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Abstract
Graph neural network (GNN) link prediction is
increasingly deployed in citation, collaboration,
and online social networks to recommend aca-
demic literature, collaborators, and friends. While
prior research has investigated the dyadic fairness
of GNN link prediction, the within-group (e.g.,
queer women) fairness and “rich get richer” dy-
namics of link prediction remain underexplored.
However, these aspects have significant conse-
quences for degree and power imbalances in net-
works. In this paper, we shed light on how degree
bias in networks affects Graph Convolutional Net-
work (GCN) link prediction. In particular, we
theoretically uncover that GCNs with a symmet-
ric normalized graph filter have a within-group
preferential attachment bias. We validate our the-
oretical analysis on real-world citation, collabo-
ration, and online social networks. We further
bridge GCN’s preferential attachment bias with
unfairness in link prediction and propose a new
within-group fairness metric. This metric quan-
tifies disparities in link prediction scores within
social groups, towards combating the amplifica-
tion of degree and power disparities. Finally, we
propose a simple training-time strategy to allevi-
ate within-group unfairness, and we show that it is
effective on citation, social, and credit networks.

1. Introduction
Link prediction (LP) using GNNs is increasingly leveraged
to recommend friends in social networks (Fan et al., 2019;
Sankar et al., 2021), as well as by scholarly tools to recom-
mend academic literature in citation networks (Xie et al.,
2021). In recent years, graph learning researchers have
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Figure 1: An academic collaboration network where nodes
are Computer Science (CS) and Education (EDU) re-
searchers, solid edges are current or past collaborations,
and dashed edges are collaborations recommended by a
GCN. Circular nodes are women and square nodes are men.

raised concerns about the unfairness of GNN LP (Li et al.,
2021; Current et al., 2022; Li et al., 2022). This unfairness
is often attributed to graph structure, including the stratifica-
tion of social groups; for example, online networks are usu-
ally segregated by ethnicity (Hofstra et al., 2017). However,
most fair GNN LP research has focused on dyadic fairness,
i.e., satisfying some notion of parity between inter-group
and intra-group link predictions. This formulation neglects:
1) LP dynamics within social groups (Kasy & Abebe, 2021);
and 2) the “rich get richer” effect, i.e., the prediction of links
at a higher rate with high-degree nodes (Barabási & Albert,
1999). In the context of friend recommendation systems,
the “rich get richer” effect can increase the number of links
formed with high-degree individuals, which boosts their
influence on other individuals in the network, and thus their
power (Bashardoust et al., 2022).

In this paper, we shed light on how degree bias in networks
affects GCN LP (Kipf & Welling, 2017). We theoretically
and empirically find that GCNs with a symmetric normal-
ized graph filter have a within-group preferential attachment
(PA) bias in LP. Specifically, GCNs often output LP scores
that are approximately proportional to the geometric mean
of the (within-group) degrees of the incident nodes when the
nodes belong to the same social group. (We elaborate on PA
and our motivation in §J.) We focus on GCNs with symmet-
ric and random walk normalized graph filters because they
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are popular architectures for graph deep learning, and they
provide us with a reasonable setting to develop a rigorous
theory of PA bias in GNN LP while leveraging tools from
spectral graph theory.

Our finding can have significant implications for the fairness
of GCN LP. For example, consider links within the CS social
group in the toy academic collaboration network in Figure
1. Because men in CS, on average, have a higher within-
group degree (deg = 3) than women in CS (deg = 1.25),
due to gender discrimination, a collaboration recommender
system that uses a GCN can suggest men as collaborators
at a higher rate. This has the detrimental effect of further
concentrating research collaborations among men, thereby
reducing the influence of women in CS and reinforcing their
marginalization in the field (Yamamoto & Frachtenberg,
2022). Furthermore, considering this marginalization in the
context of CS is important, as such marginalization may be
less severe or different in EDU.

Our contributions are as follows:

1. We theoretically uncover that GCNs with a symmetric
normalized graph filter have a within-group PA bias in
LP (§4.1). We validate our theoretical analysis on di-
verse real-world network datasets (e.g., citation, collabo-
ration, online social networks) of varying size (§6.1). In
doing so, we lay a foundation to study this previously-
unexplored PA bias in the GNN setting.

2. We bridge GCN’s PA bias with unfairness in LP (§4.2,
§6.2). We contribute a new within-group fairness metric
for LP, which quantifies disparities in LP scores within
social groups, towards combating the amplification of
degree and power disparities. To our knowledge, we are
the first to study the within-group fairness of GNNs.

3. We propose a training-time strategy to alleviate within-
group unfairness (§5), and we assess its effectiveness on
citation, online social, and credit networks (§6.3). Our
experiments reveal that even for this new form of unfair-
ness, simple regularization approaches can be successful.

2. Related Work
Degree Bias in GNNs Numerous papers have investigated
how GNN performance is degraded for low-degree nodes on
node representation learning and classification tasks (Tang
et al., 2020; Liu et al., 2021; Kang et al., 2022; Xu et al.,
2023; Shomer et al., 2023). Liu et al. (2023) present a
generalized notion of degree bias that considers different
multi-hop structures around nodes and propose a framework
to address it; in contrast to prior work, which focuses on
degree equal opportunity (i.e., similar accuracy for nodes
with the same degree), Liu et al. (2023) also study degree
statistical parity (i.e., similar prediction rates of each class
for nodes with the same degree). Beyond node classification,

Wang & Derr (2022) find GNN LP performance disparities
across nodes with different degrees: low-degree nodes often
benefit from higher performance than high-degree nodes.
In this paper, we find that GCNs have a PA bias in LP, and
present a new fairness metric which quantifies disparities in
GNN LP scores within social groups. We focus on group
fairness (i.e., parity between groups) rather than individual
fairness (i.e., treating similar individuals similarly); this
is because producing similar LP scores for similar-degree
individuals does not prevent high-degree individuals from
unfairly amassing links, and thus power (cf. Figure 1). We
further compare our work to prior degree bias works in §K.

Fair Link Prediction Prior work has investigated the un-
fairness of GNN LP (Li et al., 2021; Current et al., 2022;
Li et al., 2022), often attributing it to graph structure, (e.g.,
stratification of social groups). However, most of this re-
search has focused on dyadic fairness, i.e., satisfying some
notion of parity between inter-group and intra-group links.
Like Wang & Derr (2022), we examine how degree bias im-
pacts GNN LP; however, rather than focus on performance
disparities across nodes with different degrees, we study
GCN’s PA bias and LP score disparities across (sub)groups.

Within-Group Fairness Much previous work has studied
within-group fairness, i.e., fairness over social subgroups
(e.g., Black women, Indigenous men) defined over multi-
ple axes (e.g., race, gender) (Kearns et al., 2017; Foulds
et al., 2020; Ghosh et al., 2021; Wang et al., 2022). The
motivation of this work is that classifiers can be fair with
respect to two social axes separately, but be unfair to sub-
groups defined over both these axes. While prior research
has termed this phenomenon intersectional unfairness, we
opt for within-group unfairness to distinguish it from the crit-
ical framework of Intersectionality (Ovalle et al., 2023). We
study within-group fairness in the GNN setting. In particu-
lar, our theoretical and empirical findings reveal that GCN
LP can further marginalize social subgroups; this relates to
the “complexity” tenet of Intersectionality, which expresses
that the marginalization faced by, e.g., Black women, is
non-additive and distinct from the marginalization faced by
Black men and white women (Collins & Bilge, 2020).

Bias and Power in Networks A wealth of literature out-
side fair graph learning has examined how network structure
enables discrimination and disparities in capital (Fish et al.,
2019; Stoica et al., 2020; Zhang et al., 2021; Bashardoust
et al., 2022). Boyd et al. (2014) describe how an individ-
ual’s position in a social network affects their access to
jobs and public health information, as well as how they are
surveilled. Stoica et al. (2018) observe that high-degree
accounts on Instagram overwhelmingly belong to men and
recommendation algorithms further boost these accounts;
complementarily, the authors find that even a simple, ran-
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dom walk-based recommendation algorithm can amplify
degree disparities between social groups in networks mod-
eled by PA dynamics. Similarly, we investigate how GCN
LP can amplify degree disparities in networks and further
concentrate power among high-degree individuals.

