
Enforcing Constraints in RNA Secondary Structure Predictions:
A Post-Processing Framework Based on the Assignment Problem

Geewon Suh * 1 2 Gyeongjo Hwang * 1 Seokjun Kang 1 Doojin Baek 3 Mingeun Kang 1 2

Abstract
RNA properties, such as function and stability, are
intricately tied to their two-dimensional conforma-
tions. This has spurred the development of compu-
tational models for predicting the RNA secondary
structures, leveraging dynamic programming or
machine learning (ML) techniques. These struc-
tures are governed by specific rules; for exam-
ple, only Watson-Crick and Wobble pairs are al-
lowed, and sequences must not form sharp bends.
Recent efforts introduced a systematic approach
to post-process the predictions made by ML al-
gorithms, aiming to modify them to respect the
constraints. However, we still observe instances
violating the requirements, significantly reducing
biological relevance. To address this challenge,
we present a novel post-processing framework for
ML-based predictions on RNA secondary struc-
tures, inspired by the assignment problem in inte-
ger linear programming. Our algorithm offers a
theoretical guarantee, ensuring that the resulting
predictions adhere to the fundamental constraints
of RNAs. Empirical evidence supports the effi-
cacy of our approach, demonstrating improved
predictive performance with no constraint viola-
tion, while requiring less running time.

1. Introduction
A nucleotide serves as a building block for deoxyribonucleic
acids (DNAs) and ribonucleic acids (RNAs), comprising a
nitrogenous base, a pentose sugar, and a phosphate group.
Due to the presence of hydrogen donors and acceptors in
the nitrogenous base, a nucleotide from one DNA strand can
engage in inter-molecular hydrogen bonding with a counter-
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part from a different strand. This fundamental principle of
base pairing gives rise to the double-stranded helical struc-
ture of DNAs (Watson & Crick, 1953). In contrast, within a
single-stranded RNA molecule, base pairing facilitates the
formation of intra-molecular hydrogen bonding, resulting in
complex folding patterns with various local structures (Kim
et al., 1974; Noller, 1984; Tinoco Jr & Bustamante, 1999).
Investigating these structures not only sheds light on the
principles governing RNA functions and mechanisms, but
also holds promise for advances in biotechnology.

Over the last few decades, numerous achievements have
been made in methodologies aimed at observing RNA sec-
ondary structures. Technologies such as X-ray crystallog-
raphy, nuclear magnetic resonance spectroscopy, and cryo-
electron microscopy have been prominent strategies for vi-
sualizing molecular structures (Neidle & Sanderson, 2021).
While these can yield structures of high resolution, it is both
cost-prohibitive and labor-intensive to collect samples (Kap-
pel et al., 2020). An alternative is probing-based methods
that give us enough number of samples, yet the quality of
the data is compromised (Spitale & Incarnato, 2022).

Independently, researchers have also developed computa-
tional algorithms to predict RNA secondary structures. In
the early 1980s, algorithms finding the most thermodynami-
cally stable structure were proposed (Nussinov & Jacobson,
1980; Zuker & Stiegler, 1981). Since this problem is NP-
complete for a general class of RNA structures (Lyngsø &
Pedersen, 2000; Bonnet et al., 2017), they usually narrow the
optimization space and employ dynamic programming (DP)
to efficiently explore the reduced space. Later on, improve-
ments have been made to achieve a better computational
complexity (Bringmann et al., 2016; Huang et al., 2019),
or to expand the search space including pseudoknotted-
structures (Rivas & Eddy, 1998; Akutsu, 2000).

Recently, machine learning (ML) models have been brought
into the spotlight with an accumulation of experimentally
validated samples (Sussman et al., 1998; Griffiths-Jones
et al., 2003; Andronescu et al., 2008). This data-driven strat-
egy makes a model free from handcrafted rules, but their
outputs typically do not satisfy the constraints of the RNAs.
For example, RNAs usually permit only Watson-Crick and
Wobble pairs, and sharp bends are geometrically impossi-
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ble, whereas ML models do not consider such restrictions.
Hence, one recent work introduced a post-processing ap-
proach to modify the model predictions to comply with the
constraints (Chen et al., 2020). This two-stage scheme has
now become a default for recent ML-based models (Fu et al.,
2022; Chen & Chan, 2023). However, we find that the post-
processing algorithm does not guarantee perfect adherence
to the requirements, which can severely limit the practi-
cality of current ML algorithms. We provide an explicit
toy example where the existing post-processing fails (see
Remark 3.1) and show empirical evidence of constraint vio-
lations in real-world datasets (see Section 5.2). To address
such challenges, we propose a novel post-processing opti-
mization problem and its solver, inspired by the assignment
problem in combinatorial optimization.

Contributions. Our contribution lies in the development of
a novel post-processing framework for the RNA structure
prediction. Intriguingly, we discover that the relevant opti-
mization can be cast as a linear sum assignment problem
(LSAP), a type of integer linear programming (ILP) in com-
binatorial optimization (see Section 4.1). Using a known
solver, the Hungarian algorithm, we find that the solutions
to the LSAP perfectly adhere to the requirements of RNAs.
Lastly, our empirical study shows that the proposed algo-
rithm takes much less time than the existing post-processing
method, while maintaining competitive predictive perfor-
mances in the RNA secondary structure prediction.

2. Related Works
The most widely used computational approach for the RNA
secondary structure prediction is based on the principle of
minimum free energy (Nussinov & Jacobson, 1980; Zuker
& Stiegler, 1981), where the free energy contribution of
each local substructure has been updated through exper-
iments (Schroeder & Turner, 2009; Turner & Mathews,
2010). There are several implementations that improved
upon the original algorithm, such as ViennaRNA (Hofacker,
2003; 2009), UNAFold (Zuker, 2003; Markham & Zuker,
2008), and RNAstructure (Reuter & Mathews, 2010; Bel-
laousov et al., 2013). Unfortunately, many of these algo-
rithms suffer from incapability of producing a particular
class of output: structures including pseudoknots. To mit-
igate this, a few methods have been proposed to include
a subset of pseudoknotted-structures while compromising
time complexity (Rivas & Eddy, 1998; Akutsu, 2000; Bel-
laousov & Mathews, 2010; Sato et al., 2011).

