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Abstract

Multivariate linear regression models are broadly
used to facilitate relationships between outcomes
and features. However, their effectiveness is com-
promised by the presence of missing observations,
a ubiquitous challenge in real-world applications.
Considering a scenario where learners access only
limited components for both outcomes and fea-
tures, we develop efficient algorithms tailored
for the least squares (L2) and least absolute (L1)
loss functions, each coupled with a ridge-like and
Lasso-type penalty, respectively. Moreover, we
establish rigorous error bounds for all proposed
algorithms. Notably, our L2 loss function algo-
rithms are probably approximately correct (PAC),
distinguishing them from their L1 counterparts.
Extensive numerical experiments show that our
approach outperforms methods that apply exist-
ing algorithms for univariate outcome individu-
ally to each coordinate of multivariate outcomes
in a naive manner. Further, utilizing the L1 loss
function or introducing a Lasso-type penalty can
enhance predictions in the presence of outliers
or high dimensional features. This research con-
tributes valuable insights into addressing the chal-
lenges posed by incomplete data.

1. Introduction
Datasets with multiple outcomes are pervasive in many prac-
tical applications, especially in the era of big data. Typical
examples include longitudinal data (Diggle, 2002), panel
data (Baltagi & Baltagi, 2008), functional data (Horváth &
Kokoszka, 2012), and image data (Zhu et al., 2023). Multi-
variate linear regression is a simple and widely used tool to
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characterize relationships between multi-dimensional out-
comes and multiple features. It is commonly employed to
predict outcomes for new features. The literature on this
topic is extensive; some notable works include Breiman
& Friedman (1997); Su et al. (2012); Price & Sherwood
(2018), and the references therein.

However, the applicability of those available methods is of-
ten hindered by limitations in observations, a phenomenon
arising frequently in applications. This constraint can oc-
cur intentionally as part of a design. For example, in
machine learning tasks involving high-dimensional data
like electronic health records and large-scale administra-
tive data, selecting a subset of features and/or outcomes
is crucial due to constraints such as limited computational
resources.Moreover, not all variables contribute equally to
predictive performance. Opting for the most informative
variables not only enhances the interpretability of the model
but also improves the model generalization ability by miti-
gating the risk of overfitting.

On the other hand, limited observations can arise beyond our
control. For example, in medical studies, not all examination
items for each patient can be measured due to factors like
time constraints or cost. Similarly, in weather forecasting, it
is difficult or even impossible to observe the entire historical
data, necessitating the selection of representative stations
and specific times for measurements. These constraints
drive the need for algorithms capable of handling datasets
with restricted observations.

Under the univariate outcome setting, the issue of missing
features has been extensively studied in statistics and re-
ceived attention in the machine learning literature. This
problem is also named as learning with limited attribute
observation (LAO) (Ben-David & Dichterman, 1993), re-
stricted focus of attention (Ben-David & Dichterman, 1998),
or budget learning (Madani et al., 2004). Cesa-Bianchi
et al. (2011) analyzed the linear prediction in this setting
and proposed algorithms with theoretical guarantees for
the generalization error. Hazan & Koren (2012) proposed
more efficient online algorithms for regression with ridge
or Lasso constraint, which was then improved by Kuklian-
sky & Shamir (2015) using a different sampling strategy.
Rostamizadeh et al. (2011) developed batch and online algo-
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rithms to simultaneously learn the imputation and prediction
functions. The computational efficiency for sequential pre-
diction using a limited number of features was explored
by Foster et al. (2016) and Kale et al. (2017). Classifica-
tion with missing features was studied by Dekel & Shamir
(2008); Hazan et al. (2015); Gong et al. (2023), among
others.

However, when dealing with multi-dimensional outcomes,
much of the existing research has predominantly focused on
addressing missing outcomes alone (e.g., Ibrahim & Molen-
berghs (2009), and the reference therein). Surprisingly, there
has been relatively limited exploration into scenarios where
both outcomes and features are missing simultaneously, es-
pecially in settings with multiple outcomes. In practice,
however, data are often unavailable for both outcomes and
features.