3. Preliminaries
We have a simple, undirected n-node graph G = (V, E)
with doubly-weighted self-loops. The nodes have features
(xi)i∈V , with each xi ∈ Rd. We denote the adjacency
matrix of G as A ∈ {0, 1}n×n and the degree matrix as

D = diag
((∑

j∈V Aij

)
i∈V

)
, with D ∈ Nn×n. We

consider two L-layer GCN encoders: (1) Φs : Rn×d →
Rn×d′

(Kipf & Welling, 2017), which uses a symmetric
normalized filter, and (2) Φr : Rn×d → Rn×d′

, which uses
a random walk normalized filter. Φs and Φr compute node
representations as, ∀i ∈ V:

Φs

(
(xj)j∈V

)
i
= s

(L)
i ,Φr

(
(xj)j∈V

)
i
= r

(L)
i (1)

∀l ∈ [L], s
(l)
i = σ(l)

 ∑
j∈Γ(i)

W
(l)
s s

(l−1)
j√

DiiDjj

 , (2)

∀l ∈ [L], r
(l)
i = σ(l)

 ∑
j∈Γ(i)

W
(l)
r r

(l−1)
j

Dii

 , (3)

where
(
s
(0)
i

)
i∈V

=
(
r
(0)
i

)
i∈V

= (xi)i∈V ; Γ(i) is the

1-hop neighborhood of i; W (l)
s and W

(l)
r are the weight

matrices corresponding to layer l of Φs and Φr, respectively;
for l ∈ [L− 1], σ(l) is a ReLU non-linearity; and σ(L) is the
identity function. We now consider the first-order Taylor
expansions of Φs and Φr around (0)i∈V :

s
(L)
i =

∑
j∈V

[
∂s

(L)
i

∂xj

]
xj + ξ

(
s
(L)
i

)
, (4)

r
(L)
i =

∑
j∈V

[
∂r

(L)
i

∂xj

]
xj + ξ

(
r
(L)
i

)
, (5)

where ξ is the error of the first-order approximations. This
error is low when (xi)i∈V are close to 0, which we validate
empirically in §6.1. Furthermore, we consider an inner-
product LP score function fLP : Rd′ × Rd′ → R:

fLP

(
h
(L)
i ,h

(L)
j

)
=
(
h
(L)
i

)⊺
h
(L)
j , (6)

where h(L)
i is the last-layer representation for node i. While

it is common to use a vanilla GCN and inner-product score
function for LP (Fey, 2019), researchers have proposed
methods to improve the expressivity of node representations

for LP by capturing subgraph information (Zhang & Chen,
2018; Li et al., 2020; Chamberlain et al., 2023). Our theoret-
ical findings remain relevant to methods that ultimately use
a GCN to predict links (e.g., Zhang & Chen (2018); Li et al.
(2020)), as we do not make assumptions about the features
passed to the GCN (i.e., they could be distance encodings,
SEAL node embeddings, etc.) Our results may also gen-
eralize to GNN architectures that use a degree-normalized
graph filter, e.g., Graph Attention Networks (Veličković
et al., 2018). Studying the fairness of more expressive LP
methods is an interesting direction for future research. Fur-
thermore, although we only consider an inner-product LP
score function in our theoretical analysis, we also run exper-
iments with a Hadamard product and MLP score function
(cf. §G.2), and we find that our theoretical analysis is still
relevant to and reasonably supports the experimental results.

4. Theoretical Analysis
We leverage spectral graph theory to study how degree bias
affects GCN LP. Theoretically, we find that GCNs with
a symmetric normalized graph filter have a within-group
PA bias (§4.1), but GCNs with a random walk normalized
filter may lack such a bias (§4.3). We further bridge GCN’s
PA bias with unfairness in GCN LP, proposing a new LP
within-group fairness metric (§4.2) and a simple training-
time strategy to alleviate unfairness (§5). We empirically
validate our theoretical results and fairness strategy in §6.
We provide proofs for all theoretical results in §A.

Our ultimate goal is to bound the expected LP scores

E
[
fLP

(
s
(L)
i , s

(L)
j

)]
and E

[
fLP

(
r
(L)
i , r

(L)
j

)]
for nodes

i, j in the same social group in terms of the degrees of i, j.
We begin with Lemma 4.1, which expresses GCN represen-
tations (in expectation) as a linear combination of the initial
node features. In doing so, we decouple the computation of
GCN representations from the non-linearities σ(l).

Lemma 4.1. Similarly to Xu et al. (2018), assume that
each path from node i → j in the computation graph of
Φs is independently activated with probability ρs(i), and
similarly, ρr(i) for Φr (cf. §L). Furthermore, suppose

that E
[
ξ
(
s
(L)
i

)]
= E

[
ξ
(
r
(L)
i

)]
= 0, where the ex-

pectations are taken over the probability distributions of
paths activating. We define αj =

(∏1
l=L W

(l)
s

)
xj , and

βj =
(∏1

l=L W
(l)
r

)
xj . Then, ∀i ∈ V:

E
[
s
(L)
i

]
=
∑
j∈V

ρs(i)
(
D− 1

2AD− 1
2

)L
ij
αj , (7)

E
[
r
(L)
i

]
=
∑
j∈V

ρr(i)
(
D−1A

)L
ij
βj . (8)

Lemma 4.1 demonstrates that under certain assumptions
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(which we show to be reasonable in §6.1), the expected GCN
representations can be expressed as a linear combination of
the node features that depends on a normalized version of
the adjacency matrix.

We now introduce social groups in G into our analysis.
Suppose that V can be partitioned into B disjoint so-
cial groups {S(b)}b∈[B], such that

⋃
b∈[B] S

(b) = V and⋂
b∈[B] S

(b) = ∅. Furthermore, we define G(b) as the in-
duced connected subgraph of G formed from S(b). (If a
group comprises C > 1 connected components, it can be
treated as C separate groups.) Let Â be a within-group
adjacency matrix that contains links between nodes in the
same group, i.e., Â contains the link (i, j) if and only if for
some group S(b), i, j ∈ S(b). Without loss of generality, we
reorder the rows and columns of Â and A such that Â is a
block matrix. Let D̂ be the degree matrix of Â.

4.1. Symmetric Normalized Filter

We first focus on analyzing Φs. We introduce the nota-
tion P = D− 1

2AD− 1
2 for the symmetric normalized ad-

jacency matrix. We further define P̂ = D̂− 1
2 ÂD̂− 1

2 ,

which has the form

P̂
(1) 0

. . .
0 P̂ (B)

. Each P̂ (b)

admits the orthonormal spectral decomposition P̂ (b) =∑|S(b)|
k=1 λ

(b)
k v

(b)
k

(
v
(b)
k

)⊺
. Let

(
λ
(b)
k

)
1≤k≤|S(b)|

be the

eigenvalues of P̂ (b) sorted in non-increasing order; the
eigenvalues fall in the range (−1, 1]. By the spectral proper-
ties of P̂ (b), λ(b)

1 = 1. Following Lovász (2001), we denote

the spectral gap of P̂ (b) as λ(b) = max

{
λ
(b)
2 ,

∣∣∣∣λ(b)

|S(b)|

∣∣∣∣} <

1; λ(b)
2 corresponds to the smallest non-zero eigenvalue of

the symmetric normalized graph Laplacian. Let P = P̂ +
Ξ(0). If G is highly modular or approximately disconnected,
then Ξ(0) ≊ 0, albeit with positive and non-positive entries.
Finally, we define the volume vol

(
G(b)

)
=
∑

k∈S(b) D̂kk.

In Lemma 4.2, we present an inequality for the entries of
PL in terms of the spectral properties of P̂ . We can then
combine this inequality with Lemma 4.1 to bound E

[
s
(L)
i

]
,

and subsequently E
[
fLP

(
s
(L)
i , s

(L)
j

)]
.

Lemma 4.2. For i, j ∈ S(b):∣∣∣∣∣∣PL
ij −

√
D̂iiD̂jj

vol
(
G(b)

)
∣∣∣∣∣∣ (9)

≤ ζs =
(
λ(b)

)L
+

L∑
l=1

(
L

l

)∥∥∥Ξ(0)
∥∥∥l
op

∥∥∥P̂∥∥∥L−l

op
, (10)

where ∥ · ∥op is the operator norm. And for i ∈ S(b), j /∈

S(b),
∣∣PL

ij − 0
∣∣ ≤∑L

l=1

(
L
l

) ∥∥Ξ(0)
∥∥l
op

∥∥∥P̂∥∥∥L−l

op
≤ ζs.

The proof of Lemma 4.2 is similar to spectral proofs of
random walk convergence. When L is small (e.g., 2 for
many GCNs (Kipf & Welling, 2017)) and

∥∥Ξ(0)
∥∥
op

≊ 0,∑L
l=1

(
L
l

) ∥∥Ξ(0)
∥∥l
op

∥∥∥P̂∥∥∥L−l

op
≊ 0. Furthermore, with sig-

nificant stratification between social groups (Hofstra et al.,
2017) and high expansion within groups (Malliaros & Mega-
looikonomou, 2011; Leskovec et al., 2008), λ(b) << 1.

