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Abstract
Graph representation learning aims to represent
graphs as vectors that can be utilized in down-
stream tasks such as graph classification. In this
work, we focus on learning diverse representa-
tions that can capture the graph information as
much as possible. We propose quantifying graph
information using graph entropy, where we de-
fine a probability distribution of a graph based on
its nodes’ representations and global-graph rep-
resentation. However, the computation of graph
entropy is NP-hard due to the complex vertex-
packing polytope involved in its definition. To
address this challenge, we provide an approxima-
tion method leveraging orthonormal representa-
tions for graph entropy maximization. The pro-
posed method is implemented via graph neural
networks, resulting in informative node-level and
graph-level representations. Experimental results
demonstrate the effectiveness of our method in
comparison to many baselines in unsupervised
learning and semi-supervised learning tasks. The
code of our method is available at https://
github.com/MathAdventurer/GeMax.

1. Introduction
Graphs, representing entities and their relationships, are cru-
cial in diverse fields like chemistry (Debnath et al., 1991;
Kriege & Mutzel, 2012), biology (Borgwardt et al., 2005),
and social sciences (Yanardag & Vishwanathan, 2015).
Graph representation learning, transforming graphs into vec-
tors for tasks such as classification, is a challenging problem,
due to the non-Euclidean nature of graph data. Numerous
studies have focused on unsupervised graph-level represen-
tation learning using graph neural networks (GNNs), a no-
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table approach in this domain. Key methodologies include
InfoGraph (Sun et al., 2019), which maximizes mutual infor-
mation between graph-level and node-level representations,
and Graph Contrastive Learning techniques like GraphCL
(You et al., 2020), AD-GCL (Suresh et al., 2021), and JOAO
(You et al., 2021), which enhance graph representations
through various augmentation strategies. AutoGCL (Yin
et al., 2022) innovates with learnable graph view generators,
while GraphACL (Luo et al., 2023a) introduces a novel self-
supervised approach. InfoGCL (Xu et al., 2021) and SFA
(Zhang et al., 2023) focus on information transfer and fea-
ture augmentation in contrastive learning, respectively. GCS
(Wei et al., 2023), NCLA (Shen et al., 2023), S3-CL (Ding
et al., 2023), and ImGCL (Zeng et al., 2023) further refine
graph augmentation and learning techniques. GRADATE
(Duan et al., 2023) integrates subgraph contrast into multi-
scale learning networks. These methods are commonly
rooted in the InfoMax principle (Linsker, 1988), which will
be detailed in Section 4.1. Other types of methods for graph
representation learning include VGAE (Kipf & Welling,
2016; Hamilton et al., 2017; Cui et al., 2020), graph em-
bedding (Wu et al., 2020; Yu et al., 2021; Bai et al., 2019;
Verma & Zhang, 2019), self-supervised learning (Liu et al.,
2022b; Hou et al., 2022; Lee et al., 2022; Xie et al., 2022;
Wu et al., 2021; Rong et al., 2020; Zhang et al., 2021b;a;
Xiao et al., 2022), and various contrastive learning methods
(Le-Khac et al., 2020; Qiu et al., 2020; Ding et al., 2022;
Xia et al., 2022; Fang et al., 2022; Trivedi et al., 2022; Han
et al., 2022; Mo et al., 2022; Yin et al., 2022; Xu et al., 2021;
Zhao et al., 2021; Zeng & Xie, 2021; Li et al., 2022a;b; Wei
et al., 2022). More recently, Sun et al. (2023) presented a
Lovász principle for graph representation learning, which is
based on the graph Lovász number (Lovász, 1979) and uses
the handle vector learned by a GNN as graph representation.

For unsupervised graph representation learning, it is crucial
to ensure that the representations contain sufficient infor-
mation useful for downstream tasks. One may recall that
the representations given by an autoencoder are often very
useful for downstream tasks. The reason is that the repre-
sentations have preserved the major information of the input
data—they can well reconstruct the input data. For graph
data, it is impossible to use the vector representation of each
graph to reconstruct the graph itself, but it is possible to
make the vector preserve sufficient information from the
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graph. To quantify information, we can use entropy. En-
tropy is a fundamental concept in information theory and
is very useful for many machine learning problems such as
graph learning. Various entropy concepts have evolved to
quantify the complexity and information of graphs (Dehmer
& Mowshowitz, 2011; Dehmer, 2008). The most representa-
tive ones are the structural entropy (Mowshowitz & Dehmer,
2012) for node-level analysis and the edge entropy (Jiang
et al., 2020; Wang et al., 2021; Grebenkina et al., 2018; Aziz
et al., 2020; Luo et al., 2023b) for evaluating edge connec-
tivity. Additionally, von Neumann entropy (Liu et al., 2021;
2022a; Passerini & Severini, 2008; Minello et al., 2019; Ye
et al., 2014; Dong et al., 2019) and Rényi entropy (Pál et al.,
2010; Oggier & Datta, 2021) address spectral complexity
and graph clustering, respectively, while M-ILBO (Ma et al.,
2023) focuses on dataset entropy. It is important to dis-
tinguish these from János Körner’s original graph entropy
concept (Körner, 1973), grounded in information theory and
combinatorics. This concept, dating back to Shannon’s work
(Shannon, 1948) and further developed by Körner (Körner,
1973) and Lovász (Lovász, 1979), involves complex compu-
tational challenges like the vertex-packing polytope, leading
to NP-hard computation. Although graph entropy is theoret-
ically important and useful in the domains of combinatorics
and information theory, it remains unexplored in the field of
graph learning. Crucially, our findings indicate that graph
entropy is superior in leveraging the inherent structure of
graphs compared to other entropy approaches such as Shan-
non entropy and Rényi entropy.

This work introduces a novel approach called Graph
Entropy Maximization (GeMax) to graph representation
learning, marking the first instance of graph entropy’s appli-
cation in this context. Our approach establishes a probability
distribution for a graph by incorporating its nodes’ represen-
tations and a global graph representation learned through
two graph neural networks respectively. The computation
of graph entropy, however, presents a significant challenge,
as it is NP-hard due to the complexity associated with the
vertex-packing polytope in its definition. To tackle this chal-
lenge, we introduce a method of maximizing the approxi-
mation of graph entropy by utilizing Lovász’s orthonormal
representations. Our contributions are as follows.

• We introduce GeMax, a novel method for graph repre-
sentation learning, marking the inaugural exploration
of Körner’s graph entropy within the graph learning
community.

• Recognizing the NP-hard computation of graph en-
tropy, we propose a tractable approximation for GeMax
via leveraging orthonormal representations and present
an alternating updating method for its optimization.

• We conduct extensive experiments to evaluate the per-
formance of our GeMax method in comparison to Info-
Max Principle (Linsker, 1988; Sun et al., 2019), Lovász

Figure 1: Indicator matrix of independent sets of a pentagon

Principle (Sun et al., 2023), as well as Shannon entropy
and Rényi entropy maximization, in unsupervised and
semi-supervised graph representation learning tasks.

2. Preliminary
In this section, we present the definition of graph entropy
(Körner, 1973) and Lovász’s orthonormal representations
(Lovász, 1979). Graph entropy, a crucial concept in proba-
bilistic graph theory, was first introduced by János Körner
(Körner, 1973). We focus on its combinatorial definition,
which revolves around the vertex-packing polytope. An
independent set in a graph G is a group of vertices where
no two are adjacent. Let B = [b1, ..., bNb

] ∈ {0, 1}|V |×Nb

be the indicator matrix of the independent sets of G, with
Nb being the number of such sets, and each column bi indi-
cating a specific independent set. For instance, on the pen-
tagon graph shown by Figure 1, where Nb = 10, the vector
b6 = [1, 0, 1, 0, 0]⊤ highlighted by the blue rectangle is the
independent set comprising {v1, v3}. The vertex-packing
polytope VP(G) of graph G is defined as follows.

Definition 2.1 (vertex-packing polytope). For a graph G
with vertices set V , VP(G), the vertex-packing polytope of
G, is defined as the convex corner of its independent sets’
indicator vectors. Specifically, with B ∈ {0, 1}|V |×Nb as
the indicator matrix and λ ∈ RNb

+ , we define VP(G) as

VP(G) :=
{
a ∈ R|V | : a = Bλ, λ ≥ 0,

∑
i λi = 1

}
.

In a probabilistic graph (G,P ), where P represents the
probability distribution across its vertices, defined as P =
{P1, P2, ..., Pn} with Pi being the probability density of
vertex i, graph entropy is denoted as Hk(G,P ). Based on
VP(G), the definition of Hk(G,P ) is as follows.

Definition 2.2 (Graph Entropy (Körner, 1973)). For a prob-
abilistic graph (G,P ), its entropy with respect to P is

Hk(G,P ) := min
a∈VP(G)

|G|∑
i=1

−Pi log(ai).

László Lovász established the concept of orthonormal rep-
resentations for graphs, which can be formally defined as:

Definition 2.3 (Set of Lovász’s Orthonormal Representa-
tions (Lovász, 1979)). Consider a graph G = (V,E). Each
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vertex i inG is represented by a unit vector zi ∈ Rd, indicat-
ing its d-dimensional representation. The set of orthonormal
representations for G, denoted as T (G), is:

T (G) := {Z ∈ Rn×d : ∥zi∥2 = 1 for i = 1, 2, ..., n;

z⊤
i zj = 0, ∀(i, j) /∈ E}.

3. Proposed Methods
3.1. Graph Entropy Maximization

Given a set of N graphs G = {G1, G2, . . . , GN} drawn
from some unknown distribution D in G, we want to learn
a model F : G→ Rd × Rn×d to represent each graph as a
vector and represent its vertices as vectors, i.e., (gj ,Zj) =
F (Gj), where gj ∈ Rd and Zj ∈ Rnj×d denote the graph-
level and node-level representations of Gj respectively, and
nj is the number of nodes of Gj . F should capture the
important information of the underlying distribution D and
g1,g2, . . . ,gN should be useful in downstream tasks such
as graph classification. A fundamental question is

How to quantify the goodness of (gj ,Zj)?

We propose to use graph entropy Hk, defined by Definition
2.2, as a measure of the goodness of graph representations.
We have the following observation.

• Graph entropy serves as an indicator of the inherent
uncertainty present in a probabilistic graph (G,P ),
according to the minimal possible code rate definition
in graph theory (Körner, 1973).

• By Definition 2.2, we can regard Hk(G,P ) as the min-
imum “cross-entropy” between P and all possible a in
VP(G), though

∑
ai may not be 1. Thus, Hk(G,P )

measures the minimum inconsistency between P and
the combination of independent sets of G.

Graph entropy, if computationally feasible, is particularly
valuable for graph representation learning, as it directly
correlates the entropy measure with the graph’s structure
through VP(G). In contrast, other commonly used entropy
measures such as Shannon entropy are primarily defined
upon distribution, without direct consideration of the graph’s
structural aspects. Consequently, these traditional entropy
measures may not be effective in producing graph represen-
tations with rich structural information.

In Definition 2.2, Hk is based on the graph structure G
and vertex distribution P , where the former is given and
fixed but the latter is unknown and should be determined if
possible. We define P using (g,Z), i.e., P is a function of
F (G), formulated as PF (G), connecting graph entropy and
graph representations. Then we propose to find an F that
yields the representations with maximum graph entropy:

max
F∈F

EG∼D
[
Hk

(
G,PF (G)

)]
, (1)

where F denotes some hypothesis space. Based on the pre-
vious discussion, maximizing graph entropy implies that
(g,Z) makes P inconsistent with the combination of in-
dependent sets of G, thereby preserving the connection
information on G. A common model F (G) on all graphs
may make the representations of different graphs similar,
but maximizing graph entropy preserves discriminative in-
formation of the graphs useful for downstream tasks such
as graph classification.