Chen et al. (2008) explored this scenario using a likelihood-
based method and investigated the theoretical properties
within the normal linear model. Chen et al. (2010) stud-
ied intermittently missing-at-random data and proposed an
estimation equation approach. Addressing multi-view multi-
label data, Tan et al. (2018) developed algorithms to learn
from both incomplete views and weak labels. For multi-
label learning with incomplete binary labels and features,
Han et al. (2018) and Hao et al. (2022) proposed meth-
ods to simultaneously recover missing variables and learn
classification models.

1.1. Related Works and Our Contributions

Previous research on LAO has primarily focused on scenar-
ios with univariate outcomes but has not explored other set-
tings. To address this significant gap, our article investigates
a broader context where the outcome is multi-dimensional,
allowing for LAO to occur in both features and outcome vari-
ables. Our study centers on a unique missingness scenario
where learners can select a limited set of components from
both outcomes and features for observation. This framework
encompasses the settings explored by Cesa-Bianchi et al.
(2011),Hazan & Koren (2012), and Bullins et al. (2016),
who focused on the univariate outcome setting. Our work
uncovers new findings that generalize the results from those
studies.

Table 1 presents a comparison of those related works, with
T , p, and q denoting the sample size, feature dimension, and
outcome dimension, respectively. Here p0 and q0 represent
the number of observed features and observed outcomes,
respectively. Under the ‘LAO’ column, ‘y,x’ and ‘x’ rep-
resent scenarios with missing attributes in both outcomes
and features, and missing features only, respectively. The
last two columns of the table display the (squared) Excess
Error Bound (EEB) under least squares and least absolute
loss functions. In the table, ‘O’ denotes the expected EEB,

Table 1. A summary of our work as opposed to related methods
concerning LAO. Here, C, H, and B represent Cesa-Bianchi et al.
(2011), Hazan & Koren (2012), and Bullins et al. (2016), respec-
tively.

WORK q LAO EEB (L2) EEB (L1)

OURS ≥ 1 y, x O
(

pq
T (p0−1)q0

)
O
(

q2p0
pq0T

+ q(p−q0)
p

)
C 1 x Oδ

(
p

p0T
log T

δ

)
-

H 1 x O
(

p
T (p0−1)

)
-

B 1 x - O
(

1
T
+ p−1

p

)

while ‘Oδ’ represents the EEB with a probability of 1− δ,
up to a constant factor.

Our research represents a notable departure from existing
literature in the following key aspects:

• Our work broadens the scope of existing research in
this area by generalizing the univariate outcome frame-
work to include multi-dimensional outcomes. Further,
our work accommodates LAO occurring in both fea-
tures and outcomes.

• In contrast to much of the statistical literature, which
typically emphasizes statistical inference and often as-
sumes a missing-at-random mechanism (Chen et al.,
2008; 2010), our work stands out for its emphasis on
prediction properties. We do not rely on specific re-
gression models or missing data models before employ-
ing the developed algorithms. This aspect makes our
approach particularly attractive, given the challenges
associated with validating such models in practical
applications.

• We extend beyond the least squares loss function to
incorporate the least absolute loss function to enhance
prediction robustness. We introduce efficient algo-
rithms for different loss functions under ridge-like con-
straints or an additional Lasso-type penalty. Further-
more, we rigorously establish expected risk bounds
for the outputs of the proposed algorithms. Notably,
while arbitrary accuracy can be achieved with a suf-
ficiently large sample size in regression with a least
squares loss function, a gap exists in regression with a
least absolute loss function unless the features are fully
observed. As shown in Table 1, our results align with
univariate counterparts (Hazan & Koren, 2012; Bullins
et al., 2016), with a slight improvement factor p0/p in
the least absolute loss function setting.

In summary, our paper offers valuable new perspectives
and insights into addressing Limited Attribute Observation,
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which represents a distinct category within missing data
problems.

