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Abstract
We study online learning in episodic constrained
Markov decision processes (CMDPs), where the
learner aims at collecting as much reward as pos-
sible over the episodes, while satisfying some
long-term constraints during the learning process.
Rewards and constraints can be selected either
stochastically or adversarially, and the transition
function is not known to the learner. While online
learning in classical (unconstrained) MDPs has
received considerable attention over the last years,
the setting of CMDPs is still largely unexplored.
This is surprising, since in real-world applications,
such as, e.g., autonomous driving, automated bid-
ding, and recommender systems, there are usually
additional constraints and specifications that an
agent has to obey during the learning process.
In this paper, we provide the first best-of-both-
worlds algorithm for CMDPs with long-term con-
straints, in the flavor of Balseiro et al. (2023).
Our algorithm is capable of handling settings in
which rewards and constraints are selected either
stochastically or adversarially, without requiring
any knowledge of the underling process. More-
over, our algorithm matches state-of-the-art re-
gret and constraint violation bounds for settings
in which constraints are selected stochastically,
while it is the first to provide guarantees in the
case in which they are chosen adversarially.

1. Introduction
The framework of Markov decision processes (MDPs) (Put-
erman, 2014) has been extensively employed to model se-
quential decision-making problems. In reinforcement learn-
ing (RL) (Sutton & Barto, 2018), the goal is to learn an
optimal policy for an agent interacting with an environment
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modeled as an MDP. A different line of work (Even-Dar
et al., 2009; Neu et al., 2010) is concerned with problems
in which an agent interacts with an unknown MDP with the
goal of guaranteeing that the overall reward achieved during
the learning process is as much as possible. This approach
is more akin to online learning (Orabona, 2019), and it is
far less investigated than classical RL approaches.

In real-world applications, there are usually additional con-
straints and specifications that an agent has to obey during
the learning process, and these cannot be captured by the
classical definition of MDP. For instance, autonomous vehi-
cles must avoid crashing while navigating (Wen et al., 2020;
Isele et al., 2018), bidding agents in ad auctions are con-
strained to a given budget (Wu et al., 2018; He et al., 2021),
while recommender systems should not present offending
items to users (Singh et al., 2020). In order to model such
features of real-world problems, Altman (1999) introduced
constrained MDPs (CMDPs) by extending classical MDPs
with cost constraints that the agent has to satisfy.

We study online learning in episodic CMDPs in which the
agent is subject to long-term constraints. In such a setting,
the goal of the agent is twofold. On the one hand, the agent
wants to minimize their (cumulative) regret, which is how
much reward they lose compared to what they would have
obtained by always playing a best-in-hindsight, constraint-
satisfying policy. On the other hand, while the agent is
allowed to violate the constraints in a given episode, they
want that the (cumulative) constraint violation stays under
control, by growing sublinearly in the number of episodes.
Long-term constraints naturally model many features of real-
world problems, such as, e.g., budget depletion in automated
bidding (Balseiro & Gur, 2019; Gummadi et al., 2012).

All the existing works studying online learning problems in
CMDPs with long-term constraints address settings in which
the constraints are selected stochastically according to an
unknown (stationary) probability distribution. While these
works address both the case where the rewards are stochastic
(see, e.g., (Zheng & Ratliff, 2020; Efroni et al., 2020)) and
the one in which they are adversarial (see, e.g., (Wei et al.,
2018; Qiu et al., 2020)), to the best of our knowledge there
is no work addressing settings with adversarially-selected
constraints. Some works (see, e.g., (Ding & Lavaei, 2023;

1



Online Learning in CMDPs: Handling Stochastic and Adversarial Constraints

Wei et al., 2023)) consider the case in which rewards and
constraints are non-stationary, assuming that their variation
is bounded. However, these results are not applicable to
general settings with adversarial constraints. A detailed
discussion of related works can be found in Appendix A.

In this paper, we pioneer the study of CMDPs in which
the constraints are selected adversarially. In doing so, we
introduce an algorithm that employs a novel primal-dual ap-
proach in CMDPs, allowing it to attain best-of-both-worlds
guarantees, in the flavor of Balseiro et al. (2023). In par-
ticular, our algorithm provides optimal (in the number of
episodes T ) regret and constraint violation bounds when
rewards and constraints are selected either stochastically
or adversarially, without requiring any knowledge of the
underling process. While best-of-both-worlds algorithms
have been recently introduced in online learning settings
subject to constraints (see, e.g., (Liakopoulos et al., 2019;
Balseiro et al., 2023)), to the best of our knowledge our
algorithm is the first of its kind in CMDPs.1

When the constraints are selected stochastically, we show
that our algorithm provides Õ(

√
T ) cumulative regret and

constraint violation when a suitably-defined Slater-like con-
dition concerning the satisfiability of constraints is satisfied.
Moreover, whenever such a condition does not hold, our
algorithm still ensures Õ(T 3/4) regret and constraint vio-
lation. Instead, whenever the constraints are chosen adver-
sarially, our analysis revolves around a parameter ρ which
is related to our Slater-like condition, and in particular to
the “margin” by which it is possible to strictly satisfy the
constraints. Indeed, under adversarial constraints, Mannor
et al. (2009) show that it is impossible to simultaneously
achieve sublinear regret and sublinear cumulative constraint
violation. We prove that our algorithm achieves no-α-regret
with α = ρ/(1+ ρ), while guaranteeing that the cumulative
constraint violation is sublinear in the number of episodes.
This matches the regret guarantees derived for other best-of-
both-worlds algorithms in (non-sequential) online learning
settings (Castiglioni et al., 2022a; Balseiro et al., 2023).

Differently from previous works on online learning with
adversarial constraints, in this work we relax the strong as-
sumption that the algorithm has to know the value of the
parameter ρ related to Slater’s condition. This assumption
is ubiquitous in the adversarially-constrained online opti-
mization literature (see, e.g., (Castiglioni et al., 2022b)),

1Notice that, in the literature on online learning in MDPs, the
term best-of-both-worlds is sometimes referred to algorithms that
achieve optimal instance-dependent regret bounds when rewards
are selected stochastically and Õ(

√
T ) regret when rewards are

chosen adversarially (Jin et al., 2021). In this work, we borrow
terminology from the literature on online learning with constraints,
where the term usually refers to algorithms that achieve optimal
regret and constraint violation bounds when the constraints are se-
lected either stochastically or adversarially (Balseiro et al., 2023).

but it is extremely unreasonable in practice. Indeed, in real-
world scenarios, the learner has usually no clue about the
“margin” by which a strictly feasible solution satisfies the
constraints. Relaxing such an assumption is a non-trivial
task from a technical perspective. This is done by proving
that our primal-dual algorithm guarantees that dual variables
are automatically bounded, by showing that both the pri-
mal and the dual regret minimizers attain a strong no-regret
property, called no-interval regret. This is crucial since the
classical (weaker) no-regret property is not enough to ensure
that dual variables are automatically bounded.

A summary of our contributions compared to those of prior
works is reported in Table 1.

2. Preliminaries
In this section, we provide notation and definitions needed
in the rest of the paper.

2.1. Constrained Markov Decision Processes

We study episodic constrained MDPs (Altman, 1999),
which we call CMDPs for short and are defined as tuples
M =

(
X,A,P, {rt}Tt=1 , {Gt}Tt=1

)
, where:

• T is a number of episodes of learning, with t ∈ [T ]
denoting a specific episode.2

• X and A are finite state and action spaces, respectively.

• P : X × A × X → [0, 1] is the transition function,
where, for ease of notation, we denote by P (x′|x, a)
the probability of going from state x ∈ X to x′ ∈ X
by taking action a ∈ A.

• {rt}Tt=1 is a sequence of vectors describing the rewards
at each episode t ∈ [T ], namely rt ∈ [0, 1]|X×A|.
We refer to the reward of a specific state-action pair
x ∈ X, a ∈ A for an episode t ∈ [T ] as rt(x, a).
Rewards may be stochastic, in that case rt is a random
variable distributed according to a distribution R for
every t ∈ [T ], or chosen by an adversary.

• {Gt}Tt=1 is a sequence of constraint matrices describ-
ing the m constraint violations at each episode t ∈ [T ],
namely Gt ∈ [−1, 1]|X×A|×m, where non-positive vi-
olation values stand for satisfaction of the constraints.
For i ∈ [m], we refer to the violation of the i-th con-
straint for a specific state-action pair x ∈ X, a ∈ A
at episode t ∈ [T ] as gt,i(x, a). Constraint violations
may be stochastic, in that case Gt is a random variable
distributed according to a probability distribution G for
every t ∈ [T ], or chosen by an adversary.

2We denote with [a .. b] the set of all consecutive integers from
a to b, while [b] = [1 .. b].
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Table 1. Comparison of our work and the state-of-the-art. We group together previous works that provide similar guarantees. For each
group, we only cite the most recent paper. The third column concerns the possibility of learning without the knowledge of the parameter ρ,
while the fourth one specifies if the algorithm is capable of learning when the parameter ρ is arbitrarily small. † These works do not apply
to general adversarial settings, but only to settings with bounded non-stationarity.

adversarial rewards adversarial constraints unknown ρ without Slater MDPs
(Efroni et al., 2020) ✗ ✗ ✓ ✓ ✓

(Qiu et al., 2020) ✓ ✗ ✓ ✗ ✓

(Castiglioni et al., 2022b) ✓ ✓ ✗ ✓ ✗

(Wei et al., 2023) ✗† ✗† ✓ ✗ ✓

Our Work ✓ ✓ ✓ ✓ ✓

W.l.o.g., in this work we consider loop-free CMDPs. For-
mally, this means that X is partitioned into L layers
X0, . . . , XL such that the first and the last layers are sin-
gletons, i.e., X0 = {x0} and XL = {xL}, and that
P (x′|x, a) > 0 only if x′ ∈ Xk+1 and x ∈ Xk for some
k ∈ [0 .. L− 1]. Notice that any episodic CMDP with hori-
zon L that is not loop-free can be cast into a loop-free one
by suitably duplicating the state space L times, i.e., a state x
is mapped to a set of new states (x, k), where k ∈ [0 .. L].

Algorithm 1 Learner-Environment Interaction
1: for t = 1, . . . , T do
2: rt and Gt are chosen stochastically or adversarially
3: The learner chooses a policy πt : X ×A→ [0, 1]
4: The state is initialized to x0

5: for k = 0, . . . , L− 1 do
6: The learner plays ak ∼ πt(·|xk)
7: The environment evolves to xk+1 ∼ P (·|xk, ak)
8: The learner observes xk+1

9: end for
10: The learner is revealed rt, Gt

11: end for

The learner chooses a policy π : X × A → [0, 1] at each
episode, defining a probability distribution over actions at
each state. For ease of notation, we denote by π(·|x) the
probability distribution for a state x ∈ X , with π(a|x) de-
noting the probability of action a ∈ A. Algorithm 1 depicts
the interaction between the learner and the environment in a
CMDP. Furthermore, we assume that the learner knows X
and A, but they do not know anything about P .