In this case, ζs ≊ 0 and PL
ij ≊

√
D̂iiD̂jj

vol(G(b))
for i, j ∈

S(b). Combining Lemmas 4.1 and 4.2, Φs can oversmooth

the expected representations to E
[
s
(L)
i

]
≊ ρs(i)

√
D̂ii ·∑

j∈S(b)

√
D̂jj

vol(G(b))
αj (Keriven, 2022; Giovanni et al., 2023).

We use this knowledge to bound E
[
fLP

(
s
(L)
i , s

(L)
j

)]
in

terms of the degrees of i, j.

Theorem 4.3. Following a relaxed assumption from Xu
et al. (2018), for nodes i, j ∈ S(b), we assume that ρs(i) =
ρs(j) = ρs(b). Then:∣∣∣∣E [fLP

(
s
(L)
i , s

(L)
j

)]
− C0

√
D̂iiD̂jj

∣∣∣∣ (11)

≤ ζsρ
2
s(b)

(√
D̂ii +

√
D̂jj

)
C1C2 + ζ2sρ

2
s(b)C

2
2 ,

(12)

where: (13)

C0 = ρ2s(b)C
2
1 , (14)

C1 =

∥∥∥∥∥∥
∑

k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥∥∥
2

, (15)

C2 =
∑
k∈V

∥αk∥2. (16)

In simpler terms, Theorem 4.3 states that with so-
cial stratification and expansion, the expected LP score

E
[
fLP

(
s
(L)
i , s

(L)
j

)]
∝
√

D̂iiD̂jj approximately when
i, j belong to the same social group. This is because, as
explained before Theorem 4.3, ζs ≊ 0, so the RHS of the
bound is ≊ 0. This demonstrates that in LP, GCNs with
a symmetric normalized graph filter have a within-group
PA bias. If Φs positively influences the formation of links
over time, this PA bias can drive “rich get richer” dynam-
ics within social groups (Stoica et al., 2018). As shown
in Figure 1 and §4.2, such “rich get richer” dynamics can
engender group unfairness when nodes’ degrees are statis-
tically associated with their group membership (§4.2). An
association between node degree and group membership
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depends on group size and homophily; in particular, when a
group has many nodes and intra-links (i.e., is homophilous),
there may be more nodes with a high within-group degree.
Beyond fairness, Theorem 4.3 reveals that GCNs do not
align with theories that social rank influences link forma-
tion, i.e., the likelihood of a link forming between nodes is
proportional to their degree difference (Gu et al., 2018).

4.2. Within-Group Fairness

We further investigate the fairness implications of the PA
bias of Φs in LP. We first introduce an additional set of
social groups. Suppose that V can also be partitioned into D
disjoint social groups {T (d)}d∈[D]; then, we can consider
intersections of {S(b)}b∈[B] and {T (d)}d∈[D]. For example,
revisiting Figure 1, S may correspond to academic disci-
pline (e.g., CS, EDU) and T may correspond to gender (e.g.,
men, women). For simplicity, we let D = 2. We measure
the unfairness ∆(b) : Rd′ × Rd′ → R of LP for group b as:

∆(b)
(
h
(L)
i ,h

(L)
j

)
:= (17)∣∣∣∣∣ E

i,j∼U((S(b)∩T (1))×S(b))
fLP

(
h
(L)
i ,h

(L)
j

)
(18)

− E
i,j∼U((S(b)∩T (2))×S(b))

fLP

(
h
(L)
i ,h

(L)
j

)∣∣∣∣, (19)

where U(·) is a discrete uniform distribution over the input
set. ∆(b) quantifies disparities in GCN LP scores within S(b)

(with respect to T (1) and T (2)). In other words, ∆(b) mea-
sures differences in how GCNs allocate LP scores across
subgroups, i.e., are links with nodes in one subgroup pre-
dicted at a higher rate than links with nodes in the other
subgroup? Our metric is motivated by how GNN link predic-
tions influence real-world link formation (e.g., GNN-based
recommender systems use LP scores to rank suggested so-
cial connections), which has consequences for degree and
power disparities. Based on Theorem 4.3 and §B.1, when
ζs ≊ 0, we can estimate ∆(b)

(
s
(L)
i , s

(L)
j

)
as:

∆̂(b)
(
s
(L)
i , s

(L)
j

)
(20)

=
ρ2s(b)∣∣S(b)

∣∣
∥∥∥∥∥∥
∑

k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥∥∥
2

2

∣∣∣∣∣ ∑
j∈S(b)

√
D̂jj× (21)

(
E

i∼U(S(b)∩T (1))

√
D̂ii − E

i∼U(S(b)∩T (2))

√
D̂ii

)
︸ ︷︷ ︸

degree disparity

∣∣∣∣ (22)

This suggests that a large disparity in the degree of nodes in
S(b)∩T (1) vs. S(b)∩T (2) can greatly increase the unfairness
∆(b) of Φs LP. For example, in Figure 1, the large degree

disparity within CS (between men and women) entails that
a GCN collaboration recommender system applied to the
network will have a large ∆(b). We empirically validate
these fairness implications on diverse network datasets in
§6.2. While we consider pre-activation LP scores in Eqn. 17
(in line with prior work, e.g., Li et al. (2021)), we consider
post-sigmoid scores σ

(
fLP

(
h
(L)
i ,h

(L)
j

))
(where σ is the

sigmoid function) in §6.2 and §6.3, as this simulates how
LP scores may be processed in practice.

Ultimately, within-group unfairness is characteristic of all
GNN link prediction methods that: (1) predict scores for
links with magnitudes that are positively associated with
the degrees of their incident nodes, and (2) are applied to
graphs where within-group membership is associated with
node degree.

4.3. Random Walk Normalized Filter

We now follow similar steps as with Φs to understand how
degree bias affects LP scores for Φr. We redefine P =
D−1A, P̂ = D̂−1Â, and the remaining notation from §4.1
accordingly for the random walk setting.

Theorem 4.4. Let ζr = maxu,v∈V

√
D̂vv

D̂uu

(
λ(b)

)L
+∑L

l=1

(
L
l

) ∥∥Ξ(0)
∥∥l
op

∥∥∥P̂∥∥∥L−l

op
. Furthermore, for nodes

i, j ∈ S(b), assume that ρr(i) = ρr(j) = ρr(b). Com-
bining Lemmas 4.1 and A.1:∣∣∣E [fLP

(
r
(L)
i , r

(L)
j

)]
− C0

∣∣∣ (23)

≤ ζrρ
2
r(b)C1C2 + ζ2rρ

2
r(b)C

2
2 , (24)

where: (25)

C0 = ρ2r(b)C
2
1 , (26)

C1 =

∥∥∥∥∥∥
∑

k∈S(b)

D̂kk

vol(G(b))
βk

∥∥∥∥∥∥ , (27)

C2 =
∑
k∈V

∥βk∥2. (28)

In other words, if ζr ≊ 0, E
[
fLP

(
r
(L)
i , r

(L)
j

)]
is ap-

proximately constant when i, j belong to the same social
group. Based on Theorem 4.4 and §B.2, we can estimate
∆(b)

(
s
(L)
i , s

(L)
j

)
as ∆̂(b)

(
s
(L)
i , s

(L)
j

)
= 0. Theoretically,

this would suggest that a large disparity in the degree of
nodes in S(b) ∩ T (1) vs. S(b) ∩ T (2) does not increase the
unfairness ∆(b) of Φr LP. However, we find empirically that
this is not the case (§6.1). Even so, we include theoretical
results for the random walk filter to be more comprehensive
with respect to filter choice, as well as be upfront about
the limitations of our analysis in this case. We also seek to
provide an example of how to apply our analysis to other
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filters, for researchers who would like to build on it in the
future. For example, findings for the random walk filter
could be relevant to the GAT filter (Veličković et al., 2018),
which is also a row-stochastic matrix.

In summary, in §4, we build on prior analysis techniques for
random walks and GNNs. At a high level, we: (1) simplify
the GCN architecture to be a linear function by truncating
its Taylor expansion and considering node representations
in expectation; (2) analyze the convergence of node rep-
resentations via a spectral analysis of the convergence of
short random walks within subgraphs (corresponding to so-
cial groups); and (3) use norm inequalities to estimate link
prediction scores. Our analysis comprises numerous novel
elements including:

1. Analyzing the convergence of random walks within sub-
graphs, which requires accounting for the rate at which
probability mass escapes from the subgraphs. In contrast,
random walk results in the literature usually concern the
convergence of random walks over an entire graph.