2. Preliminaries
We use column vectors x ∈ Rp and y ∈ Rq to denote
features and outcomes that have dimensions p and q, respec-
tively. In multivariate linear regression, the learner aims
at seeking a p × q weight matrix W such that the linear
predictor ŷ ≜ W Tx provides a good prediction of y. Let
L(ŷ,y) denote a loss function, mapping from Rq×Rq to R,
which is convex in the first argument. Commonly used loss
functions include half of the L2 loss: L(ŷ,y) = 1

2∥ŷ−y∥
2,

and the L1 loss: L(ŷ,y) = ∥ŷ−y∥1, where ∥a∥ and ∥a∥1
represent the L2 norm and the L1 norm for vector a, re-
spectively. It is well-known that the least absolute deviation
method, which utilizes the L1 loss, produces estimates that
are more robust to outliers than those obtained using the L2

loss (Watt et al., 2020, Section 5.3)

Define the risk of the weight W

R(W ) = E(x,y)∼D{L(W Tx,y)}, (1)

where D is the unknown distribution of (x,y) over Rp ×
Rq. To learn a linear regressor, we often regularize W to
minimize R(W ), with certain constraints on W imposed.
Taking the regularization term to be the Frobenius norm of
W yields the ridge-like regression

argmin
∥W ∥F≤B

R(W ), (2)

where ∥A∥F represents the Frobenius norm for a matrix
A, and B > 0 is the regularization parameter (Hoerl &
Kennard, 1970).

To address various data features, it is common to further
introduce a penalty function for W to balance its trade off
with R(W ). In other words, (2) can be extended to include
a penalty function Pλ(W ) with tuning parameter λ:

argmin
∥W ∥F≤B

{R(W ) + Pλ(W )}. (3)

Typically, Pλ(W ) is not chosen to be the Frobenius norm
to avoid imposing redundant constriaints. Setting Pλ(W )
to be the L1 norm of the vectorized W yields the lasso
penalty (Tibshirani, 1996), which has many variants, includ-
ing group Lasso (Yuan & Lin, 2006; Jacob et al., 2009) and
sparse group Lasso (Simon et al., 2013; Ida et al., 2019),
among others. We opt to keep this constraint as in (2) for
the sake of convenience in the technical proof.

3. Algorithms for Least Squares
Let {(xt,yt) : t = 1, . . . , T} be independently and identi-
cally distributed samples of (x,y), where T is the number

of examples. Suppose that there exist positive constants Bx

and By such that

∥xt∥ ≤ Bx and ∥yt∥ ≤ By for all t. (4)

We consider the setting with online data, for which we
have access to (xt,yt) only at each time t. The learning
algorithm is designed to predict yt based on xt and the
previous information {(xj ,yj) : j = 1, . . . , t− 1}.

We consider the case where both outcomes and features can
only be limitedly observed. To be specific, although we may
have access to full data, we are required to choose no more
than q0 coordinates of y and p0 coordinates of x to observe,
where q0 ≤ q and p0 ≤ p. We use [s] as a shorthand
of the sequence {1, . . . , s} for any positive integer s. For
a positive integer d and 1 ≤ j ≤ d, let e[d]j denote the
d-dimensional column vector with the jth element being
1 and all other components being 0, and let xt,j and yt,j
denote the jth coordinate of xt and yt, respectively. For
any a × b matrix Ct or D, let Ct,j: or Dj: denote the jth
row of Ct or D, expressed as a row vector, and let CT

t,j: or
DT

j: denote its transpose, (Ct,j:)
T or (Dj:)

T, for simplicity.
When expressing the jth row of the transpose CT

t of Ct, we
denote it as (CT

t )j:.

3.1. Least Squares Ridge-like Regression

In contrast to (2), taking the loss function in (1) as the half
of the L2 norm, and given T , we consider minimizing the
empirical squared loss at t, 1

2∥W
Txt−yt∥2 for 1 ≤ t ≤ T ,

whose expectation is the risk R(W ), given by (1) due to
the i.i.d. assumption. Let Wt denote the weight matrix,
also called the coefficient matrix, obtained from using an
algorithm at t. Without full observations of outcomes and
features, the key is to estimate the gradient of the squared
loss at Wt, Gt ≜ xt(Wt

Txt − yt)
T, in an “unbiased”

manner to be explained later. The coefficient matrix Wt is
then updated to Wt+1 using the gradient descent method
for each t = 1, . . . , T .

An online learning algorithm is proposed in Algorithm 1,
where η represents the step size and B is the pre-specified
tuning parameter as in (2).