More recent learning-based models can be categorized into
two: (1) a combined algorithm of DP and ML, and (2) a pure
ML algorithm. For the combined method, SimFold tries to
estimate energy parameters required for the DP algorithm in
a data-driven way (Andronescu et al., 2007; 2010). MXfold
takes a similar strategy, where the energy estimation model

is replaced by a support vector machine (Akiyama et al.,
2018). CDPfold and MXfold2 are additional variants of this
kind with deep neural networks (Zhang et al., 2019; Sato
et al., 2021).

The second category takes a more direct approach, where the
ML models output structure predictions without a follow-up
DP algorithm. For example, SPOT-RNA (Singh et al., 2019)
uses Bidirectional Long Short-Term Memory (Hochreiter
& Schmidhuber, 1997; Schuster & Paliwal, 1997) and
ResNet (He et al., 2016) to predict the base pairing proba-
bilities between every pair of nucleotide. E2Efold (Chen
et al., 2020), UFold (Fu et al., 2022) and REDfold(Chen &
Chan, 2023) also predict the base pairing probabilities with
different model architectures and input data preprocessing.
Specifically, E2Efold employs a transformer (Vaswani et al.,
2017) that takes an RNA sequence as input, while UFold
and REDfold both employ U-net architectures (Ronneberger
et al., 2015) that accept a collection of matrices as input.

It is important to note that making independent predictions
for all pairs of nucleotides can result in a secondary structure
that violates the RNA constraints. Hence, E2Efold proposes
a post-processing framework to enforce these restrictions
through constrained optimization. CNNfold (Saman Booy
et al., 2022) proposes yet another method that serves a
similar purpose, inspired by the classical Blossom algo-
rithm (Galil, 1986). However, we find that their optimiza-
tions do not guarantee a solution that fully satisfies the con-
straints. Indeed, empirical evidence shows that the predic-
tions still violate the constraints despite the post-processing.

Our framework that tackles the aforementioned challenges
is based on LSAP. Originating from Monge back in 1780s,
LSAP has been studied together with transportation, bipar-
tite matching, and traveling salesman problems in the con-
text of operations research (Schrijver, 1998; Kuhn, 2012). A
breakthrough in LSAP came with the simplex algorithm. De-
spite its exponential time complexity, the simplex algorithm
can be employed for LSAP, as it automatically produces
integer solutions (Dantzig, 1951). The first polynomial
time solver of LSAP is the Hungarian algorithm (Kuhn,
1955; Munkres, 1957), named after pioneering works of
two Hungarians (Konig, 1931; Egerváry, 1931). Since then,
several variants have been proposed to improve the perfor-
mance of the original method (Tomizawa, 1971; Edmonds
& Karp, 1972), with Jonker–Volgenant algorithm (Jonker &
Volgenant, 1988) being the most widely used.

3. Problem Setup
3.1. RNA Secondary Structure Prediction

Let x be an RNA with a nucleotide sequence x :=
(x1, x2, . . . , xL), where each xi ∈ {A, G, C, U} corre-
sponds to one of the four building blocks: adenine, guanine,
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Figure 1. A graphical overview of the two-stage architecture for the ML-based RNA secondary structure prediction. An input RNA x of
length L is sequentially processed into Ŷ and Ỹ , where Ŷ is the direct output of the model and Ỹ is the final prediction.
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Figure 2. A matrix representation of RNA secondary structure. An
RNA GGAACGUUCC with a hairpin structure (left) is equivalent to
the matrix on the right. The two hydrogen bonds G-C and A-U
are marked with dotted lines (left) and red ones (right).

cytosine, and uracil. Then the corresponding secondary
structure of x can be represented as a binary symmetric
matrix Y ∈ {0, 1}L×L, where each entry Yij = 1 if and
only if the bases xi and xj are paired (see Figure 2). The
goal of RNA secondary structure prediction is to construct
such a matrix containing base pairing information from an
input RNA.

The structure of RNA molecules is governed by physical
laws. Thus, there are certain “hard” constraints that the
secondary structure matrix Y should satisfy:

(C1) Y is a binary and symmetric matrix; Yij ∈ {0, 1} and
Y = Y T ,

(C2) Only the Watson-Crick base pairs (A-U, G-C) and
Wobble pairs (G-U) are allowed; Yij = 0 if xixj /∈
B := {AU, UA, GC, CG, GU, UG},

(C3) No sharp loops are allowed; Yij = 0 if |i− j| < 4,

(C4) There is no overlap of pairs, i.e., each row or column
contains at most one 1’s;

∑L
j=1 Yij ≤ 1 ∀i, or Y 1 ≤ 1

where 1 is an L× 1 matrix filled with ones.

3.2. Model Architecture

An ML-based approach to RNA secondary structure builds
upon a well-known two-stage scheme (Chen et al., 2020;
Fu et al., 2022; Chen & Chan, 2023). Stage 1 outputs a

predicted score matrix for the input. Stage 2 outputs a finely-
tuned matrix that respects the constraints introduced above,
given the score matrix computed from Stage 1. A graphical
overview of the entire system is illustrated in Figure 1.

Stage 1 (Deep Score Network) The first stage of the archi-
tecture is a deep learning model parameterized by θ, whose
output Ŷ = Ŷ (x) is an L × L symmetric matrix for an
input RNA x of length L. Each entry of the output, Ŷij , rep-
resents the predicted contact score between the nucleotides
xi and xj in the input. In this paper, we employ the deep
neural networks in the prior works, a transformer and a U-
net with Dense-net components, from E2Efold (Chen et al.,
2020) and REDfold (Chen & Chan, 2023), respectively.

Stage 2 (Post-processing) The second stage bears our key
idea. Since the score matrix computed above is not guar-
anteed to obey the hard constraints, an additional proce-
dure is required. This post-processing can be formulated
as a constrained optimization problem, for which a solv-
ing algorithm based on a primal-dual method is proposed
in E2Efold (Chen et al., 2020). Nonetheless, in certain
prediction instances, constraints are violated due to the bi-
nary thresholding with an offset term. Also, the proposed
gradient-descent solver may not converge to the global opti-
mum, as the objective function is not convex-concave.

