject slot i (coordinate
i in the assignment rank vector r). The data Z drawn from
X (r) is the collection Zi = (ri, Ti, Yi) , i ∈ [n(a)], where
Ti is the treatment assignment and Yi denotes the outcome
of a subject sampled for slot i at rank ri. We formalize the
data-generating process, together with the modeling choices
for the outcome and treatment assignment in Section 3.
Recall that treatment effects vary with the rank at which an
admin’s campaign is run, and therefore the data-generating
distribution depends on the rank assignment.

Estimation error objective. Solving objective (1) directly
is a difficult task. We therefore replace the optimal error
with a minimax lower bound on the error. We prove (in
Section 3) that for any estimator τ̂ , there exists a model
instance M of the data-generating distribution X (r) such
that the estimation error is lower bounded by

min

(
c ·
(∑k

r=1 nr · α2
r

)−1

, 1

)
(2)

for a constant c > 0. In our subsequent analysis, we set
w.l.o.g. c = 1.2 When the number of samples obtained by
an admin approaches 0, the first term in the bound expressed
in equation (2) tends to infinity. However, in this case, since
the causal effect is bounded, |τ | ≤ 1, the admin’s mean
squared error is also bounded by 1 (this bound is given by
choosing the constant estimator, for example). We provide
a detailed discussion of this property in the Appendix. We
show (in Section 3) that the minimax lower bound in (2) is
attainable up to constant factors. For example, we can use an
optimally weighted average of Horvitz-Thompson treatment
effect estimators at each rank, which render an estimation

error of O
((∑k

r=1 nr · α2
r

)−1
)

. This motivates defining

the estimation error objective as

fa(x) = −Er∼A(x) min

(
EX (r)

(∑k
r=1 nr · α2

r

)−1

, 1

)
.

(3)
The negative sign serves the purpose of turning an
estimation error minimization objective into a maximization
objective. In essence, the estimation error objective captures
an admin’s goal of minimizing their estimation error (up
to constant factors) in expectation over the sample profile
distribution given by the allocation rule.

2The value of the constant c does not change the results: as all
admins minimize the error by selecting the best sample distribution,
the constant c can be ignored in this objective. We obtain identical

results using the expression min

((∑k
r=1 nr · α2

r

)−1

, 1/c

)
in

our objectives. Our results only rely on this expression being
bounded by a constant.

Sample value objective. Even the estimation error ob-
jective is not necessarily tractable. In particular, it appears
difficult to reason about Nash equilibria with respect to the
estimation error objective. One of our main contributions
is to relate the estimation error objective to a tractable ob-
jective. Given a sample profile, we call the weighted sum∑

r nr · α2
r the sample value given by a rank allocation r.

The sample value objective is defined as

fa(x) = Er∼A(x)EX (r)

[∑k
r=1 nr · α2

r

]
. (4)

Intuitively, the sample value objective and the estimation
error objective are linked, as they are both a function of the
sample value

∑k
r=1 nr · α2

r , obtained by an admin through
a strategy choice. Formally, we can show that for typical
parameter settings, any Nash equilibrium in the sample
value objective is an approximate Nash equilibrium in the
estimation error objective. Moreover, we can characterize a
set of Nash equilibria in the sample value objective.

2.2. Main Results

We denote by GMSE and GSV the games associated to the
estimation error objective and the sample value objective,
respectively. Figure 1 illustrates our setup and results:
through a causal inference analysis, we find an explicit
expression for the minimax lower bound of an estimator
as a function of the sample value (Section 3); the sample
value objective’s associated game can be solved through
finding a Nash equilibrium (Theorem 2.1), described in
detail in Section 4, and any such solution approximates
the error minimization objective under mild assumptions
(Theorem 2.2), which is the main result of our paper.
Theorem 2.1. A budget allocation game GSV with multi-
ple treatment administrators has a pure Nash equilibrium
for all sequences (αr)r such that αr ∈ (0, 1) and α1 = 1.
Moreover, for B(a) ≤ n, an allocation in which all treat-
ment administrators split their entire budget uniformly on
subjects and maximally avoid competition on subjects is
always a Nash equilibrium.
Theorem 2.2. Any Nash equilibrium for the GSV game
with k treatment administrators and n subjects is an (ϵ, η)-
approximate Nash equilibrium for the GMSE game with

ϵ = O

(
k√
B

)
and η = O

(
exp(−B/k2)

)
,

where B = mina B
(a) and the maximum bid per subject

slot is bounded.

In particular, if all administrators have budget B(a) =
ω(k2), we get a (o(1), o(1))-approximate Nash equilibrium.
The proofs for all results are detailed in the Appendix.

Nash equilibrium. We assume that players act rationally
and selfish in maximizing their utilities. We assume this is a
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Theorem 2.1
Pure Nash Equilibrium

Sample value objective
      game

Theorem 3.3
Minimax lower bound

Estimation error objective
          gamebounded bids

& position effect
assumptions

Theorem 2.2
      -approximate NE

Figure 1. Illustration of the objective set-up and results.

complete information game (i.e. players know each other’s
utility functions). This set-up is common in game designs
applicable in online advertising settings, as motivated by
prior works (Maehara et al., 2015; Varian, 2007). We
employ the well-known notions of pure and approximate
Nash equilibrium. In short, a strategy set x is a pure Nash
equilibrium (Nash Jr, 1950) if no deviation from it can
increase utility for any admin (i.e. every admin’s strategy
is a best response). The concept of (ϵ, η)-approximate
equilibria has been widely used in finding approximate
solutions (Alon et al., 2012; Roughgarden, 2016). In its
essence, it assumes that an admin will not change his
strategy if his current one is an approximate best response.

Definition 2.3. A strategy set x ∈ D is an (ϵ, η)-
approximate Nash equilibrium for a utility-maximization
game G with non-positive utility function fa : D → R− if
for all players a,

fa(xa, x−a) ≥ (1 + ϵ) · fa(x′
a, x−a)− η,∀x′

a ∈ Da (5)

where Da denotes the strategy set of player a and ϵ, η > 0.

An equivalent definition for a utility minimization game
with non-negative utilities occurs for η < 0.

Allocation rule: We use a probabilistic allocation rule that
generalizes a model proposed by Maehara et al. (2015).
We defer a formal definition to Section 4. Intuitively, each
administrator has a chance to win the first rank of any given
subject slot with a probability that is an increasing function
of the administrator’s bid for the slot. After determining a
winner for rank r, the allocation rule proceeds to the next
rank until all ranks have been allocated. The main properties
of the allocation rule are that the probability for an admin of
winning a rank is component-wise concave and increasing in
the bid, which facilitates characterizing a Nash equilibrium.
Furthermore, the allocation rule benefits from the property
that the sample value does not grow in expectation slower

than B(a)/k: E
[

k∑
r=1

nr · α2
r

]
= Ω

(
B(a)/k

)
under a Nash

equilibrium for GSV. This allows the sample value variable
to concentrate around its mean in the regime where budgets
are larger than k2.

Proof sketch for Theorem 2.2: The intuition behind the
proof relies on a few properties of the model and the alloca-

tion rule. Mainly, the allocation allows the sample objective
to concentrate around its expectation with high probability
in the bounded parameter regime. This allows us to show
that if an allocation is indeed an optimal solution for the
sample value objective, it will be approximately optimal for
the estimation error objective. The ‘failure’ to concentrate
probability determines a distance η from the utility of any
other allocation; through a market-efficiency interpretation,
it determines the necessary overhead above which an admin
would be incentivized to change its strategy. We discuss
alternative allocation rules and connections to common auc-
tion designs in Section 5, noting that our analysis is not
contingent on the specific choice of an allocation rule, but
rather on the properties mentioned in the proof sketch.

3. A Causal Inference Analysis of the Error
Minimization Objective

We treat the estimation problem from the perspective
of a particular admin a. For simplicity, we drop in the
notation the index a when there is no confusion. We define
a population distribution X from which subjects will be
independently drawn and used in the estimation problem
for the admin. The admin runs an RCT on each subject and
uses the data they gathered to estimate a causal effect. We
employ classic modeling choices from the causal inference
literature to model the outcomes and treatment assignments
of subjects under an RCT.

Data generating process. We detail the data-generating
process for an admin a, briefly described in Section 2. The
process consists of two parts, sketched in Figure 2 in the
Appendix:

1. Admin a competes over the n subject slots with the
other admins by placing bids. A set of bids x placed
by the admins induce a distribution of rank allocations
A(x), where A is the rank allocation function. We
sample a rank assignment r from A(x) for admin
a. The rank assignment r is a vector containing the
assigned rank of admin a for each subject slot. The
sample profile (n1, n2, · · · , nk) gives the number
of subjects drawn at each rank, on whom the admin
will run their campaign. In total, the admin obtained
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n(a) =
∑

k nk slots out of the total n slots.3

2. The subjects are drawn independently at each slot from
the interventional distribution X do(rank=ri), where ri
is the rank that admin a obtained at subject slot i and
treatment or control are allocated in a randomized
manner (through an RCT). The data the admin collects
consists of the tuples (ri, Ti, Yi): rank ri, treatment
assignment Ti, and outcome Yi of each subject
i ∈ [n(a)]. As the RCT eliminates the influence from
any possibly confounding factors, the treatment effect
at a specific rank r is identifiable (Pearl, 2009).

We point out that the budget allocation happens prior to the
sampling process. In particular, the individuals for each slot
are not yet realized when the ranking assignment occurs.
This process ensures that the individuals are independently
drawn. We use potential outcomes to model the outcome of
each individual sampled after the second step of the data-
generating process occurs, described as follows.

Potential outcomes model. We model the outcome of a
subject i ∈ n(a) sampled from X do(rank=ri) as

Yi = ci,0 + c
(ri)
i,1 · Ti + εi, r ∈ [k] (6)

where Ti denotes the treatment assignment of subject i by
the admin. We interpret Ti = 1 as assigning subject i to
the treatment group, and Ti = 0 to the control group. We
model Ti ∼ Ber(qi), for qi ∈ [q, 1 − q] for a constant
q ∈ (0, 0.5],∀i ∈ [n(a)]. Essentially, we assume the admin
implements a non-uniform Bernoulli randomized design.
The observational noise εi is drawn from a normal distribu-
tion and does not depend on the subject’s rank,

εi ∼ N(0, σ2).

We denote the potential outcome of subject i for being
in the treatment and control groups by Yi(1) and Yi(0),
respectively.

Estimand: ATE but only for the first rank. We are
interested in the treatment effect an administrator would
have obtained if they had experienced no competition from
other administrators. In reality, competition causes an admin
to show up at lower positions for some slots. The lower the
rank for a slot, the smaller the treatment effect. The causal
effect of interest is thus the average treatment effect had
it been the first treatment applied. We formally define the
estimand as

τ = E[Yi(1)− Yi(0)|do(rank = 1)], (7)

3Each admin may obtain a different number of data slots. For
example, if an admin bids 0 on a slot, they will not obtain any rank
for that slot; an admin bidding all 0s will not obtain any slots, and
therefore n(a) = 0 for him.

where the expectation is taken over the intervened popula-
tion X do(rank=1) that always encounter the content of admin
a first.

Assumption 3.1 (Bounded effect). We assume that the treat-
ment effect at the first rank τ is bounded with |τ | ≤ 1.

Given that a treatment administrator may acquire data from
subjects at different ranks, we also define the average treat-
ment effect of an administrator at rank r ∈ [k] as

τr = E[Yi(1)− Yi(0)|do(rank = r)]. (8)

Note that we identify the treatment effect at rank r by
τr = 1

nr

∑
i:ri=r

c
(r)
i,1 if nr ≥ 1.

Assumption 3.2 (Position effect). We formalize the assump-
tion that the treatment effect at a lower rank is lower than at
the first rank as

τr = αr · τ,∀r ∈ [k] (9)

with (αr)r satisfying α1 = 1 and αr ∈ (0, 1) for all r ∈ [k].