In this work, we let F be a GNN. Specifically, denote A
as the space of the adjacency matrix A and X as the space
of node feature matrix X . Denote F = (Fg, FZ) and let
Fg(·, ·; θ) : A × X → Rd be a GNN with parameter θ for
graph-level representation learning and FZ(·, ·;ϕ) : A ×
X → Rn×d be another GNN with parameters ϕ for node-
level representation learning. For G ∈ G with adjacency
matrix A and feature matrix X , we obtain

gθ = Fg(A,X; θ), and Zϕ = FZ(A,X;ϕ). (2)

Then we denote the probability of nodes in G as

PF (G) = [P1(g
θ,Zϕ), ..., Pn(g

θ,Zϕ)] ≜ P (A,X; θ, ϕ),

where 0 ≤ Pi(g
θ,Zϕ) ≤ 1,

∑
Pi(g,Z) = 1, and

Pi(A,X; θ, ϕ) ≡ Pi(g
θ,Zϕ). Here we can define PF (G)

as a Boltzmann distribution as follows:

Pi(g
θ,Zϕ) :=

exp(−∥zϕi − gθ∥22)∑
l∈V exp(−∥zϕl − gθ∥22)

, ∀ i ∈ V. (3)

Note that instead of the Boltzmann distribution, one may
use other distributions such as

Pi(g
θ,Zϕ) =

(1 + ∥zϕi − gθ∥2)−1∑
l∈V (1 + ∥z

ϕ
l − gθ∥2)−1

.

We empirically find that our method is not sensitive to the
definition of PF (G), possibly due to the high expressive
ability of neural networks.

Now, invoking the definitions of F and P into (1), we solve

max
θ,ϕ

N∑
j=1

Hk (Gj , P (Aj ,Xj ; θ, ϕ)) (4)

or equivalently

max
θ,ϕ

N∑
j=1

min
a∈VP(Gj)

nj∑
i=1

−Pi(Aj ,Xj ; θ, ϕ) log(ai), (5)

which is our Graph Entropy Maximization (GeMax) method
for graph representation learning. The computation of graph
entropy and the procedure of the proposed GeMax method
are illustrated in Figure 2.
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Figure 2: The computation of graph entropy using toy graphs and the illustration of proposed GeMax method

However, directly solving GeMax is computationally chal-
lenging for large graphs because computing the vertex-
packing polytope VP(G) involves computing the indicator
matrix B of independent sets, which is equivalent to solv-
ing the NP-hard graph coloring problem (Jensen & Toft,
2011). Previous studies (Rezaei, 2013) typically utilized
graph entropy Hk for theoretical analysis and provided its
upper and lower bounds, instead of computing it exactly.
The best-known lower bound of Hk (Boreland, 2018) is as

H(P )− logα(G) ≤ Hk(G,P ) (6)

where α(G) is the independent number and H(P ) is the
Shannon entropy. Since α(G) remains constant for a given
G, maximizing this lower bound is equivalent to maximizing
Shannon entropy over the vertex set. This approach does not
directly capture any topological information of the graph’s
structure. The experiments in Section 5.2 will show the
unsatisfactory performance of this approach. To overcome
this limitation, we introduce an approximation method for
graph entropy maximization in the following two sections.

3.2. Approximation Method for GeMax

To leverage the information from the vertex packing poly-
tope, while avoiding NP-hard calculations, we optimize
objective (4) over its subset, denoted as VPSub(G).

Definition 3.1 (Subset of VP(G)). Let 1(·) be an element-
wise indicator function such that [1(a)]i = 1 if ai > 0 and
[1(a)]i = 0 for ai = 0. We define a subset of VP(G) as

VPSub(G) :=
{
a ∈ R|V | : 1(a) ∈ VP(G), 0 ≤ ai ≤ 1

}
.

The following proposition indicates that VPSub(G) main-
tains the two important properties of VP(G).

Proposition 3.2. 1) VPSub(G) is a convex corner; 2) All the

indicator vectors of independent sets of G are contained in
VPSub(G), i.e., bi ∈ VPSub(G), ∀i = 1, 2, ..., Nb.

Thus, solving GeMax, namely (5), over VPSub(G) instead
of VP(G), can also leverage the information of independent
sets ofG. Nevertheless, this subset still necessitates calculat-
ing the independent set indicator matrix B, which remains
NP-hard. To address this challenge, we define PF (G) on the
set of orthonormal representations, presented by Definition
2.3, rather than the entire real space. The following theorem
provides the connection between orthonormal representa-
tions and our VPSub(G).

Theorem 3.3. Let Da = diag(a) = diag(a1, a2, . . . , an)
with 0 ≤ ai ≤ 1 ∀i ∈ [n] and Z = [z1, z2, . . . ,zn]

⊤ ∈
Rn×d. If Z ∈ T (G) and z⊤

i zj ̸= 0 ∀(i, j) ∈ E, then
Da(ZZ⊤)Da = D2

a if and only if a ∈ VPSub(G)

According to Theorem 3.3, solving GeMax (5) over
VPSub(G) is equivalent to solving the following problem

max
θ,ϕ

N∑
j=1

min
aj

nj∑
i=1

−Pi(gθj ,Z
ϕ
j ) log(aj(i)),

s.t. Zϕ
j ∈ T (Gj), Daj

(Zϕ
j Z

ϕ
j

⊤
)Daj

= D2
aj
,

0 ≤ aij ≤ 1, ∀ i ∈ [nj ], j ∈ [N ].

(7)

Note that here we do not need to consider the constraints
z⊤
i zj ̸= 0 ∀(i, j) ∈ E because in GNN, the con-

nected nodes always share some information, which means
z⊤
i zj ̸= 0 always holds.

Objective (7) serves as an effective approximation to objec-
tive (5), surpassing the approach of merely maximizing the
lower bound of graph entropy in graph representation learn-
ing, as detailed in (6). The employment of orthonormal rep-
resentations enables the preservation of non-adjacency char-
acteristics and hence pursues diverse representations, con-
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sistent with the information maximization goal of GeMax.
Actually, (7) is graph entropy maximization under the condi-
tion that PF (G) is defined over orthonormal representations.

We can use the Lagrange multiplier method or exact penalty
method to solve the constrained optimization problem (7).
In this work, we propose to relax (7) to a regularized op-
timization problem, for which the optimization is much
easier than the constrained optimization. Specifically, first,
for the orthonormality constraint Zϕ

j ∈ T (Gj), we define
the following regularization

Lorth(G;ϕ) :=
N∑
j=1

∥∥∥Mj ⊙
(
Zϕ
j (Z

ϕ
j )

⊤ − In

)∥∥∥2
F
, (8)

where Mj = 1nj×nj −Aj is a binary mask matrix, and
Inj is an identity matrix of size nj × nj , and the operator
⊙ denotes the Hadamard product.

For the constraints Daj
(Zϕ

j Z
ϕ
j

⊤
)Daj

= D2
aj

and aij ≤
1, we define the following regularization, termed as sub-
vertex-packing polytope loss:

Ls-vp(G; θ, ϕ,A) :=
N∑
j=1

∥∥∥Daj

(
Zϕ
j (Z

ϕ
j )

⊤
)
Daj −D2

aj

∥∥∥2
F

s.t. 0 ≤ aij ≤ 1, ∀i ∈ [nj ], aj ∈ A
(9)

where Daj = diag(aj) and A = {a1, . . . ,aN}. Note that
the constraints 0 ≤ aij ≤ 1 can be easily handled through
the projection method.

For convenience, we denote the graph entropy objective in
(7) as follows:

LHk
(G; θ, ϕ,A) =

N∑
j=1

nj∑
i=1

−Pi(gθj ,Z
ϕ
j ) log(aj(i)). (10)

Then the objective for θ and ϕ is

J1(G; θ, ϕ,A) :=LHk
(G; θ, ϕ,A)− µ · Lorth(G;ϕ)

− γ · Ls-vp(G; θ, ϕ,A)
(11)

while the objective for A is

J2(G; θ, ϕ,A) :=LHk
(G; θ, ϕ,A) + γ · Ls-vp(G; θ, ϕ,A)

s.t. 0 ≤ aij ≤ 1, ∀i ∈ [nj ], aj ∈ A,
(12)

where µ > 0 and γ > 0 are regularization hyperparameters.

3.3. Optimization Algorithm

We propose to use alternating updating to solve (11) and
(12), namely, alternately optimize A and (θ, ϕ). Suppose at
iteration t we have A(t) = {a(t)

1 , . . . ,a
(t)
N } where a

(t)
j ∈

Algorithm 1 Optimization for GeMax (11) and (12)

Input: G, µ, γ, t = 0.
1: Random initialization of parameters: θ(0), ϕ(0).
2: Let A(0) = {a(0)

j }Nj=1 = {[1/nj , ..., 1/nj ]}Nj=1.
3: repeat
4: θ(t+1), ϕ(t+1) = argmax θ,ϕ J1(G; θ, ϕ,A(t)).

5: A(t+1) = argmin A∈C J2(G; θ(t+1), ϕ(t+1),A).
6: t← t+ 1
7: until convergence conditions are met

Output: θ(t+1), ϕ(t+1).

VPSub(Gj) ∀j ∈ [N ]. At iteration t + 1, we fix A(t) and
solve the following sub-problem:

θ(t+1), ϕ(t+1) = argmax
θ,ϕ

J1(G; θ, ϕ,A(t)). (13)

Then, fixing θ(t+1) and ϕ(t+1), we solve

A(t+1) = argmin
A∈C

J2(G; θ(t+1), ϕ(t+1),A) (14)

where C denotes the constraints 0 ≤ aij ≤ 1 for each vector
in A. It can be solved by projected gradient descent. Specif-
ically, at iteration s+ 1 of the inner loop of the subproblem,
for each vector in A, let

a(s+1) = Proj[0,1]
(
a(s) − ϵδ(s+1)

)
, (15)

where δ is the derivative of a, ϵ denotes the step size, and
the element-wise projection operator Proj[0,1] is

Proj[0,1] (ā) =


0, if ā ≤ 0,

1, if ā ≥ 1,

ā, otherwise.
(16)

Algorithm 1 summarizes the whole procedures of the opti-
mization. In our experiments, we set µ = γ = 0.5.Note that
the solution of the regularized optimization cannot exactly
satisfy the constraints in (7). To ensure the constraints, one
may consider using the inexact penalty method to solve the
problem, which is just increasing γ and η gradually in the
iterative optimization. We have found that the represen-
tations given by the regularized optimization are as good
as those given by the constrained optimization. The com-
parison experiments between regularized and constrained
optimizations are in Appendix D.4.

The time and space complexities of Algorithm 1 are shown
by the following proposition.

Proposition 3.4. Without loss of generality, suppose n1 =
n2 = · · · = n, |E1| = |E2| = · · · = m, both Fg and FZ
have L − 1 hidden layers, the widths of the hidden layers
and the input feature dimension of the graphs are all d, the
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numbers of iterations of the subproblems for {θ, ϕ} and A
are τ1 and τ2 respectively, and the number of the outer loop
iterations of Algorithm 1 is T . Then the space complexity of
the algorithm isO(N(m+Ldn+n2)+Ld2) and the time
complexity of the algorithm is O(T (τ1N(L(dm + d2n) +
dn2) + τ2Nn

2)).

Note that for mini-batch optimization, the N in the propo-
sition should be replaced by the bath size B. In general,
the space and time complexities of Algorithm 1 are linear
with the number of graphs. Therefore, our method GeMax
is scalable to large datasets provided that n is not too large.