When q = q0 = 1, Algorithm 1 reduces to the AERR al-
gorithm proposed by Hazan & Koren (2012), with the only
difference being the sampling scheme in Line 5. Hence,
Algorithm 1 virtually extends the AERR algorithm devel-
oped for univariate outcomes to accommodate multivariate
outcomes. In Appendix A.1 we present an alternative multi-
variate AERR algorithm that applies the AERR procedure
to each outcome variable separately. The superiority of the
proposed Algorithm 1 to this multivariate AERR algorithm
is demonstrated through simulations in Section 5.1.

The gradient Ğt constructed in Line 8 provides an unbiased
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Algorithm 1 Multivariate Least Squares Ridge Regression
1: Initialize:B, η > 0, W1 satisfying 0 < ∥W1∥F ≤ B,

q0 ≥ 1, p0 ≥ 2
2: for t = 1, . . . , T do
3: Choose {jt,r : r ∈ [q0]} uniformly from [q] without

replacement
4: ỹt ← q

q0

∑q0
r=1 yt,jt,re

[q]
jt,r

5: Choose {jt,r : r ∈ [p0 − 1]} uniformly from [p]
without replacement

6: x̃t ← p
p0−1

∑p0−1
r=1 xt,jt,re

[p]
jt,r

7: Pick an index jt with probability ∥W T
t,jt:
∥2/∥Wt∥2F

from [p]

8: Ğt ← x̃t(xt,jt∥Wt∥2FW T
t,jt:

/∥W T
t,jt:
∥2 − ỹt)

T

9: Vt ←Wt − ηĞt

10: Wt+1 ← BVt/max{∥Vt∥F , B}
11: end for
12: Return: 1

T

∑T
t=1 Wt

estimate of Gt conditional on Wt, xt and yt. The proof of
this property is provided in (24) of Appendix C. This prop-
erty contributes to the following theorem about Algorithm
1.

Theorem 3.1. Assume that (4) holds. Let Ŵ ≜
1
T

∑T
t=1 Wt denote the output of Algorithm 1. Then

∥Ŵ ∥F ≤ B, and furthermore,

(a). for any p× q matrix W ∗ with ∥W ∗∥F ≤ B,

E{R(Ŵ )} ≤R(W ∗) +
2B2

ηT

+
ηB2

xp

p0 − 1

(
qB2

y

q0
+B2B2

x

)
;

(b). with the step size in Algorithm 1 given as

η =

√
2B2(p0 − 1)

TB2
xp(B

2B2
x + qB2

y/q0)
, (5)

we have that

E{R(Ŵ )} ≤ R(W ∗) + 4B̃2

√
pq

T (p0 − 1)q0
, (6)

where B̃ ≜ max{BBx, By}.

The result (6) implies that to learn Ŵ with ∥Ŵ ∥F ≤ B,
such that R(Ŵ ) − R(W ∗) ≤ ϵ in expectation for any
∥W ∗∥F ≤ B, at least O

(
pq

(p0−1)q0ϵ2

)
examples are re-

quired. This characterization of sample complexity extends
the counterpart of Theorem 3.1 in Hazan & Koren (2012).

Algorithm 2 Multivariate Least Squares Lasso Regression
1: Initialize:λ, ηt > 0, W1 satisfying 0 < ∥W1∥F ≤ B,

q0 ≥ 1, p0 ≥ 2
2: for t = 1, . . . , T do
3: Construct Ğt as in Line 8 of Algorithm 1
4: Vt ←Wt − ηtĞt

5: W ∗
t+1 ← argmin

W

{
1
2∥W − Vt∥2F + ηtPλ(W )

}
6: Wt+1 ← BW ∗

t+1/max{∥W ∗
t+1∥F , B}

7: end for
8: Return: 1

T

∑T
t=1 Wt

Specifically, if q = q0, the second term on the right hand
side of (6) reduces to the counterpart in Hazan & Koren
(2012), except for a small constant difference induced from
using a different strategy to sample the observable indices.
In addition, Markov’s inequality yields that for any ϵ, δ > 0

P
(
R(Ŵ )− inf

∥W ∥F≤B
R(W ) ≥ ϵ

)
≤ δ

if T ≥ 16B̃4pq
(p0−1)q0

ϵ−2δ−2, indicating that Algorithm 1 is a
PAC learning algorithm (Mohri et al., 2018, Chapter 2).