An admin wishing to estimate τ may of course just use the
data from samples at rank 1 (n1 samples). However, the
position effect assumption allows the admin to identify the
treatment effect at the first rank from the treatment effect at
rank r ∈ [k] and thus, to use the entire sample profile,

τ =
τr
αr

.

We refer to
τ (r) :=

τr
αr

(10)

as the r-estimand.
Remark 3.3. Estimating the treatment effect at rank 1 is a
powerful primitive, as it allows one to extrapolate the effect
at any distribution over ranks, given the discount factors
(αr)r. As mentioned in the introduction, this knowledge is
important in order for an admin to gain insight into the qual-
ity of their treatment: was a lower effect observed because
of a lower rank, or because of the treatment itself? Equipped
with this knowledge, an admin can choose the best course of
action: increase their bid or improve on the treatment design
(e.g. in the case of online advertising, change the design of
an ad). We emphasize that the admin has prior knowledge
of the parameters (αr)r in this analysis. We discuss the case
of jointly estimating τ and (αr)r later in this section.

3.1. An Optimality Argument

The problem an admin is solving is now that of optimally
using their collected data in order to achieve a minimum
estimation error. Exactly how an admin should combine
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their samples from different ranks towards minimizing the
estimation error is non-trivial. We show however that the
estimation error of any possible estimator is bounded below
by a function of the sample value

∑k
r=1 nr · α2

r .

To formalize this result, we denote the set of our potential
outcomes model instances as M. In particular,

M =

{(
ci,0, c

(ri)
i,1

)
i∈[n(a]

: |τ | ≤ 1, τr = αr · τ
}
. (11)

Theorem 3.4 (Minimax Lower Bound). For any estimator
τ̂ , there exists an instance M ∈ M such that the minimax
squared error is bounded below by

EM [(τ̂ − τ)2] ≥ min

(
σ2

16 · (1− q) ·
∑k

r=1 nr · α2
r

, 1

)
.

We provide the detailed proof in the Appendix. The proof
relies on Le Cam’s method (Le Cam, 1973) for hypothesis
testing and on leveraging the assumption of independence
between individuals. The particular choice of an optimal
estimator for τ is beyond the scope of this paper. Instead,
we showcase an estimator that achieves the minimax lower
bound (up to a constant).

Estimator examples. We find examples of estimators that
aggregate the effect at each rank and obtain an error up-

per bound of O
((∑k

r=1 nr · α2
r

)−1
)

. Estimators that

aggregate the effect at each rank are often used in meta-
analysis studies or stratified experiments (Hartung et al.,
2011; de Chaisemartin, 2022). We refer to these as decom-
posable estimators. Formally, a decomposable estimator
can be written as τ̂ =

∑k
r=1 ωr · τ̂r with τ̂

(r)
1 an estimator

for the r-estimand for r ∈ [k]. For unbiased estimators
τ̂
(r)
1 , the well-known inverse variance estimator (Markowitz,

1952; 1959; Cochran, 1954; Shahar, 2017) provides a closed
form solution for optimally weighing the r-estimators while
preserving unbiasedness. The optimal weights ω∗ are ob-
tained by solving a variance minimization problem through
Lagrange multipliers,

ω∗
r =

1

Var
(
τ̂
(r)
1

) · 1∑k
r=1 1/Var

(
τ̂
(r)
1

) . (12)

An immediate corollary is that the minimum MSE achieved
for weights ω∗ is

E
[
(τ1 − τ̂ω∗)

2
]
=

1
k∑

r=1
1/Var

(
τ̂
(r)
1

) . (13)

Within our potential outcomes model, there are un-
biased estimators for the r-estimand that achieve an

error E
[
(τ̂r − τr)

2
]

= O
(
n−1
r

)
. Any such estimators,

weighted optimally, would attain a total error bounded by

O
((∑k

r=1 nr · α2
r

)−1
)

, as we will further argue. Given

the parametric assumption on the sequence (αr)r, we
know that αr amplifies the variance of the r-estimator by
a squared term,

Var
(
τ̂
(r)
1

)
=

Var (τ̂r)
α2
r

(14)

and thus, E
[(

τ̂
(r)
1 − τ

(r)
1

)2]
= O

(
(nr · α2

r)
−1
)
. It then

immediately follows from equation (13) that the estimation
error of the inverse variance estimator τ̂ω∗ is

E
[
(τ1 − τ̂ω∗)

2
]
= O

( k∑
r=1

nr · α2
r

)−1
 (15)

As examples of unbiased estimators for the r-estimand,
the OLS estimator and the Horvitz-Thompson estima-
tor (Horvitz & Thompson, 1952) have variance of order
O(n−1

r ). The OLS estimator attains the lowest actual MSE,
including constants, for unbiased linear estimators (see
Gauss-Markov Theorem in Johnson & Wichern (2007)),
while the Horvitz-Thompson estimator is preferred in more
general models that include unequal treatment probability
(unequal qi across subjects). We do not reproduce the
bound computation for the OLS estimator as it is a known
result, but we detail, for the interested reader, properties of
the Horvitz-Thompson estimator in our potential outcomes
model.

We define the Horvitz-Thompson estimator formally for
estimating the effect at rank r,

τ̂r =
1

nr
·
∑

i:ri=r

(
Yi1{Ti = 1}
P(Ti = 1)

− Yi1{Ti = 0}
P(Ti = 0)

)
(16)

Similar to the OLS estimator, it is unbiased and has a vari-
ance of order O(n−1

r ) (albeit with a larger constant factor).
We show these properties in Propositions 3.5 and 3.6.

Proposition 3.5. The estimator τ̂r is an unbiased estimator
for the average treatment effect τr at rank r.

Proposition 3.6. The error of the rank r estimator τ̂r,
E
[
(τr − τ̂r)

2
]
, can be upper bounded by

1

nr
·
[

σ2

q(1− q)
+ Y 2

max ·
(
(1− q)2 + q2

q(1− q)
+ 2

)]
(17)

with Ymax := max
i∈[n(a)]

∣∣∣ci,0 + c
(ri)
i,1

∣∣∣.
These results show that we can find an optimal estimator
up to constants. While we do not require decomposable
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estimators in order to obtain the minimax lower bound on
the error in Theorem 3.4, they provide a good intuition for
the form of the sample value expression. The intuition is
that whereas in a classical non-competitive causal inference
task, the sample value is just a function of the sample size,
the αr downgrade in treatment effect from rank 1 to rank
r scales down the sample value of rank r by α2

r . Thus, we
interpret the sum

∑k
r=1 nr · α2

r as the sample value that
an admin has in order to estimate a treatment effect. The
choice of different strategies offers an admin the possibility
of optimizing the sample value.

3.2. Estimating the Discount Factors

In our analysis so far, we assumed that the discount factors
(αr)r are known by the admins. The parameters are perhaps
given by a central platform or estimated in previous studies.4

In settings where the discount factors (αr)r are not a priori
known, they may be estimated from historical data. Related
set-ups have utilized the EM algorithm in estimating the po-
sition bias in online advertisement problems (Chuklin et al.,
2016; Dempster et al., 1977). In many applications of multi-
ple treatments, such as online advertisement, the estimated
discount factors do not depend on the particular admin but
rather on the display position (Lagrée et al., 2016). In these
cases, a pilot experiment is usually run by randomizing
results or performing pairwise comparisons (Joachims et al.,
2017; Wang et al., 2018), in order to get good estimates
of the discount factors. The estimated discount factors are
then used in subsequent campaigns, under the assumption
that they do not need to be re-estimated.

For completeness, we show that estimating the discount
factors jointly with the treatment effect through data
splitting does not reduce the estimation error, even in the
most simple case: take a pilot experiment in which an
online platform has collected data on an admin’s treatments
at different ranks, with nr samples at each rank. Without
prior knowledge of the position effect parameters, the
admin has two choices in estimating τ : (1) use just the data
where their treatment was shown on the first rank, or (2)
split the data at all positions, using part of it for estimating
the position effect parameters (αr)r, and then using these
estimates together with the rest of the data for estimating
the treatment effect τ . Even if the admin has to split the
data available in (2), he might still have more samples for
the treatment estimation task than in scenario (1). We show
in a simple argument that the treatment effect estimation
error is not reduced in (2) as compared to (1), despite the
fact that the admin is using more data in (2) and no matter
how the split is being done (Lemma A.6 in the Appendix).

4For example, Google reports the decay rate in click-through-
rates with lower positions in online advertising (Bailyn, 2024).

4. Nash Equilibria for the Sample Value Game
We define a probabilistic allocation rule Aprob and prove
Theorem 2.1 by characterizing a set of pure Nash equilibria
for the game GSV.

Allocation rule Aprob: We use a probabilistic allocation
rule that generalizes the model proposed in Maehara et al.
(2015). We define a probabilistic allocation rule called Aprob
that allocates ranks to the k admins as follows.

• Activation probability: When an admin i allocates bud-
get to a subject slot, we define his probability of win-
ning that subject slot at a particular rank (determined
by the order in which admins play) as

PAa(xa, t) := 1− (1− p)
xa(t) , (18)

where p is a parameter governing how relevant admin a
is for a subject slot t.5 We use interchangeably the nota-
tion xa(t) or xat for the budget that treatment adminis-
trator a allocates to slot t. We note that the relevance pa-
rameter p cannot depend on the specific subject drawn
at subject slot t, since the admin does not know a priori
which subject is realized. Thus, we can think of p as
an expected value over the population distribution. If a
treatment administrator does not bid on a slot, he does
not get a sample from that slot (at any rank).

• Random ordering: Then, we must define a way for
advertisers to compete over the subject slots. We
propose the following procedure for administrators
to get allocated ranks to show their content to each
subject slot: for each subject slot t ∈ [n] and for
each rank r ≤ k, set Sk−r the set of administrators
who have not been allocated a rank r′ < r yet for
this subject slot t. Then, draw a permutation of the
elements of Sk−r, σ ∈ P(Sk−r), uniformly at random
(where P(S) denotes the set of all permutations of
elements of a set S). Now, according to the order
that the permutation σ defined, each administrator
will try to win rank r for subject slot t, based on the
budget they allocated to this subject slot (note that an
administrator allocates budget to a subject, not to each
rank). See Algorithm 1 for a formal description.

We characterize a set of Nash equilibria for the case
B(a) ≤ n in the following lemma, thus proving Theo-
rem 2.1. The results easily generalize to B(a) > n, by
considering allocations in which treatment administrators
split their budget uniformly over subjects.

5In this first analysis, we take p to be the same for all admins
and subjects; future work can model a different pa for each ad-
min a, noting that the equilibrium becomes more complicated to
characterize in closed form.
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Algorithm 1 Winning ranks for a subject slot t through the
probabilistic allocation rule Aprob.

Denote Sk−1 = [k] the set of all administrators.
for rank r ∈ [k]: do

Draw a random permutation σ ∈ P(Sk−r)
for i ∈ [k]: do

Admin σ(i) tries to win subject t at rank r with
probability PAσ(i)(xσ(i), t)
if success then

Define Sk−r−1 = Sk−r\σ(i)
break and move on to the next rank

end if
end for

end for

Lemma 4.1. An allocation x with the following properties
is always a Nash equilibrium for GSV:

• Admins prefer to split their budget uniformly over sub-
jects: xa(t) ∈ {0, 1},∀a ∈ [k], t ∈ [n];

• Admins prefer to spend all their budget:

n∑
t=1

xa(t) = B(a),∀a ∈ [k]

• Admins prefer to minimize competition with each other:∣∣∣∣∣
k∑

a=1

xa(t)−
k∑

a=1

xa(t
′)

∣∣∣∣∣ ≤ 1,∀t, t′ ∈ [n]

This means that an admin will prioritize spending bud-
get on the subjects with the least bids.