4. Related Work
4.1. Previous Graph Representation Learning Principles

InfoMax Principle InfoMax (Linsker, 1988) is highly in-
fluential in current unsupervised graph representation learn-
ing and serve as a foundation of numerous methods, in-
cluding InfoGraph (Sun et al., 2019), GraphCL (You et al.,
2020), AD-GCL (Suresh et al., 2021), JOAO (You et al.,
2021), AutoGCL (Yin et al., 2022), GraphACL (Luo et al.,
2023a), InfoGCL (Xu et al., 2021), GCS (Wei et al., 2023),
and ImGCL (Zeng et al., 2023). Taking InfoGraph (Sun
et al., 2019) as an example, it maximizes the mutual infor-
mation between graph-level and node-level representations:

ϕ∗, θ∗, φ∗ = argmax
ϕ,θ,φ

|G|∑
j=1

1

|Vj |
∑
i∈Vj

Iφ(g
θ
j , z

ϕ
ij), (17)

where Iφ is the Jensen-Shannon MI estimator. More details
of InfoMax can be found in Appendix D.1.

Lovász Principle The Lovász principle (Sun et al., 2023),
based on the Lovász number ϑ(G) (Lovász, 1979) for a
graph G, uses the handle vector c as graph representation.
The formulation is

ϕ∗, θ∗ = argmin
ϕ,θ

|G|∑
j=1

max
i∈Vj

1(
(zϕi )

⊤gθj
)2 + ηℓorth(G; θ, ϕ),

(18)
where ℓorth(G; θ, ϕ) is the orthonormal regularization. It was
shown by (Sun et al., 2023) that the Lovász principle often
outperforms the InfoMax principle in graph representation
learning. Both the Lovász principle and InfoMax principle
will be compared with our GeMax in Section 5.

Information Bottleneck Principle Graph Information
Bottleneck (GIB) (Wu et al., 2020) and Subgraph Infor-
mation Bottleneck (SIB) (Yu et al., 2021) aim to obtain
minimal yet sufficient representations for downstream tasks.
However, their effectiveness diminishes in the absence of
predefined downstream tasks during the learning stage, lim-
iting their suitability for unsupervised and semi-supervised

graph learning. Therefore, we will not include GIB and SIB
in the comparison experiments.

4.2. Entropy-Based Graph Learning Methods

Structural Entropy Structural entropy (Mowshowitz &
Dehmer, 2012) leverages Shannon entropy and node struc-
tural components like node degree, widely used for topolog-
ical analysis (Luo et al., 2021; Yang et al., 2023; Wang et al.,
2023; Wu et al., 2022; Zou et al., 2023; Fang et al., 2021).
Another key metric, edge entropy (Jiang et al., 2020; Wang
et al., 2021; Grebenkina et al., 2018; Aziz et al., 2020; Luo
et al., 2023b), focuses on edge interconnectivity to assess
graph structures. For instance, the degree entropy of graph
G with vertex set V and node degree di is:

Hdeg(P ) = −
∑
i∈V

Pi logPi, where Pi =
di∑
j∈V dj

. (19)

The degree entropy of a graph G, inherently fixed by its
degree structure, presents reformulation challenges in graph
representation learning. It is notably complex to adapt this
entropy into a format suitable for optimization via node and
graph representations. Similar challenges extend to other
structural entropy forms. Consequently, these entropies are
excluded from our comparative experiments due to their
inherent limitations.

Non-Structural Entropy Non-structural entropy meth-
ods, such as Shannon entropy (Shannon, 1948), Rényi en-
tropy (Pál et al., 2010; Oggier & Datta, 2021) used in graph
clustering, and the von Neumann entropy (Liu et al., 2021;
2022a; Passerini & Severini, 2008; Minello et al., 2019; Ye
et al., 2014; Dong et al., 2019) for spectral complexity, dif-
fer significantly from structural approaches. M-ILBO (Ma
et al., 2023) calculates graph dataset entropy by optimizing
Information Lower Bound (ILBO).

These entropies are defined on probability distributions, as
shown in Eq. (3) for graph G. Thus, they can be reformu-
lated as objective functions for graph representation learning.
For instance, Shannon entropy’s representation objective is

JSh(G; θ, ϕ) =
|G|∑
j

∑
i∈Vj

−Pi(gθ,Zϕ) log(Pi(g
θ,Zϕ))

(20)
Rényi entropy’s representation objective is expressed as

JRényi(G; θ, ϕ) =
|G|∑
j

1

1− α
log

∑
i∈Vj

(Pi(g
θ,Zϕ))α


(21)

where we set α = 1. However, some types, like von Neu-
mann entropy, are less suited for graph representation learn-
ing due to their reliance on eigenvalues. Both Shannon and
Rényi entropies will be compared with GeMax in Section 5.
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5. Experiments
In this section, we evaluate the effectiveness of our GeMax
method in graph learning tasks including unsupervised
and semi-supervised representation learning, on TUdataset
(Morris et al., 2020). The statistics of the considered graph
datasets are in Table 1.

Table 1: Statistics of TUdataset (Morris et al., 2020)

Name
# of

graphs
# of

classes
# of

nodes
node
labels

node
attributes

MUTAG 188 2 17.9 yes no

PROTEINS 1113 2 39.1 yes yes

DD 1178 2 284.32 yes no

NCI1 4110 2 29.9 yes no

COLLAB 5000 3 74.49 no no

IMDB-B 1000 2 19.8 no no

REDDIT-B 2000 2 429.63 no no

REDDIT-M5K 4999 5 508.52 no no

5.1. Comparison with InfoMax and Lovász Principles

Our objective is to evaluate three unsupervised graph rep-
resentation learning principles: InfoMax (17), the Lovász
principle (18), and our GeMax (5). To facilitate fair com-
parisons, we maintain the neural network architectures used
in InfoMax methods while substituting their objective with
either the Lovász Principle (18) or our GeMax (5), keeping
all other structures and parameters unchanged. It is impor-
tant to note that information bottleneck principles, being
task-specific, are not included in this comparison.

Unsupervised Learning Following (Sun et al., 2019; Luo
et al., 2023a; Wei et al., 2023; Sun et al., 2023), we train
a graph representation model on unlabeled data to obtain
graph representations and use these representations and
graph labels to train an SVM classifier. Our experimen-
tal setup follows GraphACL (Luo et al., 2023a). Actually,
all the six InfoMax methods, including GraphCL (You et al.,
2020), AD-GCL (Suresh et al., 2021), JOJOv2 (You et al.,
2021), AutoGCL (Yin et al., 2022), GraphACL (Luo et al.,
2023a) and GCS (Wei et al., 2023) are based on the architec-
ture of InfoGraph (Sun et al., 2019). Specifically, they use
a 5-layer GIN (Xu et al., 2018) with hidden size 128 as the
representation model. The model is trained with a batch size
of 128 and a learning rate of 0.001. For those contrastive
learning methods (e.g., JOJOv2 and AutoGCL), they use 30
epochs of contrastive pre-training under the naive strategy.
We repeated the experiments 10 times with different random
seeds. Each time, we performed 10-fold cross-validation on
each dataset. In each fold, we use 90% of the total data as
unlabeled data for contrastive pre-training and 10% as la-
beled testing data. More details are in Appendix D.1 and the

sensitivity analysis for hyperparameters is in Appendix D.5.
The average classification accuracy (ACC) with standard
deviation is reported in Table 2 while the average results
across all methods are in Figure 3a. Our GeMax outper-
formed InfoMax and Lovász principles in almost all cases.

Semi-supervised Learning Following (Sun et al., 2019;
Yin et al., 2022; Sun et al., 2023), we compare the three
unsupervised graph representation learning principles in
semi-supervised learning tasks. The loss function of semi-
supervised InfoMax method methods is shown by (33) in
Appendix D.1. To ensure fair comparisons, we follow (33)
and replace the InfoMax (17) with Lovász Principle (18) or
our GeMax (5). Following the settings of AutoGCL (Yin
et al., 2022), we employ a 10-fold cross-validation on each
dataset. For each fold, we use 80% of the total data as
the unlabeled data, 10% as labeled training data, and 10%
as labeled testing data. The classifier for labeled data is a
ResGCN (Chen et al., 2019) with 5 layers and a hidden size
of 128. More details about the semi-supervised learning
are in Appendix D.1. We repeat each experiment 10 times
and report the average classification accuracy in Table 3.
The average results across all methods are shown in Figure
3b. Consistent with the unsupervised learning tasks, our
GeMax still outperformed InfoMax and Lovász principles
in semi-supervised graph representation learning.

5.2. Comparison of Different Entropy Measures

We evaluate the efficacy of graph entropy against other mea-
sures in graph representation learning. Despite various en-
tropies being explored in GNNs, a standardized approach for
graph representation learning remains elusive. As outlined
in the related work, our experiments adapt established super-
vised and unsupervised frameworks, substituting the GeMax
objective (Eq. (5)) with Shannon (Eq. (20)) or Rényi en-
tropy objectives (Eq. (21)). After conducting experiments
10 times, average accuracies are reported in Tables 4 and
6. Our visual analyses in Figures 4a and 4b indicate graph
entropy’s superiority in capturing topological information,
outperforming Shannon and Rényi entropies that primarily
focus on vertex set entropy and may miss crucial structural
aspects of graphs.

5.3. More Experiment Results

We provide additional experiment results and analyses in
the appendix. We compare the performance of graph en-
tropy against other entropy measures in graph representation
learning tasks (Appendix D.2) and present a comparison
between the exact computation of graph entropy and other
graph learning principles for small graphs (Appendix D.3).
Furthermore, We explore an alternative optimization ap-
proach using the inexact penalty method (Appendix D.4),
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Table 2: Classification accuracy (%) of unsupervised learning using different principles. The baseline results are from
previous works. The number in bold denote the best principle among the three ones. The numbers with ∗ denote he best
method for a dataset. This notation is also applied in Table 3, Table 4, and Table 6.

Method Principle MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

InfoGraph
InfoMax 89.01±1.13 74.44±0.31 72.85±1.78 76.20±1.06 70.65±1.13 73.03±0.87 82.50±1.42 53.46±1.03
Lovász 89.67±1.54 75.26±1.43 74.13±1.49 78.21±1.35 71.46±1.21 73.87±1.32 84.76±1.86 54.57±1.38
GeMax 92.44±1.23∗ 76.87±1.99 75.43±1.10 80.21±1.83 73.25±1.17 73.31±1.53 86.45±1.43 56.16±2.40

GraphCL
InfoMax 86.80±1.34 74.39±0.45 78.62±0.40 77.87±0.41 71.36±1.15 71.14±0.44 89.53±0.84 55.99±0.28
Lovász 87.24±1.96 75.87±1.17 79.14±1.67 79.13±1.27 72.52±1.37 72.44±1.46 89.87±2.13 56.12±1.73
GeMax 88.83±1.10 77.60±1.18∗ 78.24±1.84 80.89±1.03 74.21±1.55 74.31±1.74 90.76±1.47 57.87±1.91

AD-GCL
InfoMax 87.13±1.56 73.59±0.65 74.49±0.52 69.67±0.51 73.32±0.61 71.57±1.01 85.52±0.79 53.00±0.82
Lovász 87.44±2.13 74.29±2.80 76.25±1.48 75.12±1.13 73.85±1.05 73.02±1.35 87.11±1.95 54.61±2.35
GeMax 88.37±1.05 75.96±2.30 77.07±1.02 77.15±1.83 72.02±1.54 73.62±1.56 89.88±1.85 56.61±1.38

JOAOv2
InfoMax 86.91±1.01 71.25±0.85 66.91±1.75 72.99±0.75 70.40±2.21 71.60±0.86 78.35±1.38 55.57±2.86
Lovász 87.19±1.92 73.15±1.46 73.15±2.17 74.15±1.67 72.62±1.43 72.18±1.72 84.19±1.67 53.74±1.70
GeMax 86.47±1.19 74.91±1.90 74.68±1.91 76.15±1.01 73.17±1.88 71.62±1.18 87.19±1.89 55.24±1.28