2.2. Occupancy Measures

Next, we introduce the notion of occupancy measure (Rosen-
berg & Mansour, 2019a). Given a transition function P and
a policy π, the occupancy measure qP,π ∈ [0, 1]|X×A×X|

induced by P and π is such that, for every x ∈ Xk, a ∈ A,
and x′ ∈ Xk+1 with k ∈ [0 .. L− 1]:

qP,π(x, a,x′) = Pr
{
xk = x, ak = a, xk+1 = x′|P, π

}
.

Moreover, we also define:

qP,π(x, a) =
∑

x′∈Xk+1

qP,π(x, a, x′), (1)

qP,π(x) =
∑
a∈A

qP,π(x, a).

Then, we can introduce the following lemma, which charac-
terizes valid occupancy measures.
Lemma 2.1 (Rosenberg & Mansour (2019b)). For every
q ∈ [0, 1]|X×A×X|, it holds that q is a valid occupancy
measure of an episodic loop-free MDP if and only if the
following three conditions hold:

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) = 1 ∀k ∈ [0 .. L− 1]

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) =
∑

x′∈Xk−1

∑
a∈A

q(x′, a, x)

∀k ∈ [1 .. L− 1],∀x ∈ Xk

P q = P,

where P is the transition function of the MDP and P q is the
one induced by q (see Equation (2)).

Notice that any valid occupancy measure q induces a transi-
tion function P q and a policy πq as:

P q(x′|x, a) = q(x, a, x′)

q(x, a)
, πq(a|x) = q(x, a)

q(x)
. (2)

2.3. Offline CMDPs Optimization

We define the parametric linear program LPr,G with param-
eters r and G as follows:

OPTr,G :=

{
maxq∈∆(M) r⊤q

s.t. G⊤q ≤ 0,
(3)

where q ∈ [0, 1]|X×A| is the occupancy measure vector
whose values are defined by the expression in Equation (1),
∆(M) is the set of valid occupancy measures, r is the
reward vector, and G is the constraint matrix. Furthermore,
we introduce the following condition.
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Condition 2.2 (Slater’s condition). Given a constraint ma-
trix G, the Slater’s condition holds when there is a strictly
feasible solution q⋄ such that G⊤q⋄ < 0.

Then, we define the Lagrangian function for Problem (3).
Definition 2.3 (Lagrangian function). Given a reward vector
r and a constraint matrix G, the Lagrangian function Lr,G :
∆(M)× Rm

≥0 → R of Problem (3) is defined as:

Lr,G(q, λ) := r⊤q − λ⊤(G⊤q).

It is well known (see, e.g., (Altman, 1999)) that strong dual-
ity holds for CMDPs assuming Slater’s condition. Therefore,
we have that the following corollary holds.
Corollary 2.4. Given a reward vector r and a constraint
matrix G such that Slater’s condition holds, we have:

OPTr,G = min
λ∈Rm

≥0

max
q∈∆(M)

Lr,G(q, λ)

= max
q∈∆(M)

min
λ∈Rm

≥0

Lr,G(q, λ).

Notice that the min-max problem in Corollary 2.4 corre-
sponds to the optimization problem associated with a zero-
sum Lagrangian game.

2.4. Cumulative Regret and Constraint Violation

We introduce the notion of cumulative regret and cumulative
constraint violation up to episode T .

The cumulative regret is defined as:

RT := T OPTr,G −
T∑

t=1

r⊤t q
P,πt ,

where:

r :=

{
Er∼R[r] if the rewards are stochastic
1
T

∑T
t=1 rt if the rewards are adversarial,

G :=

{
EG∼G [G] if the constraints are stochastic
1
T

∑T
t=1 Gt if the constraints are adversarial.

Notice that, in the adversarial case, the regret is computed
with respect to an optimal feasible strategy in hindsight.
We refer to an optimal occupancy measure (i.e., a feasible
one achieving value OPTr,G) as q∗. Thus, we can write
OPTr,G = r⊤q∗ and the regret reduces to

RT :=

T∑
t=1

r⊤q∗ −
T∑

t=1

r⊤t q
P,πt .

The cumulative constraint violation is defined as:

VT := max
i∈[m]

T∑
t=1

[
G⊤

t q
P,πt

]
i
.

For the sake of notation, we will refer to qP,πt by using qt,
thus omitting the dependence on P and π.

2.5. Feasibility Parameter

We introduce a problem-specific parameter ρ ∈ [0, L],
which is strictly related to the feasibility of Problem (3),
and in particular to “how much” Slater’s condition is satis-
fied. Formally, in settings with stochastic constraints chosen
from a fixed distribution, the parameter ρ is defined as

ρ := max
q∈∆(M)

min
i∈[m]

−
[
G

⊤
q
]
i
.

Instead, in settings with adversarial constraints, the param-
eter ρ is defined as

ρ := max
q∈∆(M)

min
t∈[T ]

min
i∈[m]

−
[
G⊤

t q
]
i
.

In both cases, the occupancy measure leading to the value of
ρ is denoted by q◦. Intuitively, ρ represents the “margin” by
which the “most feasible” strictly feasible solution satisfies
the constraints. Finally, we state the following condition
on the value of ρ, which plays a central role when proving
algorithm guarantees in the following sections.

Condition 2.5. It holds that ρ ≥ T− 1
8L
√
20m.

While Condition 2.5 may seem unusual in the CMDPs liter-
ature, we remark that state-of-the-art primal-dual methods
assume that the parameter ρ is a constant, and, thus, they
simply hide the dependence on 1/ρ in the regret bound or
in the O-notation (see, e.g., (Efroni et al., 2020; Qiu et al.,
2020)). Thus, if the parameter ρ is arbitrarily small, their
regret bounds may be superlinear in T . As we show next,
our primal-dual method for CMDPs is the first to work even
in degenerate scenarios, namely, when ρ is arbitrarily small.

3. Constrained MDP Optimization Algorithm
In this section, we present our algorithm named primal-dual
gradient descent online policy search (PDGD-OPS). Its ra-
tionale is to instantiate two no-regret algorithms, referred
to as primal and dual player, respectively. Precisely, the
primal player optimizes on the primal variable space of the
Lagrangian function, namely on the set ∆(M), while the
dual player does it on the dual variable space Rm

≥0, which,
in our algorithm, is properly shrunk to

[
0, T 1/4

]m
. As

concerns the objective functions, the primal player aims at
maximizing the Lagrangian function, while the dual one
at minimizing it, as described in the Lagrangian zero-sum
game defined in Corollary 2.4. Notice that, while the space
of the dual variables is known apriori, the occupancy mea-
sure space needs be estimated online as the transition prob-
abilities are unknown. Thus, it is necessary to employ a
no-regret algorithm working with adversarial MDPs for the
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primal player. Moreover, in order to provide guarantees
on the dynamics of the Lagrange multipliers—necessary
to bound the cumulative regret and cumulative constraint
violation—we require that the primal player satisfies the
weak no-interval regret property (see the following Defini-
tion 4.3 for a formalization of such a property).

3.1. PDGD-OPS Algorithm

Algorithm 2 provides the pseudo-code of the PDGD-OPS
algorithm. As mentioned before, the algorithm employs two
regret minimizers, named UC-O-GDPS and OGD, working
on the space of the primal and dual variables, respectively.
The occupancy measure is initialized uniformly (Line 1) by
the primal player. We refer to Section 4 for the description
of the UC-O-GDPS initialization. The dual player is initial-
ized by the OGD.INIT procedure which takes as input the
decision space D and a learning rate η, and it returns the
vector λ1 = 0 associated with the dual variable (Line 2).

During the learning process, at each episode t ∈ [T ], the
PDGD-OPS algorithm plays the policy πq̂t induced by the
occupancy measure q̂t computed in the previous episode
(Line 4). The feedback received by the learner once the
episode is concluded concerns the trajectory (xk, ak)

L−1
k=0

traversed in the CMDP, the reward vector, and the constraint
matrix for that specific episode.

Given the observed feedback, the algorithm builds the La-
grangian objective function (Line 5), namely ℓt = Gtλt−rt,
which is fed in the form of a loss into the primal player along
with the trajectory and the adaptive learning rate (Line 6).
The trajectory is needed to estimate the transition probabil-
ities, while the rationale of the adaptive learning rate is to
remove the quadratic dependence from ∥λ∥1 in the regret
bound of the primal player. See Section 4 for the description
of UC-O-GDPS.UPDATE (Line 7).

To conclude, we notice that the dual player receives only the
loss−G⊤

t q̂t, since the r⊤t q̂t factor has no dependence on the
optimization variable λt, and, thus, it does not affect the op-
timization process. For the sake of completeness, we report
the OGD update of the dual player, namely OGD.UPDATE
(Line 8), defined as follows:

λt+1 := ΠD
(
λt + ηG⊤

t q̂t
)
, (4)

where ΠD is the Euclidean projection on the decision

space D, η =

[
K
√
T ln

(
T 2

δ

)]−1

and K is an instance-

dependent quantity that does not depend on T and δ. From
here on, we refer to the regret suffered by OGD with re-
spect to a general Lagrange multiplier λ as RD

T (λ), where D
stands for dual. Notice that, thanks to the properties of OGD
(Orabona, 2019), by using the aforementioned learning rate
η, we obtain RD

T (λ) ≤ Õ
(
(1 + ||λ||22)

√
T
)

.

Algorithm 2 PDGD-OPS
Require: T , X , A, δ

1: q̂1 ← UC-O-GDPS.INIT (X,A, δ)

2: λ1 ← OGD.INIT
([

0, T 1/4
]m

, η
)

3: for t = 1 to T do
4: Play πq̂t and observe trajectory (xk, ak)

L−1
k=0 , reward

vector rt, and constraint matrix Gt

5: ℓt ← Gtλt − rt
6: ηt ← 1

ℓtC
√
T

with ℓt = max{||ℓτ ||∞}tτ=1

7: q̂t+1 ← UC-O-GDPS.UPDATE
(
ℓt, ηt, (xk, ak)

L−1
k=0

)
8: λt+1 ← OGD.UPDATE

(
−G⊤

t q̂t
)

9: end for

4. Adversarial MDP Optimization Algorithm
We focus on the algorithm employed by the primal player.
As previously discussed, this algorithm resorts to online
learning techniques, since the decision space of the primal
player is not known beforehand. In particular, the algorithm
is a regret minimizer for adversarial MDPs, as Algorithm 2
deals with both stochastic and adversarial settings.

4.1. UC-O-GDPS Algorithm

Upper confidence online gradient descent policy search
(UC-O-GDPS) follows the rationale of the UC-O-REPS al-
gorithm by Rosenberg & Mansour (2019b), from which we
highlight two major differences. The first difference con-
cerns the update step. In particular, while in UC-O-REPS
the update is performed by online mirror descent when the
unnormalized KL is used as Bregman divergence, in UC-O-
GDPS such a step is performed by online gradient descent.
The use of online gradient descent allows the UC-O-GDPS
algorithm to satisfy the weak no-interval regret property
(see Definition 4.3) which plays a central role in our regret
analysis. We also notice that, to the best of our knowledge,
the weak no-interval regret property has never been studied
in episodic adversarial MDPs, and thus our result may be
of independent interest. The second difference concerns
the design of an adaptive learning rate which depends on
the losses previously observed. The satisfaction of weak
no-interval regret property and the adoption of our adaptive
learning rate allow us to attain a regret bound of Õ(

√
T ) for

PDGD-OPS in place of Õ
(
T 3/4

)
.