The proof for Lemma 4.1 is detailed in the Appendix and
relies on the following properties for an allocation x as de-
scribed: an admin a (1) cannot increase their utility through
permuting his bids (re-arranging his allocation xa of budget
units over subjects); and (2) prefers to split his budget in
units of 1 over subjects rather than aggregating it over fewer
subjects. The intuition behind proving these properties re-
lies on the form of the utility function fa(·), as PAa(·) is
component-wise concave and increasing: an admin gains
more from uniform bidding since it has a chance of winning
a first rank over multiple subjects, rather than increasing his
bid on a single subject. Although increasing the bid on a
single subject increases his chance to win the first rank, it
does not increase it by much in comparison. Moreover, we
note that an allocation in which an admin has unused budget
cannot be an equilibrium, as the admin can increase their
sample value by bidding on new subjects, given the proba-
bilistic nature of the allocation rule. The nature of this equi-
librium is quite subtle: it’s not clear from the start whether

the equilibrium is always the equal bids strategy, or to split
the subject slots (biding high on a few subject slots and
zero on the rest, thus splitting the subjects between different
admins). We conjecture that the allocations x as described
in Lemma 4.1 are the only Nash equilibria that can occur
when the relevance probability p is the same for all admins:

Conjecture 4.2. The only pure Nash equilibria for the game
GSV are allocations x that satisfy the properties stated in
Lemma 4.1, when the activation probability pa := p is the
same for all admins a ∈ [k].

We can formally show this property for two admins, k = 2,
and any number of subjects n:

Proposition 4.3. The only pure Nash equilibria for the game
GSV for two admins (k = 2) are allocations x that satisfy
the properties stated in Lemma 4.1, when the activation
probability pa := p is the same for all admins a ∈ [k].

5. Discussion and Future Directions
While our analysis uses the probabilistic allocation rule
Aprob, it is not limited to it. As the approximation proof
sketch suggests, a main ingredient is that the inherent
randomness in the allocation rule renders the sample value
objective S close to its mean, allowing for concentration
inequalities to apply and extend to the estimation error
objective. Albeit the random ordering of the agents,
the allocation rule has the property that higher bids
increase the probability of winning higher ranks, due to
the sequential rank allocation. The Nash equilibria in
the sample value optimization game bear a noteworthy
resemblance to Feldman et al. (2007)’s randomized solution
of the associated optimization problem under a generalized
second-price auction. In their setting, the authors show that
the optimization problem induced by the utility function of
agents with position-based value over subjects is intractable,
yet randomized strategies find nearly optimal solutions.
Thus, future directions could analyze our objectives with
other allocation rules similar to those used in generalized
second-price or first-price auctions (Vickrey, 1961).

Another promising future avenue of research includes
studying the quality of Nash equilibria within the class
of estimation error games, in terms of bounding the
Price of Anarchy (PoA) (Koutsoupias & Papadimitriou,
2009). In the GSV game, this becomes more challenging
to study as it is not necessarily a potential game like its
simpler version in Maehara et al. (2015), although with
the added novelty that we can fully characterize a Nash
equilibrium. Furthermore, it would be interesting to study
the distribution of utility across admins through the lens of
inequality, perhaps through related solution concepts such
as Nash social welfare, often employed to study fairness
issues in resource allocation games (Brânzei et al., 2017).
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A. Appendix
A.1. Figure of Data-generating Process in Section 3

We sketch the data-generating process for an admin in Figure 2.

slot 1 slot 2 slot 3 slot 4 slot 5
estimation

error
game

(no rank)

treatment 

collected
data 

rank 1

(no data)

+ + +

Part 1: Ranks assigned to admins

Part 2: Sampling process for admin 

AD

treatment control treatment control

rank 3 rank 2rank 3

game
results

show
treatment
or control

Figure 2. Illustration of the data-generating process for an admin. In Part 1, the admins compete with each other to obtain different ranks
for subject slots. After placing the bids, a rank allocation rule is applied. Each admin receives a rank for all slots for which they have bid.
For example, the admin depicted in yellow received rank 1 for subject slots 1, rank 3 for subject slots 2 and 3, no rank for subject slot
4 (which happens if an admin does not bid on a slot), and rank 2 for subject slot 5. In Part 2, individuals are sampled at the allocated
ranks, with treatment and control assigned in a randomized manner. The collected data for the admin depicted in yellow consists of tuples
(ri, Ti, Yi) for all individuals, where ri represents the rank, Ti the binary treatment-control variable, and Yi the outcome.
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A.2. Proofs for Section 2 Results

Proof of Theorem 2.2. We assume that every admin a can only bid up to some constant C units of its budget B(a) on any par-
ticular subject slot t. This assumption is motivated by throttling behavior on online advertising markets (Charles et al., 2013)
or advertising channel constraints in media (Maehara et al., 2015). We also assume that the budget of any admin is at most the
number of subject slots: B(a) ≤ n. We note that this assumption is not restrictive, as results hold easily for larger budgets.

We aim to show that for x a Nash equilibrium for the GSV game, x is an (ϵ, η)-approximate Nash equilibrium for the GMSE
game. For ease of notation, denote the sample value by a variable S:

S :=

k∑
r=1

nr · α2
r. (19)

The sample value S is determined by the allocation x. Note that S is a positive random variable, as as the variables (nr)r
counts of the rank allocation r, nr =

∑
i 1{ri = r} and the variables (αr)r are nonnegative. The rank allocation r is

sampled from the distribution given by the allocation rule. We aim to show the following result, as a stepping stone in
proving the existence of an ϵ-approximate Nash equilibrium for the game GMSE:

Proposition A.1. For allocations x ∈ D in which all admins use all their budget,
n∑

t=1
xa(t) = B(a), ∀a ∈ [k], with high

probability S ∈ [(1− ϵ) · E[S], (1 + ϵ) · E[S]], with ϵ > 0.

Proof of Proposition A.1. The intuition is that the sample value concentrates around its expectation with high probability
given that it satisfies a bounded differences property, as further shown. Our aim is to show that with high probability

S ∈ [(1− ϵ) · E[S], (1 + ϵ) · E[S]] ⇔
(1 + ϵ) · E[S] ≥ S ≥ (1− ϵ) · E[S] ⇔
ϵ · E[S] ≥ S − E[S] ≥ −ϵ · E[S] ⇔

|S − E[S]| ≤ ϵ · E[S]

(20)

In order to show this, we upper bound the probability P (|S − E[S]| ≥ ϵ · E[S]) using McDiarmid’s inequality by writing
the random variable S as the output of a function that satisfies the bounded differences property. An admin a only obtains
samples from subject slots on which they bid, i.e. if they bid 0 budget on a subject slot, they do not get any rank for that
subject slot, as per the definition of the allocation rule. Given the assumption that an admin can only bid up to some constant
C on each subject, there are at least B(a)/C slots where the admin gets any rank; hence, there are at least B(a)/C of the ri
variables. We denote by m the number of the subject slots on which an admin gets ranks, noting that B(a)/C ≤ m ≤ B(a).

For each sample profile (nr)r, we can write S as the output of a function of the random variables (ri)i, g : [k]m → R,

with g(r1, · · · , rm) =
k∑

r=1

m∑
i=1

1(ri = r) · α2
r (in this notation, nr becomes nr =

m∑
i=1

1(ri = r)).

We next show that the function g satisfies the bounded differences property in the variables (ri)i : ∃ constants ci,∀i ∈ [n]
such that ∀i ∈ [n] and ri ∈ [k], the following property is satisfied:

sup
r′i∈[k]

|g(r1, · · · , ri, · · · , rm)− g(r1, · · · , r′i, · · · , rm)| ≤ ci (21)

To show this, we denote

g(r1, · · · , ri, · · · , rm) =

k∑
r=1

nr · α2
r,

g(r1, · · · , r′i, · · · , rm) =

k∑
r=1

n′
r · α2

r,

(22)
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where n′
ri = nri − 1, n′

r′i
= nr′i

+ 1, and for r ̸= ri, r
′
i, nr = n′

r, since changing one variable ri to r′i only changes two
counts of the ranks, nri and nr′i

, leaving the rest unchanged. Thus, we get that

sup
r′i∈[k]

|g(r1, · · · , ri, · · · , rm)− g(r1, · · · , r′i, · · · , rm)| = sup
r′i∈[k]

∣∣∣α2
ri − α2

r′i

∣∣∣ ≤ 1, (23)

since αr ∈ [0, 1],∀r ∈ [k]. Thus, the function g satisfies the bounded differences property with right-handside constants
equal to 1 for all i ∈ [n]. From McDiarmid’s inequality (McDiarmid et al., 1989), we get that for independent random
variables Ri ∈ [k],∀i ∈ [m],

P (|g(R1, · · · , Rm)− E [g(R1, · · · , Rm)] | ≥ η) ≤ 2 exp

(
−2η2

m

)
⇔

P (|S − E [S] | ≥ η) ≤ 2 exp

(
−2η2

m

) (24)

Thus, the probability that the even in equation 20 happens is bounded below:

P (|S − E[S]| ≤ ϵ · E[S]) ≥ 1− 2 exp

(
−2ϵ2E[S]2

m

)
(25)

As ϵ → 0, the right hand side of equation 25 approaches 1.

Next, we will use the properties of the allocation rule Aprob that allow us to bound E[S]:

Proposition A.2. If B(a) ≤ n for an admin a, then under the allocation rule Aprob and a Nash equilibrium x,

E
[

k∑
r=1

nr · α2
r

]
= Ω(B(a)/k).

Corollary A.3. If B(a) ≤ n for an admin a, then under the allocation rule Aprob and an allocation x with
n∑

t=1
xa(t) = B(a),

E
[

k∑
r=1

nr · α2
r

]
= Ω(B(a)/C · k).

Proof of Proposition A.2. First, we note by linearity of expectation and the fact that all variables are non-negative that

E
[

k∑
r=1

nr · α2
r

]
=

k∑
r=1

E [nr] · α2
r ≥ E [n1] · α2

1 = E [n1], as we set α1 = 1. The allocation rule Aprob gives us a closed

form formula for E [n1],

E [n1] =

n∑
t=1

PAa(xa, t) ·
1

k!

∑
σ∈P([k])

PAa(xa, t) ·
∏
j<σa

(1− PAj(xj , t)) , (26)

where P(K) denotes the set of permutation of elements of a set K. We note that each summand in equation (26) is the
probability that admin a wins rank 1 for a subject slot t, which we write as

pa,t(x) = PAa(xa, t) ·
1

k!

∑
σ∈P([k])

PAa(xa, t) ·
∏
j<σa

(1− PAj(xj , t)) , (27)

thus giving

E [n1] =

n∑
t=1

pa,t(x) (28)
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As pa,t is essentially averaging over all possible orderings of the admins, we note that

pa,t(x) =

k−1∑
s=0

pa,t(x| admin a appears after s admins in σ) · P ( admin a appears after s admins in σ) , (29)

where σ is a random ordering of the admins. Thus,

pa,t(x) ≥ pa,t(x| admin a appears first in σ) · P ( admin a appears first in σ) (30)

Since σ is a random ordering of the admins, the probability that admin a is the first one in σ is simply 1/k, whereas
the probability that admin a wins rank 1 for subject slot 1 conditioned on the fact that it the first one to play is just
PAa(xa, t) = 1− (1− p)xa(t) given the allocation rule Aprob. Thus, we obtain

E [n1] ≥
n∑

t=1

PAa(xa, t)

k
(31)

Under a Nash equilibrium x, we know from Lemma 4.1 that admin a has exhausted their budget B(a) and has bid only
1s and 0s. Thus,

E [n1] ≥
∑
t∈[n],

xa(t)=1

PAa(xa, t)

k
+

∑
t∈[n],

xa(t)=0

PAa(xa, t)

k
(32)

Since PAa(xa, t) = 1− (1− p)xa(t), we get that PAa(xa, t) = p for xa(t) = 1 and PAa(xa, t) = 0 for xa(t) = 0, thus
giving

E [n1] ≥
∑
t∈[n],

xa(t)=1

PAa(xa, t)

k
⇒

E [n1] ≥
B(a) · p

k

(33)

Since p is defined as a constant with respect to all other model parameters, we get that E [n1] = Ω
(

B(a)

k

)
. We conclude

that E
[

k∑
r=1

nr · α2
r

]
= Ω(B(a)/k), which follows from the simple property that if a function f is Ω(n), then for function

g for which g(x) ≥ f(x),∀x in the domain of f and g, g also grows as Ω(n). We note that there may be other allocations
rule that satisfy this property, and thus our analysis is not contingent on the specific choice of the allocation rule, as long
as it preserves this property.