AutoGCL
InfoMax 88.64±1.08 75.80±0.36 77.57±0.60 82.00±0.29 70.12±0.68 73.30±0.40 88.58±1.49 56.75±0.18
Lovász 89.02±1.47 76.23±1.25 78.95±1.39 82.63±2.12∗ 71.31±1.72 73.95±1.36 89.41±1.81 57.28±1.62
GeMax 90.63±1.15 77.12±1.75 80.17±0.87 81.11±1.85 72.08±1.35 74.03±1.91 91.84±2.06 57.86±1.72∗

GraphACL
InfoMax 90.21±0.94 75.47±0.38 79.34±0.42 81.22±1.31 74.72±0.55 74.29±0.67 88.58±1.49 56.11±1.33
Lovász 90.55±0.82 75.88±1.36 80.22±1.01 80.57±1.76 74.48±0.78 74.33±1.88 89.30±1.60 56.17±2.07
GeMax 91.86±0.70 77.29±1.14 81.08±1.09∗ 81.19±1.86 75.94±0.90 75.03±1.72 91.45±1.25 57.48±2.06

GCS
InfoMax 90.45±0.81 75.02±0.39 77.22±0.30 77.37±0.30 75.56±0.41 73.43±0.38 90.98±0.28 57.04±0.49
Lovász 90.78±1.28 76.58±0.59 78.69±0.53 78.35±1.04 76.62±0.72∗ 74.58±1.01 91.23±1.44 56.97±1.51
GeMax 91.37±0.95 76.12±0.76 78.82±0.76 80.08±1.50 76.15±1.46 75.19±1.76∗ 92.51±1.05∗ 57.45±1.79

(a) Average ACC of Table 2 (Unsupervised) (b) Average ACC of Table 3 (Semi-supervised)

Figure 3: Average results of graph representation learning using different principles

(a) Average ACC of Table 4 (Unsupervised) (b) Average ACC of Table 6 (Semi-supervised)

Figure 4: Average results of graph representation learning via maximizing different entropy objectives

with results suggesting that regularized optimization yields
representations of comparable quality to constrained opti-
mization. Additional investigations include parameter sensi-
tivity analysis (Appendix D.5), ablation studies to elucidate

the significance of each component in the GeMax objectives
(Appendix D.6), and comparisons of different probability
distributions for defining PF (G) (Appendix D.7). We also
illustrate the convergence behavior of GeMax (Appendix
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Table 3: Classification accuracy (%) of semi-supervised learning using different graph learning principles.

Method Principle NCI1 PROTEINS DD COLLAB REDDIT-B REDDIT-M5K

InfoGraph
InfoMax 73.79±0.44 75.13±0.74 76.99±1.29 73.79±1.25 86.50±1.37 53.66±1.85
Lovász 72.58±1.45 74.56±1.01 77.05±1.17 74.82±0.22 88.14±1.71 51.62±0.96
GeMax 74.89±1.21 75.87±1.94 75.17±1.95 76.67±1.39 90.67±1.99 53.08±1.54

GraphCL
InfoMax 74.63±0.25 74.17±0.34 76.17±1.37 74.23±0.21 89.11±0.19 52.55±0.45
Lovász 75.46±1.53 75.12±1.87 77.46±1.52 76.12±1.15 89.87±1.68 53.69±1.68
GeMax 76.59±1.55 76.06±1.83 78.25±1.23 77.73±1.27 91.84±1.64∗ 54.10±3.22

AD-GCL
InfoMax 75.18±0.31 73.96±0.47 77.91±0.73 75.82±0.26 90.10±0.15 53.49±0.28
Lovász 76.62±1.83 74.21±1.71 78.27±1.39 76.27±1.74 90.36±1.56 54.06±1.32
GeMax 76.47±1.82 76.76±1.94∗ 79.20±0.65∗ 77.79±1.66 91.18±0.82 56.64±1.23∗

JOAOv2
InfoMax 74.86±0.39 73.31±0.48 75.81±0.72 75.53±0.18 88.79±0.65 52.71±0.28
Lovász 76.13±1.76 73.73±1.86 76.27±1.48 77.35±1.27 89.31±1.85 53.17±1.76
GeMax 77.36±1.48∗ 75.18±0.80 77.53±1.27 78.10±1.75 90.38±1.87 53.27±2.18

AutoGCL
InfoMax 73.75±2.25 75.65±1.40 77.50±4.41 77.16±1.48 79.80±1.47 49.91±2.70
Lovász 75.77±1.48 76.36±1.57 78.16±1.61 77.63±1.78 84.64±1.53 51.31±1.81
GeMax 76.86±1.98∗ 76.23±1.47 79.61±1.21∗ 78.21±1.27 88.43±1.57 51.63±1.97

GraphACL
InfoMax 74.35±1.17 73.20±1.57 75.71±0.82 75.32±0.13 88.49±0.94 51.70±1.05
Lovász 75.32±1.38 74.99±1.35 76.33±2.17 77.24±1.77 89.67±1.84 54.54±1.67∗
GeMax 76.56±1.67 76.89±1.41∗ 77.28±0.46 79.02±1.20∗ 91.38±1.50 52.98±3.02

GCS
InfoMax 74.79±1.36 75.31±1.21 76.18±1.76 75.06±1.25 87.82±1.74 49.16±4.50
Lovász 75.37±1.26 76.16±1.28 78.21±1.05 76.86±1.14 84.69±1.56 51.52±0.58
GeMax 75.69±1.47 76.24±1.04 79.13±1.55 78.72±1.75∗ 92.05±1.45∗ 54.49±2.22

Table 4: Classification accuracy (%) of unsupervised learning via maximizing different entropy objectives

Method Principle MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

InfoGraph
Shannon 84.89±1.84 69.27±1.43 71.77±1.64 72.75±1.44 68.95±1.49 69.62±1.28 81.55±1.49 49.25±1.27

Rényi 86.50±0.92 71.37±1.93 72.38±1.31 73.17±1.71 67.16±1.78 71.13±1.49 82.92±1.65 52.28±1.46
GeMax 92.44±1.23∗ 76.87±1.99 75.43±1.10 80.21±1.83 73.95±1.17 74.31±1.53 86.45±1.43 56.16±2.40

GraphCL
Shannon 85.25±1.47 73.13±1.52 75.43±1.32 76.13±1.28 67.93±1.41 68.95±1.34 84.27±1.34 52.90±1.57

Rényi 83.19±0.76 74.24±1.75 74.14±1.44 73.11±1.96 71.73±1.29 70.64±1.26 83.91±1.47 53.24±1.21
GeMax 88.83±1.10 77.60±1.18∗ 78.24±1.84 80.89±1.03 74.21±1.55 74.31±1.74 90.76±1.47 57.87±1.91

AD-GCL
Shannon 85.13±0.25 71.31±1.26 73.21±0.74 69.82±1.58 66.14±1.94 69.13±1.21 82.29±1.48 54.86±1.27

Rényi 82.25±1.32 72.01±0.33 71.12±1.53 72.39±1.89 69.26±1.56 68.86±1.95 81.59±1.57 54.28±1.38
GeMax 88.37±1.05 75.96±2.30 77.07±1.02 77.15±1.83 73.02±1.54 73.62±1.56 89.88±1.85 56.61±1.38

JOAOv2
Shannon 84.01±1.69 74.15±1.05 70.81±1.35 70.99±1.28 67.11±1.81 68.22±1.87 80.30±1.82 50.37±1.26

Rényi 83.39±1.42 76.37±1.57 73.17±1.48 72.18±1.90 68.21±1.52 67.19±1.59 83.29±1.48 51.46±1.73
GeMax 89.07±1.19 74.91±1.90 74.68±1.91 76.15±1.01 73.17±1.88 72.62±1.18 87.19±1.89 55.24±1.28

AutoGCL
Shannon 81.64±1.68 73.57±1.38 72.48±1.62 74.10±1.96 67.12±1.38 69.92±1.47 82.34±1.92 51.52±1.28

Rényi 85.02±1.27 72.84±1.59 73.59±1.49 75.43±1.82 65.29±1.27 68.54±1.63 83.17±1.89 53.28±1.27
GeMax 90.63±1.15 77.12±1.75 80.17±0.87 81.11±1.85 72.08±1.35 74.03±1.91 91.84±2.06 57.86±1.72∗

GraphACL
Shannon 85.21±1.94 69.59±1.27 74.40±1.62 74.85±1.81 69.16±1.55 70.24±1.68 85.62±1.19 51.14±1.38

Rényi 86.55±1.33 73.16±1.46 72.82±1.19 73.22±1.26 67.28±1.84 72.13±1.87 83.31±1.69 53.78±2.01
GeMax 91.86±0.70 77.29±1.14 81.08±1.09∗ 81.19±1.86∗ 75.94±0.90 75.03±1.72 91.45±1.25 57.48±2.06

GCS
Shannon 86.12±1.64 74.17±1.43 71.89±1.32 76.13±1.35 69.81±1.52 71.16±2.28 86.80±1.18 54.14±1.29

Rényi 84.45±1.29 73.23±1.07 73.81±1.14 75.35±1.44 72.16±1.01 70.18±1.52 85.36±1.47 52.63±1.17
GeMax 91.37±0.95 76.12±0.76 78.82±0.76 80.08±1.50 76.15±1.46∗ 75.19±1.76∗ 92.51±1.05∗ 57.45±1.79

D.8) and empirically evaluate its time complexity (Appendix
D.9). Lastly, we provide the code implementation of key
components in GeMax (Appendix D.10).

6. Conclusions
We introduced GeMax, a novel graph representation learn-
ing approach based on Körner’s graph entropy. GeMax
uses local node and global graph representations produced
by graph neural networks to efficiently approximate the
NP-hard graph entropy computation. Our experiments con-
firmed GeMax’s superiority over its competitors, demon-
strated its ability to advance graph representation learning,
and showcased the practical use of theoretical concepts of
graph theory in machine learning.
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A. Notations
The major notations used in this paper are shown in Table 5.

Table 5: Notations

Symbol Description Symbol Description
G a graph V vertex set of graph G
g graph-level representation of G n the number of vertices of G
Z node representations matrix of G zi representation of node i
(G,P ) a probabilistic graph P (g,Z) probability distribution on V
VP(G) vertex-packing polytope of G VPSub(G) a subset of VP(G)
Pi(g,Z) probability density of vertex i Hk(G,P ) graph entropy
H(P ) Shannon entropy α(G) the independence number of G
0 ≤ a ≤ 1 0 ≤ ai ≤ 0 ∀i

B. Proof for and Propositions and Theorems
B.1. Proof for Proposition 3.2

Definition B.1 (convex corner (Csiszár et al., 1990; Rezaei, 2013)). A subset A ⊆ Rn+ is called convex corner if it is
compact and convex, has non-empty interior, and for every a ∈ A, a′ ∈ Rn+ with a′ ≤ a, then we have a′ ∈ A.

Proof. (1) Based on the Definition B.1 of convex corner, if VPSub(G) is a convex corner, then given a ∈ VPSub(G), a′ ∈ Rn+
with a′ ≤ a, we need to imply a′ ∈ VPSub(G).

Since 0 ≤ a ≤ 1 and a′ ≤ a, we have a′ ≤ 1. Since a′ ∈ Rn+, we have 0 ≤ a′ ≤ 1. Given that 0 ≤ a ≤ 1 and 0 ≤ a′ ≤ 1,
then a′ ≤ a implies 1(a′) ≤ 1(a). Suppose a ∈ VPSub(G). The definition of VPSub(G) implies that 1(a) ∈ VP(G).
As VP(G) is a convex corner and 1(a′) ≤ 1(a), we have 1(a′) ∈ VP(G). Together with the fact that 0 ≤ a′ ≤ 1, we
conclude that a′ is in VPSub(G), meaning that VPSub(G) is a convex corner.