Transitions Confidence Set Initially, we discuss how UC-
O-GDPS updates the confidence set, denoted with P , on
the transition probabilities P . In particular, the update of
the confidence set requires a non-negligible computational
effort, however it is possible to update the confidence set
at a subset of episodes to make the UC-O-GDPS algorithm
more efficient without worsening the regret bounds. More
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precisely, the episodes are divided dynamically in epochs
depending of the observed feedback, and the update of the
confidence bound is only performed at the first episode
of every epoch. UC-O-GDPS adopts counters of visits for
each state-action pair (x, a) and each state-action-state triple
(x, a, x′) to estimate the empirical transition function as:

P i (x
′ | x, a) = Mi (x

′ | x, a)
max {1, Ni(x, a)}

,

where Ni(x, a) and Mi (x
′ | x, a) are the initial values of

the counters, that is, the total number of visits of pair (x, a)
and triple (x, a, x′), respectively, observed in the epochs
preceding epoch i. Furthermore, a new epoch starts when-
ever there is a state-action pair whose counter is doubled
compared to its initial value at the beginning of the epoch.
The confidence set Pi is updated at every epoch i as, for
every (x, a) ∈ X ×A:

Pi =
{
P̂ :

∥∥∥P̂ (·|x, a)− P i (·|x, a)
∥∥∥
1
≤ ϵi (x, a)

}
, (5)

where ϵi (x, a) is defined as:

ϵi (x, a) =

√√√√2|Xk(x)+1| ln
(

T |X||A|
δ

)
max {1, Ni(x, a)}

,

and k(x) denotes the index of the layer to which x belongs
and δ ∈ (0, 1) is the given confidence. The next result,
which follows from (Rosenberg & Mansour, 2019b), shows
that the cumulative error due to the estimation of the transi-
tion probabilities grows sublinearly.

Lemma 4.1. If the confidence set P is updated as in Equa-
tion (5), with probability at least 1− 2δ, it holds that

T∑
t=1

||qt − q̂t||1 ≤ Eqδ ,

where Eqδ ≤ Õ(
√
T ).

Initialization Algorithm 2 employs the procedure called
UC-O-GDPS.INIT (Line 1) to initialize the epoch index
as i = 1 and the confidence set P1 as the set of all possible
transition functions. For all k ∈ [0..L− 1] and (x, a, x′) ∈
Xk ×A× Xk+1, the counters are initialized as N0(x, a) =
N1(x, a) = M0 (x

′ | x, a) = M1 (x
′ | x, a) = 0. Finally,

the following occupancy measure

q̂1 (x, a, x
′) =

1

|Xk∥A| |Xk+1|

is returned by the initialization procedure, for every k ∈
[0..L− 1] and (x, a, x′) ∈ Xk ×A× Xk+1.

Update The pseudo-code of the UC-O-GDPS.UPDATE
procedure (used in Line 7 of Algorithm 2) is provided in Al-
gorithm 3. Initially, it updates the estimate of the confidence
set P (Lines 1–7) as described above, and, subsequently,
it performs an update step according to projected online
gradient descent (Line 9).

Algorithm 3 UC-O-GDPS.UPDATE
Require: ℓt, ηt, (xk, ak)

L−1
k=0

1: for k ∈ [0..L− 1] do
2: Update counters:

Ni (xk, ak)← Ni (xk, ak) + 1,

Mi (xk+1 | xk, ak)←Mi (xk+1 | xk, ak) + 1

3: end for
4: if ∃k : Ni (xk, ak) ≥ max {1, 2Ni−1 (xk, ak)} then
5: Increase epoch index i← i+ 1
6: Initialize new counters: for all (x, a, x′),

Ni(x, a)← Ni−1(x, a)

Mi (x
′ | x, a)←Mi−1 (x

′ | x, a)

7: Update confidence set Pi as in Equation (5)
8: end if
9: Update occupancy measure:

q̂t+1 ← Π∆(Pi) (q̂t − ηtℓt)

4.2. Interval Regret

Initially, we provide the definition of interval regret for
adversarial online MDPs.

Definition 4.2 (Interval regret). Given an interval of con-
secutive episodes [t1..t2] ⊆ [1..T ], the interval regret with
respect to a general occupancy measure q is defined as:

Rt1,t2(q) :=

t2∑
t=t1

ℓ⊤t (qt − q).

Now, we define the notion of weak no-interval regret. This
notion plays a crucial role when proving the properties of
Algorithm 2, and it is defined as follows.

Definition 4.3 (Weak no-interval regret). An online MDP
optimizer satisfies the weak no-interval regret property if:

Rt1,t2(q) ≤ Õ
(√

T
)

∀[t1..t2] ⊆ [1..T ].

For ease of presentation, in the following we use the super-
script P in the regret to distinguish the regret associated with
the primal regret minimizer (RP) from the regret associated

6
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with the dual regret minimizer (RD), while we use RP
T (q)

in place of RP
1,T (q).

Next, we state the main result of this section.

Theorem 4.4. With probability at least 1− 2δ, by setting

ηt =
(
ℓtC
√
T
)−1

, the UC-O-GDPS algorithm satisfies the

following for any q ∈
⋂

i ∆(Pi):

RP
t1,t2(q) ≤ℓt1,t2E

q
δ + ℓt2LC

√
T

+ ℓt1,t2
|X||A|

2

(t2 − t1 + 1)

C
√
T

,

where ℓt1,t2 := max{||ℓt||∞}t2t=t1 , ℓt := ℓ1,t, δ ∈ [0, 1].

Furthermore, it follows from Theorem 4.4 that, when t1 = 1

and t2 = T , it holds RP
T ≤ Õ

(
ℓT
√
T
)

.

5. Theoretical Results
In this section we provide the theoretical results attained by
Algorithm 2 in terms of cumulative regret and cumulative
constraint violation. We start providing a fundamental result
on the Lagrange multiplier dynamics. Then, we distinguish
two cases, which require different treatments. In the first,
constraints are stochastic (Section 5.1), while in the second
case they are adversarial (Section 5.2).

The main technical challenge when bounding the cumulative
regret and constraint violation concerns bounding the space
of the dual variables. We recall that, when employing stan-
dard no-regret techniques, an unbounded dual space would
lead to an unbounded loss for the primal regret minimizer,
resulting in a linear regret. Our choice D = [0, T 1/4]m

of the dual decision space allows us to circumvent such
an issue and PDGD-OPS to achieve a cumulative regret
bound of RT ≤ Õ(T 3/4), while keeping the cumulative
violation sublinear. Nevertheless, when ρ is large enough
(namely, Condition 2.5 holds), the Õ

(
T 3/4

)
dependency in

the upper bounds is not optimal. In particular, in this case,
we can show that the Lagrangian vector never touches the
boundaries of D, and this property can be used to show that
the regret and violation bounds are Õ(

√
T ). In the follow-

ing, we present our result on how the Lagrange multipliers
can be bounded, providing a proof sketch and referring to
Appendix D for the complete proof.

Theorem 5.1. If Condition 2.5 holds and PDGD-OPS is
used, then, when ζ := 20mL2

ρ2 , it holds

||λt||1 ≤ ζ ∀t ∈ [T + 1]

with probability at least 1− 2δ in the stochastic constraint
setting and with probability at least 1− δ in the adversarial
constraint setting.

Proof sketch. The proof exploits the fact that both the pri-
mal and dual player satisfy the weak no-interval regret prop-
erty. Precisely, the sum of the values of the Lagrangian
function in [t1..t2] can be lower bounded by using the in-
terval regret of UC-O-GDPS, while the same quantity can
be upper bounded with the interval regret of OGD, showing
a contradiction concerning the value of Lagrange multipli-
ers can achieve for an opportune choice of constants and
learning rates.

5.1. Stochastic Constraints Setting

The peculiarity of this setting is that, at every episode
t ∈ [T ] the constraint matrix G is sampled from a fixed
distribution, namely Gt ∼ G. Instead, rewards rt can be
sampled from a fixed distributionR or chosen adversarially.

Azuma-Hoeffding Bounds Initially, we bound the error
between the realizations of reward vectors and their corre-
sponding mean values when the rewards are chosen stochas-
tically. The proof is provided in Appendix D.

Lemma 5.2. If the rewards are stochastic, then, with prob-
ability at least 1− δ, it holds:∣∣∣∣∣

T∑
t=1

(rt − r)
⊤
q∗

∣∣∣∣∣ ≤ Erδ ,
where Erδ := L√

2

√
T ln

(
2
δ

)
.

Now, we bound the error between the realizations of con-
straint violations and their corresponding mean values.

Lemma 5.3. If the constraints are stochastic, given a se-
quence of occupancy measures (qt)Tt=1, then with probabil-
ity at least 1− δ, for all [t1..t2] ⊆ [1..T ], it holds:∣∣∣∣∣

t2∑
t=t1

λ⊤
t

(
G⊤

t −G
⊤)

qt

∣∣∣∣∣ ≤ λt1,t2EGt1,t2,δ,

where we let EGt1,t2,δ := 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
and

λt1,t2 := max{∥λt∥1}t2t=t1 .

For the sake of notation, we use EGδ in place of EG1,T,δ. Let
us remark that Erδ , EGδ ≤ Õ(

√
T ).

Analysis when Condition 2.5 Holds We start by analyz-
ing the case in which Condition 2.5 holds. By Theorem 5.1,
we know that the maximum 1-norm of the dual vectors se-
lected by OGD during the learning process is upper-bounded
by the constant ζ. Since ζ essentially determines the range
of the Lagrangian function, we can prove optimal regret
and violation bounds of order Õ

(
ζ
√
T
)

for PDGD-OPS,
as stated in the following theorem.
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Theorem 5.4. In the stochastic constraint setting, when
Condition 2.5 holds, the cumulative regret and constraint
violation incurred by PDGD-OPS are upper bounded as
follows. If the rewards are adversarial, then with probability
at least 1− 4δ Algorithm 2 provides:

RT ≤ ζEGδ + ζEqδ +RD
T (0) +RP

T (q
∗),

VT ≤
1

η
ζ + Eqδ .

If the rewards are stochastic, then with probability at least
1− 5δ Algorithm 2 provides:

RT ≤ Erδ + ζEGδ + ζEqδ +RD
T (0) +RP

T (q
∗),

VT ≤
1

η
ζ + Eqδ .

In both cases:

RT ≤ Õ
(
ζ
√
T
)
, VT ≤ Õ

(
ζ
√
T
)
.

Notice that, if Condition 2.5 does not hold, the bounds stated
in Theorem 5.4 can become of order Õ

(
T 3/4

)
or even linear.

We conclude the analysis of the stochastic constraint setting
when Condition 2.5 holds with the following remark.