2. Uncovering properties of short random walks on graphs,
since most GNNs are shallow. In contrast, random walk
results in the literature often concern the stationary dis-
tribution of random walks.

3. Concretely relating theoretical properties of random
walks to the fairness of GCN link prediction.

5. Fairness Regularizer
We propose a simple training-time solution to alleviate
within-group LP unfairness regardless of graph filter type
and GNN architecture. In particular, we can add a fairness
regularization term Lfair to our original GNN training loss
(Kamishima et al., 2011):

Lnew = Lorig + λfairLfair = Lorig +
λfair

B

∑
b∈[B]

∆(b), (29)

where λfair is a tunable hyperparameter that for higher val-
ues, pushes the GNN to learn fairer parameters. With
our fairness strategy, we empirically observe a signif-
icant decrease in the average unfairness across groups
1
B

∑
b∈[B] ∆

(b) without a severe drop in LP performance
for GCN (§6.3).

6. Experiments
In this section, we empirically validate our theoretical anal-
ysis (§6.1) and the within-group fairness implications of
GCN’s LP PA bias (§6.2) on diverse real-world network
datasets of varying size. We further find that our simple
training-time strategy to alleviate unfairness is effective on
citation, online social, and credit networks (§6.3). We re-

lease our code and data in our GitHub repository1. We
present experimental results with 4-layer GCN encoders
and a Hadamard product with MLP LP score function in
§G, with similar conclusions.

6.1. Validating Theoretical Analysis

We validate our theoretical analysis on 10 real-world net-
work datasets (e.g., citation, collaboration, online social net-
works), which we describe in §C. Each dataset is natively
intended for node classification; however, we adapt the
datasets for LP, treating the connected components within
the node classes as the social groups S(b). This design
choice is reasonable, as in all the datasets, the classes natu-
rally correspond to socially-relevant groupings of the nodes,
or proxies thereof (e.g., in the LastFMAsia dataset, the
classes are the home countries of users). Because we adopt
the class labels for each dataset as the social group labels,
the social groups are largely homophilic; this aligns with
our assumptions when interpreting Theorems 4.3 and 4.4
that social groups are stratified in networks.

We train GCN encoders Φs and Φr for LP over 10 ran-
dom seeds (cf. §E for more details). In Figure 2, we
plot the theoretic2 LP score that we derive in §4 against
the GCN LP score for pairs of test nodes belonging to
the same social group (including positive and negative
links). In particular, for Φs, the theoretic LP score is

ρ2s(b)

√
D̂iiD̂jj

∥∥∥∥∑k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥2
2

and the GCN LP

score is fLP

(
s
(L)
i , s

(L)
j

)
(cf. Theorem 4.3). In contrast, for

Φr, the theoretic LP score is ρ2s(b)
∥∥∥∑k∈S(b)

D̂kk

vol(G(b))
βk

∥∥∥2
2

and the GCN LP score is fLP

(
r
(L)
i , r

(L)
j

)
(cf. Theorem

4.4). For all the datasets, we estimate ρ2s(b) and ρ2r(b) sep-
arately for each social group S(b) as the slope of the least-
squares regression line (through the data from S(b)) that
predicts the GCN score as a function of the theoretic score.
Hence, we do not plot any pair of test nodes that is the only
pair in S(b), as it is not possible to estimate ρ2s(b). Further,
the test AUC is consistently high, indicating that the GCNs
are well-trained. The large range of each color in the plots
indicates a diversity of LP scores within each social group.

We visually observe that the theoretic LP scores are strong
predictors of the Φs scores for each dataset, validating our
theoretical analysis. This strength is further confirmed by

1https://github.com/ArjunSubramonian/
link bias amplification

2While our theoretic scores resulted from our theoretical analy-
sis in §4, we reiterate that our results in §4 rely on the assumptions
that we state and the theoretic score is not a ground-truth value.

3Normalized by the sample range of the GCN LP scores. Values
fall between 0 and 1.
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NRMSE (↓) PCC (↑) Φs Test AUC (↑)

CORA 0.038± 0.006 0.884± 0.008 0.927± 0.008
CITESEER 0.080± 0.005 0.806± 0.007 0.943± 0.007
DBLP 0.026± 0.002 0.820± 0.014 0.948± 0.001
PUBMED 0.061± 0.008 0.774± 0.018 0.927± 0.010
CS 0.036± 0.006 0.917± 0.019 0.932± 0.008
PHYSICS 0.042± 0.003 0.822± 0.021 0.946± 0.003
LASTFMASIA 0.064± 0.003 0.889± 0.004 0.962± 0.001
DE 0.025± 0.003 0.795± 0.043 0.913± 0.003
EN 0.041± 0.002 0.542± 0.013 0.876± 0.003
FR 0.030± 0.002 0.743± 0.026 0.910± 0.005

NRMSE (↓) PCC (↑) Φr Test AUC (↑)

CORA 0.101± 0.029 0.553± 0.024 0.942± 0.005
CITESEER 0.170± 0.016 0.363± 0.028 0.934± 0.003
DBLP 0.157± 0.012 0.235± 0.022 0.942± 0.002
PUBMED 0.155± 0.013 0.079± 0.029 0.896± 0.011
CS 0.101± 0.027 0.447± 0.070 0.939± 0.003
PHYSICS 0.107± 0.027 0.264± 0.038 0.951± 0.004
LASTFMASIA 0.123± 0.016 0.409± 0.017 0.949± 0.001
DE 0.024± 0.004 0.074± 0.016 0.862± 0.003
EN 0.065± 0.006 0.012± 0.005 0.850± 0.002
FR 0.028± 0.006 0.006± 0.003 0.865± 0.004

Figure 2: The plots display the theoretic vs. GCN LP scores for the Cora, CS, and LastFMAsia datasets over 10 random
seeds. (We include the plots for the remaining datasets in §F.) The top row of plots corresponds to Φs, the bottom row
to Φr. In the plots, each circle corresponds to a single pair of test nodes (between which we are predicting a link). The
center of each circle represents the mean of the theoretic and GCN scores and its area captures the range of scores. The
color of each circle indicates the social group to which the node pair belongs. The plots include: (1) the total number of
test node pairs N ; (2) the number of social groups B; (3) the dashed line of equality for easy comparison of the theoretic
and GCN scores. For all the datasets, the tables display: (1) the mean/standard deviation of the GCN test AUC on LP; and
(2) the mean/standard deviation of the range-normalized3root-mean-square deviation (NRMSE) (Otto, 2019) and Pearson
correlation coefficient (PCC) (Freedman et al., 2007) of the theoretic LP scores as predictors of the GCN scores. The left
table corresponds to Φs, the right to Φr.

the generally low NRMSE and high PCC (except for the
EN dataset). However, we observe a few cases in which our
theoretical analysis does not line up with our experiments:

1. Our theoretical analysis predicts that the LP score be-
tween two nodes i, j that belong to the same social group
S(b) will always be non-negative; however, Φs can pre-
dict negative scores for pairs of nodes in the same social

7
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Figure 3: The plots display ∆̂(b) vs. ∆(b) for Φs for the NBA, German, and DBLP-Fairness datasets over all b ∈ [B] and 10
random seeds. Each point corresponds to a different random seed, and the color of the point corresponds to the social group
S(b). We compute ∆̂(b) and ∆(b) post-sigmoid using only the LP scores over the sampled (positive and negative) test edges.
The plots display the NRMSE and PCC of ∆̂(b) as a predictor of ∆(b).

group. In this case, it appears that Φs relies more on the
dissimilarity of (transformed) features than node degree.

2. For many network datasets (especially from the citation
and online social domains), there exist node pairs (near
the origin) for which the theoretic LP score underesti-
mates the Φs score. Upon further analysis (cf. Appendix
H), we find that the theoretic score is less predictive of
the Φs score for nodes i, j when the product of their de-
grees (i.e., their PA score) or similarity of their features
is relatively low.

3. It appears that the theoretic LP score tends to poorly
estimate the Φs score when the Φs score is relatively
high; this suggests that Φs may conservatively rely more
on the (dis)similarity of node features than node degree
when the degree is large.