(2) Based on the property of the element-wise indicator function 1(·), we have bi = 1(bi). The Definition 2.1 indicates
bi ∈ VP(G), ∀i ∈ [Nb]. Then we have 1(bi) ∈ VP(G), ∀i ∈ [Nb]. That is, bi ∈ VPSub(G), ∀i ∈ [Nb].

B.2. Proof for Theorem 3.3

Proof. For convenience, let V = [v1, . . . ,vn]
⊤ = DaZ, where vi = aizi, i ∈ [n]. Then

Da(ZZ⊤)Da = V V ⊤ =
[
aiajz

⊤
i zj

]
n×n =


a1a1z

⊤
1 z1 a1a2z

⊤
1 z2 a1a3z

⊤
1 z3 · · · a1anz

⊤
1 zn

a2a1z
⊤
2 z2 a2a2z

⊤
2 z2 a2a3z

⊤
2 z3 · · · a2anz

⊤
2 zn

a3a1z
⊤
3 z3 a3a2z

⊤
3 z2 a3a3z

⊤
3 z3 · · · a3anz

⊤
3 zn

...
...

...
. . .

...
ana1z

⊤
n zn ana2z

⊤
n z2 ana3z

⊤
n z3 ... ananz

⊤
n zn

 .

(1) First, we prove that Da(ZZ⊤)Da = D2
a =⇒ a ∈ VPSub(G).

Da(ZZ⊤)Da = D2
a indicates that all the off-diagonal elements are zeros. Thus, we have

aiajz
⊤
i zj = 0, ∀(i, j) ∈ E (22)

Under the condition z⊤
i zj ̸= 0 for every (i, j) ∈ E, we conclude from (22) that

ai = 0 or aj = 0, ∀(i, j) ∈ E. (23)

Let c = [c1, ..., cn]
⊤ = 1(a) ∈ {0, 1}n, where 1(·) was defined as before. Using (23), we obtain

ci = 0 or cj = 0, ∀(i, j) ∈ E. (24)
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This means that there are no adjacent vertex pairs in the subset induced by c. In other words, c is an indicator vector of
an independent set of G. Based on the second property of VPSub(G) in Proposition 3.2, all the indicator vectors of the
independent set are contained in VPSub(G), meaning that

1(a) = c ∈ VPSub(G). (25)

According to the fact a ≤ c and the convex corner property of VPSub(G) in Proposition 3.2, we concluded that

a ∈ VPSub(G).

(2) Now we prove a ∈ VPSub(G) =⇒Da(ZZ⊤)Da = D2
a.

Definition 3.1 of VPSub(G) indicates that if a ∈ VPSub(G), then c = 1(a) ∈ VP(G). Following Definition 2.1 of VP(G), we
use B = [b1, . . . , bNb

] ∈ {0, 1}|V |×Nb to denote the indicator matrix of the independent sets, where bi = [bi(1), . . . , bi(n)]
⊤

is the indicator vector of the i-th independent set. Then we can find a vector λ with λ ≥ 0 and
∑
i λi = 1, such that c is the

combination of indicator vectors of independent sets, i.e.,

c = Bλ =
∑
i

λibi. (26)

For convenience, we define a positive index set as

Q := {i : λi > 0, i ∈ [Nb]}. (27)

Let cj be the j-th element of c, we have cj =
∑
i∈Q λibi(j). Since every i in the set Q is positive, if cj = 0, then the j-th

element of all the indicator vectors bi(j) must be zero, namely, bi(j) = 0 for every i ∈ Q.

Since each element of bi is zero or one, we have

cj =
∑
i∈Q

λibi(j) ≤
∑
i∈Q

λi = 1. (28)

The equality, say cj = 1, can be obtained only when b1(j) = b2(j) = · · · = b|Q|(j) = 1.

The analysis above indicates that if cj = 0, the j-th element of every bi must be zero. Meanwhile, if cj = 1, the j-th
element of every bi must be one. These indicate that

c = bi, ∀i ∈ Q, (29)

which means |Q| = 1, i.e., Q contains a single element. Therefore, c is actually one of the indicator vectors of the
independent sets. We then have ci = 0 or cj = 0 for every (i, j) ∈ E, which further means

ai = 0 or aj = 0, ∀(i, j) ∈ E. (30)

Now we can analyse the elements of Da(ZZ⊤)Da =
[
aiajz

⊤
i zj

]
n×n. Equation (30) implies that aiajz⊤

i zj = 0 holds
for every (i, j) ∈ E. For every (i, j) /∈ E, we have z⊤

i zj = 0 under the condition that Z are orthonormal representations,
and thus aiajz⊤

i zj = 0. Combining these two cases, we have aiajz⊤
i zj = 0 for every off-diagonal element (i, j) of

Da(ZZ⊤)Da.

Each diagonal element of Da(ZZ⊤)Da is denoted as a2iz
⊤
i zi. Since Z are orthonormal representations, we have

z⊤
i zi = 1. Thus, the i-th element in the diagonal of Da(ZZ⊤)Da is a2i .

The above analysis means Da(ZZ⊤)Da = D2
a. We finished the proof.

B.3. Proof for Proposition 3.4

Proof. In the algorithm, we need to store N graphs and each graph has a sparse adjacency matrix of n nodes and m edges
and a feature matrix of size n× d. The number of parameters of Fg and FZ is O(Ld2) because there are 2L matrices of
size d× d. When applying Fg or FZ to each graph, the neighbor aggregation and feature transformation operations will
yield 2L matrices of size n× d. We also need to store Pi, a vector of size n for each graph. For the regularization Lorth, we
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need to store Mj and Zϕ
j (Z

ϕ
j )

⊤, requiring O(Nn2), and the storage for Ls-vp is similar. Putting these together, the total
space complexity of the algorithm is O(N(m+ Ldn+ n2) + Ld2).

Regarding the time complexity, in each iteration of the subproblem for {θ, ϕ} (i.e., line 4 in the algorithm), the neighbor
aggregation and feature transformation operations in Fg or FZ are O(L(dm+ d2n)) on each graph, and computing Lorth
and Ls-vp requires O(Ndn2). The complexity of the backward propagation is similar to that of the forward propagation.
The subproblem for A (i.e., line 5 in the algorithm) requires O(τ2Nn2) plus O(Ndn2) because Daj are diagonal
matrices and Zϕ

j (Z
ϕ
j )

⊤ are precomputed in line 4. Putting these together, the total time complexity of the algorithm is
O(T (τ1N(L(dm+ d2n) + dn2) + τ2Nn

2)).

C. Theoretical Foundations of Graph Entropy
Körner’s graph entropy is a fundamental concept in the fields of information theory, graph theory, and combinatorics.

Information Theory Körner’s graph entropy, rooted in information theory, expands traditional entropy to graph structures
and was originally devised to assess communication channel capacity. Established by Claude E. Shannon in 1948 (Shannon,
1948) and further developed by János Körner in 1973 (Körner, 1973), graph entropy measures information transmission
over noisy channels, highlighting the shared information within graph elements (Bouchon et al., 1988). László Lovász’s
introduction of orthonormal representations in 1979 (Lovász, 1979) further advanced this field, focusing on a graph’s
Shannon capacity and underscoring its structural properties.

Graph Theory In graph theory, graph entropy pertains to probabilistic graphs, denoted as (G,P ), where P represents the
probability distribution over the vertex set (Rezaei, 2013). Graph entropy measures the uncertainty or randomness inherent
in a probabilistic graph. The interpretation of the probability distribution P varies depending on the context. For instance, P
might represent the centrality of a vertex, or in the case where G symbolizes a communication channel, P could denote the
probability of various communication symbols.

Combinatorics In combinatorics, graph entropy plays a significant role in analyzing and quantifying the complexity and
informational content of graph structures (Bouchon et al., 1988). This concept focuses on assessing the combinatorial prop-
erties of graphs, such as the arrangement and interrelation of vertices and edges, as well as various subgraph configurations
like cliques and independent sets.

Figure 5: Architecture of InfoGraph with m layers
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Figure 6: Applying GeMax to InfoGraph network by replacing the InfoMax loss

D. More about the Experiments
D.1. Experiment Baseline: InforMax methods

For unsupervised and semi-supervised graph-level learning, those InfoMax-based methods are the most current and
influential methods, each boasting high citations on Google Scholar. In experiments, we replace the InfoMax objective
with our GeMax objective while keeping other settings unchanged, as shown in Figure 6. In this work, we compare seven
InfoMax-based methods, InfoGraph (Sun et al., 2019) including GraphCL (You et al., 2020), AD-GCL (Suresh et al., 2021),
JOJOv2 (You et al., 2021), AutoGCL (Yin et al., 2022), GraphACL (Luo et al., 2023a) and GCS (Wei et al., 2023). All the
other six methods share the same graph representation learning architecture with InfoGraph (Sun et al., 2019), as shown in
Figure 5.

Unsupervised InfoGraph Following (Nowozin et al., 2016; Sun et al., 2019; Belghazi et al., 2018), suppose the node-
level representation zp(x) and the graph-level representation g(x) are depending on the input x, Tφ is a discriminator
parameterized by a neural network with parameters φ, the Jensen-Shannon mutual information (MI) estimator (Fuglede &
Topsoe, 2004; Nowozin et al., 2016; Hjelm et al., 2019; Sun et al., 2019) Iφ between zv and g is defined as

Iφ(zp, g) = EP[−sp(−Tφ(zp(x), g(x)))]− EP×P̃[sp(Tφ(zp(x′), g(x)))], (31)

where x is the input sample from distribution P, x′ is the negative sample from distribution P̃, and sp(a) = log(1 + ea)
denotes the softplus function. P is the empirical probability distribution of the input space and P̃ is the empirical probability
distribution of the negative input space. Many recent graph-level representation learning methods (Sun et al., 2019; You
et al., 2020; Yin et al., 2022) are based on the InfoMax principle, i.e., maximizing (31). For example, InfoGraph(Sun et al.,
2019) obtains graph-level representations by maximizing the mutual information between the graph-level representation and
the node-level representations as follows

ϕ∗, θ∗, φ∗ = argmax
ϕ,θ,φ

|G|∑
i=1

1

|Vi|
∑
p∈Vi

Iφ(z
θ
p, g

ϕ
i ), (32)

where Iφ is the Jensen-Shannon MI estimator defined by (31).

Semi-supervised InfoGraph For semi-supervised learning, the dataset G is split into labeled dataset GL and unlabeled
dataset GU . They deploy another supervised encoder with parameter ψ and then generate the supervised node-level
representations Zψ

i , graph-level representations gψi and prediction ŷψi . The loss function of InfoGraph for semi-supervised
learning is defined as follows:

Linfo-semi =

|GL|∑
l=1

Lsupervised(ŷ
ψ
l ,yl) +

|G|∑
i=1

Lunsupervised(Z
θ
i , g

ϕ
i )− λ

|G|∑
i=1

1

|Vi|
Iφ(g

ϕ
i , g

ψ
i ) (33)

where Lunsupervised is derived from (17). The last term encourages the representations learned by the two encoders to have
high mutual information.

D.2. Experiment: Entropy Comparison

Table 6 shows the performance of semi-supervised learning via maximizing different entropy objectives: Shannon, Rényi,
and our proposed GeMax. Figures 7 and 8 depict the t-SNE visualization of representations learned via these different
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entropy objectives on the PROTEINS and MUTAG datasets. We see that the representations given by our GeMax are more
discriminative than those given by Shannon entropy and Renyi entropy.