In Theorem 5.4, the regret bound when the rewards are ad-
versarial is better than the one when the rewards are chosen
stochastically. This result may seem counter-intuitive as
the adversarial setting is the hardest setting a learner might
face. Informally, this is due to the different definition of the
optimization baseline used in the stochastic and adversarial
settings.

Analysis when Condition 2.5 Does Not Hold We focus
on the case in which Condition 2.5 does not hold. As previ-
ously observed, in this case the regret and violation bounds
given in Theorem 5.4 are not meaningful anymore, as they
could become linear in T (in fact, this is exactly the case
when ρ ∝ T− 1

4 ). Nevertheless, by constraining the dual
player to the decision space D = [0, T 1/4]m, we are able
to prove worst-case regret and violation bounds of the or-
der of Õ

(
T 3/4

)
. This result is formalized in the following

theorem.

Theorem 5.5. In the stochastic constraint setting, when
Condition 2.5 does not hold, the cumulative regret and
constraint violations incurred by PDGD-OPS are upper
bounded as follows. If the rewards are adversarial, then
with probability at least 1− 4δ Algorithm 2 provides:

RT ≤ mT
1
4 EGδ +mT

1
4 Eqδ +RD

T (0) +RP
T (q

∗),

VT ≤ (2 + 2L)
1

η
T

1
4 + Eqδ .

If the rewards are stochastic, then with probability at least
1− 5δ Algorithm 2 provides:

RT ≤ Erδ +mT
1
4 EGδ +mT

1
4 Eqδ +RD

T (0) +RP
T (q

∗),

VT ≤ (2 + 2L)
1

η
T

1
4 + Eqδ .

In both cases, it holds:

RT ≤ Õ
(
T

3
4

)
, VT ≤ Õ

(
T

3
4

)
.

5.2. Adversarial Constraints Setting

We recall that in this setting, at every episode t ∈ [T ],
the constraint matrix Gt is chosen adversarially. Instead,
rewards rt can be sampled from a fixed distribution R or
chosen adversarially. This case corresponds to the hardest
scenario the learner can face. As stated in Section 2.5, the
treatment of this case requires a definition of ρ stronger
than that used in the stochastic constraint setting. Thanks
to such a redefinition, it is possible to achieve guarantees
on the cumulative constraint violation of the same order of
those attainable in the stochastic setting, while obtaining at
least a constant fraction of the optimal reward. Such a result
can be achieved when Condition 2.5 holds. Notice that
both sublinear cumulative regret and sublinear cumulative
constraint violation cannot be achieved in our setting, as
shown by Mannor et al. (2009).

The following theorem summarizes our result for the adver-
sarial constraint setting.

Theorem 5.6. In the adversarial constraint setting, when
Condition 2.5 holds, the cumulative regret and constraint
violations incurred by PDGD-OPS are upper bounded as
follows. If the rewards are adversarial, then with probability
at least 1− 2δ Algorithm 2 provides:

RT ≤
1

1 + ρ
T · OPTr,G + ζEqδ +RD

T (0) +RP
T (q̃),

VT ≤
1

η
ζ + Eqδ .

If the rewards are stochastic, then with probability at least
1− 3δ Algorithm 2 provides:

RT ≤
1

1 + ρ
T · OPTr,G + Erδ + ζEqδ +RD

T (0) +RP
T (q̃),

VT ≤
1

η
ζ + Eqδ .

In both cases, it holds:

T∑
t=1

r⊤t qt ≥ Ω

(
ρ

1 + ρ
T · OPTr,G

)
, VT ≤ Õ

(
ζ
√
T
)
.
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line markov decision processes under bandit feedback.
Advances in Neural Information Processing Systems, 23,
2010.

Orabona, F. A modern introduction to online learning.
CoRR, abs/1912.13213, 2019.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Qiu, S., Wei, X., Yang, Z., Ye, J., and Wang, Z. Upper
confidence primal-dual reinforcement learning for cmdp
with adversarial loss. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems, volume 33, pp.
15277–15287. Curran Associates, Inc., 2020.

Rosenberg, A. and Mansour, Y. Online stochastic shortest
path with bandit feedback and unknown transition func-
tion. In Wallach, H., Larochelle, H., Beygelzimer, A.,
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A. Related Works
In the following, we survey some previous works that are tightly related to ours. In particular, we first describe works
dealing with the online learning problem in MDPs, and, then, we discuss some works studying the constrained version of
the classical online learning problem.

Online Learning in MDPs There is a considerable literature on online learning problems (Cesa-Bianchi & Lugosi, 2006)
in MDPs (see (Auer et al., 2008; Even-Dar et al., 2009; Neu et al., 2010) for some initial results on the topic). In such
settings, two types of feedback are usually investigated: in the full-information feedback model, the entire loss function
is observed after the learner’s choice, while in the bandit feedback model, the learner only observes the loss due to the
chosen action. Azar et al. (2017) study the problem of optimal exploration in episodic MDPs with unknown transitions and
stochastic losses when the feedback is bandit. The authors present an algorithm whose regret upper bound is Õ(

√
T ), thus

matching the lower bound for this class of MDPs and improving the previous result by Auer et al. (2008). Rosenberg &
Mansour (2019b) study the online learning problem in episodic MDPs with adversarial losses and unknown transitions when
the feedback is full information. The authors present an online algorithm exploiting entropic regularization and providing a
regret upper bound of Õ(

√
T ). The same setting is investigated by Rosenberg & Mansour (2019a) when the feedback is

bandit. In such a case, the authors provide a regret upper bound of the order of Õ(T 3/4), which is improved by Jin et al.
(2020) by providing an algorithm that achieves in the same setting a regret upper bound of Õ(

√
T ).

Online Learning in CMDPs All the previous works on the topic study settings in which constraints are selected
stochastically. In particular, Zheng & Ratliff (2020) deal with episodic CMDPs with stochastic losses and constraints, where
the transition probabilities are known and the feedback is bandit. The regret upper bound of their algorithm is of the order
of Õ(T 3/4), while the cumulative constraint violation is guaranteed to be below a threshold with a given probability. Wei
et al. (2018) deal with adversarial losses and stochastic constraints, assuming the transition probabilities are known and
the feedback is full information. The authors present an algorithm that guarantees an upper bound of the order of Õ(

√
T )

on both regret and constraint violation. Bai et al. (2020) provide the first algorithm that achieves sublinear regret when
the transition probabilities are unknown, assuming that the rewards are deterministic and the constraints are stochastic
with a particular structure. Efroni et al. (2020) propose two approaches to deal with the exploration-exploitation dilemma
in episodic CMDPs. These approaches guarantee sublinear regret and constraint violation when transition probabilities,
rewards, and constraints are unknown and stochastic, while the feedback is bandit. Qiu et al. (2020) provide a primal-dual
approach based on optimism in the face of uncertainty. This work shows the effectiveness of such an approach when dealing
with episodic CMDPs with adversarial losses and stochastic constraints, achieving both sublinear regret and constraint
violation with full-information feedback. Wei et al. (2023) and Ding & Lavaei (2023) consider the case in which rewards
and constraints are non-stationary, assuming that their variation is bounded. Thus, their results are not applicable to
general adversarial settings. Stradi et al. (2024) study the setting with adversarial losses, stochastic constraints and partial
feedback, achieving sublinear regret and sublinear positive constraints violations. Finally, Bacchiocchi et al. (2024) study
the problem of stochastic constrained Markov persuasion processes (a generalization of MDPs) with bandit feedback and
partial observability on the constraints.

Online Learning with Constraints A central result is provided by Mannor et al. (2009), who show that it is impossible to
suffer from sublinear regret and sublinear constraint violation when an adversary chooses losses and constraints. Liakopoulos
et al. (2019) try to overcome such an impossibility result by defining a new notion of regret. They study a class of online
learning problems with long-term budget constraints that can be chosen by an adversary. The learner’s regret metric is
modified by introducing the notion of a K-benchmark, i.e., a comparator that meets the problem’s allotted budget over any
window of length K. Castiglioni et al. (2022a;b) deal with the problem of online learning with stochastic and adversarial
losses, providing the first best-of-both-worlds algorithm for online learning problems with long-term constraints.

B. Events
Here we state the events that we use in the rest of the Appendix.

The following event states that the true occupancy measure space is always contained in the confidence set:

Event E∆(δ): ∆(M) ⊆ ∩i∆(Pi).

In particular, under E∆(δ), we have that q◦, q∗ ∈ ∩i∆(Pi). E∆(δ) holds with probability at least 1− δ (See Lemma C.1).
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The following event states that the cumulative error after T episodes due to the difference between qP,πt and qP
q̂t ,πt is

small enough:

Event E q̂(δ):
∑T

t=1 ||qt − q̂t||1 ≤ Eqδ , where Eqδ := 4L|X|
√
2T ln

(
1
δ

)
+ 6L|X|

√
2T |A| ln

(
T |X||A|

δ

)
≤ Õ(

√
T ).

In the next sections we will often condition on the intersection of the previous events:

Event E∆,q̂(δ): E q̂(δ) ∩ E∆(δ).

E∆,q̂(δ) holds with probability at least 1− 2δ (See Lemma 4.1).

The next event states that, in case the rewards are stochastic, the reward accumulated is not too far from the mean reward
accumulated.

Event Er
q∗(δ):

∣∣∣∑T
t=1 (rt − r)

⊤
q∗
∣∣∣ ≤ Erδ , where Erδ = L√

2

√
T ln

(
2
δ

)
≤ Õ

(√
T
)

.

Er
q∗(δ) holds with probability at least 1− δ (See Lemma 5.2).

For the stochastic constraint setting, we define the quantity EGt1,t2,δ := 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
and then two events

bounding the cumulative difference between the dual utility with the average constraints and that with the sampled constraints.

Event EG
q◦(δ): for all [t1..t2] ⊆ [1..T ],

∣∣∣∑t2
t=t1

λ⊤
t (G

⊤
t −G

⊤
)q◦
∣∣∣ ≤ λt1,t2EGt1,t2,δ .

Event EG
q∗(δ): for all [t1..t2] ⊆ [1..T ],

∣∣∣∑t2
t=t1

λ⊤
t (G

⊤
t −G

⊤
)q∗
∣∣∣ ≤ λt1,t2EGt1,t2,δ .

EG
q◦(δ), E

G
q∗(δ) each hold with probability at least 1− δ (See Lemma 5.3). We denote EGδ := EG1,T,δ .