To address these challenges, we propose an alternative
aimed at achieving a precise solution to the optimization
problem while enforcing the constraints in RNA secondary
structure prediction. The idea is to transform the optimiza-
tion into an assignment problem, where it is possible to find
the exact optimal solution in polynomial time. See Section 4
for more details.
Remark 3.1 (A toy example). We provide a toy example
where the existing post-processing algorithms fail to pro-
duce secondary structure predictions that respect the con-
straints (C1)-(C4). In Figure 3 (top), an intermediate output
ŶT of the E2Efold post-processing algorithm is shown for
an input RNA sequence of AACCGUU. Here, T indicates
the number of proximal gradient descent steps taken in the
algorithm, and “PP” is an abbreviate for post-processing.
Since E2Efold then takes the thresholding operation to yield
the final output, the algorithm has the potential to violate
(C4): the overlapping pair constraint. On the middle left of
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Figure 3. A toy example of RNA sequence and its score ma-
trix. (Top) Output of proximal gradient descent algorithm from
E2Efold is shown. (Bottom) Outputs obtained from respective
post-processing algorithms are shown.

Figure 3, we can see that there are multiple 1’s in a few rows
and columns. To avoid such an invalid structure, REDfold
post-processing further modifies ŶT by taking row-wise
and column-wise arg max (middle right). However, this
heuristics may erase the base pair that is part of the opti-
mal solution. CNNfold, on the other hand, can find the
optimal entries, yet it lacks a filtering operation that can
eliminate insignificant values (bottom left). In contrast, the
proposed post-processing is designed to identify a maxi-
mum entry-sum solution within the provided score matrix
while adhering to the constraints of RNAs, thus mitigating
the aforementioned issues (bottom right).

4. Post-process Optimization
The goal of post-processing step is to derive a secondary
structure matrix Ỹ := Ỹ (x) that is slightly different from
the initial model prediction Ŷ := Ŷ (x), while respecting
the constraints (C1)-(C4). Since a neural network model
usually produces a real-valued output Ŷ ∈ RL×L, we need

to come up with a way to convert this into a discrete-valued
secondary structure matrix Ỹ . Such desiderata can be writ-
ten as a constrained optimization of the following form:

max
Ỹ

⟨Ŷ − s, Ỹ ⟩

s.t. Ỹij ∈ {0, 1}, Ỹ = Ỹ T , Ỹ 1 ≤ 1,

Ỹij = 0 if xixj /∈ B or |i− j| < 4.

(1)

where B and 1 are as defined in (C2) and (C4), respectively.
⟨·, ·⟩ is a matrix inner product and s ∈ R is an offset term
that weighs the entries of importance. In short, the optimiza-
tion seeks a matrix satisfying (C1)-(C4) whose similarity
against the original prediction Ŷ captured by the matrix
inner product is the highest.

We see that this is a binary ILP. In general, ILP problem is
NP-complete, meaning that the problem cannot be solved
in a polynomial running time. To deal with such intractable
problems, one natural way is to ignore the binary value
constraint: allowing 0 ≤ Ỹij ≤ 1. Solving the relaxed
Linear Programming (LP) and rounding the solution gives a
tractable approximation to the ILP solution, even though it
may be sub-optimal or infeasible in the original ILP problem.
The algorithm proposed in E2Efold takes such a strategy,
where the final prediction matrix is obtained by solving a
quadratic programming relaxation by simplifying the search
space of the LP relaxation (Chen et al., 2020).

In this work, we find that the optimization problem (1) is in a
special case of ILP class such that exact solution is tractable.
To see this, we present a technique to transform the original
optimization problem into a non-constrained ‘assignment
problem’ (or ‘maximum weight bipartite matching’), which
is well-known to be solvable in a polynomial time.

4.1. Assignment Problem

The assignment problem is a problem of finding the mini-
mum overall cost on the worker-job assignment. Suppose
that there are L workers and L jobs. Any worker i can be
assigned to perform job j, incurring cost Cij . The objective
is to assign every worker to every other job at the minimum
overall cost. i.e., we want to find a bijective assignment
whose overall cost is minimal. One can state this in a matrix
form as follows:

min
Z

⟨C,Z⟩

s.t. Zij ∈ {0, 1}, Z1 = 1, ZT1 = 1,
(2)

where C = {Cij}[L]×[L] is a cost matrix and Z is an as-
signment matrix.

We show that the post-process optimization (1) can be trans-
formed into an assignment problem (2) with a cost matrix
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carefully designed from the score map Ŷ .

Theorem 4.1 (Equivalence). Let x be a sequence of nu-
cleotide with length L, Ŷ ∈ RL×L be a symmetric matrix
that represents initial model prediction, and s be an offset
term that weighs the entries of importance. Given x, Ŷ , s,
let M := M(x, Ŷ , s) be a binary matrix whose (i, j)-th
entry is defined as Mij = 1 if xixj ∈ {AU, GU, GC},
|i − j| ≥ 4, and Ŷij > s, 0 otherwise. Let C(Ŷ ) :=

−2(Ŷ − s) ⊙M , where ⊙ is an element-wise product
operation. Then,

• For an optimal solution Ỹ ∗ of problem (1), define an
L × L binary matrix Z∗ as Z∗

ij = 1 if and only if
Ỹ ∗
ij = 1 , xixj ∈ {AU, GU, GC} and Ŷij > s.

Then, Z∗ is an optimal solution of problem (2) with
C = C(Ŷ ).

• For an optimal solution Z∗ with C = C(Ŷ ) of prob-
lem (2), Ỹ ∗ := Z∗⊙M +(Z∗⊙M)T is an optimal
solution of problem (1).

The theorem states that any optimal solution of each opti-
mization can be reduced to an optimal solution of the other
problem. In this context, we argue that the two problems (1)
and (2) are equivalent.

4.2. Proof Outline

According to the base-pairing properties of nucleotides,
there are only three types of pairings: {AU, GU, GC}. In
this point of view, the interested problem can be expressed
as an assignment problem from bases {A,G} to {U,C},
where each entry of the assignment matrix equals 1 if and
only if the two corresponding bases form a pair.