Table 6: Performance (ACC) of semi-supervised learning via maximizing different entropy objectives.

methods and entropy NCI1 PROTEINS DD COLLAB REDDIT-B REDDIT-M5K

InfoGraph
Shannon 71.10±1.37 71.49±1.20 73.85±1.10 74.02±1.20 83.75±2.18 51.39±1.80

Rényi 70.23±1.92 72.32±1.51 72.97±1.78 72.71±1.66 82.83±1.20 52.02±1.02
GeMax 74.89±1.21 75.87±1.94 75.17±1.95 76.67±1.39 90.67±1.99 53.08±1.54

GraphCL
Shannon 72.58±0.57 71.95±1.97 70.88±1.72 71.35±1.45 80.41±1.48 50.68±1.06

Rényi 71.53±1.34 73.28±1.32 71.40±1.03 73.29±1.60 81.32±1.74 52.63±1.38
GeMax 76.59±1.55 76.06±1.83 78.25±1.23 77.73±1.27 91.84±1.64 54.10±3.22

AD-GCL
Shannon 72.53±0.61 71.83±1.19 73.07±1.98 75.10±1.14 85.94±0.72 52.35±1.29

Rényi 70.12±1.61 72.37±1.37 71.29±1.27 70.08±1.86 84.53±1.10 51.37±1.24
GeMax 76.47±1.82 76.76±1.94 79.20±0.65 77.79±1.66 91.18±0.82 56.64±1.23∗

JOAOv2
Shannon 73.19±1.36 71.72±1.28 71.18±1.79 74.72±1.80 84.97±2.09 52.29±1.66

Rényi 72.39±1.77 70.23±1.62 75.84±1.12 75.42±1.71 83.20±1.48 51.34±1.51
GeMax 77.36±1.48∗ 75.18±0.80 77.53±1.27 78.10±1.75 90.38±1.87 53.27±2.18

AutoGCL
Shannon 73.44±1.44 70.09±1.09 73.37±1.90 73.08±2.07 85.31±1.28 50.53±1.73

Rényi 70.65±1.89 72.74±1.10 72.51±1.50 72.51±1.04 82.76±1.08 51.14±1.65
GeMax 76.86±1.98 76.43±1.47 79.61±1.21∗ 78.21±1.27 88.43±1.57 51.63±1.97

GraphACL
Shannon 71.27±1.29 77.07±1.63 73.42±1.33 73.80±1.21 86.82±1.44 50.91±1.21

Rényi 73.95±1.76 75.09±0.95 72.12±1.92 71.83±1.14 83.61±1.70 53.23±1.66
GeMax 76.56±1.67 76.89±1.41∗ 77.28±0.46 79.02±1.20∗ 91.38±1.50 52.98±3.02

GCS
Shannon 73.10±1.74 70.80±1.25 74.92±1.59 73.73±1.31 85.66±1.01 50.89±1.21

Rényi 70.20±1.58 72.51±1.95 72.18±1.88 75.75±1.30 82.76±1.49 51.60±1.70
GeMax 75.69±1.47 76.24±1.04 79.13±1.55 78.72±1.75 92.05±1.45∗ 54.49±2.22

PROTEINS Class 0: 663 Graphs
PROTEINS Class 1: 450 Graphs

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

PROTEINS Class 0: 663 Graphs
PROTEINS Class 1: 450 Graphs

 tSNE visualization of PROTEINS datasets Representations: GeMax(Left), Shannon entropy(Middle), Renyi entropy(Right)

Figure 7: t-SNE visualization of PROTEINS datasets Representations: GeMax(Left), Shannon entropy(Middle), Renyi
entropy(Right)

MUTAG Class 0: 63 Graphs
MUTAG Class 1: 125 Graphs

MUTAG Class 0: 63 Graphs
MUTAG Class 1: 125 Graphs

MUTAG Class 0: 63 Graphs
MUTAG Class 1: 125 Graphs

 tSNE visualization of MUTAG datasets Representations: GeMax(Left), Shannon entropy(Middle), Renyi entropy(Right)

Figure 8: t-SNE visualization of MUTAG datasets Representations: GeMax(Left), Shannon entropy(Middle), Renyi
entropy(Right)
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D.3. Experiment: Performance Comparison of Exact Computation of Graph Entropy on Small Graphs

For small graphs, we can precisely identify all independent sets via exhaustive search, allowing us to accurately calculate the
vertex-packing polytope VP(G) and solve the GeMax problem Eq. (5) exactly, circumventing the need for approximation.
We select those graphs with 20 or fewer vertices from the MUTAG and IMDB-B datasets as our toy graph datasets. For
the MUTAG dataset, there are 128 graphs (58 for Class 0 and 70 for Class 1) with n ≤ 20. For the IMDB-B dataset, there
are a total of 696 selected graphs, 359 and 337 graphs with n ≤ 20 for Class 0 and Class 1, respectively. We conduct
unsupervised representation learning, followed by classification performance evaluation. Table 7 gives the performance
results, which illustrate that the exact computation of GeMax not only surpasses benchmarks such as InfoMax and Lovász
but also significantly outperforms the approximate GeMax solution.

Table 7: Performance (ACC%) of unsupervised learning via exact computation of graph entropy and the other principles

Model Principle MUTAGn≤20 IMDB-Bn≤20

InfoGraph

InfoMax 85.12 ± 1.46 71.26 ± 1.75
Lovász 86.23 ± 1.17 72.57 ± 1.24

Approx. GeMax 90.04 ± 1.56 73.42 ± 1.60
Exact. GeMax 94.36 ± 1.12 75.35 ± 1.34

AD-GCL

InfoMax 85.22 ± 1.35 71.09 ± 1.18
Lovász 87.75 ± 1.10 72.24 ± 1.56

Approx. GeMax 89.68 ± 1.58 73.28 ± 1.71
Exact. GeMax 93.25 ± 1.63 74.89 ± 1.63

JOAOv2

InfoMax 86.29 ± 1.91 72.52 ± 1.65
Lovász 88.03 ± 1.04 72.83 ± 1.28

Approx. GeMax 90.37 ± 1.64 73.11 ± 1.85
Exact. GeMax 92.52 ± 1.49 75.69 ± 1.41

D.4. Experiment: Inexact Penalty Method

Algorithm 2 Inexact Penalty Method for GeMax (11) and (12)

Input: G, µ(0), γ(0), t = 0.
1: Random initialization of parameters: θ(0), ϕ(0).
2: Let A(0) = {a(0)

j }Nj=1 = {[1/nj , ..., 1/nj ]}Nj=1.
3: Compute J (0) := J (G; θ(0), ϕ(0),A(0)).
4: repeat
5: θ(t+1), ϕ(t+1) = argmax θ,ϕ J1(G; θ, ϕ,A(t)).

6: Ā(t+1) = argmin A J2(G; θ(t+1), ϕ(t+1),A).
7: a

(t+1)
j = Proj[0,1](ā

(t+1)
j ), ∀ā(t+1)

j ∈ Ā(t+1).

8: Compute J (t+1).
9: µ(t+1) = µ(t) × 1.01, γ(t+1) = γ(t) × 1.01

10: until Convergence
Output: θ(t+1), ϕ(t+1).

We introduce an inexact penalty algorithm (Algorithm 2) for solving the GeMax problem. By incrementally increasing values
of µ and γ, the constraints are progressively satisfied. Utilizing Algorithm 2, we replicate the unsupervised experiments and
present the findings in Table 8. The outcomes indicate that the regularized optimization yields representations comparable in
quality to those obtained through constrained optimization.

D.5. Experiment: Sensitivity Analysis of Hyperparameters

In the alternative algorithm, as described in Algorithm 1, two critical hyperparameters require tuning: the orthonormal
representation regularization parameter µ, and the subset of VP(G) objective regularization parameter γ. In this section, we
analyze the sensitivity of these parameters using the average performance across methods such as InfoGraph, GraphCL,
AD-GCL, JOAOv2, AutoGCL, GraphACL, and GCS, with different hyperparameter settings. We repeat each experiment
ten times and plot the average accuracy with its variance on different datasets.

19



Learning Graph Representation via Graph Entropy Maximization

Table 8: Performance (ACC) of unsupervised learning. regularized opt. denotes the regularized algorithm 1 and constrained
opt. denotes the exact algorithm 2.The bold numbers denote the better performances of the same method.

algorithms MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

InfoGraph regularized opt. 92.44±1.23 76.87±1.99 75.43±1.10 80.21±1.83 73.95±1.17 74.31±1.53 86.45±1.43 56.16±2.40
constrained opt. 89.86±1.64 77.60±1.05 74.63±1.79 81.62±1.89 73.79±1.68 73.84±0.97 87.29±1.20 57.93±1.44

GraphCL regularized opt. 88.83±1.10 77.60±1.18 78.24±1.84 80.89±1.03 74.21±1.55 74.31±1.74 90.76±1.47 57.87±1.91
constrained opt. 89.96±0.13 75.30±0.52 79.13±1.81 82.87±2.28 72.13±1.79 73.86±0.80 89.45±1.93 56.42±1.07

AD-GCL regularized opt. 88.37±1.05 75.96±2.30 77.07±1.02 77.15±1.83 73.02±1.54 73.62±1.56 89.88±1.85 56.61±1.38
constrained opt. 90.19±1.94 77.18±1.21 75.76±1.30 78.77±1.17 71.09±0.74 73.72±1.93 87.97±0.25 56.64±1.30

JOAOv2 regularized opt. 89.07±1.19 74.91±1.90 74.68±1.91 76.15±1.01 73.17±1.88 72.62±1.18 87.19±1.89 55.24±1.28
constrained opt. 90.80±1.28 74.29±1.09 75.87±1.52 74.87±1.75 71.70±1.16 73.94±1.60 87.69±1.93 56.15±1.09

AutoGCL regularized opt. 90.63±1.15 77.12±1.75 80.17±0.87 81.11±1.85 72.08±1.35 74.03±1.91 91.84±2.06 57.86±1.72
constrained opt. 91.78±1.35 78.95±2.30 77.43±1.04 82.46±1.82 70.13±1.28 72.65±1.32 91.64±1.19 58.09±0.93

GraphACL regularized opt. 91.86±0.70 77.29±1.14 81.08±1.09 81.19±1.86 75.94±0.90 75.03±1.72 91.45±1.25 57.48±2.06
constrained opt. 89.63±1.66 76.81±2.07 80.78±4.75 79.20±1.92 76.32±1.22 74.79±1.66 88.01±2.01 56.17±2.15

GCS regularized opt. 91.37±0.95 76.12±0.76 78.82±0.76 80.08±1.50 76.15±1.46 75.19±1.76 92.51±1.05 57.45±1.79
constrained opt. 89.88±2.10 77.91±1.98 80.67±1.06 80.34±2.59 74.47±1.08 77.72±2.03 89.51±1.24 55.82±1.29

D.5.1. TUNING THE ORTHONORMAL REPRESENTATION REGULARIZATION PARAMETER µ

Figure 9: The average ACC of different µ values on various datasets.

With γ fixed at 0.5, we tune µ as the hyperparameter for orthonormal representation regularization. In Figure 9, we fix
other hyperparameters and vary µ across {10−3, 10−2, 0.1, 1, 10, 102, 103, 104}. The results demonstrate that µ is not
sensitive within the range 0.1 ≤ µ ≤ 10. A too small µ leads to a decrease in performance due to inadequacies in
achieving orthonormal representations, as postulated in Theorem 3.3. This inadequacy negatively impacts the model’s
overall performance. Conversely, an excessively large µ can be detrimental, as the orthonormal representation regularization
starts to dominate the learning process, overshadowing other important aspects of the model.