C. Additional Details and Omitted Proof of Section 4
C.1. Algorithm

Confidence Set The description of how Confidence Set on the Transition Probability functions are built and used, follows
precisely the description of (Rosenberg & Mansour, 2019b). We report the functioning for completeness.
UC-O-GDPS keeps counters of visits of each state-action pair (x, a) and each state-action-state triple (x, a, x′), in order to
estimate the empirical transition function as:

P i (x
′ | x, a) = Mi (x

′ | x, a)
max {1, Ni(x, a)}

,

where Ni(x, a) and Mi (x
′ | x, a) are the initial values of the counters, that is, the total number of visits of pair (x, a) and

triple (x, a, x′) respectively, before epoch i. Epochs are used to reduce the computational complexity; in particular, a new
epoch starts whenever there exists a state-action whose counter is doubled compared to its initial value at the beginning of
the epoch. Next, the confidence set for epoch i is defined as:

Pi =
{
P̂ :

∥∥∥P̂ (·|x, a)− P i (·|x, a)
∥∥∥
1
≤ ϵi (x, a) ∀ (x, a) ∈ X ×A

}
, (6)

with ϵi (x, a) defined as:

ϵi (x, a) =

√√√√2|Xk(x)+1| ln
(

T |X||A|
δ

)
max {1, Ni(x, a)}

,

using k(x) for the index of the layer that x belongs to and for some confidence parameter δ ∈ (0, 1). We state the following
Lemma by (Rosenberg & Mansour, 2019b), which provides the results related to the confidence set ϵi(x, a).
Lemma C.1. (Rosenberg & Mansour, 2019b) For any δ ∈ [0, 1]:

∥∥P (·|x, a)− P i (·|x, a)
∥∥
1
≤

√√√√2|Xk(x)+1| ln
(

T |X||A|
δ

)
max {1, Ni(x, a)}

12
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holds with probability at least 1− δ simultaneously for all (x, a) ∈ X ×A and all epochs.

Lemma C.1 implies that, with high probability, the occupancy measure space ∆(M) is included in the estimated one
∆(Pi) ∀i.

Occupancy Measure Update The update of the occupancy measure is performed on the space ∆(Pi), which is built on
the estimated transition function set Pi. More formally:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt) ,

with ηt =
1

ℓtC
√
T

with ℓt = max{||ℓt||∞}tt=1, and C constant. The employment of Online Gradient Descent has been
necessary to achieve the interval regret results, while the adaptive learning rate was chosen to improve the performance in
terms of Regret bounds.

Algorithm 4 Upper Confidence Online Gradient Descent Policy Search (UC-O-GDPS)
Require: space X , action space A, episode number T , and confidence parameter δ

1: Initialize epoch index i = 1 and confidence set P1 as the set of all transition functions. For all k ∈ [0..L − 1] and
all (x, a, x′) ∈ Xk × A× Xk+1, initialize counters N0(x, a) = N1(x, a) = M0 (x

′ | x, a) = M1 (x
′ | x, a) = 0 and

occupancy measure

q̂1 (x, a, x
′) =

1

|Xk∥A| |Xk+1|

Initialize policy π1 = πq̂1

2: for t ∈ [T ] do
3: Execute policy πt for L steps and obtain trajectory xk, ak for k ∈ [0..L− 1] and loss ℓt
4: for k ∈ [0..L− 1] do
5: Update counters:

Ni (xk, ak)← Ni (xk, ak) + 1,

Mi (xk+1 | xk, ak)←Mi (xk+1 | xk, ak) + 1

6: end for
7: if ∃k,Ni (xk, ak) ≥ max {1, 2Ni−1 (xk, ak)} then
8: Increase epoch index i← i+ 1
9: Initialize new counters: for all (x, a, x′),

Ni(x, a) = Ni−1(x, a)

Mi (x
′ | x, a) = Mi−1 (x

′ | x, a)

10: Update confidence set Pi based on Equation (5)
11: end if
12: Update occupancy measure:
13: ηt =

1
ℓtC

√
T

with ℓt = max{||ℓt||∞}tt=1

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

14: Update policy πt+1 = πq̂t+1

15: end for

C.2. Interval Regret

In the following subsections, we prove the theorem related to the interval regret of Algorithm 4. First, we will present the
main theorem, then, all the necessary lemmas.

Theorem 4.4. With probability at least 1 − 2δ, by setting ηt =
(
ℓtC
√
T
)−1

, the UC-O-GDPS algorithm satisfies the

13
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following for any q ∈
⋂

i ∆(Pi):

RP
t1,t2(q) ≤ℓt1,t2E

q
δ + ℓt2LC

√
T

+ ℓt1,t2
|X||A|

2

(t2 − t1 + 1)

C
√
T

,

where ℓt1,t2 := max{||ℓt||∞}t2t=t1 , ℓt := ℓ1,t, δ ∈ [0, 1].

Proof. Assume Event E∆,q̂(δ) holds. By definition 4.2:

Rt1,t2(q) =

t2∑
t=t1

ℓ⊤t (qt − q)

=

t2∑
t=t1

ℓ⊤t (qt − q̂t)︸ ︷︷ ︸
1

+

t2∑
t=t1

ℓ⊤t (q̂t − q)︸ ︷︷ ︸
2

≤ ℓt1,t2E
q
δ + ℓt2LC

√
T + ℓt1,t2

|X||A|
2

(t2 − t1 + 1)

C
√
T

,

where the Inequality holds by Lemmas C.5 and C.6. We focus on bounding the first term 1 and the second term 2 .

C.2.1. BOUND ON THE FIRST TERM

In order to bound the first term of the Interval Regret, we state some useful Lemmas by (Rosenberg & Mansour, 2019b).

Lemma C.2. (Rosenberg & Mansour, 2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition functions. Then,

T∑
t=1

||qPt,πt−qP,πt ||1 ≤
T∑

t=1

∑
x∈X

∑
a∈A

|qPt,πt(x, a)−qP,πt(x, a)|+
T∑

t=1

∑
x∈X

∑
a∈A

qP,πt(x, a)||Pt(·|x, a)−P (·|x, a)||1, (7)

where Pt = P q̂t .

The following Lemma, shows how to bound the first term in Equation (7) with the second one.

Lemma C.3. (Rosenberg & Mansour, 2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition functions. Then, for
every k ∈ [1..L− 1] and every t = 1, ..., T it holds that:

∑
xk∈Xk

∑
ak∈A

|qPt,πt(xk, ak)− qP,πt(xk, ak)| ≤
k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)||Pt(·|xs, as)− P (·|xs, as)||1,

where Pt = P q̂t .

and finally, Equation (7) is upper bounded given:

Lemma C.4. (Rosenberg & Mansour, 2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition functions such that
qPt,πt ∈ ∆(Pi) for every t. Then, with probability at least 1− 2δ Event E∆(δ) holds and:

T∑
t=1

L−1∑
k=0

k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)||Pt(·|xs, as)−P (·|xs, as)||1 ≤ 2L|X|

√
2T ln

(
1

δ

)
+3L|X|

√
2T |A| ln

(
T |X||A|

δ

)
,

where Pt = P q̂t .

From the previous Lemmas, it easy to show that:

14
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Lemma 4.1. If the confidence set P is updated as in Equation (5), with probability at least 1− 2δ, it holds that

T∑
t=1

||qt − q̂t||1 ≤ Eqδ ,

where Eqδ ≤ Õ(
√
T ).

Proof. Following (Rosenberg & Mansour, 2019b), by Lemmas C.2, C.3 and C.4 we obtain that with probability at least

1− 2δ Event E∆(δ) holds and:
∑T

t=1 ||qPt,πt − qP,πt ||1 ≤ 4L|X|
√

2T ln
(
1
δ

)
+ 6L|X|

√
2T |A| ln

(
T |X||A|

δ

)
.

Now, we are ready to bound 1 .

Lemma C.5. Under Event E∆,q̂(δ) it holds:

t2∑
t=t1

ℓ⊤t (qt − q̂t) ≤ ℓt1,t2E
q
δ ,

with ℓt1,t2 := max{||ℓt||∞}t2t=t1

Proof.

t2∑
t=t1

ℓ⊤t (qt − q̂t) ≤
t2∑

t=t1

||ℓt||∞||qt − q̂t||1

≤ ℓt1,t2

t2∑
t=t1

||qt − q̂t||1

≤ ℓt1,t2

T∑
t=1

||qt − q̂t||1

≤ ℓt1,t2E
q
δ , (8)

with ℓt1,t2 := max{||ℓt||∞}t2t=t1 and where Inequality (8) holds under the event E q̂(δ).

C.2.2. BOUND ON THE SECOND TERM

Lemma C.6. For any q ∈ ∩i∆(Pi), the Projected OGD update:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt) ,

with ηt =
1

ℓtC
√
T

and ℓt = max{||ℓt||∞}tt=1 ensures:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ U1
ℓt2
2
C
√
T + U2

ℓt1,t2
2

(t2 − t1 + 1)

C
√
T

,

where U1 = 2L, U2 = |X||A|, ℓt1,t2 = max{||ℓt||∞}t2t=t1 .

Proof. By the standard analysis of Projected Online Gradient Descent [Lemma 2.12 (Orabona, 2019)] we have:

ℓ⊤t (q̂t − q) ≤ 1

2ηt
||q̂t − q||22 −

1

2ηt
||q̂t+1 − q||22 +

ηt
2
||ℓt||22.

Observe that for any two occupancy measures q1, q2 it holds:

||q1 − q2||22 ≤ ||q1||22 + ||q2||22

15
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≤ ||q1||1 + ||q2||1
≤ 2L,

where the second Inequality follows from q(x, a) ∈ [0, 1] ∀x, a. Then, summing over the interval [t1.. t2] we get:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ 1

2ηt1
||q̂t1 − q||22−

1

2ηt2
||q̂t2+1 − q||22︸ ︷︷ ︸

≤0

+
1

2

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
||q̂t+1 − q||22 +

1

2

t2∑
t=t1

ηt||ℓt||22

≤ L

ηt1
+ L

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
+

1

2C
√
T

t2∑
t=t1

1

ℓt

∑
x,a

ℓt(x, a)
2 (9)

≤ L

ηt1
+ L

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

= 1
ηt2

− 1
ηt1

+
1

2C
√
T

t2∑
t=t1

||ℓt||∞
max{||ℓτ ||∞}tτ=1︸ ︷︷ ︸

≤1

||ℓt||∞
∑
x,a

1

≤Lℓt2C
√
T +

|X||A|
2

ℓt1,t2
(t2 − t1 + 1)

C
√
T

, (10)

where Inequality (9) follows from the definition of ηt, and from ηt > ηt+1, while Inequality (10) comes from the telescopic
sum over [t1..t2] and from the definition of ηt2 .

D. Omitted Proof of Section 5
D.1. Interval Regrets

In this section, we show the Interval Regrets, attained by both primal and dual player, in our specific framework.

D.1.1. INTERVAL REGRET OF THE DUAL

In this subsection, we show the Interval Regret obtained by dual player. Recall that the dual variables are updated with
Projected Online Gradient Descent as shown in (4) or equivalently:

λt+1,i = min
{
max

{
0, λt,i + η[G⊤

t ]iq̂t
}
, T 1/4

}
, (11)

with η =

[
K
√
T ln

(
T 2

δ

)]−1

.

Let

RD
t1,t2(λ) :=

t2∑
t=t1

(λ− λt)
⊤
G⊤

t q̂t

denote the regret accumulated by OGD from episode t1 to episode t2 with respect to the constant multiplier λ. By standard
analysis of OGD (Orabona, 2019) we have that:

RD
t1,t2(λ) ≤

||λt1 − λ||22
2η

+
η

2

t2∑
t=t1

||G⊤
t q̂t||22.