Proof for Corollary A.3. Corollary A.3 follows easily from the above proof with a minimal modification of equations (32)–
(33), knowing that an admin can bid at most C budget units on every subject slot and they have exhausted their budget:

E [n1] ≥
∑
t∈[n],

xa(t)≥1

PAa(xa, t)

k
+

∑
t∈[n],

xa(t)=0

PAa(xa, t)

k
(34)

Since PAa(xa, t) = 1− (1− p)xa(t), we get that PAa(xa, t) ≥ p for xa(t) ≥ 1 and PAa(xa, t) = 0 for xa(t) = 0, thus
giving
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E [n1] ≥
∑
t∈[n],

xa(t)≥1

PAa(xa, t)

k
⇒

E [n1] ≥
B(a) · p
C · k

(35)

under the assumption that B(a) ≤ n. Just as before, we get that E [n1] = Ω
(

B(a)

C·k

)
and conclude that

E
[

k∑
r=1

nr · α2
r

]
= Ω(B(a)/(C · k)).

Corollary A.3 simply states that the expectation of the variable S grows at at least the rate of B(a)/k (since C is a constant)
when an admin uses their entire budget, whether in a Nash equilibrium or not (intuitively, subject to using all budget,
any permutation of how the budget is allocated across subject slots, the expectation of S does not get ‘too small’). Take
a constant c > 0 such that

E[S] ≥ c · B
(a)

C · k
. (36)

Since B(a)/C ≤ m ≤ B(a), we also know that there exists a constant c′ > 0 such that E[S] ≥ c′ · m
k . We take η in

equation (24) to be equal to η = c0 ·
√
m, with c0 to be determined. Then, equation (24) becomes

P (|S − E [S] | ≤ η) ≥ 1− 2 exp

(
−2η2

m

)
⇔

P
(
|S − E [S] | ≤

√
m · c0

)
≥ 1− 2 exp

(
−2c20

) (37)

Taking c0 = ϵ · c′ ·
√
m
k , we get from equation (36):

P
(
|S − E [S] | ≤ ϵ · c′ · m

k

)
≥ 1− 2 exp

(
−2ϵ2c′2m/k2

)
⇒

P (|S − E [S] | ≤ ϵ · E[S]) ≥ 1− 2 exp
(
−2ϵ2c′2m/k2

) (38)

The right hand side tends to 1 when the exponential vanishes, i.e. in the regime where B(a) = ω(k2). Various modeling
assumptions may satisfy this requirement, for example when the budget and the number of administrators grow sublinearly
in n, with B(a) = Ω(nb) and k = O(nb/2−δ), for b ∈ (0, 1) and δ ∈ (0, b/2).

A simple corollary follows from Proposition A.1:

Corollary A.4. For allocations x ∈ D in which all admins use all their budget,
n∑

t=1
xa(t) = B(a), ∀a ∈ [k], with high

probability 1
S ∈

[
(1− ϵ) · 1

E[S] , (1 + ϵ) · 1
E[S]

]
, with ϵ > 0.

Proof. The proof follows easily by constructing ϵ and using Proposition A.1. Since we know that with high probability,
S ≥ (1− ϵ) · E[S] for an allocation x and S is positive,

S ≥ (1− ϵ) · E[S] ⇒ 1

S
≤ 1

(1− ϵ) · E[S]
,

S ≤ (1 + ϵ) · E[S] ⇒ 1

S
≥ 1

(1 + ϵ) · E[S]

(39)

Set 1
1−ϵ = 1 + ϵ0 ⇒ ϵ = ϵ0

1+ϵ0
⇒ 1

1+ϵ = 1− ϵ0
1+2ϵ0

. Choosing ϵ′ = max
(
ϵ0,

ϵ0
1+2ϵ0

)
, we get that
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P
(∣∣∣∣ 1S − 1

E[S]

∣∣∣∣ ≥ ϵ′ · 1

E[S]

)
= P (|S − E[S]| ≥ ϵ · E[S]) ≥ 2 exp

(
−2ϵ2c′2m/k2

)
, (40)

concluding our proof. For m/k2 → ∞, the right hand side vanishes.

We return to the proof of Theorem 2.2. We denote by fMSE
a the utility function of the game GMSE and by fSV

a the utility
function of the game GSV, for each admin a.

Note that fSV
a is a non-negative function on its entire domain for all admins a, whereas fMSE

a is a non-positive function on its

entire domain for all admins a. Note that fMSE
a (x) = −E

 1
k∑

r=1
nr·α2

r

 = −E
[
1
S

]
and fSV

a (x) = E
[

k∑
r=1

nr · α2
r

]
= E [S],

by definition of the random variable S from equation (19).

According to Proposition A.1, we know that S concentrates around its expectation. For ϵ > 0, denote the event that
S ∈ [(1− ϵ) · E[S], (1 + ϵ) · E[S]] by E for ease of notation. Thus,

E
[
1

S

]
= E

[
1

S
|E
]
· P [E ] + E

[
1

S
|Ec

]
· P [Ec] , (41)

where Ac denotes the complement of the event A. We know that, conditioned on E , 1
S is concentrated around 1

E[S] , whereas
conditioned on Ec, expectation of 1

S is bounded by 1 given that the error estimation objective outputs min
(
1
S , 1

)
. Denote

by η the probability of E (from Proposition A.1, η = 2e−2ϵ2c′2m/k2

). Thus, we obtain

E
[
1

S

]
≤ E

[
1

S
|E
]
+ 1 · η ≤ (1 + ϵ) · 1

E[S]
+ η ⇒

fMSE
a (x) ≥ (1 + ϵ)

(
− 1

fSV
a (x)

)
− η

(42)

which holds for all allocations x such that all admins have allocated all their budget, under the assumption that an admin
can bid at most C budget units on any subject slot.

Furthermore, applying Jensen’s inequality on the function f(x) = 1/x, we get that for all allocations xa

E

 1
k∑

r=1
nr · α2

r

 ≥ 1

E
[

k∑
r=1

nr · α2
r

] ⇔

−E

 1
k∑

r=1
nr · α2

r

 ≤ − 1

E
[

k∑
r=1

nr · α2
r

] ⇔

fMSE
a (xa,x−a) ≤ − 1

fSV
a (xa,x−a)

(43)

Now, take x to be a Nash equilibrium for the game, and we will show that x has to be an (ϵ, η)-approximate Nash
equilibrium for the game GMSE. Thus, we would like to show that ∀x′

a ∈ Da,

fSV
a (xa,x−a) ≥ fSV

a (x′
a,x−a) ⇒

fMSE
a (xa,x−a) ≥ (1 + ϵ) · fMSE

a (x′
a,x−a)− η

(44)

with ϵ, η > 0,∀a ∈ [k].
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We will first show that the above statement holds for all x′
a ∈ Da such that

n∑
t=1

x′
a(t) = B(a) (in other words, admin a

has exhausted their budget with strategy x′
a). Given that x is a Nash equilibrium for GSV, we get

fSV
a (xa,x−a) ≥ fSV

a (x′
a,x−a) ⇒

− 1

fSV
a (xa,x−a)

≥ − 1

fSV
a (x′

a,x−a)
⇒

fMSE
a (xa,x−a) ≥ (1 + ϵ)

(
− 1

fSV
a (xa,x−a)

)
− δ ≥ (1 + ϵ)

(
− 1

fSV
a (x′

a,x−a)

)
− δ ≥ (1 + ϵ) · fMSE

a (x′
a,x−a)− η

(45)
where the last inequality follows from Jensen’s inequality, as described above. Since ϵ, η > 0, we get the (ϵ, η)-
approximation condition. Thus, we are left to show inequality (44) for allocations x′

a that may not exhaust the entire budget
B(a). For each such allocation, create another allocation xfull

a by using the rest of the budget randomly across subject slots
that had no bid on x′

a. Thus, xfull
a satisfies the conditions necessary for Proposition A.1. We note that the utility function fSV

a

can only increase from bidding a unit of budget or more on additional subjects which had a previous bid of 0 budget, since
fSV
a is a summation of the utility coming from all subjects t ∈ [n] with all terms being non-negative, and PAa(xa, t) = 0

if xa(t) = 0 and PAa(xa, t) ≥ p > 0 if xa(t) ≥ 1. Thus, we get that

fSV
a (xfull

a ,x−a) ≥ fSV
a (x′

a,x−a) ⇔ − 1

fSV
a (xfull

a ,x−a)
≥ − 1

fSV
a (x′

a,x−a)
(46)

From equations (45)–43 and using the Jensen inequality again, we obtain that

fMSE
a (xfull

a ,x−a) ≥ (1+ϵ)

(
− 1

fSV
a (xfull

a ,x−a)

)
−η ≥ (1+ϵ)

(
− 1

fSV
a (x′

a,x−a)

)
−η ≥ (1+ϵ)·fMSE

a (x′
a,x−a)−η, (47)

thus proving that a Nash equilibrium for the game GSV is an (ϵ, η)-approximate Nash equilibrium for the game GMSE.

We note that ϵ and η are

ϵ = O
(

k√
B

)
and η = O

(
exp(−B/k2)

)
, (48)

where B = mina B
(a) and the maximum bid per subject slot is bounded. These come from equation (38), in which the

concentration bounds links the concentration ‘closeness’ ϵ with the probability of concentration η.
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A.3. Proofs for Section 3 Results

We define a population distribution X on the subjects, which are fully described by the random variables (rank, T, Y ).
Individuals are drawn independently for each slot, according to a fixed rank allocation r. In particular, we sample the nr

individuals from their slots at rank r from the do-interventional distribution X do(rank=r).

We highlight that the outcomes Yi for i ∈ [n(a)] are not identically distributed. Their distribution differs according to
their associated ranks ri. The ranks ri are assigned by the rank allocation r, and therefore, deterministic in i. They
merely indicate from which do-interventional distribution the individual was drawn. We denote the joint distribution of
the outcomes and treatment assignment variables Zi = (Yi, Ti), i ∈ [n(a)] by P .

We explicitly define the set of considered model instances M. For a given sequence (αr)r=1,...,k, we set

M =

{(
ci,0, c

(ri)
i,1

)
i∈[n(a)]

: |τ | ≤ 1, τr = αr · τ
}
, (49)

with the quantities τ = 1
n(a)

∑n(a)

i=1

c
(ri)

i,1

αri
and

τr =


1
nr

∑
i:ri=r

c
(r)
i,1 for nr ≥ 1

αr · τ for nr = 0

for r ∈ [k].6

Moreover, note that we also identify the causal effect of interest in equation (7) through the potential outcomes model as

τ =
1

n(a)

n(a)∑
i=1

c
(ri)
i,1

αri

.

Proof of Theorem 3.4. We follow the proof of Theorem 2 in Cortez-Rodriguez et al. (2023) and apply Le Cam’s
method (Le Cam, 1973) to obtain the minimax bound. For the computation, we make use of the independence between
individuals, and the fact that we can sort them according to their assigned ranks.

We use Le Cam’s method (Le Cam, 1973) to obtain the proof of Theorem 3.4.

Lemma A.5 (Le Cam’s method). Let M be a set of model instances. Then, we have for any two instances M1,M2 ∈ M
such that |τ(M1)− τ(M2)| ≥ 2δ with δ > 0:

inf
τ̂

sup
M∈M

E
[
(τ̂ − τ)2

]
≥ δ2

2

(
1−

√
DKL(P1||P2)

2

)
, (50)

where P1 and P2 denote the population distribution with respect to M1 and M2, respectively, and DKL(·||·) denotes the
Kullback-Leibler divergence.