It is reasonable that an entry Ỹ ∗
ij of optimal solution in

problem (1) is equal to 0 when Ŷij < s. For a given Ỹ
satisfying the secondary structure constraints, let Z be an
L × L binary matrix satisfying Zij = 1 if Ỹij = 1 and
xixj ∈ {AU, GU, GC}, 0 otherwise. Then Ỹ = Z+ZT

and ⟨Ŷ − s, Ỹ ⟩ = 2⟨Ŷ − s,Z⟩ due to the symmetry of
Ŷ . We can observe that Zij = 1 only if xi ∈ {A,G}
and xj ∈ {U,C}, while ZT

ij = 1 only if xi ∈ {U,C} and
xj ∈ {A,G}. Thus the inequality constraint Ỹ 1 ≤ 1 is
equivalent to Z1 ≤ 1 and ZT1 ≤ 1. So we can re-write
(1) as follows:

max
Z

2⟨Ŷ − s,Z⟩

s.t. Zij ∈ {0, 1}, Z1 ≤ 1, ZT1 ≤ 1,

Zij = 0 if xixj /∈ {AU,GU,GC}
or |i− j| < 4 or Ŷij < s.

(3)

Now define a mask matrix M := M(x, Ŷ , s) to be Mij :=

1 if xixj ∈ {AU,GU,GC} and |i− j| ≥ 4 and Ŷij > s, 0
otherwise. Considering the corresponding constraints as an
inner product between the objective and the mask matrix,
the problem (3) can be re-written as:

max
Z

2⟨(Ŷ − s)⊙M ,Z⟩

s.t. Zij ∈ {0, 1}, Z1 ≤ 1, ZT1 ≤ 1.
(4)

Note that if the cost function is non-negative, the optimal
solution of (4) can be extended to satisfy the boundary
condition of inequalities. Therefore, we can formulate the
optimization problem as:

max
Z

2⟨(Ŷ − s)⊙M ,Z⟩

s.t. Zij ∈ {0, 1}, Z1 = 1, ZT1 = 1,
(5)

which is equivalent to the assignment problem (2) with the
cost matrix −2(Ŷ − s) ⊙M by taking negative of the
objective. We leave a full proof in Appendix A.

4.3. Proposed Algorithm

Algorithm 1 Proposed post-processing

Input: RNA sequence x of length L, score matrix Ŷ ,
offset parameter s
M ←− L× L matrix filled with zeros
for (i, j) ∈ [L]× [L] do

if xixj ∈ {AU,GU,GC} and |i− j| ≥ 4 and Ŷij > s
then
Mij ←− 1

end if
end for
C ←− −2(Ŷ − s)⊙M
Z∗ ←− Output of Zonker-Volgenant algorithm with an
input C
Ỹ ∗ ←− Z∗ ⊙M + (Z∗ ⊙M)T

Output: Secondary structure matrix Ỹ ∗

A naive way to solve the L × L assignment problem is a
brute-force algorithm, which takes O(L!) to check all the
permutations. Fortunately, there are some algorithms for
solving the problem in polynomial time. The Hungarian
algorithm by (Kuhn, 1955; Munkres, 1957), also known as
the Kuhn-Munkres algorithm, is a well-known polynomial
time solver for the assignment problem. It turns out that
the algorithm can be modified to achieve an O(L3) running
time (Tomizawa, 1971; Edmonds & Karp, 1972; Jonker &
Volgenant, 1988). The overall post-processing method is
presented in Algorithm 1, while keeping the description of
Zonker-Volgenant algorithm in Appendix B.
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Remark 4.2 (Hyperparameter). The only hyperparameter
that is added to the overall model architecture is s. We em-
pirically find that the tuning cost for s is marginal, because
we do not need to post-process the model outputs during
model training. The only part where increase in complexity
comes from is in the evaluation phase, and a few runs of
post-processing suffice to find good enough values of s.

5. Experiments
We present experimental results on two real-world datasets.
The most heavily used RNA secondary structure prediction
algorithms are considered as baselines. The result shows
superior performance of ours compared with the baselines
in terms of adherence to constraints, predictive accuracy,
and execution time. All the experiments were conducted
on a system running Ubuntu 18.04.5 LTS, equipped with
Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz, Nvidia
TITAN RTX GPU, and 256 GB of RAM.

5.1. Dataset & Metric

Table 1. Dataset Statistics.
RNAStrAlign ncRNA

Train 15,639 16,896
Validation 2,390 8,448

Test 2,406 8,449
Total 20,435 33,793

We consider RNAStrAlign (Tan et al., 2017) and a col-
lection of non-coding RNAs, ncRNA, from the Rfam
database (Griffiths-Jones et al., 2003; Kalvari et al., 2021)
as benchmark datasets. To ensure data quality, we remove
RNA sequences with incorrect base pair information, and
eliminate redundant sequences using CD-HIT-EST (Fu et al.,
2012). Additionally, we filter out minority examples whose
lengths are longer than 600 and 720 in RNAStrAlign and
ncRNA, respectively, following the experimental design in
the literature. Detailed statistics of the final datasets can be
found in Table 1. We split the data into train, validation and
test sets at an 8:1:1 ratio for the RNAStrAlign dataset, and a
2:1:1 ratio for the ncRNA dataset.

For the performance metric, we use precision (Prc) =
TP

TP+FP , recall (Rec) = TP
TP+FN , and F1 score (F1) =

2 Prc·Rec
Prc+Rec . Although they all provide meaningful infor-

mation, we emphasize F1 as a major metric as the label
Y is highly imbalanced: there are much more zeros than
ones in the secondary structure matrix. We also compare the
running time of the post-processing methods per sequence,
presented in seconds.

5.2. Results

To fairly demonstrate the performance of the proposed post-
processing method, we employ the deep neural networks in-
troduced in E2Efold (Chen et al., 2020) and REDfold (Chen
& Chan, 2023) for the first stage of the architecture. That
is, we consider two different models: a transformer and a
U-Net. The output of these models is then accordingly mod-
ified using respective post-processing algorithms (if needed).
We compare this to several others, including RNAfold (Ho-
facker, 2009), RNAstructure (Bellaousov et al., 2013), CON-
TRAfold (Do et al., 2006), SPOT-RNA (Singh et al., 2019),
MXfold2 (Sato et al., 2021), E2Efold and REDfold.