We do not observe that the theoretic LP scores are strong
predictors of the Φr scores, although there is still a moderate
association between these variables. This could be because
the error bound for the theoretic scores for Φr, unlike for Φs,
has an extra dependence maxu,v∈V

√
D̂vv

D̂uu
on the degrees

of the incident nodes (cf. ζr in Theorem 4.4). In contrast,
the error bound for the theoretic scores for Φs (cf. ζs in
Theorem 4.3) does not depend on this degree ratio. This
ratio can be quite large in social networks (e.g., celebrities
vs. new users in the Twitter follow network); we further
confirm that this ratio is large for our datasets in §I.

6.2. Within-Group Fairness

We now empirically validate the implications of GCN’s PA
bias for within-group unfairness in LP. We run experiments
on three network datasets: (1) the NBA social network (Dai
& Wang, 2021), (2) the German credit network (Agarwal

et al., 2021), and (3) a new DBLP-Fairness citation net-
work that we construct. We describe these datasets in §D,
including {S(b)}b∈[B] and {T (d)}d∈[D].

We train 2-layer GCN encoders Φs for LP (cf. §E). In Figure
3, for all the datasets, we plot ∆̂(b) vs. ∆(b) (cf. Eqns. 17,
22) for each b ∈ [B]. We qualitatively and quantitatively
observe that ∆̂(b) is moderately predictive of ∆(b) for each
dataset. This confirms our theoretical intuition (§4.2) that a
large disparity in the degree of nodes in S(b)∩T (1) vs. S(b)∩
T (2) can greatly increase the unfairness ∆(b) of Φs LP; such
unfairness can amplify degree disparities, worsening power
imbalances in the network. Many points deviate from the
line of equality; these deviations can be explained by the
reasons in §6.1 and the compounding of errors.

6.3. Fairness Regularizer

We evaluate our solution to alleviate LP unfairness (§4.2).
In particular, we add our fairness regularization term Lfair to
the original training loss for the 2-layer Φs and Φr encoders.
During each training epoch, we compute ∆(b) post-sigmoid
using only the LP scores over the sampled (positive and
negative) training edges. In Table 1, we summarize the link
prediction fairness

(
1
B

∑
b∈[B] ∆

(b)
)

and performance (test
AUC) for the NBA, German, and DBLP-Fairness datasets
with various settings of λfair.

For both graph filter types, we generally observe a signifi-
cant decrease in 1

B

∑
b∈[B] ∆

(b) (without a severe drop in
test AUC) for λfair > 0.0 over λfair = 0.0 (with the excep-
tion of Φr for German); however, the varying magnitudes by
which 1

B

∑
b∈[B] ∆

(b) decreases across the datasets suggests
that λfair may need to be tuned per dataset. As expected,
we mostly observe a tradeoff between 1

B

∑
b∈[B] ∆

(b) and

8



Networked Inequality: Preferential Attachment Bias in Graph Neural Network Link Prediction

Table 1: 1
B

∑
b∈[B] ∆

(b) and the test AUC for the NBA, German, and DBLP-Fairness datasets with various settings of λfair.
The left table corresponds to Φs, and the right to Φr.

λfair
1
B

∑
b∈[B] ∆

(b) (↓) Φs Test AUC (↑)

NBA 4.0 0.000± 0.001 0.753± 0.002
NBA 2.0 0.004± 0.003 0.752± 0.003
NBA 1.0 0.007± 0.004 0.752± 0.003
NBA 0.0 0.013± 0.005 0.752± 0.003

DBLPFAIRNESS 4.0 0.072± 0.018 0.741± 0.008
DBLPFAIRNESS 2.0 0.095± 0.025 0.756± 0.007
DBLPFAIRNESS 1.0 0.110± 0.033 0.770± 0.010
DBLPFAIRNESS 0.0 0.145± 0.020 0.778± 0.007

GERMAN 4.0 0.012± 0.006 0.876± 0.017
GERMAN 2.0 0.028± 0.017 0.889± 0.017
GERMAN 1.0 0.038± 0.016 0.897± 0.014
GERMAN 0.0 0.045± 0.013 0.912± 0.009

λfair
1
B

∑
b∈[B] ∆

(b) (↓) Φr Test AUC (↑)

NBA 4.0 0.000± 0.000 0.585± 0.030
NBA 2.0 0.000± 0.000 0.584± 0.032
NBA 1.0 0.000± 0.000 0.581± 0.034
NBA 0.0 0.000± 0.000 0.583± 0.034

DBLPFAIRNESS 4.0 0.053± 0.015 0.715± 0.010
DBLPFAIRNESS 2.0 0.060± 0.016 0.731± 0.009
DBLPFAIRNESS 1.0 0.065± 0.022 0.746± 0.009
DBLPFAIRNESS 0.0 0.090± 0.028 0.758± 0.011

GERMAN 4.0 0.029± 0.011 0.830± 0.024
GERMAN 2.0 0.031± 0.019 0.843± 0.027
GERMAN 1.0 0.019± 0.012 0.864± 0.020
GERMAN 0.0 0.015± 0.005 0.883± 0.009

the test AUC as λfair increases. Our experiments reveal that,
regardless of graph filter type, even simple regularization
approaches can alleviate this new form of unfairness. As
this form of unfairness has not been previously explored,
we have no baselines.

Our fairness regularizer can be easily integrated into
model training, does not require significant additional com-
putation, and directly optimizes for LP fairness. The
time complexity of calculating the regularization term
is O

(∑B
b=1 |S(b) ∩ T (1)| · |S(b)|+ |S(b) ∩ T (2)| · |S(b)|

)
,

as we have already computed the LP scores for the cross-
entropy loss term and simply need to sum them appropri-
ately with respect to the groups and subgroups. Furthermore,
the time complexity of computing gradients for the regular-
ization term is on the same order as backpropagation for the
cross-entropy loss term.

However, our fairness regularizer is not applicable in set-
tings where model parameters cannot be retrained or fine-
tuned. Hence, we encourage future research to also explore
post-processing fairness strategies. For example, for Φs

models, based on our theory (cf. Theorem 4.3), for each pair
of nodes i, j, we can decay the influence of GCN’s PA bias

by scaling (pre-activation) LP scores by
(√

D̂iiD̂jj

)−α

,

where 0 < α < 1 is a hyperparameter that can be tuned
to achieve a desirable balance between 1

B

∑
b∈[B] ∆

(b) and
the test AUC.

Empirical evaluation of our fairness regularizer using exist-
ing LP fairness metrics, such as statistical parity and equal
opportunity dyadic fairness (Li et al., 2021), or equal op-
portunity degree bias (Wang & Derr, 2022), is beyond the
scope of our paper given that our algorithm and metric are
designed to handle a different form of unfairness. For exam-
ple, inter-group and intra-group links can be predicted at the
same rate or with the same accuracy, but these links can be

exclusively with high-degree nodes, thereby marginalizing
low-degree nodes (cf. §J). Similarly, even if we consistently
predict links with the same accuracy across nodes with dif-
ferent degrees, high-degree nodes can still receive higher
LP scores than low-degree nodes (cf. §K).

7. Conclusion
We theoretically and empirically show that GCNs can have a
PA bias in LP. We analyze how this bias can engender within-
group unfairness, and amplify degree and power imbalances
in networks. We further propose a simple training-time
strategy to alleviate this unfairness. We encourage future
work to: (1) explore PA bias in other GNN architectures
and directed and heterophilic networks, (2) characterize the
“rich get richer” evolution of networks affected by GCN’s
PA bias, and (3) propose pre-processing and post-processing
strategies for within-group LP unfairness.

Because this unfairness is at the level of dyads, we would
like to explore new forms of unfairness that occur at the
level of higher-order structures (e.g., prediction disparities
between important coalitions of nodes). Moreover, node
degree is a local property, and it would be valuable to theo-
retically and empirically relate higher-order graph proper-
ties (e.g., local clustering coefficient, different measures of
centrality) to unfairness.
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Impact Statement
Our paper seeks to uncover and combat discrimination, bias,
and unfairness in GNNs. Throughout, we tie our analysis
back to issues of disparity and power, towards advancing
justice in graph learning. While we propose a strategy to
alleviate LP unfairness, we emphasize that it is not a ‘sil-
ver bullet’ solution; we encourage graph learning practi-
tioners to adopt a sociotechnical approach to fairness and
continually adapt their algorithms, datasets, and metrics in
response to the everchanging landscape of inequality and
power. Furthermore, the fairness of GCN LP should not
sidestep concerns about GCN LP being used at all in certain
scenarios.

Some datasets that we use contain protected attribute in-
formation (detailed in §D). We avoid using datasets that
enable carceral technology (e.g., Recidivism (Agarwal et al.,
2021)). We release our code and data with an MIT license.