We can upper-bound the quantity ||G⊤
t q̂t||22 as:

||G⊤
t q̂t||22 =

m∑
i=1

(∑
x,a

gt,i(x, a)q̂t(x, a)

)2

≤
m∑
i=1

(∑
x,a

q̂t(x, a)

)2

≤ mL2,

16
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obtaining:

RD
t1,t2(λ) ≤ D1

||λt1 − λ||22
η

+D2η(t2 − t1 + 1),

with D1 = 1
2 , D2 = mL2

2 .

We bound the distance between lagrange multipliers for consecutive episodes.

Lemma D.1. If the dual player employs Projected Online Gradient Descent as in Update (11), it holds:

||λt+1||1 − ||λt||1 ≤ mηL.

Proof. Since the dual minimizer is performing projected gradient descent with learning rate η, and the gradient of the
Lagrangian at time t with respect to λ is equal to q̂⊤t G

⊤
t , element-wise it holds that:

λt+1,i = min
{
max

{
0, λt,i + η[G⊤

t ]iq̂t
}
, T

1
4

}
≤ max

{
0, λt,i + η[G⊤

t ]iq̂t
}

≤ max
{
0, λt,i + η||[G⊤

t ]i||∞||q̂t||1
}

≤ max {0, λt,i + ηL}
= λt,i + ηL,

Thus,

||λt+1||1 − ||λt||1 =

m∑
i=1

λt+1,i −
m∑
i=1

λt,i ≤
m∑
i=1

λt,i +

m∑
i=1

ηL−
m∑
i=1

λt,i = mηL.

D.1.2. INTERVAL REGRET OF THE PRIMAL

We restate Lemma C.6:

Lemma C.6. For any q ∈ ∩i∆(Pi), the Projected OGD update:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt) ,

with ηt =
1

ℓtC
√
T

and ℓt = max{||ℓt||∞}tt=1 ensures:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ U1
ℓt2
2
C
√
T + U2

ℓt1,t2
2

(t2 − t1 + 1)

C
√
T

,

where U1 = 2L, U2 = |X||A|, ℓt1,t2 = max{||ℓt||∞}t2t=t1 .

Let

λt1,t2 := max{||λt||1}t2t=t1 .

Then it holds ℓt1,t2 ≤ 1 + λt1,t2 and we can restate the interval regret of the primal in terms of the 1-norm of the Lagrange
multipliers as:

t2∑
t=t1

rLt
⊤
(q − q̂t) ≤ U1

(1 + λ1,t2)

2
C
√
T + U2

(1 + λt1,t2)

2

(t2 − t1 + 1)

C
√
T

. (12)

17
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D.2. Bound on the Lagrange multipliers

We prove Theorem 5.1, which we restate for convenience.

Theorem 5.1. If Condition 2.5 holds and PDGD-OPS is used, then, when ζ := 20mL2

ρ2 , it holds

||λt||1 ≤ ζ ∀t ∈ [T + 1]

with probability at least 1− 2δ in the stochastic constraint setting and with probability at least 1− δ in the adversarial
constraint setting.

Proof. Suppose event E∆(δ) holds. If the constraints are stochastic, suppose event EG
q◦(δ) holds too. Let M > 1 be a

constant. We prove the statement by absurd. Suppose by absurd that there exists t2 ∈ [T ] such that:

∀t ≤ t2 ||λt||1 ≤
2LM

ρ2
∧ ||λt2+1||1 >

2LM

ρ2

and let t1 < t2 be such that:

||λt1−1||1 ≤
2L

ρ
∧ ∀t : t1 ≤ t ≤ t2 ||λt||1 ≥

2L

ρ
.

By construction it holds that 1 < 2L
ρ ≤ ||λt||1 ≤ 2LM

ρ2 for all t1 ≤ t ≤ t2. Also notice that by Lemma D.1, for η ≤ 1
mL it

holds that:
||λt1 ||1 ≤ ||λt1−1||1 +mηL ≤ 2L

ρ
+mηL ≤ 4L

ρ
.

Focus on the quantity
∑t2

t=t1
−λ⊤

t G
⊤
t q

◦: in the stochastic constraint setting we have, under the event EG
q◦(δ):

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ ≥
t2∑

t=t1

−λ⊤
t G

⊤
q◦ − λt1,t2EGt1,t2

≥
t2∑

t=t1

m∑
i=1

−λt,i

[
G

⊤
q◦
]
i
− λt1,t2EGt1,t2

≥ ρ

t2∑
t=t1

m∑
i=1

λt,i − λt1,t2EGt1,t2

= ρ

t2∑
t=t1

||λt||1 − λt1,t2EGt1,t2

≥ ρ
2L

ρ
(t2 − t1 + 1)− λt1,t2EGt1,t2

= 2L(t2 − t1 + 1)− λt1,t2EGt1,t2 .

While in the adversarial setting it holds:

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ ≥
t2∑

t=t1

m∑
i=1

−λt,i

[
G⊤

t q
◦]

i

≥ ρ

t2∑
t=t1

m∑
i=1

λt,i

= ρ

t2∑
t=t1

||λt||1

≥ ρ
2L

ρ
(t2 − t1 + 1)

18
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= 2L(t2 − t1 + 1).

In particular, we have that
t2∑

t=t1

−λ⊤
t G

⊤
t q

◦ ≥ 2L(t2 − t1 + 1)− λt1,t2EGt1,t2

is true in both settings under the required events.

We can lower bound the cumulative value of the Lagrangian function, namely rLt
⊤
q̂t, from t1 to t2 by that achievable by the

primal minimizer by always playing the feasible occupancy measure q◦:

t2∑
t=t1

rLt
⊤
q̂t =

t2∑
t=t1

rLt
⊤
q◦ −

t2∑
t=t1

rLt
⊤
(q◦ − q̂t)

=

t2∑
t=t1

r⊤t q
◦

︸ ︷︷ ︸
≥0

+

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ −
t2∑

t=t1

rLt
⊤
(q◦ − q̂t)

≥ 2L(t2 − t1 + 1)− λt1,t2EGt1,t2,δ −
t2∑

t=t1

rLt
⊤
(q◦ − q̂t).

Applying Lemma C.6 and observing that by construction 1 ≤ λt1,t2 ≤ 2LM
ρ2 , we can bound 1 + λt1,t2 ≤ 4LM

ρ2 and obtain:

t2∑
t=t1

rLt
⊤
q̂t ≥ 2L(t2 − t1 + 1)− 2LM

ρ2
EGt1,t2,δ − U1

2LM

ρ2
C
√
T − U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

,

since under E∆(δ) we have that q◦ ∈ ∩i∆(Pi).

We can upper-bound the same quantity with the value achievable by the dual by always playing a vector of zeroes.

t2∑
t=t1

rLt
⊤
q̂t =

t2∑
t=t1

r⊤t q̂t −
t2∑

t=t1

λ⊤
t G

⊤
t q̂t

≤
t2∑

t=t1

r⊤t q̂t −
t2∑

t=t1

0⊤G⊤
t q̂t +RD

t1,t2(0)

≤
t2∑

t=t1

L+D1
||λt1 ||22

η
+D2η(t2 − t1 + 1)

≤
t2∑

t=t1

L+D1
||λt1 ||21

η
+D2η(t2 − t1 + 1)

≤ L(t2 − t1 + 1) +D3
L2

ρ2η
+D2η(t2 − t1 + 1),

with D3 = 4D1.

Combining the bounds on the cumulative value of the Lagrangian, we have:

2L(t2 − t1 + 1)− 2LM

ρ2
EGt1,t2,δ−U1

2LM

ρ2
C
√
T − U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

≤

L(t2 − t1 + 1) +D3
L2

ρ2η
+D2η(t2 − t1 + 1).
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Observing that EGt1,t2,δ = 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
≤ U3l1

√
t2 − t1 + 1 with l1 =

√
ln
(
T 2

δ

)
and U3 = 2L

√
2 and

rearranging the terms we obtain:

L(t2 − t1 + 1) ≤ U3
2LM

ρ2
l1
√
t2 − t1 + 1 +

+ U1
2LM

ρ2
C
√
T +

+ U2
2LM

ρ2
(t2 − t1 + 1)

C
√
T

+

+D2η(t2 − t1 + 1) +

+D3
1

η

L2

ρ2
.

We will make use of the following lemma:

Lemma D.2. For η ≤ 1
mL and M

ρ > 4 it holds:

(t2 − t1 + 1) >
M

ρ2mη
.

Proof. By Lemma D.1 we have:
t2∑

t=t1

(||λt+1||1 − ||λt||1) ≤
t2∑

t=t1

mηL,

which, since the sum in the LHS is telescopic, implies:

||λt2+1||1 − ||λt1 ||1 ≤ (t2 − t1 + 1)mηL.

Also note that:
2LM

ρ2
− 4L

ρ
≤ ||λt2+1||1 − ||λt1 ||1.

Rearranging the terms, we obtain, for M
ρ > 4:

M

ρ2mη
<

2L(Mρ − 2)

ρmηL
≤ (t2 − t1 + 1).

Applying Lemma D.2 we show that the above leads to a contradiction for some choices of C, M and η, namely, we show
that:

L(t2 − t1 + 1) > U3
2LM

ρ2
l1
√
t2 − t1 + 1 + (1)

+ U1
2LM

ρ2
C
√
T + (2)

+ U2
2LM

ρ2
(t2 − t1 + 1)

C
√
T

+ (3)

+D2η(t2 − t1 + 1) + (4)

+D3
1

η

L2

ρ2
. (5)

In the followings, we prove that each of the terms on the RHS is upper bounded by 1
5L(t2 − t1 + 1):

20



Online Learning in CMDPs: Handling Stochastic and Adversarial Constraints

1. By trivial computations and applying Lemma D.2:

1

5
L(t2 − t1 + 1) > U3

2LM

ρ2
l1
√
T ≥ U3

2LM

ρ2
l1
√
t2 − t1 + 1

(t2 − t1 + 1) > U3
10M

ρ2
l1
√
T

(t2 − t1 + 1) >
M

ρ2mη
≥ U3

10M

ρ2
l1
√
T

1

mη
≥ 10U3l1

√
T ,

which is ensured by:

η ≤ 1

10mU3l1
√
T

2. Then applying again Lemma D.2:

1

5
L(t2 − t1 + 1) > U1

2LM

ρ2
C
√
T

(t2 − t1 + 1) >
M

ρ2mη
≥ 10U1

M

ρ2
C
√
T ,

which is true for:

η ≤ 1

10mU1C
√
T

3. We solve the third term with respect to C.

1

5
L(t2 − t1 + 1) ≥ U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

,

which is ensured by:

C ≥ 10U2
M

ρ2
1√
T

4.