For E2Efold and REDfold, we train the exact same mod-
els with three different random seeds in training, and re-
port the mean performance on the held-out test set. Since
RNAStrAlign provided by the authors of E2Efold fixes the
train/test split, we use the random seeds for different model
initialization while following the fixed data split. In case
of ncRNA dataset, we repeated the three experiments with
different train/test split, while fixing the parameter initializa-
tion. For the other baselines, we use the packages available
online without any further modifications.

Table 2. Constraint violations on RNAStrAlign.
Method (C2) (C3) (C4)

CONTRAfold 0% 10.2% 0%
SPOT-RNA 91.1% 14.1% 0%

E2Efold + E2E PP 0% 10.3% 56.8%
E2Efold + Blossom 86.4% 18.4% 0.1%

E2Efold + Ours 0% 0% 0%
REDfold + RED PP1 0% 0.6% 0%
REDfold + Blossom 8.4% 1.6% 0%

REDfold + Ours 0% 0% 0%

Table 3. Constraint violations on ncRNA.
Method (C2) (C3) (C4)

CONTRAfold 0% 8.1% 0%
SPOT-RNA 57.7% 30.3% 0%

E2Efold + E2E PP 0% 12.8% 58.3%
E2Efold + Blossom 73.0% 21.0% 0.3%

E2Efold + Ours 0% 0% 0%
REDfold + RED PP1 0% 0.5% 0%
REDfold + Blossom 9.4% 0.3% 0%

REDfold + Ours 0% 0% 0%

We first check whether the outputs generated by the deep
learning-based models respect the structural constraints,
described in Section 3.1. Table 2 and Table 3 provide
the number of invalid outputs generated by different pre-
diction algorithms in the benchmark datasets. We show
which constraints are violated by baselinie algorithms on

1Despite the fact that REDfold guarantees adhesion to the con-
straints, a few invalid predictions occurred although we faithfully
implemented using the official source code.
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the RNAStrAlign and ncRNA dataset, respectively. In an
expression “A + B” in the table, we indicate “A” by the
backbone architecture that is either a transformer (E2Efold)
or a U-Net (REDfold). Meanwhile, “B” refers to the type of
post-processing algorithm.

ML models without post-processing, namely CONTRAfold
and SPOT-RNA, tend to produce predictions that violate the
structural requirements as expected. In contrast to what one
can expect, however, E2E PP cannot address the challenge
of constraint violation. The same is true for Blossom post-
processing, as the algorithm considers only (C4). RED PP
tends to generate valid structures with an additional argmax
operation, though it can possibly compromise predictive
accuracy. Still, we can observe a stark contrast between
models with and without the proposed post-processing; in
particular, Ours produce absolutely zero invalid predictions.

Table 4. Performances on the RNAStrAlign dataset.
Method F1 Rec Prc Time (s)
RNAfold 0.602 0.634 0.576 -

RNAstructure 0.596 0.621 0.576 -
CONTRAfold 0.664 0.699 0.635 -

SPOT-RNA 0.758 0.826 0.717 -
MXfold2 0.783 0.798 0.772 -

E2Efold + E2E PP 0.809 0.797 0.826 0.055
E2Efold + Blossom 0.759 0.826 0.706 4.9592

E2Efold + Ours 0.822 0.822 0.823 1.0102

REDfold + RED PP 0.904 0.874 0.975 0.079
REDfold + Blossom 0.917 0.909 0.941 0.496

REDfold + Ours 0.918 0.907 0.944 0.014

Table 5. Performances on the ncRNA dataset.
Method F1 Rec Prc Time (s)
RNAfold 0.606 0.679 0.566 -

RNAstructure 0.599 0.668 0.562 -
CONTRAfold 0.626 0.690 0.596 -

SPOT-RNA 0.647 0.683 0.640 -
MXfold2 0.631 0.687 0.608 -

E2Efold + E2E PP 0.595 0.575 0.631 0.049
E2Efold + Blossom 0.489 0.615 0.415 2.2122

E2Efold + Ours 0.608 0.602 0.622 0.3082

REDfold + RED PP 0.844 0.849 0.877 0.053
REDfold + Blossom 0.840 0.873 0.838 0.378

REDfold + Ours 0.847 0.867 0.858 0.005

Table 4 demonstrates the predictive performance of the
baseline algorithms on RNAStrAlign dataset, together with
mean running time per an instance for the respective post-
processing methods. Notably, applying our post-processing
method not only helps generating valid RNA structure pre-

2In the case of the E2Efold model, the distribution of the out-
put matrix values is heavily skewed towards larger values. Con-
sequently, there are many entries that remain after thresholding,
which causes the ILP-based algorithm to take a long time to run.

dictions, but also slightly improves the predictive perfor-
mance of deep learning-based models, as indicated by the
bold numbers in the table. In particular, when combined
with the REDfold model, Ours outperform all the baselines
for F1 metric, with a marginal compromise in recall and
precision. Also note that the proposed post-processing ex-
hibits the shortest mean running time, showing more than
five folds improvement compared with Blossom or RED PP.

In Table 5, we observe a similar trend in the ncRNA dataset,
except that the overall performance has deteriorated by a
respectful margin for all the algorithms.

In Figure 4, we visualize the predicted structures of base-
line algorithms for an example sequence ‘Ake.c.trnL’ in the
RNAStrAlign database. The drawings were generated us-
ing the VARNA tool (Darty et al., 2009). As depicted in
Figure 4, it is evident that the predicted structures of the
proposed method best reproduce the ground truth structure.

5.3. Pseudoknot Prediction

Table 6. Performances for the RNA sequences with pseudoknot on
the ncRNA dataset.