For transparency, we do our best to discuss limitations
throughout the paper. For each lemma and theorem (§4),
our assumptions are clearly explained and justified either
before or in the statement thereof, and we include complete
proofs of our theoretical claims in §A and §B.

For reproducibility, we provide all our code and data (includ-
ing the raw DBLP-Fairness dataset) in our GitHub reposi-
tory, along with a README. We detail our data processing
steps in §D.3. Furthermore, our experiments (§6) are run
with 10 random seeds and errors are reported. We provide
model implementation details in §E.
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L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Rozemberczki, B. and Sarkar, R. Characteristic func-
tions on graphs: Birds of a feather, from statisti-
cal descriptors to parametric models. In Proceedings
of the 29th ACM International Conference on Infor-
mation & Knowledge Management, CIKM ’20, pp.
1325–1334, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450368599. doi:
10.1145/3340531.3411866. URL https://doi.org/
10.1145/3340531.3411866.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-Scale
attributed node embedding. Journal of Complex Net-
works, 9(2):cnab014, 05 2021. ISSN 2051-1329. doi:
10.1093/comnet/cnab014. URL https://doi.org/
10.1093/comnet/cnab014.

Sankar, A., Liu, Y., Yu, J., and Shah, N. Graph neural net-
works for friend ranking in large-scale social platforms.
Proceedings of the Web Conference 2021, 2021.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
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Supplementary Text

A. Proofs
A.1. Proof of Lemma 4.1

Proof. Similarly to Xu et al. (2018); Tang et al. (2020), we compute the first-order partial derivatives of Φs and Φr:
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where p(l) is the l-th node on path p in the computation graph of Φs or Φr (p(L) is node i and p(0) is node j); Ψγ
i→j is the

set of all γ-length random walk paths from node i to j; and z
(l)

p(l) is pre-activated s
(l)

p(l) or r(l)
p(l) .

With our assumption that the path from node i → j in the computation graph of Φs is independently activated with
probability ρs(i), and similarly, ρr(i) for Φr:

E

[
∂s

(L)
i

∂xj

]
=
(
D− 1

2AD− 1
2

)L
ij
ρs(i)

(
1∏

l=L

W (l)
s

)
, (32)

E

[
∂r

(L)
i

∂xj

]
=
(
D−1A

)L
ij
ρr(i)

(
1∏

l=L

W (l)
r

)
. (33)

Then, recalling Eqn. 5:
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A.2. Proof of Lemma 4.2

Proof. For j ∈ S(b), we can re-express P̂L
ij =

(
P̂ (b)

)L
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=
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e(j)4. By the spectral properties of P̂ (b),(
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Then, by Cauchy-Schwarz:
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4For simplicity, we abuse notation here:
(
P̂ (b)

)L
ij

is not the entry at row i and column j, but rather the entry at the row corresponding

to node i and column corresponding to node j. Similarly, e(i) is the standard basis vector with a 1 at the entry corresponding to node i.

15



Networked Inequality: Preferential Attachment Bias in Graph Neural Network Link Prediction

A.3. Proof of Theorem 4.3

Proof. For u, v ∈ V , let |δuv| ≤ ζs. Combining Lemmas 4.1 and 4.2, by our assumption that the computation graph paths
to i, j are activated independently:
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Then, by Cauchy-Schwarz and the triangle inequality:∣∣∣∣∣∣∣∣∣∣∣∣∣
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A.4. Lemma A.1 and Proof

Lemma A.1. We introduce the notation P = D−1A. We further define P̂ = D̂−1Â. Fix i ∈ S(b). Then, for j ∈ S(b):∣∣∣∣∣PL
ij −
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And for j /∈ S(b):
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Proof. Similar to the proof of Lemma 4.2:
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Subsequently:
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Finally: ∣∣∣∣∣PL
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For j /∈ S(b), P̂L
ij = 0. Then:
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A.5. Proof of Theorem 4.4

Proof. For u, v ∈ V , let |δuv| ≤ ζr. Combining Lemmas 4.1 and A.1, by our assumption that the computation graph paths
to i, j are activated independently:
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Then, by Cauchy-Schwarz and the triangle inequality:∣∣∣∣∣∣∣∣∣∣∣
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B. Approximation of ∆(b)

B.1. Approximation of ∆(b) for Φs
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B.2. Approximation of ∆(b) for Φr
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C. Datasets Used in §6.1
In our experiments in §6.1, we use 10 real-world network datasets from Bojchevski & Günnemann (2018), Shchur et al.
(2018), Rozemberczki & Sarkar (2020), and Rozemberczki et al. (2021), covering diverse domains (e.g., citation networks,
collaboration networks, online social networks). We provide a description and some statistics of each dataset in Table
2. All the datasets have node features and are undirected. We were unable to find the exact class names and their label
correspondence from the dataset documentation.

• In all the citation network datasets, nodes represent documents, edges represent citation links, and features are a
bag-of-words representation of documents. We row-normalize the features to sum to 1, following Fey & Lenssen
(2019)5. The classification task is to predict the topic of documents.

• In the collaboration network datasets, nodes represent authors, edges represent coauthorships, and features are
embeddings of paper keywords for authors’ papers. The classification task is to predict the most active field of study
for authors.

• In the LastFMAsia network dataset, nodes represent LastFM users from Asia, edges represent friendships between
users, and features are embeddings of the artists liked by users. The classification task is to predict the home country of
users.

• In the Twitch network datasets, nodes represent gamers on Twitch, edges represent followerships between them, and
features are embeddings of the history of games played by the Twitch users. The classification task is to predict whether
or not a gamer streams adult content.

We only run experiments on datasets that can fit without sampling nodes on a single NVIDIA GeForce GTX Titan Xp
Graphic Card with 12196MiB of space. Furthermore, we only consider the three largest datasets (i.e., with the most nodes)
from Rozemberczki et al. (2021). We use PyTorch Geometric to load and process all datasets (Fey & Lenssen, 2019).

Table 2: Summary of the datasets used in our experiments.

Name Domain # Nodes # Edges # Features # Classes

Cora citation 19793 126842 8710 70
CiteSeer citation 4230 10674 602 6
DBLP citation 17716 105734 1639 4
PubMed citation 19717 88648 500 3

CS collaboration 18333 163788 6805 15
Physics collaboration 34493 495924 8415 5

LastFMAsia online social 7624 55612 128 18
Twitch-DE online social 9498 315774 128 2
Twitch-EN online social 7126 77774 128 2
Twitch-FR online social 6551 231883 128 2

5https://github.com/pyg-team/pytorch geometric/blob/master/examples/link pred.py
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D. Datasets Used in §6.2
We run experiments on three network datasets: (1) the NBA social network (cf. §D.1), (2) the German credit network (cf.
§D.2), and (3) a new DBLP-Fairness citation network that we construct (cf. §D.3). All the datasets have node features and
are undirected. We do not pass sensitive attributes as features to the models that we train. For each dataset, we min-max
normalize node features to fall in [−1, 1], following Dai & Wang (2021) and Agarwal et al. (2021). Furthermore, for all
datasets, D = 2.

D.1. NBA Dataset

The NBA network (Dai & Wang, 2021) has 403 nodes representing NBA basketball players who are connected if they
follow each other on Twitter. There are 21242 links. Each node has 95 features, with an average degree of 52.71± 35.14.
We consider two sensitive attributes per node:

• Age {S(b)}b∈[B]: how old the payer is, i.e., YOUNG (≤ 25 years) or OLD (> 25 years).

• Nationality {T (d)}d∈[D]: from where the player is, i.e., UNITED STATES or OVERSEAS.

D.2. German Dataset

The German network (Agarwal et al., 2021) comprises 1000 nodes representing clients in a German bank who are connected
if they have similar credit accounts. The German network is not natively a graph dataset; synthetic edges were created
by Agarwal et al. There are 44484 links. Each node has 27 features (e.g., loan amount, account-related features), with an
average degree of 44.48± 26.52. We consider two sensitive attributes per node:

• Foreign worker {S(b)}b∈[B]: whether the client is a foreign worker, i.e., YES or NO.

• Gender {T (d)}d∈[D]: the gender of the client, i.e., MAN or WOMAN.

D.3. DBLP-Fairness Dataset

In this subsection, we detail how we construct the DBLP-Fairness dataset. We build DBLP-Fairness, as there are only a few
natively-graph network datasets with sensitive attributes that are appropriate for graph learning (Subramonian et al., 2022).