D.5.2. TUNING THE SUBSET OF VP(G) OBJECTIVE REGULARIZATION PARAMETER γ

Fixing µ at 0.5, we tune γ as the hyperparameter for the subset of VP(G) objective regularization. In Figure 10, other
hyperparameters are kept constant while γ is varied across {10−3, 10−2, 0.1, 1, 10, 102, 103, 104}. The findings indicate
that γ is not particularly sensitive within the range 0.1 ≤ γ ≤ 10. A very small γ value disrupts the definition of graph
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Figure 10: The average ACC of different γ values on various datasets.

entropy, as the subset of VP(G) loses significance. This loss adversely affects the overall performance of the model. On
the other hand, a very large γ can be detrimental, as it causes the regularization parameter to dominate the representation
learning, thereby impairing the model’s performance.

D.6. Experiment: Ablation Study

In the ablation study, we analyze the importance of each part of GeMax objective J1(G; θ, ϕ,A) and J2(G; θ, ϕ,A).

D.6.1. REMOVE THE GRAPH ENTROPY LOSS LHk
(G)

We eliminate the graph entropy loss LHk
(G) from the GeMax objectives J1(G; θ, ϕ,A) and J2(G; θ, ϕ,A). As shown in

Table 9, omitting graph entropy maximization adversely impacts the training of the probability distribution for node and
graph representations. Consequently, this results in a significant

Table 9: Performance (ACC) of unsupervised learning for Ablation study. The bold numbers denote the better performances
of the same method.

remove LHk
(G) MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

InfoGraph no 92.44±1.23 76.87±1.99 75.43±1.10 80.21±1.83 73.95±1.17 74.31±1.53 86.45±1.43 56.16±2.40
yes 63.42±3.63 54.24±1.97 53.82±3.01 61.71±4.42 52.25±4.83 59.80±3.90 57.54±5.66 44.20±4.30

GraphCL no 88.83±1.10 77.60±1.18 78.24±1.84 80.89±1.03 74.21±1.55 74.31±1.74 90.76±1.47 57.87±1.91
yes 63.15±2.90 54.09±6.60 59.86±5.31 60.40±5.09 54.30±3.34 53.50±3.87 62.81±3.43 41.75±2.74

AD-GCL no 88.37±1.05 75.96±2.30 77.07±1.02 77.15±1.83 73.02±1.54 73.62±1.56 89.88±1.85 56.61±1.38
yes 62.67±2.73 56.61±6.50 59.25±3.47 63.99±4.07 61.90±4.55 58.28±4.63 61.44±2.09 45.59±4.97

JOAOv2 no 89.07±1.19 74.91±1.90 74.68±1.91 76.15±1.01 73.17±1.88 72.62±1.18 87.19±1.89 55.24±1.28
yes 66.37±3.55 65.59±5.21 63.01±1.14 60.28±2.73 62.17±1.26 63.14±2.24 58.42±0.75 47.42±3.20

AutoGCL no 90.63±1.15 77.12±1.75 80.17±0.87 81.11±1.85 72.08±1.35 74.03±1.91 91.84±2.06 57.86±1.72
yes 69.45±4.04 53.93±2.08 66.66±2.05 62.01±4.33 56.98±6.59 53.52±7.33 58.23±2.09 48.81±3.15

GraphACL no 91.86±0.70 77.29±1.14 81.08±1.09 81.19±1.86 75.94±0.90 75.03±1.72 91.45±1.25 57.48±2.06
yes 63.71±7.08 66.05±2.37 65.96±7.96 53.45±1.87 67.45±2.61 65.67±1.92 63.63±3.08 42.68±4.32

GCS no 91.37±0.95 76.12±0.76 78.82±0.76 80.08±1.50 76.15±1.46 75.19±1.76 92.51±1.05 57.45±1.79
yes 61.69±0.89 60.23±7.14 58.84±1.85 53.14±5.26 59.43±3.70 50.97±6.96 59.50±4.31 41.93±5.41
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D.6.2. REMOVE THE ORTHONORMAL REPRESENTATION OBJECTIVE LORTH(G;ϕ)

We exclude the orthonormal representation objective Lorth(G;ϕ) from the GeMax objective J1(G; θ, ϕ,A). According to
Table 10, this exclusion compromises the effectiveness of the VP(G) regularization subset. This is due to Theorem 3.3,
which is predicated on the existence of an orthonormal representation space. Consequently, the overall performance of the
model is negatively impacted.

Table 10: Performance (ACC) of unsupervised learning for Ablation study. The bold numbers denote the better performances
of the same method.

remove Lorth(G;ϕ) MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

InfoGraph no 92.44±1.23 76.87±1.99 75.43±1.10 80.21±1.83 73.95±1.17 74.31±1.53 86.45±1.43 56.16±2.40
yes 75.45±1.10 61.24±1.18 57.21±1.84 69.44±1.03 58.83±1.55 56.33±1.74 70.07±1.47 47.26±1.91

GraphCL no 88.83±1.10 77.60±1.18 78.24±1.84 80.89±1.03 74.21±1.55 74.31±1.74 90.76±1.47 57.87±1.91
yes 71.04±1.19 59.48±1.90 61.31±1.91 64.12±1.01 60.26±1.28 61.74±1.18 72.07±1.89 44.93±1.28

AD-GCL no 88.37±1.05 75.96±2.30 77.07±1.02 77.15±1.83 73.02±1.54 73.62±1.56 89.88±1.85 56.61±1.38
yes 67.98±1.70 63.50±1.14 60.93±1.09 62.57±1.86 64.05±1.90 63.97±1.72 74.96±1.25 43.75±2.06

JOAOv2 no 89.07±1.19 74.91±1.90 74.68±1.91 76.15±1.01 73.17±1.88 72.62±1.18 87.19±1.89 55.24±1.28
yes 70.80±1.28 59.29±1.09 61.87±1.52 60.87±1.75 61.70±1.16 67.94±1.60 66.69±1.93 42.15±1.09

AutoGCL no 90.63±1.15 77.12±1.75 80.17±0.87 81.11±1.85 72.08±1.35 74.03±1.91 91.84±2.06 57.86±1.72
yes 73.07±2.10 57.50±1.98 65.33±1.06 65.42±2.59 64.01±1.08 66.50±2.03 76.44±1.24 48.24±1.29

GraphACL no 91.86±0.70 77.29±1.14 81.08±1.09 81.19±1.86 75.94±0.90 75.03±1.72 91.45±1.25 57.48±2.06
yes 72.34±1.15 59.51±1.75 62.65±0.87 64.96±1.85 64.45±1.35 66.24±1.91 76.76±2.06 50.38±1.72

GCS no 91.37±0.95 76.12±0.76 78.82±0.76 80.08±1.50 76.15±1.46 75.19±1.76 92.51±1.05 57.45±1.79
yes 71.82±1.15 62.04±1.75 57.68±1.87 61.78±1.85 69.94±1.35 70.43±1.91 73.33±2.06 48.40±1.72

D.6.3. REMOVE THE SUBSET OF VP(G) OBJECTIVE LS-VP(G; θ, ϕ,A)

We omit the VP(G) objective subset Ls-vp(G; θ, ϕ,A) from the GeMax objective J1(G; θ, ϕ,A) and J2(G; θ, ϕ,A). As
indicated in Table 11, the absence of the VP(G) objective leads to unconstrained vectors ai. The result shows its significant
role in the model’s effectiveness.

Table 11: Performance (ACC) of unsupervised learning for Ablation study. The bold numbers denote the better performances
of the same method.

remove Ls-vp(G; θ, ϕ,A) MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

InfoGraph no 92.44±1.23 76.87±1.99 75.43±1.10 80.21±1.83 73.95±1.17 74.31±1.53 86.45±1.43 56.16±2.40
yes 63.55±2.23 61.83±1.30 62.06±3.73 58.98±4.01 60.07±1.47 57.21±3.29 64.52±2.16 45.93±1.46

GraphCL no 88.83±1.10 77.60±1.18 78.24±1.84 80.89±1.03 74.21±1.55 74.31±1.74 90.76±1.47 57.87±1.91
yes 74.73±0.65 65.06±3.72 64.37±2.30 59.63±2.24 62.55±3.01 68.38±1.06 65.30±3.27 49.71±2.17

AD-GCL no 88.37±1.05 75.96±2.30 77.07±1.02 77.15±1.83 73.02±1.54 73.62±1.56 89.88±1.85 56.61±1.38
yes 73.19±1.94 61.18±1.21 65.76±1.30 60.77±1.17 61.09±2.74 65.32±1.93 74.25±1.25 45.64±1.09

JOAOv2 no 89.07±1.19 74.91±1.90 74.68±1.91 76.15±1.01 73.17±1.88 72.62±1.18 87.19±1.89 55.24±1.28
yes 65.77±2.92 68.94±1.28 60.27±3.10 61.31±1.26 59.73±2.20 60.27±1.50 62.91±3.39 42.55±2.19

AutoGCL no 90.63±1.15 77.12±1.75 80.17±0.87 81.11±1.85 72.08±1.35 74.03±1.91 91.84±2.06 57.86±1.72
yes 73.04±1.47 60.92±1.36 63.64±2.79 67.62±1.79 57.56±3.28 61.41±1.48 67.21±0.90 41.97±2.75

GraphACL no 91.86±0.70 77.29±1.14 81.08±1.09 81.19±1.86 75.94±0.90 75.03±1.72 91.45±1.25 57.48±2.06
yes 74.23±1.46 60.74±4.55 64.97±3.61 64.31±2.76 64.64±3.09 65.08±2.29 74.11±2.05 47.52±1.09

GCS no 91.37±0.95 76.12±0.76 78.82±0.76 80.08±1.50 76.15±1.46 75.19±1.76 92.51±1.05 57.45±1.79
yes 74.96±2.21 68.20±3.58 62.97±2.13 66.78±3.20 59.68±0.61 67.86±1.92 74.25±3.08 43.97±2.32

D.7. Experiment: Distribution Comparison

In Eq. (3), we propose a Boltzmann probability distribution derived from graph representations. Additionally, we suggest
the use of a normalized exponential kernel to assign a distribution over the vertex set. In Table 12, we conduct a comparative
analysis of these two distributions when applied to graph representation learning. The results indicate that both distributions
perform well, with their performance metrics being closely aligned.