Method F1 Rec Prc Time (s)
RNAfold 0.473 0.483 0.478 -

RNAstructure 0.471 0.479 0.478 -
CONTRAfold 0.503 0.505 0.522 -

SPOT-RNA 0.621 0.614 0.645 -
MXfold2 0.507 0.502 0.534 -

E2Efold + E2E PP 0.603 0.574 0.651 0.048
E2Efold + Blossom 0.509 0.612 0.442 2.2732

E2Efold + Ours 0.616 0.601 0.635 0.8732

REDfold + RED PP 0.810 0.785 0.885 0.057
REDfold + Blossom 0.814 0.814 0.848 0.620

REDfold + Ours 0.818 0.807 0.865 0.008

Pseudoknots are a special type of local structures frequently
observed in RNAs, often excluded in the search space of
conventional algorithms. They occur when a base from a
loop (hairpin or internal) pairs with another base outside
the enclosing loop. Due to their significant roles in our
cells (Brierley et al., 2007; Staple & Butcher, 2005; Namy
et al., 2006), identifying RNA structures with pseudoknots
is a major challenge in the structure prediction task. In
light of this, we pick the samples in the benchmark datasets
that contain pseudoknots using a python library called Bi-
otite (Kunzmann & Hamacher, 2018).

In Table 6, the predictive performance against pseudoknot-
ted RNAs is evaluated on the ncRNA dataset. Here, RED-
fold + Ours achieves the best predictive performances yet
with a slight compromise in precision and recall, similarly
as above.
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Ground Truth

REDfold + Ours REDfold

E2Efold + Ours E2Efold

RNAfold RNAstructure SPOTRNA MXfold2CONTRAfold

Figure 4. Visualization of the predicted RNA secondary structures of ‘Ake.c.trnL’ with various methods.

5.4. Empirical Time Complexity

In Figure 5, we plot the average running time of the post-
processing methods as a function of RNA length, where
y-axis is in a logarithmic scale. We can observe a signif-
icantly greater efficiency of Ours for all length of RNAs,
compared with E2E PP which relies on a gradient-based
algorithm computed on a GPU environment, and Blossom
computed on a CPU environment. Considering the fact
that our algorithm is not optimized for GPU execution, the
empirical running time can be even improved further. 100 200 300 400 500 600 700
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Figure 5. Running time comparison of post-processing algorithms
with respect to the length of RNA sequences on the ncRNA dataset,
measured in seconds.
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6. Discussion
Summary. Our post-processing framework aims to en-
hance adherence to the fundamental constraints of RNA sec-
ondary structures. Leveraging the equivalence theorem in
Section 4.1, we employ an efficient algorithm that achieves
an exact solution to the ILP problem. Experiments high-
light that our post-processing method enables existing ML
models to satisfy the structural constraints, with slightly im-
proved performance and a significant reduction in runtime.

Limitation. Our work poses two major limitations: (1) The
two stage approach to RNA secondary structure prediction
disconnects the computational graph, making it challenging
to adopt an end-to-end model. If a backbone model is aware
of the subsequent post-processing step, it could make more
reasonable predictions in terms of the structural constraints
without the need for additional post-processing. Hence, con-
necting the computational graph of a neural network with
discrete optimization is an important yet non-trivial ques-
tion. (2) The Hungarian algorithm in the second stage has
a time complexity of O(L3), given an RNA sequence of
length L. Given that natural RNAs can be tens of thousands
of nucleotides long, cubic time complexity may not be sat-
isfactory for lengthy sequences. One may consider using
approximate algorithms faster than O(L3) as alternatives,
even if they compromise the optimality of the solution.

Future work. One future work of our interest is to push
the generalization capability of the state-of-the-art models,
especially for various RNA families and longer sequences.
Incorporating genetic language models alongside special-
ized structure prediction algorithms shows promise in this
regard. Several attempts have been made to develop uni-
versal RNA language models, or equivalently, foundation
models for RNAs (Akiyama & Sakakibara, 2022; Chen
et al., 2022; Wang et al., 2023). Since our post-processing
algorithm is model-agnostic, we expect that it will make a
great synergy with such advanced ML models.

Open problems. We argue that two critical open problems
in RNA folding remain largely unaddressed: (1) Existing
algorithms use the complete sequence information in the
input, overlooking the fact that RNAs begin to fold while
they are being made (Kramer & Mills, 1981; Pan & Sosnick,
2006; Bushhouse et al., 2022; Szyjka & Strobel, 2023). Put
it differently, RNAs can contain structures that are locally
optimal, contrary to the underlying assumption in existing
algorithms that find structures with globally minimal free
energy. Exploring ways to incorporate such dynamics into
ML models can be an interesting research direction. (2)
RNAs may permit multiple structure solutions. Organisms
have evolved to choose genetic sequences that have robust
folding patterns, as evidenced by some RNA sequences (Le
et al., 2002; Schultes et al., 2005). Alternative structures,
however, are also allowed as long as they can serve similar

functions in the cells (Russell et al., 2006; Ritz et al., 2013).
Integrating this flexibility into computational algorithms
and devising methods to evaluate models in light of this
possibility can be an important research problem.

Acknowledgement
This work was supported by the Technology Development
Program (S3284154, RS-2023-00303099) funded by the
Ministry of SMEs and Startups (MSS, Korea).

Impact Statement
The development of advanced computational models for pre-
dicting RNA secondary structures has significant potential
to impact various scientific and medical fields. These mod-
els can accelerate research in molecular biology, leading to
a deeper understanding of RNA functions and their roles in
various diseases. This knowledge could drive innovations
in drug development, enabling more effective treatments for
genetic disorders and other RNA-related conditions. Addi-
tionally, the integration of machine learning techniques in
RNA research can stimulate advancements in computational
biology, fostering interdisciplinary collaboration and tech-
nological progress. Ultimately, these enhancements in RNA
structure prediction will contribute to major breakthroughs
in personalized medicine, leading to improved quality of life
for patients. In ethical aspects, there are only a few potential
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Akiyama, M. and Sakakibara, Y. Informative RNA base em-

bedding for RNA structural alignment and clustering by
deep representation learning. NAR genomics and bioin-
formatics, 4(1):lqac012, 2022.

Akiyama, M., Sato, K., and Sakakibara, Y. A max-margin
training of RNA secondary structure prediction integrated
with the thermodynamic model. Journal of bioinformatics
and computational biology, 16(06):1840025, 2018.

Akutsu, T. Dynamic programming algorithms for RNA sec-
ondary structure prediction with pseudoknots. Discrete
Applied Mathematics, 104(1):45–62, 2000.