1

5
L(t2 − t1 + 1) > D2η(t2 − t1 + 1)

1

5
L > D2η,

which is ensured by:

η <
L

5D2

5. Applying Lemma D.2, we solve the Inequality with respect to M:

1

5
L(t2 − t1 + 1) > D3

1

η

L2

ρ2

(t2 − t1 + 1) >
M

ρ2mη
≥ 5D3

1

η

L

ρ2

M

m
≥ 5D3L,

from which:
M ≥ 5mD3L
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We recall all the constants: D2 = mL2

2 , D3 = 2, U1 = 2L, U2 = |X||A|, U3 = 2L
√
2. We choose M = 10mL and recall

Condition 2.5:

ρ ≥ T− 1
8L
√
20m ⇒ 20mL2

ρ2
≤ T

1
4 ≤
√
T .

We now focus on the condition on C:

C ≥ 10U2
10mL

ρ2
1√
T

= 5
U2

L

20mL2

ρ2
1√
T

is thus always ensured by C = 5U2

L . The conditions on η are satisfied if:

η ≤ min

{
L

5D2
,

1

10mU1C
√
T
,

1

10mU3l1
√
T

}
.

Observe that:

min

{
L

5D2
,

1

10mU1C
√
T
,

1

10mU3l1
√
T

}
= min

{
1

2.5mL
,

1

10mU1

(
5U2

L

)√
T
,

1

20
√
2mLl1

√
T

}
.

If we plug in the value of l1, leads to the choice:

η =
1

50mmax
{

U1U2

L , L
}√

T ln
(
T 2

δ

) .
The remaining conditions M

ρ > 4, η ≤ 1
mL are trivially satisfied. Summing the conditions (1− 5) proves the contradiction.

If we plug the values of U1 and U2 corresponding to UC-O-GDPS, we have max
{

U1U2

L , L
}
= max {2|X||A|, L} =

2|X||A| and thus obtain:

η =
1

100m|X||A|
√

T ln
(
T 2

δ

) .

D.3. Analysis with Stochastic constraints

D.3.1. LOWER BOUND ON THE DUAL CUMULATIVE UTILITY

We start proving a useful Lemma in which we lower bound the dual cumulative utility. This Lemma holds both for the
stochastic constraints and the adversarial constraint setting.

Lemma D.3. Under the event E q̂(δ), the cumulative dual utility
∑T

t=1 λ
⊤
t G

⊤
t qt is lower bounded as:

T∑
t=1

λ⊤
t G

⊤
t qt ≥ −λ1,TEqδ −RD

T (0),

where λt1,t2 := max{∥λt∥1}t2t=t1 .

Proof. We exploit the fact that the dual is no-regret with respect to the 0 vector:

T∑
t=1

λ⊤
t G

⊤
t qt =

T∑
t=1

λ⊤
t G

⊤
t (qt − q̂t) +

T∑
t=1

λ⊤
t G

⊤
t q̂t
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≥
T∑

t=1

λ⊤
t G

⊤
t (qt − q̂t) +

T∑
t=1

0⊤G⊤
t q̂t −RD

T (0)

≥
T∑

t=1

−∥λt∥1︸ ︷︷ ︸
≤λ1,T

∥∥G⊤
t

∥∥
∞︸ ︷︷ ︸

≤1

∥qt − q̂t∥1 −RD
T (0)

≥ −λ1,T

T∑
t=1

∥qt − q̂t∥1 −RD
T (0)

≥ −λ1,TEqδ −RD
T (0),

where the last Inequality holds under E q̂(δ).

D.3.2. ANALYSIS WHEN CONDITION 2.5 HOLDS

We start by introducing the notation v̂t,i := [G⊤
t ]iq̂t, that is the violation of the i-th constraint incurred by q̂t. We further

denote V̂t,i :=
∑t

τ=1 v̂τ,i. Observe that, when Condition 2.5 holds, thanks to Theorem 5.1 we have ||λt||1 ≤ T
1
4 for all

t and thus λt,i ≤ T
1
4 . This means that λt,i never gets past the upper extreme and the update of the dual is effectively

equivalent to that of OGD working on the set Rm
≥0:

λt,i = max{λt,i + ηv̂t,i, 0}.

Lemma D.4. If Condition 2.5 holds, then for each episode t ∈ [T ] and each constraint i it holds:

λt,i ≥ ηV̂t−1,i.

Proof. We prove the result by induction. Suppose that the statement holds for episode t. Then

λt+1,i = max{λt,i + ηv̂t,i, 0}
≥ λt,i + ηv̂t,i

≥ ηV̂t−1,i + ηv̂t,i

= ηV̂t,i.

Observe that for t = 1 the statement holds as the sum on the RHS evaluates to 0.

Lemma D.5. If Condition 2.5 holds, under the events E∆(δ), E q̂(δ) and EG
q◦(δ) for the stochastic constraint setting and

under the events E∆(δ) and E q̂(δ) for the adversarial constraints one, it holds:

VT ≤ V̂T,i∗ + Eqδ .

Proof. Let i∗ denote the most violated constraint, e.g. i∗ = argmaxi
∑T

t=1[G
⊤
t qt]i. Then we have:

VT =

T∑
t=1

[G⊤
t qt]i∗

=

T∑
t=1

[G⊤
t q̂t]i∗ +

T∑
t=1

[G⊤
t (qt − q̂t)]i∗

= V̂T,i∗ +

T∑
t=1

[G⊤
t ]i∗(qt − q̂t)

≤ V̂T,i∗ +

T∑
t=1

||[G⊤
t ]i∗ ||∞||qt − q̂t||1

≤ V̂T,i∗ + Eqδ ,

where the last step holds under E q̂(δ) since ||[G⊤
t ]i∗ ||∞ ≤ 1.
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We are now ready to prove the regret and violation bounds for the stochastic constraint setting.

Theorem 5.4. In the stochastic constraint setting, when Condition 2.5 holds, the cumulative regret and constraint violation
incurred by PDGD-OPS are upper bounded as follows. If the rewards are adversarial, then with probability at least 1− 4δ
Algorithm 2 provides:

RT ≤ ζEGδ + ζEqδ +RD
T (0) +RP

T (q
∗),

VT ≤
1

η
ζ + Eqδ .

If the rewards are stochastic, then with probability at least 1− 5δ Algorithm 2 provides:

RT ≤ Erδ + ζEGδ + ζEqδ +RD
T (0) +RP

T (q
∗),

VT ≤
1

η
ζ + Eqδ .

In both cases:
RT ≤ Õ

(
ζ
√
T
)
, VT ≤ Õ

(
ζ
√
T
)
.

Proof. Assume events EG
q◦(δ), E

G
q∗(δ), E

∆(δ) and E q̂(δ) hold.

Recall that λ1,T ≤ ζ under the events E∆(δ) and EG
q◦(δ) since Condition 2.5 holds (see proof of Theorem 5.1).

By Lemma D.5 we have:

VT ≤ V̂T,i∗ + Eqδ

≤ 1

η
λT+1,i∗ + Eqδ

≤ 1

η
||λT+1||1 + Eqδ

≤ 1

η
ζ + Eqδ ,

where the third Inequality holds for Lemma D.4. By the definition of regret of the primal:

T∑
t=1

r⊤t qt ≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
t q

∗ +

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q
∗)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
t q

∗ − λ1,TEqδ −RD
T (0)−RP

T (q
∗) (13)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
q∗ − λ1,TEGδ − λ1,TEqδ −RD

T (0)−RP
T (q

∗) (14)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i (G)iq
∗︸ ︷︷ ︸

≤0

−λ1,TEGδ − λ1,TEqδ −RD
T (0)−RP

T (q
∗) (15)

≥
T∑

t=1

r⊤t q
∗ − ζEGδ − ζEqδ −RD

T (0)−RP
T (q

∗),

where Inequality (13) holds for Lemma D.3, and Inequality (14) holds under Event EG
q∗(δ). We now focus on the case in

which the rewards are adversarial. We have:

T∑
t=1

r⊤t q
∗ = T · r⊤q∗ = T · OPTr,G,
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and thus we obtain the stated bound:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − ζEGδ − ζEqδ −RD
T (0)−RP

T (q
∗).

By union bound on EG
q◦(δ), E

G
q∗(δ) and E∆,q̂(δ), the result holds with probability at least 1− 4δ.

For the stochastic rewards case, we require also event Er
q∗(δ) to hold. Thus,

T∑
t=1

r⊤t q
∗ ≥

T∑
t=1

r⊤q∗ − Erδ = T · OPTr,G − E
r
δ ,

and thus we obtain the stated bound:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − E
r
δ − ζEGδ − ζEqδ −RD

T (0)−RP
T (q

∗).

By union bound on EG
q◦(δ), E

G
q∗(δ), E

∆,q̂(δ) and Er
q∗(δ), the result holds with probability at least 1− 5δ.

Observe that under E∆,q̂(δ) it holds:

RP
T (q

∗) ≤ Õ
(
(1 + λ1,T )

√
T
)
= Õ

(
ζ
√
T
)
,

and

RD
T (0) ≤

mL2

2

1

100m|X||A|
√

ln
(
T 2

δ

)√T ≤ O (√T) .

D.3.3. ANALYSIS WHEN CONDITION 2.5 DOES NOT HOLD

Lemma D.6. If Condition 2.5 does not hold, then

V̂T,i ≤ (2 + 2L)
1

η
T

1
4 ∀T, i

holds under the event E∆(δ) in the adversarial constraint setting and under the events E∆(δ), EG
q◦(δ), in the stochastic

constraint setting.

Proof. Assume events E∆(δ), EG
q◦(δ) hold and suppose by absurd that V̂T,i = (2 + 2L+ ϵ) 1ηT

1
4 , with ϵ > 0, for some T

and i.

We can lower bound the quantity
∑T

t=1 r
L
t
⊤
q̂t:

T∑
t=1

rLt
⊤
q̂t =

T∑
t=1

r⊤t q
◦

︸ ︷︷ ︸
≥0

−
T∑

t=1

λ⊤
t G

⊤
t q

◦ −
T∑

t=1

rLt
⊤
(q◦ − q̂t)

≥ −
T∑

t=1

λ⊤
t G

⊤
q◦︸ ︷︷ ︸

≥0

−λ1,TEGδ −
T∑

t=1

rLt
⊤
(q◦ − q̂t)
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≥ −mT
1
4 EGδ −

T∑
t=1

rLt
⊤
(q◦ − q̂t), (16)

where Inequality (16) holds since ||λt||1 ≤ mV
1
4 by construction of the dual space. Observe that, if we are in the Adversarial

setting, then from the (stronger) definition of ρ and q◦ it holds −
∑T

t=1 λ
⊤
t G

⊤
t q

◦ ≥ 0 and we obtain the tighter bound,

T∑
t=1

rLt
⊤
q̂t ≥ −

T∑
t=1

rLt
⊤
(q◦ − q̂t).

The dual is no regret with respect to the vector λ̃, whose elements are 0 for j ̸= i and T
1
4 in position j = i:

T∑
t=1

rLt
⊤
q̂t =

T∑
t=1

r⊤t q̂t −
T∑

t=1

λ⊤
t G

⊤
t q̂t

≤
T∑

t=1

r⊤t q̂t −
T∑

t=1

λ̃⊤G⊤
t q̂t +RD

T (λ̃)

=

T∑
t=1

r⊤t q̂t − T
1
4

T∑
t=1

[G⊤
t q̂t]i +RD

T (λ̃)

≤ LT − T
1
4 V̂T,i +RD

T (λ̃).