D.8. Experiment: Convergence Analysis

Figure 11. shows the convergence curves of InfoGraph on different datasets.
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Table 12: Performance (ACC) of unsupervised learning using different distribution. The bold numbers denote the better
performances of the same method.

algorithms MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

InfoGraph Boltzmann 92.44±1.23 76.87±1.99 75.43±1.10 80.21±1.83 73.95±1.17 74.31±1.53 86.45±1.43 56.16±2.40
exponential 89.45±4.23 77.24±2.01 75.21±1.73 82.44±2.01 74.83±1.47 74.33±1.29 87.07±2.16 53.26±1.46

GraphCL Boltzmann 88.83±1.10 77.60±1.18 78.24±1.84 80.89±1.03 74.21±1.55 74.31±1.74 90.76±1.47 57.87±1.91
exponential 86.03±0.47 78.50±1.66 78.94±2.79 82.57±1.87 71.05±1.28 73.97±1.48 89.96±2.30 58.75±2.75

AD-GCL Boltzmann 88.37±1.05 75.96±2.30 77.07±1.02 77.15±1.83 73.02±1.54 73.62±1.56 89.88±1.85 56.61±1.38
exponential 90.19±1.94 77.18±1.21 75.76±1.30 78.77±1.17 71.09±0.74 73.72±1.93 87.97±0.25 56.64±1.30

JOAOv2 Boltzmann 89.07±1.19 74.91±1.90 74.68±1.91 76.15±1.01 73.17±1.88 72.62±1.18 87.19±1.89 55.24±1.28
exponential 92.03±2.13 75.20±2.58 73.97±1.13 73.78±2.20 71.68±2.61 72.86±1.92 84.25±1.08 53.97±1.32

AutoGCL Boltzmann 90.63±1.15 77.12±1.75 80.17±0.87 81.11±1.85 72.08±1.35 74.03±1.91 91.84±2.06 57.86±1.72
exponential 91.16±1.92 75.91±2.28 78.28±1.10 82.50±1.24 68.36±2.33 73.19±1.50 90.03±1.39 58.25±1.19

GraphACL Boltzmann 91.86±0.70 77.29±1.14 81.08±1.09 81.19±1.86 75.94±0.90 75.03±1.72 91.45±1.25 57.48±2.06
exponential 90.04±2.92 74.48±1.28 79.31±2.10 82.12±2.10 78.26±2.05 77.24±4.51 90.07±2.49 56.13±1.13

GCS Boltzmann 91.37±0.95 76.12±0.76 78.82±0.76 80.08±1.50 76.15±1.46 75.19±1.76 92.51±1.05 57.45±1.79
exponential 92.61±1.46 73.27±2.55 79.10±1.61 77.31±1.76 74.13±1.85 69.21±1.39 89.11±2.35 56.23±1.12

(a) MUTAG (b) PROTEINS (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5K

Figure 11: Convergence Curve of InfoGraph on different Dataset
In cases where a large dataset requires an excessive amount of time to meet convergence conditions, but where significant changes in the
objective function primarily occur within the first 50 epochs, it may be practical to limit the plotting of the convergence curve to these
initial 50 epochs. This approach can provide valuable insights into the majority of the convergence behavior without the need for
extensive computation beyond the point of diminishing returns.

D.9. Experiment: Time Costs

We run experiments on a server with Intel 7 CPU and RTX 3090 GPUs. We repeat the experiment five times and report the
average time. Since we only change the objective function while keeping other parts of the models unchanged, the time of
each method is close.

D.10. Experiment: Code of Key Implementation

Here, we provide the key implementation code for the loss and objective functions of our paper. The complete code of our
method is available at https://github.com/MathAdventurer/GeMax.

(1) Orthonormal representation learning loss is as follows:

Lorth(G;ϕ) :=
N∑
j=1

∥∥∥Mj ⊙
(
Zϕ
j (Z

ϕ
j )

⊤ − In

)∥∥∥2
F
, (34)

The code of Lorth(G;ϕ) is as follows:

def loss_orthogonal(Z, phi):
batch_size = Z.batch_size
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Table 13: Time cost. The h denotes hour.

tasks methods and principles MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

unsupervised
learning

InfoGraph
InfoMax 0.10 h 0.47 h 2.46 h 1.20 h 2.66 h 0.28 h 6.06 h 13.34 h
Lovász 0.04 h 0.41 h 2.43 h 1.26 h 2.03 h 0.30 h 6.05 h 13.41 h
GeMax 0.08 h 0.42 h 2.89 h 1.79 h 2.34 h 0.32 h 6.25 h 13.18 h

GraphCL InfoMax 0.09 h 0.43 h 2.60 h 1.28 h 2.12 h 0.33 h 6.11 h 13.39 h
Lovász 0.08 h 0.35 h 2.40 h 1.30 h 2.08 h 0.34 h 6.08 h 13.46 h
GeMax 0.11 h 0.47 h 2.50 h 1.14 h 2.75 h 0.36 h 6.15 h 13.12 h

AD-GCL InfoMax 0.13 h 0.52 h 3.02 h 1.37 h 2.51 h 0.36 h 5.85 h 14.14 h
Lovász 0.10 h 0.51 h 3.06 h 1.39 h 2.68 h 0.34 h 5.86 h 14.07 h
GeMax 0.14 h 0.48 h 3.13 h 1.87 h 2.97 h 0.36 h 6.20 h 14.67 h

JOAOv2 InfoMax 0.10 h 0.62 h 2.09 h 1.48 h 2.27 h 0.32 h 6.36 h 14.79 h
Lovász 0.12 h 0.61 h 2.04 h 1.45 h 2.24 h 0.31 h 6.37 h 14.74 h
GeMax 0.11 h 0.63 h 2.10 h 1.49 h 2.26 h 0.33 h 6.35 h 14.77 h

AutoGCL InfoMax 0.11 h 0.50 h 3.15 h 1.48 h 2.12 h 0.34 h 6.09 h 14.42 h
Lovász 0.14 h 0.49 h 3.10 h 1.46 h 2.09 h 0.33 h 6.07 h 14.40 h
GeMax 0.13 h 0.53 h 3.42 h 1.65 h 2.91 h 0.38 h 6.85 h 14.39 h

GraphACL InfoMax 0.18 h 0.63 h 2.11 h 1.45 h 2.24 h 0.32 h 6.41 h 14.78 h
Lovász 0.16 h 0.62 h 2.10 h 1.48 h 2.23 h 0.31 h 6.39 h 14.77 h
GeMax 0.17 h 0.66 h 2.30 h 1.54 h 2.69 h 0.33 h 6.19 h 14.32 h

GCS InfoMax 0.09 h 0.59 h 2.05 h 1.48 h 2.24 h 0.39 h 6.41 h 14.78 h
Lovász 0.08 h 0.61 h 2.08 h 1.46 h 2.26 h 0.30 h 6.39 h 14.76 h
GeMax 0.10 h 0.77 h 2.32 h 1.53 h 2.71 h 0.32 h 6.20 h 14.31 h

semi-
supervised
learning

InfoGraph InfoMax - 0.24 h 2.58 h 1.52 h 2.53 h - 6.85 h 14.46 h
Lovász - 0.36 h 2.84 h 1.27 h 2.14 h - 6.16 h 14.35 h
GeMax - 0.33 h 2.79 h 1.11 h 2.09 h - 6.22 h 14.28 h

GraphCL InfoMax - 0.49 h 2.71 h 1.05 h 2.45 h - 6.92 h 14.53 h
Lovász - 0.63 h 2.18 h 1.39 h 2.26 h - 6.47 h 14.08 h
GeMax - 0.56 h 2.15 h 1.42 h 2.29 h - 6.41 h 14.14 h

AD-GCL InfoMax - 0.56 h 2.94 h 1.10 h 2.76 h - 6.65 h 14.72 h
Lovász - 0.61 h 3.23 h 1.79 h 2.08 h - 6.63 h 14.49 h
GeMax - 0.59 h 3.27 h 1.88 h 2.02 h - 6.75 h 14.58 h

JOAOv2 InfoMax - 0.61 h 3.16 h 1.72 h 2.40 h - 6.35 h 14.06 h
Lovász - 0.91 h 3.77 h 1.89 h 2.70 h - 6.57 h 14.30 h
GeMax - 0.89 h 3.79 h 1.80 h 2.72 h - 6.61 h 14.20 h

AutoGCL InfoMax - 0.59 h 3.15 h 1.12 h 2.91 h - 6.90 h 14.89 h
Lovász - 0.51 h 3.38 h 1.87 h 2.50 h - 6.23 h 14.75 h
GeMax - 0.52 h 3.41 h 1.91 h 2.45 h - 6.20 h 14.81 h

GraphACL InfoMax - 0.61 h 3.14 h 1.75 h 2.30 h - 6.01 h 14.11 h
Lovász - 0.92 h 3.84 h 1.85 h 2.75 h - 6.75 h 14.27 h
GeMax - 0.91 h 3.80 h 1.88 h 2.78 h - 6.71 h 14.24 h

GCS InfoMax - 0.77 h 3.13 h 1.05 h 2.29 h - 6.21 h 14.48 h
Lovász - 0.73 h 3.77 h 1.03 h 2.32 h - 6.49 h 14.83 h
GeMax - 0.79 h 3.88 h 1.50 h 2.14 h - 6.94 h 14.92 h

loss_orth = torch.tensor(0.0, dtype=torch.float32, requires_grad=True)

start_idx = 0
for j in range(batch_size):

num_nodes = Z.batch_num_nodes()[j]
Z_j = Z.ndata[’h’][start_idx:start_idx+num_nodes]
start_idx += num_nodes
n_j = Z_j.size(0)
M_j = torch.eye(n_j, device=Z.device) -\

Z.adjacency_matrix().to_dense()[:n_j, :n_j]
term = torch.matmul(Z_j, Z_j.t()) - torch.eye(n_j, device=Z.device)
loss_orth = loss_orth + torch.norm(M_j * term, ’fro’)**2

return loss_orth
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(2) The subset of VP(G) loss is:

Ls-vp(G; θ, ϕ,A) :=
N∑
j=1

∥∥∥Daj

(
Zϕ
j (Z

ϕ
j )

⊤
)
Daj −D2

aj

∥∥∥2
F

(35)

The code of Ls-vp(G; θ, ϕ,A) is as follows:

def loss_sub_vertex_packing(Z, A, theta, phi):
batch_size = Z.batch_size
loss_svp = torch.tensor(0.0, dtype=torch.float32, requires_grad=True)

start_idx = 0
for j in range(batch_size):

num_nodes = Z.batch_num_nodes()[j]
Z_j = Z.ndata[’h’][start_idx:start_idx+num_nodes]
start_idx += num_nodes
a_j = A_set[j][:num_nodes]
D_a_j = torch.diag(a_j)
term = torch.matmul(torch.matmul(D_a_j, Z_j), Z_j.t()) -\

torch.matmul(D_a_j, D_a_j)
loss_svp = loss_svp + torch.norm(term, ’fro’)**2

return loss_svp

(3) The graph entropy loss is:

LHk
(G; θ, ϕ,A) =

N∑
j=1

nj∑
i=1

−Pi(gθj ,Z
ϕ
j ) log(aj(i)). (36)

The code of LHk
(G; θ, ϕ,A) is as follows:

def loss_entropy(Z, theta, phi, A_set):
batch_size = Z.batch_size
loss_entropy = torch.tensor(0.0, dtype=torch.float32, requires_grad=True)

start_idx = 0
for j in range(batch_size):

num_nodes = Z.batch_num_nodes()[j]
Z_j = Z.ndata[’h’][start_idx:start_idx+num_nodes]
start_idx += num_nodes
a_j = A_set[j][:num_nodes]
P_i = torch.sigmoid(torch.matmul(Z_j, theta.t()))
a_j_expanded = a_j.unsqueeze(1).expand_as(P_i)
loss_entropy = loss_entropy - torch.sum(P_i * torch.log(a_j_expanded))

return loss_entropy

(4) The J1 loss is:
J1(G; θ, ϕ,A) :=LHk

(G; θ, ϕ,A)− µ · Lorth(G;ϕ)
− γ · Ls-vp(G; θ, ϕ,A)

(37)

The code of J1 objective is:

def objective_J1(Z, theta, phi, A_set, mu, gamma):
loss_Hk = loss_entropy(Z, theta, phi, A_set)
loss_orth = loss_orthogonal(Z, phi)
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loss_svp = loss_sub_vertex_packing(Z, A_set, theta, phi)

J1 = loss_Hk - mu * loss_orth - gamma * loss_svp

return J1

(5) The J2 objective is:
J2(G; θ, ϕ,A) :=LHk

(G; θ, ϕ,A) + γ · Ls-vp(G; θ, ϕ,A)
s.t. 0 ≤ aij ≤ 1, ∀i ∈ [nj ], aj ∈ A,

(38)

The code of J2 objective is:

def objective_J2(Z, theta, phi, A_set, gamma):
loss_Hk = loss_entropy(Z, theta, phi, A_set)
loss_svp = loss_sub_vertex_packing(Z, A_set, theta, phi)

J2 = loss_Hk + gamma * loss_svp

return J2

26