We begin the proof by constructing instances M1 and M2. We set ci,0 = 0 and crii,1 = δ · αri for M1 and ci,0 = 0 and
crii,1 = −δ · αri for M2. Note that α1 = 1 by definition. Hence, we get

τ(M1) =
1

n(a)

n(a)∑
i=1

c
(ri)
i,1

αri

=
1

n(a)

n(a)∑
i=1

δ · αri

αri

= δ (51)

τ(M2) = · · · = −δ (52)

So, we have |τ(M1)− τ(M2)| ≥ 2δ. Thus, the instances M1 and M2 satisfy the coverage condition in Lemma A.5.

6We note that when there are no datapoints at rank r, we cannot identify the effect directly, but we can identify it from data at other
ranks since the structural parameters (αr)r are known.
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Next, we compute DKL(P1||P2) with P1 and P2 are the joint distribution of (Yi, Ti), i ∈ [n(a)] for the instances M1

and M2. We will choose a δ to upper bound DKL(P1||P2) by 1/2. As all samples are independently drawn, the joint
distributions P1 and P2 factorize as:

P1({(Yi, Ti)}n
(a)

i=1 ) =

n(a)∏
i=1

P1(Yi, Ti)

P2({(Yi, Ti)}n
(a)

i=1 ) =

n(a)∏
i=1

P2(Yi, Ti).

Note that the outcomes Yi and Yj are differently distributed when the subjects i and j are sampled from different ranks,
ri ̸= rj . Hence, we have in general that P1(Yi, Ti) ̸= P1(Yj , Tj) and P2(Yi, Ti) ̸= P2(Yj , Tj) for i ̸= j. We obtain that

DKL(P1||P2) = EM1

[
log

(
p1({(Yi, Ti)}n

(a)

i=1 )

p2({(Yi, Ti)}n
(a)

i=1 )

)]
=

n(a)∑
i=1

EM1

[
log

(
p1(Yi, Ti)

p2(Yi, Ti)

)]

with p1 and p2 the densities of P1 and P2, respectively. We sort the samples according to their allocated ranks and apply the
Law of Total Expectation,

DKL(P1||P2) =

k∑
r=1

∑
j:rj=r

EM1

[
log

(
p1(Yj , Tj)

p2(Yj , Tj)

)]

=

k∑
r=1

∑
j:rj=r

P1(Tj = 1) · EM1

[
log

(
p1(Yj , Tj)

p2(Yj , Tj)

)
|Tj = 1

]

+ P1(Tj = 0) · EM1

[
log

(
p1(Yj , Tj)

p2(Yj , Tj)

)
|Tj = 0

]
(53)

Focusing on samples drawn from a fixed rank r, the outcomes Yj conditional on the treatment Tj , are distributed as:

Yj |Tj ∼ N
(
c
(r)
i,1 · Tj , σ

2
)

(54)

as Yj = cj,0 + c
(r)
j,1 · Tj + εj with cj,0 = 0 and εj ∼ N(0, σ2). Hence, we have for M1

Yj |Tj ∼ N(δ · αr · Tj , σ
2)

and for M2

Yj |Tj ∼ N(−δ · αr · Tj , σ
2).

We have Yj |(Tj = 0) ∼ N(0, σ2) for both instances M1 and M2. Therefore, the second term in equation (53) simplifies to
zero. We remain with

DKL(P1||P2) =

k∑
r=1

∑
j:rj=r

P1(Tj = 1) · EM1

[
log

(
p1(Yj , Tj)

p2(Yj , Tj)

)
|Tj = 1

]

=

k∑
r=1

∑
j:rj=r

P1(Tj = 1) · EM1

[
log

(
φδ·αr,σ2(Yj , Tj)

φ−δ·αr,σ2(Yj , Tj)

)
|Tj = 1

]

where φµ,σ2 denotes the density function of N(µ, σ2). Note that the difference in distribution across ranks r is now made
explicit in the densities, e.g., φδ·αr,σ2 for model instance M1. We input the explicit formula for the normal density and use
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Figure 3. Example of minimax lower bound with q = 0.5 and σ2 = 4.

that Tj ∼ Ber(qj), for qj ∈ [q, 1− q],

DKL(P1||P2) =

k∑
r=1

∑
j:rj=r

qj · EM1

[
− 1

2σ2

(
(Yi − δ · αr)

2 − (Yi + δ · αr)
2
)
|Tj = 1

]
(55)

=

k∑
r=1

∑
j:rj=r

qj ·
2

σ2
· δ · αr · EM1 [Yj |Tj = 1] (56)

=

k∑
r=1

∑
j:rj=r

qj ·
2

σ2
· δ · αr · (0 + δ · αr + E[εj ]) (57)

=

k∑
r=1

∑
j:rj=r

qj ·
2

σ2
· δ2 · α2

r (58)

≤ δ2 · (1− q) · 2

σ2
·

k∑
r=1

nr · α2
r. (59)

We can bound DKL(P1||P2) by 1/2 if we set

δ2 =
σ2

4 · (1− q) ·
∑k

r=1 nr · α2
r

.

Then, Le Cam’s method gives,

inf
τ̂

sup
M∈M

E
[
(τ̂ − τ)2

]
≥ δ2

2

(
1−

√
DKL(P1||P2)

2

)
(60)

=
σ2

16 · (1− q) ·
∑k

r=1 nr · α2
r

(61)

Finally, note that the sample value
∑

r nr · α2
r is lower bounded by one if the admin attains at least one slot at rank one, i.e.,

n1 = 1. However, it might happen that no slot is won at rank one (in fact, it may happen that nr = 0 for some other rank r

too). In this case, the sample value is sometimes lower than one, and as it decreases, the inverse of
(∑k

r=1 nr · α2
r

)−1

may
explode. However, the minimum error is still upper bounded by 1 since the admin is better off using a constant estimator, as
the effect is bounded, |τ | ≤ 1. Therefore, the minimax lower bound is the minimum of the error achieved using the samples
and the error obtained by a constant estimator. See Figure 3 for an illustration.
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Proof of Proposition 3.5. We note that τr = 1
nr

∑
i:ri=r

c
(r)
i,1 from the potential outcomes model.

Then, we compute the expectation of our estimator as:

E(τ̂r) = E

[
1

nr

∑
i:ri=r

(
Yi1{Ti = 1}
P(Ti = 1)

− Yi1{Ti = 0}
P(Ti = 0)

)]

=
1

nr

∑
i:ri=r

E
[
Yi1{Ti = 1}
P(Ti = 1)

− Yi1{Ti = 0}
P(Ti = 0)

] (62)

For every i, note that, by linearity of expectation and the potential outcomes model for subjects i at rank ri = r,

E
[
Yi1{Ti = 1}
P(Ti = 1)

− Yi1{Ti = 0}
P(Ti = 0)

]
= ci,0 · E

[
1{Ti = 1}
P(Ti = 1)

− 1{Ti = 0}
P(Ti = 0)

]
+c

(r)
i,1 · E

[
Ti ·

(
1{Ti = 1}
P(Ti = 1)

− 1{Ti = 0}
P(Ti = 0)

)]
+E[εi] · E

[
1{Ti = 1}
P(Ti = 1)

− 1{Ti = 0}
P(Ti = 0)

]
= ci,0 · E

[
1{Ti = 1}
P(Ti = 1)

− 1{Ti = 0}
P(Ti = 0)

]
+c

(r)
i,1 · E

[
Ti ·

(
1{Ti = 1}
P(Ti = 1)

− 1{Ti = 0}
P(Ti = 0)

)]

(63)

Assuming that the actual treatment Ti is administered through a Bernoulli randomized design, Ti ∼ Ber(qi), for qi ∈ [q, 1−q],
we get that the first term of equation (63) reduces to 0 and the second one to c

(r)
i,1 . To see this briefly, note that the first term

is equal to

ci,0 · E
[
1{Ti = 1}
P(Ti = 1)]

− 1{Ti = 0}
P(Ti = 0)

]
= ci,0 · E

[
1{Ti = 1}
P(Ti = 1)]

− 1{Ti = 0}
P(Ti = 0)

]
= ci,0 ·

(
P(Ti = 1)

P(Ti = 1)
− P(Ti = 0)

P(Ti = 0)

)
= 0

(64)

using the law of total expectation. Similarly, the second term is equal to

c
(r)
i,1 · E

[
Ti ·

(
1{Ti = 1}
P(Ti = 1)

− 1{Ti = 0}
P(Ti = 0)

)]
= c

(r)
i,1 · E

[
Ti ·

(
1{Ti = 1}
P(Ti = 1)

− 1{Ti = 0}
P(Ti = 0)

)]
= c

(r)
i,1 ·

(
E
[
Ti ·

1{Ti = 1}
P(Ti = 1)

]
− E

[
Ti ·

1{Ti = 0}
P(Ti = 0)

])
= c

(r)
i,1 ·

(
E
[
1{Ti = 1} · 1{Ti = 1}

P(Ti = 1)

]
− E

[
1{Ti = 1} · 1{Ti = 0}

P(Ti = 0)

])
= c

(r)
i,1 ·

(
E
[
1{Ti = 1}
P(Ti = 1)

]
− 0

)
= c

(r)
i,1 · P(Ti = 1)

P(Ti = 1)
= c

(r)
i,1

(65)
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as Ti = 1{Ti = 1} by definition, and we know that 1{Ti = 1} ·1{Ti = 1} = 1{Ti = 1} and 1{Ti = 1} ·1{Ti = 0} = 0.

Coming back to the sum over all subjects i at rank r, we get that

E(τ̂r) =
1

nr
·
∑

i:ri=r

c
(r)
i,1 = τr (66)

Proof for Proposition 3.6. Denote by

τ̂r,d =
1

nr
·
∑

i:ri=r

Yi1{Ti = d}
P(Ti = d)

, (67)

for d ∈ {0, 1}. Then, we have τ̂r = τ̂r,1 − τ̂r,0. We begin by computing the variance of τ̂r,d for d ∈ {0, 1}.

Step 1:

Var(τ̂r,d) =
1

n2
r

∑
i:ri=r

∑
j:rj=r

Cov(Yi1{Ti = d}, Yj1{Tj = d})
P(Ti = d)P(Tj = d) (68)

Let’s first take the case d = 1. Case 1: For i = j,

Cov(Yi1{Ti = 1}, Yj1{Tj = 1}) = Var(Yi1{Ti = 1}) (69)

Note that

Var(Yi1{Ti = 1}) = Var(εi) · Var(1{Ti = 1}) + Var(εi) · E(1{Ti = 1})2

+E(Yi|Ti)
2 · Var(1{Ti = 1})

≤ σ2 · qi(1− qi) + σ2 · q2i +
(
ci,0 + c

(r)
i,1 + E(εi)

)2
· qi(1− qi)

= σ2 · qi + Y 2
max · qi(1− qi)

(70)

where the last inequality holds under the bounded effect assumption from equation 3.1.

Case 2: For i ̸= j, under the Bernoulli design, treatment assignments are independent and so no treatment affects both units
i and j. Hence, Cov(Yi1{Ti = 1}, Yj1{Tj = 1}) = 0.