Andronescu, M., Condon, A., Hoos, H. H., Mathews, D. H.,
and Murphy, K. P. Efficient parameter estimation for
RNA secondary structure prediction. Bioinformatics, 23
(13):i19–i28, 2007.

Andronescu, M., Bereg, V., Hoos, H. H., and Condon, A.
RNA STRAND: The RNA secondary structure and sta-
tistical analysis database. BMC Bioinformatics, 9:340 –
340, 2008.

9



Enforcing Constraints in RNA Secondary Structure Prediction

Andronescu, M., Condon, A., Hoos, H. H., Mathews, D. H.,
and Murphy, K. P. Computational approaches for RNA
energy parameter estimation. RNA, 16(12):2304–2318,
2010.

Bellaousov, S. and Mathews, D. H. ProbKnot: fast predic-
tion of RNA secondary structure including pseudoknots.
RNA, 16 10:1870–80, 2010.

Bellaousov, S., Reuter, J. S., Seetin, M. G., and Mathews,
D. H. RNAstructure: web servers for RNA secondary
structure prediction and analysis. Nucleic acids research,
41(W1):W471–W474, 2013.
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A. Proof of Theorem 1
Theorem A.1 (Equivalence). Let x be a sequence of nucleotide with length L, Ŷ ∈ RL×L be a symmetric matrix that
represents initial model prediction, and s be an offset term that weighs the entries of importance. Given x, Ŷ , s, let
M := M(x, Ŷ , s) be a binary matrix whose (i, j)-th entry is defined as Mij = 1 if xixj ∈ {AU, GU, GC}, |i− j| ≥ 4,
and Ŷij > s, 0 otherwise. Let C(Ŷ ) := −2(Ŷ − s)⊙M . Then,

• For an optimal solution Ỹ ∗ of problem (1), define an L × L binary matrix Z∗ as Z∗
ij = 1 if and only if Ỹ ∗

ij = 1 ,
xixj ∈ {AU, GU, GC} and Ŷij > s. Then, Z∗ is an optimal solution of problem (2) with C = C(Ŷ ).

• For an optimal solution Z∗ with C = C(Ŷ ) of problem (2), Ỹ ∗ := Z∗ ⊙M + (Z∗ ⊙M)T is an optimal solution of
problem (1).

We claim that problems (1) and (2) introduced in Section 4 are equivalent, by showing that any optimal solution of each
optimization can be reduced to an optimal solution of the other optimization problem.
Proposition A.2. Let Ỹ be an L× L matrix satisfying the constraints in problem (1). Then there exists an L× L binary
matrix Z such that Ỹ = Z ⊙M + (Z ⊙M)T , Z1 ≤ 1 and ZT1 ≤ 1.

Proof. Set Z := Z(Ỹ ) to be Zij = 1 if and only if Ỹij = 1 , xixj ∈ {AU, GU, GC} and Ŷij > s. The equality holds
since every (i, j) satisfying Ỹij = 1 are contained in B := {AU,GU,GC,UA,UG,CG}. The inequality constraint holds
because Zij = 1 only if xi ∈ {A,G} and xj ∈ {U,C}, while ZT

ij = 1 only if xi ∈ {U,C} and xj ∈ {A,G}.

Lemma A.3. Let Ỹ ∗ be a feasible solution of problem (1). Then, Z∗ = Z(Ỹ ∗) is a feasible solution of problem (2).

Proof. For any Ỹ , Ỹ = Z +ZT and ⟨Ŷ − s, Ỹ ⟩ = 2⟨Ŷ − s,Z⟩ due to the symmetry of Ŷ . Therefore,

Ỹ ∗ = argmax
Ỹ

⟨Ŷ − s, Ỹ ⟩ s.t. Ỹ = Ỹ T , Ỹ 1 ≤ 1, Ỹij = 0 if xixj ∈ B or |i− j| < 4 (6)

= argmax
Ỹ

⟨Ŷ − s,Z(Ỹ ) +Z(Ỹ )T ⟩ s.t. Ỹ = Ỹ T , Ỹ 1 ≤ 1, Ỹij = 0 if xixj ∈ B or |i− j| < 4 (7)

= argmax
Ỹ

2⟨Ŷ − s,Z(Ỹ )⟩ s.t. Ỹ = Ỹ T , Ỹ 1 ≤ 1, Ỹij = 0 if xixj ∈ B or |i− j| < 4 (8)

Z∗ = argmax
Z

2⟨Ŷ − s,Z⟩ s.t. Zij ∈ {0, 1}, Z1 = 1, ZT1 = 1,

Zij = ZT
ij = 0 if xixj ∈ B or |i− j| < 4 (9)

= argmax
Z

2⟨(Ŷ − s)⊙M ,Z⟩ s.t. Zij ∈ {0, 1}, Z1 = 1, ZT1 = 1 (10)

= argmax
Z

2⟨(Ŷ − s)⊙M ,Z⟩ s.t. Zij ∈ {0, 1}, Z1 ≤ 1, ZT1 ≤ 1 (11)

where equation (8) holds due to the symmetry of Ỹ , (9) by Proposition A.2, (11) by extending the boundary conditions.

Lemma A.4. Let Z∗ be a feasible solution of problem (2). Then Ỹ ∗ := Z∗ ⊙M + (Z∗ ⊙M)T is a feasible solution of
problem (1).

Proof.

Z∗ = argmax
Z

2⟨(Ŷ − s)⊙M ,Z⟩ s.t. Zij ∈ {0, 1}, Z1 = 1, ZT1 = 1 (12)

= argmax
Z

2⟨(Ŷ − s)⊙M ,Z⟩ s.t. Zij ∈ {0, 1}, Z1 ≤ 1, ZT1 ≤ 1 (13)

= argmax
Z

2⟨Ŷ − s,Z ⊙M⟩ s.t. Zij ∈ {0, 1}, Z1 ≤ 1, ZT1 ≤ 1 (14)

= argmax
Z

⟨Ŷ − s,Z ⊙M⟩+ ⟨Ŷ − s, (Z ⊙M)T ⟩ s.t. Zij ∈ {0, 1}, Z1 ≤ 1, ZT1 ≤ 1 (15)

= argmax
Z

⟨Ŷ − s,Z ⊙M + (Z ⊙M)T ⟩ s.t. Zij ∈ {0, 1}, Z1 ≤ 1, ZT1 ≤ 1 (16)
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where (13) holds by extending the boundary condition from the inner product with non-negative matrix, and (15) holds due
to the symmetry of Ỹ . By Proposition A.2, Z∗ ⊙M + (Z∗ ⊙M)T is a feasible solution of problem (1).