Combining the bounds we have:

−mT
1
4 EGδ −

T∑
t=1

rLt
⊤
(q◦ − q̂t) ≤ LT − T

1
4 V̂T,i +RD

T (λ̃)

T
1
4 V̂T,i ≤ LT +mT

1
4 EGδ +

T∑
t=1

rLt
⊤
(q◦ − q̂t) +RD

T (λ̃)

√
T

η
(2 + 2L+ ϵ) ≤ LT +mT

1
4 EGδ +

T∑
t=1

rLt
⊤
(q◦ − q̂t) +RD

T (λ̃). (17)

Observe that:

RD
T (λ̃) ≤

1

2

||λ̃||22
η

+
mL2

2
ηT =

√
T

2η
+

mL2

2

1

100m|X||A|
√
T ln

(
T 2

δ

)T ≤ L

√
T

η
,

since |X| ≥ L.

For the primal it holds by Lemma C.6:

T∑
t=1

rLt
⊤
(q◦ − q̂t) =

T∑
t=1

ℓt
⊤(q̂t − q◦)

≤ λ1,TU1C
√
T + λ1,TU2

√
T

C

≤ mT
1
4

√
T

(
U1C +

U2

C

)
= m

(
U1

U2

5
+ 5

)√
T T

1
4

= m

(
2L
|X||A|

5
+ 5

)√
T T

1
4
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≤ 6mL|X||A|
√
T T

1
4

≤ L

η
T

1
4 ≤ L

√
T

η
.

For the Azuma-Hoeffding term it holds:

mT
1
4 EGδ = mT

1
4 2L

√
2T ln

(
T 2

δ

)
≤ 1

η
T

1
4 =

√
T

η
.

Observe that LT ≤
√
T
η holds trivially.

Dividing both the terms in Equation (17) by
√
T
η , we obtain

2 + 2L+ ϵ ≤ 2 + 2L,

which is absurd.

We are now ready to prove the Regret and Violation bounds when Assumption 2.5 does not hold:

Theorem 5.5. In the stochastic constraint setting, when Condition 2.5 does not hold, the cumulative regret and constraint
violations incurred by PDGD-OPS are upper bounded as follows. If the rewards are adversarial, then with probability at
least 1− 4δ Algorithm 2 provides:

RT ≤ mT
1
4 EGδ +mT

1
4 Eqδ +RD

T (0) +RP
T (q

∗),

VT ≤ (2 + 2L)
1

η
T

1
4 + Eqδ .

If the rewards are stochastic, then with probability at least 1− 5δ Algorithm 2 provides:

RT ≤ Erδ +mT
1
4 EGδ +mT

1
4 Eqδ +RD

T (0) +RP
T (q

∗),

VT ≤ (2 + 2L)
1

η
T

1
4 + Eqδ .

In both cases, it holds:
RT ≤ Õ

(
T

3
4

)
, VT ≤ Õ

(
T

3
4

)
.

Proof. Assume events E∆(δ), E q̂(δ), EG
q∗(δ), E

G
q◦(δ) hold. We avoid the computations and restart from (15), since the

previous part of the proofs are identical:

T∑
t=1

r⊤t qt ≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i (G)iq
∗︸ ︷︷ ︸

≤0

−λ1,TEGδ − λ1,TEqδ −RD
T (0)−RP

T (q
∗)

≥
T∑

t=1

r⊤t q
∗ −mT

1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗).

By the same reasoning as in the proof of Theorem 5.4, we obtain that if the rewards are adversarial then,

T∑
t=1

r⊤t qt ≥ T · OPTr,G −mT
1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗),

with probability at least 1− 4δ by union bound on E∆,q̂(δ), EG
q∗(δ) and EG

q◦(δ), while if the rewards are stochastic, under
the event Er

q∗(δ) we have that:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − E
r
δ −mT

1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗),
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with probability at least 1− 5δ by union bound on E∆,q̂(δ), EG
q∗(δ), E

G
q◦(δ) and Er

q∗(δ).

Observe that:
RP

T (q
∗) ≤ Õ

(
T

3
4

)
,

and

RD
T (0) =

mL2

2
ηT ≤ Õ

(√
T
)

.

In order to bound the violation, we apply Lemma D.6, thus:

VT ≤ V̂T,i∗ + Eqδ ≤ (2 + 2L)
1

η
T

1
4 + Eqδ .

D.4. Analysis with Adversarial Constraints

D.4.1. ANALYSIS WHEN CONDITION 2.5 HOLDS

Theorem 5.6. In the adversarial constraint setting, when Condition 2.5 holds, the cumulative regret and constraint violations
incurred by PDGD-OPS are upper bounded as follows. If the rewards are adversarial, then with probability at least 1− 2δ
Algorithm 2 provides:

RT ≤
1

1 + ρ
T · OPTr,G + ζEqδ +RD

T (0) +RP
T (q̃),

VT ≤
1

η
ζ + Eqδ .

If the rewards are stochastic, then with probability at least 1− 3δ Algorithm 2 provides:

RT ≤
1

1 + ρ
T · OPTr,G + Erδ + ζEqδ +RD

T (0) +RP
T (q̃),

VT ≤
1

η
ζ + Eqδ .

In both cases, it holds:
T∑

t=1

r⊤t qt ≥ Ω

(
ρ

1 + ρ
T · OPTr,G

)
, VT ≤ Õ

(
ζ
√
T
)
.

Proof. Assume events E∆(δ) and E q̂(δ) hold.

Recall that λ1,T ≤ ζ under the event E∆(δ) since Condition 2.5 holds (see the proof of Theorem 5.1).
Following the same steps of the proof of Theorem 5.4, we obtain:

VT ≤
1

η
ζ + Eqδ .

Let q̃ = ρ
1+ρq

∗ + 1
1+ρq

◦, observe that it holds for all t and for all i:

[G⊤
t q̃]i =

ρ

1 + ρ
[G⊤

t q
∗]i︸ ︷︷ ︸

≤1

+
1

1 + ρ
[G⊤

t q
◦]i︸ ︷︷ ︸

≤−ρ

≤ 0,

r⊤t q̃ =
ρ

1 + ρ
r⊤t q

∗ +
1

1 + ρ
r⊤t q

◦ ≥ ρ

1 + ρ
r⊤t q

∗.

By the definition of regret of the primal:

T∑
t=1

r⊤t qt ≥
T∑

t=1

r⊤t q̃ −
T∑

t=1

λ⊤
t G

⊤
t q̃ +

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q̃)
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≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i [G
⊤
t q̃]i︸ ︷︷ ︸
≤0

+

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q̃)

≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ − λ1,TEqδ −RD

T (0)−RP
T (q̃)

≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ − ζEqδ −RD

T (0)−RP
T (q̃),

where the third Inequality holds for Lemma D.3.
By the same reasoning as in the proof of Theorem 5.4, we obtain that if the rewards are adversarial it holds:

T∑
t=1

r⊤t qt ≥
ρ

1 + ρ
T · OPTr,G − ζEqδ −RD

T (0)−RP
T (q̃)

= T · OPTr,G −
1

1 + ρ
T · OPTr,G − ζEqδ −RD

T (0)−RP
T (q̃),

with probability at least 1− 2δ, since we are conditioning on E∆,q̂(δ).
If the rewards are stochastic, requiring also event Er

q∗(δ) to hold we obtain:

ρ

1 + ρ

T∑
t=1

r⊤t q
∗ ≥ ρ

1 + ρ

T∑
t=1

r⊤q∗ − ρ

1 + ρ
Erδ ≥

ρ

1 + ρ
T · OPTr,G − E

r
δ .

Thus,

T∑
t=1

r⊤t qt ≥ T · OPTr,G −
1

1 + ρ
T · OPTr,G − E

r
δ − ζEqδ −RD

T (0)−RP
T (q̃),

with probability at least 1− 3δ. Finally observe that, under Assumption 2.5 and event E∆,q̂(δ), it holds:

RP
T (q̃) ≤ Õ

(
(1 + λ1,T )

√
T
)
≤ Õ

(
ζ
√
T
)

and

RD
T (0) ≤

mL2

2

1

100m|X||A|
√

ln
(
T 2

δ

)√T ≤ O (√T) .

D.5. Azuma-Hoeffding Bounds and Proofs

In this subsection we prove that events Er
q∗(δ), E

G
q◦(δ), E

G
q∗(δ) each hold with probability at least 1− δ.

Lemma 5.2. If the rewards are stochastic, then, with probability at least 1− δ, it holds:∣∣∣∣∣
T∑

t=1

(rt − r)
⊤
q∗

∣∣∣∣∣ ≤ Erδ ,
where Erδ := L√

2

√
T ln

(
2
δ

)
.

Proof. Observe that:

max
t∈[t1..t2]

∣∣∣(rt − r)
⊤
q∗
∣∣∣ ≤ max

t∈[t1..t2]
∥rt − r∥∞︸ ︷︷ ︸

≤1

∥q∗∥1
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≤ L,

where the second Inequality holds since since q∗(x, a) ≥ 0. By the Azuma-Hoeffding inequality for martingales we have
that:

P

[∣∣∣∣∣
t2∑

t=t1

(rt − r)
⊤
q∗

∣∣∣∣∣ ≥ L√
2

√
T ln

(
2

δ

)]
≤ δ.

We perform the same analysis for the constraints, obtaining:

Lemma 5.3. If the constraints are stochastic, given a sequence of occupancy measures (qt)Tt=1, then with probability at
least 1− δ, for all [t1..t2] ⊆ [1..T ], it holds:∣∣∣∣∣

t2∑
t=t1

λ⊤
t

(
G⊤

t −G
⊤)

qt

∣∣∣∣∣ ≤ λt1,t2EGt1,t2,δ,

where we let EGt1,t2,δ := 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
and λt1,t2 := max{∥λt∥1}t2t=t1 .

Proof. Observe that:

max
t∈[t1..t2]

∣∣∣λ⊤
t (G

⊤
t −G

⊤
)qt

∣∣∣ ≤ max
t∈[t1..t2]

∥λt∥1
∥∥∥G⊤

t −G
⊤
∥∥∥
∞︸ ︷︷ ︸

≤2

∥qt∥1

≤ max
t∈[t1..t2]

2||λt||1L

= 2λt1,t2L,

where the second Inequality holds since qt(x, a) ≥ 0 and λt,i ≥ 0. By the Azuma-Hoeffding inequality for martingales we
have that:

P

[∣∣∣∣∣
t2∑

t=t1

λ⊤
t (G

⊤
t −G

⊤
)qt

∣∣∣∣∣ ≥ 2λt1,t2L

√
2(t2 − t1 + 1) ln

(
2

δ

T 2

2

)]
≤ 2δ/T 2.

A union bound over all the t1, t2 such that [t1..t2] ⊆ [1..T ] concludes the proof.
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