Thus,

Var(τ̂r,1) ≤
1

n2
r

∑
i:ri=r

σ2 · qi + Y 2
max · qi(1− qi)

t2

=
1

n2
r

∑
i:ri=r

σ2 + Y 2
max · (1− qi)

qi

≤ 1

nr · q
(
σ2 + Y 2

max · (1− q)
)
,

(71)

given that the second equation is a decreasing function in qi and qi ∈ [q, 1 − q]. In a similar way we obtain a bound for
d = 0:

Var(τ̂r,0) ≤
1

nr · (1− q)

(
σ2 + Y 2

max · q
)

(72)
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Step 2: Next, we bound the covariance between τ̂r,0 and τ̂r,1:

Cov(τ̂r,1, τ̂r,0) = E[τ̂r,1 · τ̂r,0]− E[τ̂r,1] · E[τ̂r,0] (73)

A simple calculation shows that

E[τ̂r,t] =
1

nr

∑
i:ri=r

Yi(Ti = t) (74)

and

E[τ̂r,1 · τ̂r,0] = E

[
1

n2
r

( ∑
i:ri=r

Yi1(Ti = 1)

P(Ti = 1)

)
·

( ∑
i:ri=r

Yi1(Ti = 0)

P(Ti = 0)

)]
(75)

Using equations (74) and (75) in the covariance expression and simplifying, we get

Cov(τ̂r,1, τ̂r,0) =
1

n2
r

∑
i ̸=j

P(Ti = 1&Tj = 0)

P(Ti = 1)P(Tj = 0)
· Yi(Ti = 1)Yj(Tj = 0)−

∑
i:ri=r

Yi(Ti = 1)
∑

i:ri=r

Yi(Ti = 0)


=

1

n2
r

∑
i ̸=j

Yi(Ti = 1)Yj(Tj = 0)−
∑
i,j

Yi(Ti = 1)Yj(Tj = 0)


= − 1

n2
r

∑
i:ri=r

Yi(Ti = 1, )Yi(Ti = 0)

(76)

Given the bounded effect assumption from equation 3.1, we can bound

−Cov(τ̂r,1, τ̂r,0) ≤
Y 2

max

nr

(77)

Step 3: Putting equations (71), (72), and (77) together, we get

Var(τ̂r) = Var(τ̂r,1) + Var(τ̂r,0)− 2 · Cov(τ̂r,1, τ̂r,0) ⇒

Var(τ̂r) ≤
1

nr

[
σ2

q(1− q)
+ Y 2

max

(
(1− q)2 + q2

q(1− q)
+ 2

)] (78)
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A.4. A Discussion on Estimating the Discount Factors

When the discount factors are not known, an admin is put in the following position: should he discard the (potentially useful)
data at lower ranks and just use the data at rank 1 for estimating the treatment effect, or should he try to engage the lower
rank data by using part of it to estimate the discount factors and part of it for estimating the treatment? At a first glance, the
latter might sound appealing, especially if there was significantly more data at lower ranks than at rank 1. However, this latter
option does not actually decrease the estimation error, even in idealized cases. We showcase this claim in an ideal situation
below, where the lower rank data exhibits no error in the τr estimator (i.e. E[(τr − τ̂r)

2
] = 0 for r > 1). This result uses

a naïve estimator for the discount parameters (αr)r, leaving the problem of using more complex estimators for future work.

To formalize our set-up, we define:

• Scenario (1): an admin uses just the data where their treatment was shown on the first rank, and thus τ = τ1. We denote
an estimator for this scenario by τ̂(1), noting that it uses n1 samples.

• Scenario (2): an admin splits the data at all positions, using part of it for estimating the position effect parameters
(αr)r, and then using these estimates together with the rest of the data for estimating the treatment effect τ . We denote
an estimator for this scenario by τ̂(2).

Lemma A.6. Assume a naïve estimator for the discount factors: α̂r = τ̂r/τ̂1,∀r. For all valid ways of splitting the data
between estimating (αr)r and estimating τ ,

E[(τ̂(1) − τ)2] ≤ E[(τ̂(2) − τ)2]

Proof. First, splitting the data in a valid way means using some amount of samples n′ from both the rank 1 data and rank r
data to estimate αr with the naïve estimator, and using the remaining (non-overlapping) samples to estimate τ . One must
have n′ ≤ n1 and n′ ≤ nr. Since we have k − 1 such estimation problems, for every rank r ∈ [k] except the first one, one
must use k − 1 disjoint sample sets from the rank 1 data, totalling at most the number of samples at rank 1 (since we cannot
use more data than available).

In scenario (1), the admin can only use the data at rank 1 in order to estimate τ (since it is the treatment effect had the ads
been only shown at rank 1 to all subjects). Without any knowledge of (αr)r, the admin cannot use the data at rank 2, 3, etc
to identify the treatment effect through τr. Thus, τ = τ1, which, as we have showed in Theorem 3.4 and Proposition 3.6,
has error E

[
(τ − τ̂)2

]
= Θ

(
n−1
1

)
(recall that n1 is the sample size at position 1).

In scenario (2), the admin uses the samples at all positions, relating the effect τ from data at rank r through the α̂r estimate:
τ̂ (r) = τ̂r

α̂r
. Note that the data used for estimating α̂r must be separate from the data used for estimating τ̂ (r). Let’s say that

an admin uses n′
r samples from the nr samples at each rank for estimating α̂r. The rest of nr − n′

r samples will be used to
estimate the r-estimand. In an ideal case where the estimator at rank r is a perfect estimator, we have τ̂r = τr. In this case,
we only have to worry about the contribution of the α̂r estimates to the estimation error. For example, one can imagine
that we have an abundance of data at lower ranks, nr >> 1 for r > 1, and thus the estimation error of τr vanishes with
increased number of samples.

Note that τ̂(2) depends on the values (n′
r)r. However, the result holds no matter what these values are, i.e. no matter how

many samples the admin uses from each rank. This is at first unintuitive. The sample size of the (final) estimator in scenario
(2),

∑
r n

′
r, may be much larger than n1, and yet, that does not help in reducing the estimation error. At a closer look, we’ll

see that the error contributed by the discount factors estimation, (α̂r)r, is a dominant term in the error of the treatment effect.

Take as a naive estimator for αr the ratio of the treatment effects at rank r and rank 1: α̂r = τ̂r
τ̂1

, ∀r > 1, using n′
r samples

from the nr samples from rank r and n′
r samples from the n1 samples at rank 1; i.e., we use 2n′

r samples to estimate
αr, split equally between rank 1 and rank r data. The remaining nr − n′

r samples from the data at rank r are kept for
contributing to estimating τ . To better keep track of the number of samples used, we denote an estimator θ̂ based on n

samples by θ̂(n). Then, α̂r =
τ̂r(n

′
r)

τ̂1(n′
r)

, ∀r > 1. So, 1
α̂r

=
τ̂1(n

′
r)

τ̂r
=

τ̂1(n
′
r)

τr
.

Using the remaining samples, the r−estimand can be estimated through τ̂r(nr−n′
r)

α̂r
= τr

α̂r
= τ̂1(n

′
r). Thus, the r-estimand

uses the n′
r samples used for the estimator of the discount factors. The nr − n′

r samples used in the τr estimation do not
factor in because we assumed it is a perfect estimator.
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Thus, the available data at all ranks can be used to estimate τ through the identified effects at each rank, using n1 −
∑

r n
′
r

samples for rank 1, n′
2 samples for rank 2, and so on until n′

k samples for rank k. Just as in the main text, α1 = 1, so we can
use the entire remaining samples at rank 1 directly, i.e., n′

1 = 0.

Theorem 3.4 computes a lower bound based on the combination of the r-estimands. The lower bound obtain
is a summation of the errors each of them contributes, namely over the sequence (nr · α2

r)r. This connects to
the sample value definition from Section 2.1. In our case, the same r-estimands contribute a sequence of errors
(n1 −

∑
r n

′
r, n

′
2, · · · , n′

k). Applying Theorem 3.4 with the same proof but this updated sequence, we obtain an er-

ror lower bound of Ω
(
((n1 −

∑
r n

′
r) + n′

2 + · · ·n′
k)

−1
)
= Ω(n−1

1 ). (Note that n′
1 = 0 since α1 = 1.) The constants are,

in fact, the same as in the original Theorem 3.4. This updated bound does not depend on the amount of samples used to
estimate αr, namely, on (n′

r)r. Thus, the lower bound remains the same no matter how many or how few samples an admin
has used to estimate the discount factors.

To see this exemplified, we use the Horvitz-Thompson estimator for τ̂1, and define the estimand as a weighted sum of the
r−estimands: τ̂ =

∑
r wr · τ̂ (r). As τ̂ (r) are estimated through τ̂1 applied on either n1−

∑
r n

′
r or n′

r samples for each rank,
it is still unbiased. We can then apply the optimal weighting argument from the main text that dictates that error achieved by
τ̂ through optimal weighting is O

((∑
r 1/Var

(
τ̂ (r)

))−1
)

. We know from Proposition 3.6 that Var
(
τ̂ (r)

)
= C · 1

nr
when

there are nr data samples for a constant C. We thus obtain an upper bound on the treatment effect estimation error of

O

(∑
r

1/Var
(
τ̂ (r)

))−1
 = O

((n1 −
∑
r

n′
r) + n′

2 + · · ·+ n′
k

)−1
 = O

(
n−1
1

)
, (79)

matching the lower bound (up to constants).

One would have imagined that having more samples used from rank 2, 3, and so on that contribute to estimating the treatment
effect would have helped reduced the treatment effect estimation error. However, even in this idealized scenario where one
has perfect estimation of τr at each rank r, the contribution of the discount factors error to the treatment effect error trumps
using more low-ranked samples. In realistic scenarios where τ̂r is not a perfect estimator for r > 1, one would expect that
their error contributes to the estimation error in scenario (2). In this case, an admin can only increase their error by attempting
to estimate (αr)r from an ad campaign, and is better off (up to constants) just using the n1 samples it has from rank 1,
scenario (1). By how much does an admin increases their estimation error is a complex question, depending on the modeling
assumptions and estimators chosen for the discount factors. We leave this for future work. Related work has proposed
various methods for estimating the discount factors (Chuklin et al., 2016; Joachims et al., 2017), but to our knowledge, none
answer this particular question of when is it actually worth doing that to reduce the treatment effect estimation error.
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A.5. Proofs for Section 4 Results

Proof for Lemma 4.1. Our goal is to show that if an allocation x satisfies the conditions of Lemma 4.1, i.e. xa(t) ∈
{0, 1},∀a ∈ [k], t ∈ [n],

∑n
t=1 xa(t) = B(a),∀a ∈ [k], and |

∑k
a=1 xa(t) −

∑k
a=1 xa(t

′)| ≤ 1,∀t, t′ ∈ [n], then it is an
equilibrium. We show this through two properties:

• Property 1: an admin a cannot increase his utility by permuting the bids in x.

• Property 2: an admin a cannot increase his utility by aggregating his budget (merging bids from multiple subjects in x).

In other words, we show that an admin cannot increase his utility by deviating from x, by analyzing the two possible types
of deviations: permutations or aggregation of bids.

Notation: We introduce simplifying notation in order to prove the two aforementioned properties. As the utility function
of an admin is the expected sample value, by linearity of expectation, we can write

fa(x) =

K∑
r=1

E [nr] · α2
r (80)

Given our allocation rule, we can write the utility function in combinatorial form, by finding the closed for of E [nr] ,∀r ∈ [k],

fa(x) =

n∑
t=1

k∑
r=1

α2
r ·

1(
k−1
k−r

) · ∑
s∈S(a)

k−r

 1

(k − r + 1)!

∑
σ∈P(s∪{a})

PAa(xa, t) ·
∏
j<σa

(1− PAj(xj , t))



·
∏
r<r

1− 1(
k−1
k−r

) · ∑
s∈S

(a)
k−r

1

(k − r + 1)!

∑
σ∈s∪{a}

PAa(xa, t) ·
∏
j<σa

(1− PAj(xj , t))

 ,

(81)

where S(a)
k−r is the set of all choices of k − r elements of [k]\{a} and j <σ a means that element j appeared before element

a in the permutation σ. The summand is the probability of admin a to win rank r for slot t, by summing over all possible
permutations at each rank and possible remaining admins (who have not yet won a rank). The probability of admin a to win
a rank is the activation probability times the probability that no one else before a has won, and times the probability that a
has not won a previous rank.

To make things a bit more readable, take the summand for a particular subject t outside of the factor α2
r and denote it by

gr,a,t(xa,x−a) := PAa(xa, t) ·
1(

k−1
k−r

) · 1

(k − r + 1)!