We begin with the version of the DBLP-Citation-network V12 dataset from (Tang et al., 2008) that was processed by Xu
et al. (2021). This dataset has 3658127 nodes. Each node represents a paper and each edge represents a citation link. We
consider five node features:

• Team size: the number of authors on the paper.

• Mean collaborators: the average number of collaborators with whom the authors have previously published.

• Gini collaborators: the Gini coefficient of the number of collaborators with whom the authors have previously published.

• Mean productivity: the average number of papers that the authors have previously published.

• Gini productivity: the Gini coefficient of the number of papers that the authors have previously published.

We also consider two sensitive attributes per node:

• Field {S(b)}b∈[B]: the field to which the paper belongs, i.e., PROGRAMMING LANGUAGES or DATABASES.

• Nationality {T (d)}d∈[D]: the country where most authors reside, i.e., UNITED STATES or CHINA.

In DBLP-Fairness, we only include papers whose nationality is UNITED STATES or CHINA; American and Chinese citation
networks are known to be stratified (Zhao et al., 2022). We also only include papers whose field is PROGRAMMING
LANGUAGES or DATABASES; we infer the field of a paper using its keywords (i.e., whether they contain “programming
language” and “database”), and discard papers which include both “programming language” and “database” in its keywords.
Furthermore, we filter out all papers from before 2010. We sought DBLB-Fairness to be of comparable size to the citation
networks in §C. Following filtering, we were left with 14537 nodes and 24844 edges.

21



Networked Inequality: Preferential Attachment Bias in Graph Neural Network Link Prediction

E. Models
For all experiments, we use GCN encoders (Kipf & Welling, 2017) to get node representations. Each encoder has two
layers (128-dimensional hidden layer, 64-dimensional output layer) with a ReLU nonlinearity in between. We only use
two layers, as this is common practice in graph deep learning to prevent oversmoothing (Oono & Suzuki, 2020); however,
we run experiments with four layers in §G. We do not use any regularization (e.g., Dropout, BatchNorm). The encoders
are explicitly trained for LP with the inner-product LP score function in Eqn. 6, binary cross-entropy loss, and the Adam
optimizer with full-batch gradient descent and a learning rate of 0.01 (Kingma & Ba, 2014). We use a random link split of
0.85-0.05-0.1 for train-val-test, following the PyTorch Geometric LP example6. We train the encoders for 100 epochs, with
a new round of negative link sampling during every epoch; we use a 1:1 ratio of positive to negative links. We ultimately
select the model parameters with the highest validation ROC-AUC. Although we do not do any hyperparameter tuning, the
test ROC-AUC values (displayed in the figures in §6) indicate that the encoders are well-trained. We use PyTorch (Paszke
et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) to train all the encoders on a single NVIDIA GeForce GTX
Titan Xp Graphic Card with 12196MiB of space.

6https://github.com/pyg-team/pytorch geometric/blob/master/examples/link pred.py
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F. Remaining Plots

Figure 4: Theoretic vs. GCN LP scores for citation network datasets.
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Figure 5: Theoretic vs. GCN LP scores for collaboration network datasets.
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Figure 6: Theoretic vs. GCN LP scores for online social network datasets.
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G. Additional Experiments
G.1. Additional Experiments for §6.1 (4-layer Encoders)

We run the experiments from §6.1 for Φs with the same settings, except we use 4-layer (instead of 2-layer) encoders
(128-dimensional hidden layers, 64-dimensional output layer). We run these additional experiments because the error bound
for the theoretic LP scores for Φs depends on the number of encoder layers L. We find that the experimental results continue
to support our theoretical analysis, both qualitatively and quantitatively (cf. Table 3, Figure 7); the NRMSE and PCC values
are comparable to or better than those from the experiments with the 2-layer encoders (especially for the EN dataset).

Table 3: The test AUC of the 4-layer Φs encoders on the real-world network datasets, and the NRMSE and PCC of the
theoretic LP scores as predictors of the Φs scores.

NRMSE (↓) PCC (↑) Φs Test AUC (↑)

CORA 0.044± 0.006 0.858± 0.026 0.853± 0.028
CITESEER 0.057± 0.006 0.890± 0.017 0.861± 0.026
DBLP 0.021± 0.002 0.885± 0.054 0.887± 0.019
PUBMED 0.056± 0.009 0.802± 0.024 0.900± 0.006
CS 0.039± 0.006 0.918± 0.008 0.949± 0.004
PHYSICS 0.030± 0.002 0.077± 0.013 0.950± 0.004
LASTFMASIA 0.040± 0.004 0.938± 0.005 0.949± 0.002
DE 0.014± 0.003 0.918± 0.025 0.882± 0.002
EN 0.034± 0.005 0.752± 0.036 0.846± 0.008
FR 0.019± 0.003 0.833± 0.038 0.896± 0.003
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Figure 7: Theoretic LP score vs. 4-layer Φs LP score for all network datasets.
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G.2. Additional Experiments for §6.1 (Hadamard Product and MLP LP Score Function)

We also run the experiments from §6.1 for Φs with the same settings, except we use the following LP score function:

fLP

(
h
(L)
i ,h

(L)
j

)
= fMLP

(
h
(L)
i ⊙ h

(L)
j

)
, (81)

where ⊙ is the Hadamard product and fMLP is a 2-layer MLP with a 64-dimensional hidden layer and ReLU nonlinearity.
We run these additional experiments because a Hadamard product and MLP score function is often used in the literature. We
find that that our theoretical analysis is still relevant to and reasonably supports the experimental results, both qualitatively
and quantitatively (cf. Table 4, Figure 8). This could be because MLPs have an inductive bias towards learning simpler,
often linear functions (Nakkiran et al., 2019; Valle-Pérez et al., 2019), and our theoretical findings are generalizable to linear
LP score functions. Notably, in this setting, Φs makes a higher number of negative link predictions. For a few datasets (e.g.,
Cora, CiteSeer, LastFMAsia), a handful of theoretic LP scores are negative because the regression (incorrectly) predicts
ρ2s(b) for 1-2 groups S(b) to be negative.

Table 4: The test AUC of the Φs encoders with an fMLP score function on the real-world network datasets, and the NRMSE
and PCC of the theoretic LP scores as predictors of the Φs scores.

NRMSE (↓) PCC (↑) Φs Test AUC (↑)

CORA 0.034± 0.004 0.830± 0.015 0.915± 0.001
CITESEER 0.090± 0.014 0.365± 0.070 0.913± 0.008
DBLP 0.026± 0.003 0.652± 0.029 0.933± 0.004
PUBMED 0.054± 0.007 0.813± 0.038 0.932± 0.003
CS 0.047± 0.008 0.677± 0.036 0.970± 0.001
PHYSICS 0.055± 0.007 0.566± 0.026 0.976± 0.001
LASTFMASIA 0.049± 0.008 0.682± 0.035 0.960± 0.003
DE 0.030± 0.008 0.683± 0.047 0.935± 0.001
EN 0.039± 0.006 0.463± 0.022 0.905± 0.002
FR 0.031± 0.006 0.654± 0.067 0.935± 0.002
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Figure 8: Theoretic LP score vs. Φs LP score (with Hadamard product and MLP) for all network datasets.
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G.3. Additional Experiments for §6.2

Figure 9: The plots display ∆̂(b) vs. ∆(b) for 4-layer Φs for the NBA, German, and DBLP-Fairness datasets over all b ∈ [B]
and 10 random seeds.

G.4. Additional Experiments for §6.3

Table 5: 1
B

∑
b∈[B] ∆

(b) and the test AUC for the NBA, German, and DBLP-Fairness datasets with various settings of λfair.
The left table corresponds to 4-layer Φs, and the right to 4-layer Φr.