Theorem A.1 holds as a corollary of Lemma A.3 and A.4.

B. Algorithmic Details
Here we provide a detailed explanation of Jonker-Volgenant algorithm (Jonker & Volgenant, 1988), which is an efficient
method for solving the assignment problem. The Jonker-Volgenant algorithm systematically adjusts dual variables to explore
and update the assignments using a shortest path augmenting algorithm, ensuring the total cost is minimized. The overall
pseudocode is presented in Algorithm 2.

At first, the required arrays and variables are initialized in lines 1-4. Line 5 initiates a loop over each row, and lines 6-10
initialize variables specific to the current row. Lines 12-25 iterate through each column to find the minimum value for each
un-visited column. It updates the current minimum assignment cost while tracking the column links, and determines the
minimum value across all un-visited columns. Then the dual variables are adjusted based on the minimum value in lines
26-33, and row and column with the smallest delta as visited are marked in lines 34-36. After these updates, lines 37-40
update the assignments to ensure optimality using a path augmentation technique, by backtracking through the column links
until all the columns are marked. The final output is constructed from lines 42-50.

C. Training Details
We leave two tables containing hyperparameters used in real data experiments. See Table 7 and 8. We conducted a grid
search to choose the values of learning rate and s from the respective ranges of 0.01 to 0.00001 and 0 to 5.

Table 7. Hyperparameters used for deep neural networks in experiments.
Hyperparameters E2Efold (Chen et al., 2020) REDfold (Chen & Chan, 2023)

Batch Size 20 (Stage 1), 16 (Stage 3) 1
Number of Epochs 50 (RNAStrAlign), 100 (ncRNA) 200

Learning Rate 0.001 0.001

Table 8. Hyperparameters used for post-processing stage in experiments.
Hyperparameters E2E PP RED PP Ours

Batch Size 1 1 1

s (threshold for score matrix)
3.5 (RNAStrAlign),

4.5 (ncRNA)
1 (RNAStrAlign),

1.5 (ncRNA)

3 (E2E, RNAStrAlign),
4 (E2E, ncRNA),

0 (RED, RNAStrAlign),
0.5 (RED, ncRNA),

Number of Iterations 50 100 Unneeded
ρ (coefficient for L1 penalty) 1 1.6 Unneeded
γα, γβ (decaying coefficient) 0.01, 0.1 0.01, 0.1 Unneeded

In addition, we used a largest-weight edge selection parameter k = 3 for the Blossom post-processing (Saman Booy et al.,
2022).
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Algorithm 2 Jonker-Volgenant algorithm (Jonker & Volgenant, 1988)
Require: C (an L× L matrix)

1: L← number of rows/columns in C
2: u← array of size L (dual variables for rows, initialized to 0)
3: v ← array of size L (dual variables for columns, initialized to 0)
4: p← array of size L+ 1 (row assignments, initialized to 0)
5: for i = 1 to L do
6: links← array of size L+ 1 (to track column links, initialized to 0)
7: mins← array of size L+ 1 (to store minimal values, initialized to∞)
8: visited← array of size L+ 1 (boolean array to track visited columns, initialized to False)
9: (markedi,markedj)← (i, 0) (to track the current row and column during the iteration)

10: repeat
11: delta←∞
12: for j = 1 to L do
13: if ¬visited[j] then
14: cur ← C[markedi][j]− u[markedi]− v[j]
15: if cur < mins[j] then
16: mins[j]← cur
17: links[j]← markedj
18: end if
19: if mins[j] < delta then
20: delta← mins[j]
21: markedj ← j
22: end if
23: end if
24: end for
25: for j = 1 to L do
26: if visited[j] then
27: u[p[j]]← u[p[j]] + delta
28: v[j]← v[j]− delta
29: else
30: mins[j]← mins[j]− delta
31: end if
32: end for
33: visited[markedj ]← true
34: markedi ← p[markedj ]
35: until markedi = 0
36: repeat
37: p[markedj ]← p[links[markedj ]]
38: markedj ← links[markedj ]
39: until markedj = 0
40: end for
41: result← array of size L
42: for j = 1 to L do
43: result[p[j]]← j
44: end for
45: Z ← 0L×L (initialize an L× L zero matrix for output)
46: for i = 1 to L do
47: Z[i][result[i]]← 1
48: end for
49: Output: Z
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D. Source Code and Dataset for Reproduction
To facilitate the replication of our experiments and to encourage further research in this area, we have made the source code
for our algorithm available for download. The source code can be accessed via the following link:

https://github.com/KangSeokjun/RNASecondaryStructure

The source code at the provided link was created by employing the deep neural network introduced in E2Efold (Chen et al.,
2020) and REDfold (Chen & Chan, 2023) for the deep learning stage. The file also include detailed experimental data used
in our research.

We encourage readers and researchers to explore, modify, and build upon our codebase to expand the scope of this research.

E. Additional Experiments
E.1. PR Curve

In Figure 6, We plot a PR curve to show the superior performance achieved by REDfold + Ours on ncRNA test set compared
to REDfold + RED PP. We tuned the threshold parameter s to obtain multiple points.

Figure 6. PR curve on the ncRNA dataset.

E.2. Relation of Benchmark Models and the Proposed Post-processing

The proposed PP method is model-agnostic in a sense that it can work with any computational model that makes a binary
classification decision (or a regression) for every pair of nucleotide. In Table 9, we conducted an ablation study to find out
whether ours can improve the performance of CONTRAfold on the RNAStrAlign dataset.

Table 9. Constraint violations and performances on the RNAStrAlign dataset.
Method (C2) (C3) (C4) F1 Rec Prc

CONTRAfold 0% 10.2% 0% 0.664 0.635 0.699
CONTRAfold + Ours 0% 0% 0% 0.693 0.705 0.690
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