∑
s∈S(a)

k−r

∑
σ∈P(s∪{a})

∏
j<σa

(1− PAj(xj , t)) (82)

Note that the factor outside of PAa(xa, t) in equation (82) depends on the rank r but does not contain xa or PAa(xa, t). So
since we are looking at fa(xa,x−a) and gr,a,t(xa,x−a) as a function of xa, we consider this factor a constant in xa. For
an even more simplifying notation:

Cr,a,t :=
1(

k−1
k−r

) · 1

(k − r + 1)!

∑
s∈S(a)

k−r

∑
σ∈P(s∪{a})

∏
j<σa

(1− PAj(xj , t)), (83)

thus giving

gr,a,t(xa,x−a) = PAa(xa, t) · Cr,a,t (84)

Coming back to the utility function, we get
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fa(xa,x−a) =

n∑
t=1

k∑
r=1

α2
r · gr,a,t(xa,x−a) ·

∏
r<r

(1− gr,a,t(xa,x−a)) (85)

Denote by fa,t the summand for each t ∈ [1, n]:

fa,t(xa,x−a) =

k∑
r=1

α2
r · gr,a,t(xa,x−a) ·

∏
r<r

(1− gr,a,t(xa,x−a)) , (86)

thus giving

fa(xa,x−a) =

n∑
t=1

fa,t(xa,x−a) (87)

First of all, note that an allocation in which an admin does not bid all their budget is not an equilibrium. This follows from
the fact that all terms in equation (82) are non-negative, and PAa(xa, t) is an increasing function in xa(t).

A necessary property: Before proceeding with our proof, we notice that when αr = 1,∀r ∈ [k], we can simplify the
expression of the functions fa,t to:

fa,t(xa,x−a) = 1−
k∏

r=1

(1− gr,a,t(xa,x−a)) (88)

Of course, this simplification does not hold if all the terms αr are not equal to each other. However, we will argue that it is
sufficient to show Properties 1 and 2 when αr = 1,∀r ∈ [k]. To see this, we use the following property:

Proposition A.7. For any l, v ∈ N and any functions h1, h2, · · · , hl : Nv → R+, if for some x, x′ ∈ N the following
conditions hold:

h1(x) ≥ h1(x
′) and

l∑
j=1

hj(x) ≥
l∑

j=1

hj(x
′),

(89)

then for ω1 = 1 and for any ω2, · · · , ωl ∈ [0, 1] the following holds:

l∑
j=1

ωj · hj(x) ≥
l∑

j=1

ωj · hj(x
′) (90)

Corollary A.8. We note that the same result holds as in Proposition A.7 if there are two different functions in the first condi-
tion: for any l, v ∈ N and any functions h1, h2, · · · , hl, h

′
1 : Nv → R+, if for some x, x′ ∈ N the following conditions hold:

h1(x) ≥ h′
1(x

′) and

h1(x) +

l∑
j=2

hj(x) ≥ h′
1(x

′) +

l∑
j=2

hj(x
′),

(91)

then for any ω2, · · · , ωl ∈ [0, 1] the following holds:

h1(x) +

l∑
j=2

ωj · hj(x) ≥ h′
1(x

′) +

l∑
j=2

ωj · hj(x
′) (92)
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Remark A.9. As a remark, Proposition A.7 helps us show that the utility function fa is increasing in the bid of an admin a
for a subject t, xa(t). This follows from the following properties:

• First, the function gr,a,t(xa,x−a) is increasing in xa(t) since PAa(x, t) = 1− (1− p)xa(t) is clearly increasing in
xa(t). This implies that the function fa,t(xa,x−a) is also increasing in xa(t) from equation (88) in the case when all
αr’s are equal to 1.

• In the case when all αr’s are not equal to 1, we employ Proposition A.7 by taking hj(x) = gj,a,t(xa,x−a) ·∏
j<j

(
1− gj,a,t(xa,x−a)

)
and ωj = α2

j . Then,

k∑
r=1

ωj · hj(x) =

k∑
r=1

α2
r · gr,a,t(xa,x−a) ·

∏
r<r

(1− gr,a,t(xa,x−a)) = fa,t(xa,x−a) (93)

Proof of Proposition A.7. We prove Proposition A.7 by induction on l. For l = 1, the result is trivial given that h1(x) ≥
h1(x

′). For l = 2, the conditions are that for some x, x′ ∈ Nv , h1(x) ≥ h1(x
′) and h1(x) + h2(x) ≥ h1(x

′) + h2(x
′). We

wish to show that for any ω2 ∈ [0, 1], we also get that h1(x) + ω2 · h2(x) ≥ h1(x
′) + ω2 · h2(x

′). If h2(x) ≥ h2(x
′), this

clearly holds as ω2 ≥ 0. If h2(x) < h2(x
′), we get

h1(x) + ω2 · h2(x) ≥ h1(x
′) + ω2 · h2(x

′) ⇔
h1(x)− h1(x

′) + ω2 · (h2(x)− h2(x
′)) ≥ 0 ⇔

h1(x)− h1(x
′) + ω2 · (h2(x)− h2(x

′)) ≥ h1(x)− h1(x
′) + h2(x)− h2(x

′) ≥ 0

(94)

where the last inequality is true from the conditions of the Proposition. Thus, the base case is proved. For the induction
case, assume that the statement of the Proposition is true for l ≥ 2 and we will show that it is also true for l + 1. Given the

induction hypothesis, we know that for some x, x′ ∈ Nv , h1(x) ≥ h1(x
′) and

l∑
j=1

hj(x) ≥
l∑

j=1

hj(x
′). If for all j ∈ 2, l + 1,

hj(x) < hj(x
′), then we get

l+1∑
j=1

ωj · (hj(x)− hj(x
′)) ≥

l+1∑
j=1

hj(x)− hj(x
′) ≥ 0 (95)

since ωj ≥ 0,∀j and the unweighted sum is non-negative from the conditions of the Proposition. If, however, ∃j ∈ 2, l + 1
such that hj(x) ≥ hj(x

′), then we also know that h1(x) + ωj · hj(x) ≥ h1(x
′) + ωj · hj(x

′). Then, denote by
h′
1(y) = h1(y) + ωj · hj(y),∀y ∈ Nv . We know that

h′
1(x) ≥ h′

1(x
′) and that

h′
1(x) +

∑
j′∈2,l+1,

j′ ̸=j

ωj′ · hj′(x) ≥ h′
1(x

′) +
∑

j′∈2,l+1,
j′ ̸=j

ωj′ · hj′(x
′), (96)

and thus we can apply the induction hypothesis, concluding our proof. The corollary follows immediately by the same
proof.

The proof of Lemma 4.1 follows the following structure: we use Proposition A.7 to show that if an allocation xa

has better utility than an allocation x′
a for a subject slot t when αr = 1,∀r ∈ [k] (meaning that fa,t(xa,x−a) >

fa,t(x
′
a,x−a)), then xa has better utility than xa for any αr ∈ [0, 1]. This follows by taking l = k, ωr = α2

r,∀r ∈ [k], and
hr(x) = gr,a,t(xa,x−a) ·

∏
r<r

(1− gr,a,t(xa,x−a)). Lastly, we will verify the first condition of the Proposition A.7, that

h1(x) ≥ h′
1(x

′) for each of the Properties 1 and 2, below. If that holds, then we conclude that if an allocation satisfies
Properties 1 and 2 when αr = 1,∀r ∈ [k], then it satisfies Properties 1 and 2 for any αr ∈ [0, 1],∀r ∈ 2, k (knowing that
we always set α1 = 1). Finally, if an allocation x satisfies Properties 1 and 2, then it is a Nash equilibrium.
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Proof of Property 1: Then, we proceed to show Property 1. Without loss of generality, assume a = 1. If there is no
subject on which admin 1 has allocated 0 budget or no subject on which admin 1 has allocated 1 budget, there is nothing to
show. Therefore, take two subjects, t0 and t1, such that x1(t0) = 0 and x1(t1) = 1. We would like to show that admin 1
cannot increase their utility by moving the unit of budget from t1 to t0. If the allocations of all other admins on subjects t0
and t1 are exactly the same, then admin i has the same utility from allocating 1 unit of budget on t0 or t1. Moreover, given
the assumption that the activation probability is the same across admins, if the allocations of all other admins on subjects t0
and t1 have the same number of 0s and 1s, then, again, admin i has the same utility from allocating 1 unit of budget on t0 or
t1. If, however, the allocations of all other admins on subjects t0 and t1 have a different number of 0s and 1s, then we know
that the number of 0s in the allocations of t1 is higher than in t0 (excluding admin 1). This is because of the property stated
in the allocation described in Lemma 4.1: the allocation x minimizes the number of 0s in each x·,t (as admin 1 prioritizes
subjects with least bids); therefore, the number of 0s in the allocations of t1 is higher than in t0 (excluding admin 1). We are
almost done at this point, as we only need the following remark:

Remark A.10. Take the following two allocations of all admins over subject t:

x·,t =


x1t

x2t

...
xkt

 and x′
·,t =


x′
1t

x′
2t
...

x′
kt

 , (97)

where x·,t has the first j coordinates as 1s and the rest zeros, and x′
·,t has the first j + 1 coordinates as 1s and the rest zeros,

for some j ≥ 0. Then,

fa,t (x·,t) ≥ fa,t
(
x′
·,t
)

(98)

From the assumption that pa = p ∈ [0, 1] is the same across admins and subjects, we get that Remark A.10 is true even
for different subjects, and moreover, even for different permutations of the coordinates of x·,t and x′

·,t. (Basically, any
allocation that contains j ones and k − j zeros will have better utility for admin a than any allocation that contains j + 1
ones and k − j − 1 zeros.)

Using Remark A.10 iteratively, this shows that the utility of admin 1 cannot increase if it moves a unit of budget from a
subject with fewer allocations of budget units from the other admins to a subject with more allocations of budget units from
other admins.

Proof of Remark A.10. Finally, to prove Remark A.10, we simply use the fact that, if we take two allocations of admin j
as xj and x′

j that only differ on coordinate t (for some t ∈ [n]), for example xj(t) = 0 and x′
j(t) = 1, then PAj(xj , t) ≤

PAj(x
′
j , t). This is true since PAj(xj , t) = 0 and PAj(x

′
j , t) = pj ≥ 0. Thus, we get that

PAj(xj , t) ≤ PAj(x
′
j , t) ⇒

1− PAj(xj , t) ≥ 1− PAj(x
′
j , t) ⇒

Cr,a,t(x−a) ≥ Cr,a,t(x
′
−a),∀r ∈ [k] ⇔

gr,a,t(xa,x−i) ≥ gr,a,t(xa,x
′
−a),∀r ∈ [k], where xj ∈ x−a and x′

j ∈ x′
−a ⇒

1− gr,a,t(xa,x−a) ≤ 1− gr,a,t(xa,x
′
−a),∀r ∈ [k] ⇒

k∏
r=1

(1− gr,a,t(xa,x−a)) ≤
k∏

r=1

(1− gr,a,t(xa,x
′
−a)) ⇒

1−
k∏

r=1

(1− gr,a,t(xa,x−a)) ≥ 1−
k∏

r=1

(1− gr,a,t(xa,x
′
−a)) ⇒

fa,t(xa,x−a) ≥ fa,t(xa,x
′
−a),

(99)
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From the fourth inequality above, we also deduce that the first condition for the Proposition A.7 is satisfied by taking
h1 = g1,a,t. Noting that xj and x′

j differ on just one coordinate and we showed that the allocation that contained one more
budget unit on subject t has a better utility for admin i, this concludes the proof of the remark. As mentioned above, using
Proposition A.7, the remark holds for any αr ∈ [0, 1],∀r ∈ 2, k as well.