λfair
1
B

∑
b∈[B] ∆

(b) (↓) Φs Test AUC (↑)

NBA 4.0 0.000± 0.000 0.752± 0.001
NBA 2.0 0.006± 0.001 0.752± 0.001
NBA 1.0 0.011± 0.001 0.753± 0.001
NBA 0.0 0.014± 0.001 0.753± 0.001
DBLPFAIRNESS 4.0 0.090± 0.041 0.793± 0.009
DBLPFAIRNESS 2.0 0.070± 0.015 0.800± 0.007
DBLPFAIRNESS 1.0 0.099± 0.009 0.804± 0.007
DBLPFAIRNESS 0.0 0.122± 0.028 0.820± 0.009
GERMAN 4.0 0.012± 0.008 0.817± 0.004
GERMAN 2.0 0.018± 0.007 0.827± 0.015
GERMAN 1.0 0.018± 0.008 0.856± 0.025
GERMAN 0.0 0.028± 0.007 0.874± 0.011

λfair
1
B

∑
b∈[B] ∆

(b) (↓) Φr Test AUC (↑)

NBA 4.0 0.000± 0.000 0.581± 0.029
NBA 2.0 0.000± 0.000 0.574± 0.021
NBA 1.0 0.000± 0.000 0.580± 0.025
NBA 0.0 0.000± 0.000 0.589± 0.031

DBLPFAIRNESS 4.0 0.034± 0.012 0.769± 0.009
DBLPFAIRNESS 2.0 0.045± 0.021 0.788± 0.007
DBLPFAIRNESS 1.0 0.074± 0.013 0.797± 0.006
DBLPFAIRNESS 0.0 0.095± 0.015 0.811± 0.006

GERMAN 4.0 0.027± 0.009 0.765± 0.013
GERMAN 2.0 0.023± 0.007 0.765± 0.011
GERMAN 1.0 0.031± 0.010 0.786± 0.030
GERMAN 0.0 0.030± 0.009 0.838± 0.025
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H. Theory Pitfalls
To understand the second pitfall from §6.1, we separately investigate the association between the within-group degree
product

(
D̂iiD̂jj

)
and the absolute deviation of the theoretic LP scores from the Φs scores, as well as the association

between the (transformed) feature similarity

(∥∥∥∥∑k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥2
2

)
and the absolute deviation (cf. Figure 10). We

observe that the absolute deviation is highest for the node pairs with a relatively small degree product (i.e., nodes with a low
PA score) and low feature similarity.

Figure 10: Associations of absolute deviation with degree product and with feature similarity for CiteSeer.
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I. Error Analysis of Φr Theoretic Scores

Figure 11 reveals that the max term maxu,v∈V

√
D̂vv

D̂uu
is quite large in practice, which causes the theoretic LP scores to

generally be poor estimates for the Φr scores. We additionally find in Figure 11 that the relative error (as measured by

NRMSE and PCC) of the theoretic LP scores for Φr is not lower for lower values of the max term maxu,v∈V

√
D̂vv

D̂uu
.

Figure 11: Weak associations of max term with NRMSE and PCC of theoretic LP scores for Φr across all datasets described
in §C.

Furthermore, Figure 12 reveals that Φr LP scores are not higher for incident nodes with larger degrees.

Figure 12: Weak associations of mean Φr LP scores (over 10 random seeds) with degree of each incident node and product
of degrees of both incident nodes. Colors correspond to different groups.

There are intimate connections between Theorem 4.4 and the steady-state probabilities of random walks. The stationary
probabilities of random walks are the same regardless of the starting node. This is why Φr produces similar representations
for all the nodes in each social group, regardless of the degree of the node; in fact, with a larger number of layers, Φr

would oversmooth all the representations to the same vector (Keriven, 2022). Hence, Φr LP scores do not have a degree
dependence, theoretically or empirically.
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J. Preferential Attachment and Motivation
Preferential Attachment Preferential attachment (PA) describes the propensity of links to form with high-degree nodes7.
Network scientists have studied for decades how links in real-world networks exhibit PA. For example, in the iterative
Barabási-Albert model of network formation, each new node s forms links with existing nodes t with probability proportional
to the degree of t, i.e., P((s, t) ∈ E) ∝ deg(t). In the context of our paper, PA describes how a GCN with an inner-product
LP score function often predicts links between nodes i, j with score ∝

√
deg(i) · deg(j) approximately (Theorem 4.3).

Motivation A wealth of literature in network science and the social sciences has examined the PA properties of real-world
networks and how these properties contribute to unfair (non-neural) algorithms (§2). For example, Stoica et al. (2018)
find that Instagram accounts run by men have a significantly higher following than those run by women due to gender
discrimination; this degree disparity is only amplified by link recommendation algorithms that suggest following high-degree
accounts, which makes the rich get richer and reveals that these algorithms have a PA bias. Moreover, many papers outside
graph learning have discussed the intersectional unfairness of machine learning (§2).

However, despite the increasing real-world deployment of GNNs for LP, their unfairness has not been studied from the
perspectives of PA and intersections of social groups. Our paper fills this gap by providing thorough theoretical and empirical
evidence that GCNs (Kipf & Welling, 2017) have a PA bias when predicting links between nodes in the same social group.
This finding is nontrivial as GCNs leverage a combination of features and local structural context to make link
predictions.

Our research question is challenging from a technical perspective, as it requires uncovering properties of short random walks
on graphs (since most GNNs are shallow); in contrast, most random walk results in the literature concern random walks at
convergence. Our research question is further important because GNNs with a PA bias can amplify degree disparities, which
translates to increased discrimination and disparities in social influence among nodes.

As we uncover this new form of unfairness, there are no existing solutions to this unfairness in the literature. We propose a
training-time regularization-based fairness method that alleviates this unfairness without greatly sacrificing the test AUC
of LP. While capping the number of positive link predictions per node is a possible solution, doing so with utility in mind
requires identifying a utility-maximizing subset of link predictions. As our theoretical and empirical results reveal, GCN LP
scores are often inherently proportional to the geometric mean of the degrees of the incident nodes, which can make them a
poor indicator of prediction confidence; from a calibration perspective, GCNs naturally make overconfident predictions for
links between high-degree nodes.

While we describe methods for alleviating degree bias in §2, these methods address degraded performance for low-degree
nodes, not PA bias. We do not study performance issues but rather how GCNs scale representations of nodes proportionally
to (approximately) the square root of their within-group degree, which affects the magnitude of their LP scores (cf. §K).

In summary, we augment the field’s understanding of degree bias beyond performance disparities across nodes. We further
lay a foundation to study PA bias and within-group unfairness in GNN LP more broadly (e.g., SOTA contrastive methods for
LP), which is a critical and interesting direction of research.

7https://networkx.org/documentation/stable/reference/algorithms/generated/
networkx.algorithms.link prediction.preferential attachment.html
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K. Comparison to Prior Research on Degree Bias
Studies concerning degree bias have observed that low-degree nodes experience degraded performance compared to high-
degree nodes. They have thus often formulated degree bias from a performance perspective, focusing on equal opportunity.
In particular, these studies seek to satisfy P(ŷv = y|yv = y, deg(v) = d) = P(ŷv = y|yv = y, deg(v) = d′) for all possible
degrees d, d′, where ŷv is the prediction for node v and yv is its ground-truth label. This fairness criterion treats the degree
of a node as a sensitive attribute, requiring that a GNN’s accuracy is consistent across nodes with different degrees.

However, in this paper, we seek to ensure that degree disparities in networks are not amplified by GNN LP. We cannot adopt
the equal opportunity formulation of degree bias because it is concerned with performance while we are concerned with
degree disparity amplification. For example, even if we consistently predict links with the same accuracy across nodes with
different degrees, high-degree nodes can still receive higher LP scores than low-degree nodes. In this way, the “degree bias”
discussed by other studies is not compatible with our unfairness metric (Eqn. 17). We also cannot simply adopt common LP
fairness metrics like dyadic fairness, as they do not capture the new type of unfairness that we uncover.

Roughly, we care that E[ŷuv|deg(u) = d] = E[ŷuv|deg(u) = d′], where ŷuv is the GNN score for a link prediction between
nodes u, v. In other words, we do not want GNN LP scores to be higher for high-degree nodes vs. low-degree nodes. This is
what motivates our fairness metric (Eqn. 17).

Our theoretical analysis (Theorem 4.3) and empirical validation (§6.1) reveal that GCNs fundamentally often predict links
between nodes i, j with score approximately ∝

√
deg(i) · deg(j) because of their symmetric normalized filter. This finding

of a preferential attachment bias allows us to express our unfairness metric in terms of degree disparity (Eqn. 22), but this
degree disparity is not related to the “degree bias” that has been discussed by other papers; this is a new fairness paradigm.
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L. Justification of Assumptions in Lemma 4.1
The independence of path activation probabilities may not always hold true in practice. However, we verify that this
assumption is plausible via our extensive experiments on real-world datasets that validate our theoretical analysis (§6.1).
This assumption also aligns with findings that deep neural networks have an inductive bias towards learning simpler, often
linear, functions (Nakkiran et al., 2019; Valle-Pérez et al., 2019). Furthermore, a variant of our assumption (where ρ(i) = ρ
is constant for all nodes) has been used in the literature to simplify theoretical analysis (e.g., Xu et al. (2018); Tang et al.
(2020)); our assumption may be more realistic than this variant, as it captures that the probability of paths activating can
differ across nodes (e.g., due to differences in features, neighborhood structure).
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