Proof of Property 2: Next, we that an admin does not prefer to aggregate his spent budget across any subject slots. Again,
without loss of generality, take admin a = 1 and take two allocations over two subject slots, from an allocation x described
in Lemma 4.1 (and we will argue for any number at the end, as it easily generalizes):

x·,t =

x1t

...
xkt

 and x′
·,t′ =

x′
1t′

...
x′
kt′

 (100)

An admin can aggregate his budget spent on t and t′ on either of them, or a new subject t′′. For our proof, it does not matter,
since the property we use is that the number of 0s among the others admins’ bids for any of the subjects t, t′, t′′ does not
differ by more than one. Thus, let’s assume that the admin aggregates his budget from t and t′ onto subject t (instead of
spending x1t and x1t′ , he spends x1t + x1t′ and 0 on subjects t and t′, respectively). If either x1t or x′

1t′ are equal to 0,
then there is nothing to aggregate since we reduce to Property 1, so we only deal with the case x1t = x′

1t′ = 1. Since
the distribution of 0s and 1s are such that the number of 0s on each subject slot of x is minimized, a pair of allocations of
two subject slots cannot differ by more than 1 in their number of 0s. In addition, given the assumption that the relevance
probability is the same across subject slots and admins, the order of the ones and zeros does in the allocations does not matter.

Case 1: x·,t and x′
·,t′ have the same number of zeros and ones. Given that the order does not matter, f1,t (x·,t) = f1,t′ (x·,t′).

Aggregating the spent budget into x·,t would result into an allocation like

xa
·,t =

x1t + x′
1t′

x2t

...
xkt

 =

 2

x2t

...
xkt

 (101)

as x1t = x′
1t′ = 1.

Of course, the admin can aggregate their spent budget into either allocation x·,t or x·,t′ , but that does not change the utility
contribution in this case. We are thus left to show that

2 · f1,t (x·,t) ≥ f1,t
(
xa
·,t
)
, (102)

which would also imply that the first condition of Corollary A.8 is satisfied, by taking h1 = 2f1,t and h′
1 = f1,t.

Since all the coordinates except the first one are the same in x·,t and xa
·,t, all the Cr,a,t terms in the utility function

expression will be same. We also show that

2 · PA1(x·,t, t) ≥ PA1(x
a
·,t, t) ⇔

2 · p ≥ 1− (1− p)2 ⇔
2 ≥ 1 + (1− p),

(103)

which is true since p ∈ [0, 1]. This also implies that g1,a,t(x·,t) ≥ g1,a,t(x
a
·,t). Finally,

1− PA1(x·,t, t) · Cr,1,t ≥ 1− PA1(x
a
·,t, t) · Cr,1,t ⇔

PA1(x·,t, t) · Cr,1,t ≤ PA1(x
a
·,t, t) · Cr,1,t ⇔

PA1(x·,t, t) ≤ PA1(x
a
·,t, t) ⇔

1− (1− p) ≤ 1− (1− p)2 ⇔
(1− p)2 ≤ (1− p),

(104)
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which is true for any r ∈ [k] since p ∈ [0, 1]. We note that these last two inequalities remains true if we replace 2 by N ,
for any N ≥ 2. Combining inequalities (103) and (104) in the formula for f1,t and noting that all terms are non-negative,
we obtain the desired result with Corollary A.8.

Case 2: x·,t and x′
·,t differ by 1 in the number of ones they contain. It is sufficient to consider the case where x·,t has j

ones and x′
·,t has j + 1 ones, for some j ≥ 1. Given Remark A.10, it is sufficient to show

2 · f1,t′
(
x′
·,t′
)
≥ f1,t

(
xa
·,t
)

(105)

with xa
·,t defined as in equation (101) (since ·f1,t (x·,t) ≥ ·f1,t′

(
x′
·,t′
)
). We will show that for each r ∈ [k]:

2 · PA1(x
′
·,t′ , t

′) · C ′
r,1,t ≥ PA1(x

a
·,t, t) · Cr,1,t, (106)

where the terms Cr,a,t are defined as in equation (83) and that

2 · PA1(x
′
·,t′ , t

′) · C ′
r,1,t ·

∏
r<r

(
1− PA1(x

′
a,t′ , t

′) · C ′
r,1,t

)
≥

PA1(x
a
·,t, t) · Cr,1,t ·

∏
r<r

(
1− PA1(x

a
·,t, t) · Cr,1,t

) (107)

First of all, we note that the difference between Cr,1,t and C ′
r,1,t is that there is an extra 1 in the allocation of x′

·,t than in
x·,t. This extra 1 contributes to the change between Cr,1,t and C ′

r,1,t in the following way: let’s say that Cr,1,t is composed
of two types of terms, the terms in which the extra one shows up in a factor (1− PAj(·)), and the terms in which it does
not. Thus, let’s write Cr,1,t as Cr,1,t = C

(j)
r,1,t +C

(−j)
r,1,t . We now note that C ′

r,1,t = C
(j)
r,1,t · (1− p) +C

(−j)
r,1,t , since the terms

that did not contain the extra 1 coordinate did not change, while those that did simply changed from 1 to 1− p. This also
shows that C ′

r,1,t ≤ Cr,1,t for p ∈ [0, 1].

Thus, for any r ∈ [k],

1− PA1(x
′
·,t′ , t

′) · C ′
r,1,t ≥ 1− PA1(x

(a)
·,t , t) · Cr,1,t ⇔

PA1(x
′
·,t′ , t

′) · C ′
r,1,t ≤ PA1(x

(a)
·,t , t) · Cr,1,t ⇔

PA1(x
′
·,t′ , t

′) ≤ PA1(x
(a)
·,t , t) ⇔

1− (1− p) ≤ 1− (1− p)2 ⇔
1− p ≤ (1− p)2,

(108)

which is true since p ∈ [0, 1]. Finally, we also show that

2 · PA1(x
′
·,t′ , t

′) · C ′
r,1,t ≥ PAa(x

(a)
·,t , t) · Cr,1,t ⇔

2(1− (1− p)) ·
(
(1− p) · C(j)

r,1,t + C
(−j)
r,1,t

)
≥ (1− (1− p)2) ·

(
C

(j)
r,1,t + C

(−j)
r,1,t

)
⇔

C
(−j)
r,1,t ≥ C

(j)
r,1,t,

(109)

which is true for all r ∈ [k] since the sum of the terms in permutations where 1 shows up before j (j being the coordinate
of the extra budget unit in the allocation x′

·,t′) is at least equal to the sum of the terms in permutations where 1 shows up
after j (each permutation σ in which 1 shows up before j can be ‘paired’ with a permutation σ in which 1 is after j by
just switching their position. Thus, by the definition of the utility function, the product contribution coming from σ is at
most the product contribution coming from σ′). We note that inequality (109) holds when we replace 2 by any N ≥ 2 since
the function N ·p

1−(1−p)N
is increasing in N (while all other terms do not contain N ). Similarly as in Case 1, the conditions

for Corollary A.8 hold for h1 = 2gr,a,t and h′
1 = gr,a,t.
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Proof of Proposition 4.3. Assume by contradiction that there is a Nash equilibrium allocation x that does not satisfy the
conditions of Lemma 4.1. First, we know admins always spend all their budget in a Nash equilibrium from the proof of
Lemma 4.1. Second, from the same proof we also know that if the bids are all 0 or 1, then admins also minimize competition
(property 1). Therefore, the only way in which an allocation x does not fulfill the conditions of Lemma 4.1 and might still
be a Nash equilibrium is if some of the bids are not 0 or 1. Thus, assume without loss of generality that there exists a subject
of subjects T ⊂ [n] for which xat > 1 ∀t ∈ T , for an admin a. Without loss of generality, assume that a = 2 (the second
admin). We have two cases:

• Case 1: there is a subject t ∈ T such that x1t = 0.

• Case 2: there is no subject t ∈ T such that x1t = 0.

Let’s first tackle Case 1. In this case, we know that there is a subject t ∈ T such that x1t = 0. Since x2t > 1 for t ∈ T
and B2 ≤ n, there exists a subject t′ /∈ T such that x2t′ = 0. Denote x2t := x and x1t′ := 0. We will show that the

configuration
(
0 x′

x 0

)
is not a Nash equilibrium for x, x′ > 1. If one of x or x′ is equal to 1, then we know this is not

Nash because of Property 2 in the proof of Lemma 4.1. Assume without loss of generality that x ≤ x′. We will show that

f1

(
0 x′

x 0

)
< f1

(
1 x′ − 1
x 0

)
(110)

We want to show this for any sequence (αr)r. However, due to Proposition A.7, we will argue that it is sufficient to show it
for αr = 1,∀r ∈ [k]. To see why Proposition A.7 applies, we take as functions hr each term corresponding to α2

r , for all
r ∈ [k]. We also compute the terms corresponding to α2

1 in the utility function, denoting p := 1− p for ease of notation.

Using the combinatorial formula for the utility, we get that the coefficient of α2
1 in f1

(
0 x′

x 0

)
is 1−px

′
, and the coefficient

of α2
1 in f1

(
1 x′ − 1
x 0

)
is 1− px

′−1 + 1
2 (1− p) · (1 + px). Since x ≤ x′ and all terms are non-negative, it is sufficient to

show that

1− px
′
< 1− px

′−1 +
1

2
(1− p) · (1 + px

′
) ⇔

px
′−1 · (1− p) <

1

2
(1− p) · (1 + px

′
) ⇔

px
′−1 <

1

2
· (1 + px

′
),

(111)

which is true for x′ > 1. We have used that p ∈ (0, 1). Thus, the conditions for Proposition A.7 would be satisfied. We are
left to show that inequality (110) happens for αr = 1,∀r ∈ [k]. Writing out the utility functions from their combinatorial
form, we get

f1

(
0 x′

x 0

)
= (1− px

′
) · (1 + px

′
) (112)

and

f1

(
1 x′ − 1
x 0

)
= (1− px

′−1) · (1 + px
′−1) + (1− p) ·

(
1 +

1

2
p(1 + px)

)
(113)

Again, since x ≤ x′ and all terms are non-negative, it is sufficient to show

(1− px
′
) · (1 + px

′
) < (1− px

′−1) · (1 + px
′−1) + (1− p) ·

(
1 +

1

2
p(1 + px

′
)

)
(114)

Equation (114) simplifies to
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p2x
′−2(1 + p) < 1 +

1

2
p
(
1 + px

′
)

(115)

This is true for x′ > 2 since p2x
′−1 < 1, p2x

′−2 < p, and p2x
′−2 < px

′+1. For x′ = 2, the equation simplifies to

p2 +
1

2
p3 < 1 +

1

2
p, (116)

We next tackle Case 2, for which we know that there is no subject t ∈ T such that x1t = 0. Now, if there exists a
subject t /∈ T such that x1t > 1, there must also exist a subject t′ /∈ T such that x1t′ = 0, since B1 ≤ n. How-
ever, we know that x2t,x2t′ ∈ {0, 1} as t, t′ /∈ T , by definition of the set T . However, none of the configurations(
x1t 0
0 0

)
,

(
x1t 0
1 1

)
,

(
x1t 0
1 0

)
,

(
x1t 0
0 1

)
is an equilibrium for x1t > 1, from Property 2 of the proof of Lemma 4.1

(when the other bids are 0 or 1, an admin always wants to split their bid equally). That means that for all subjects t /∈ T ,
x1t ∈ {0, 1}. We will also show that for all subjects t ∈ T , x1t ∈ {0, 1}. By contradiction, if there is a subject t ∈ T ,
x1t > 1, take a subject t′ /∈ T such that x2t′ = 0 (we know it exists since admin’s 2 bids in T are greater than 1 and B2 ≤ n).

Then, the configurations
(
x1t x1t′

x2t 0

)
are not equilibria for x1t,x2t > 1 and x1t′ ∈ {0, 1}, easy to show by computing

the utility function in its combinatorial form and using p ∈ (0, 1). Thus, we have shown that for all subjects t, x1t ∈ {0, 1}.
However, we now have a contradiction, since by Property 2, x2t ∈ {0, 1} as well, which we assumed otherwise for t ∈ T .
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