3.2. Least Squares Lasso-type Regression

In contrast to (3), we extend the development in Section 3.1
to include sparsity-inducing penalties. For any p× q matrix
W and for l = 1, . . . , p, we consider the penalty function:

Pλ(W ) = λ1

p∑
l=1

∥W T
l: ∥+ λ2

p∑
l=1

∥W T
l: ∥1, (7)

where λ = (λ1, λ2)
T includes tuning parameters λ1 and λ2.

When λ1 = 0, the penalty function (7) reduces to Lasso,
which shrinks each element of W towards 0, aiding in the
detection of active features for each coordinate of the out-
come. When λ2 = 0, (7) represents the group Lasso, which
shrinks each row of W towards 0, and thus, facilitating
the detection of active features for the entire outcome. The
general sparse group lasso penalty (7) achieves both levels
of selection simultaneously.

Let {ηt : t = 1, 2, . . . } denote a collection of step sizes. To
address the learning of multivariate outcomes with limited
observations, we introduce Algorithm 2, which modifies
the FOBOS method proposed by Duchi & Singer (2009).
In this algorithm, the key step in Line 5, which is indeed
the proximal mapping of ηtPλ(W ) (Beck, 2017, Chaper
7), produces a matrix close to Vt, acquired through the
unconstrained gradient descent step in Line 4. This process
also attains certain sparsity due to the penalty term. The
regularization parameter B > 0 is defined in (3).

One might inquire about the existence of a more efficient
method for the optimization problem in Line 5 of Algorithm
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2. The following proposition validates the existence of a
closed-form solution, with its proof deferred to Section C.3
of the supplementary material. We adopt the convention that
0/0 = 0. Define the soft thresholding operator as Sµ(x) =

(|x| − µ)+x/|x| for x ∈ R and µ ≥ 0, where (u)+ ≜
max{u, 0} for any u ∈ R. For a vector x = (x1, . . . , xd)

T,
let Sµ(x) denote the vector (Sµ(x1), . . . , Sµ(xd))

T.
Proposition 3.2. The jth row of W ∗

t+1 in Algorithm 2 can
be represented as:

W ∗
t+1,j: = (∥Sηtλ2(Vt,j:)∥ − ηtλ1)+ ·

Sηtλ2
(Vt,j:)

∥Sηtλ2(Vt,j:)∥

for j = 1, . . . , p.
Theorem 3.3. Assume that (4) holds. Let Ŵ denote the
output of Algorithm 2. Then ∥Ŵ ∥F ≤ B, and futhermore,

(a). for any p× q matrix W ∗ with ∥W ∗∥F ≤ B,

E{R(Ŵ ) + Pλ(Ŵ )} ≤ R(W ∗) + Pλ(W
∗) + ∆1,

where

∆1 ≜
pB2

xη̄

p0 − 1

(
qB2

y

q0
+B2B2

x

)
+

2B2

ηTT
+

1

T
Pλ(W1)

with η̄ = 1
T

∑T
t=1 ηt;

(b). with ηt = η for all t = 1, . . . , T and η given by (5),

E{R(Ŵ ) + Pλ(Ŵ )} ≤ R(W ∗) + Pλ(W
∗) + ∆′

1,
(8)

where

∆′
1 ≜ 4B̃2

√
pq

T (p0 − 1)q0
+

1

T
Pλ(W1)

and B̃ ≜ max{BBx, By}.

(c). with {ηt : t = 1, 2, . . . } satisfying that

ηTT →∞ and
1

T

T∑
t=1

ηt → 0 as T →∞,

we have that

lim
T→∞

E{R(Ŵ ) + Pλ(Ŵ )} = R(W ∗
0 ) + Pλ(W

∗
0 ),

where W ∗
0 is optimal in the sense that for any given

λ ≥ 0,

R(W ∗
0 )+Pλ(W

∗
0 ) = inf

∥W ∥F≤B
{R(W ) + Pλ(W )} .

Theorem 3.3 encompasses Theorem 3.1 as a special case
when λ1 = λ2 = 0. A typical choice for step sizes involves
setting ηt ∝ 1/

√
t for t = 1, 2, . . . , which decreases as t

increases. Such step sizes, similar to (8) with a fixed step
size, yields an O(

√
1/T ) bound as T → ∞ (Zinkevich,

2003).

Algorithm 3 Multivariate Least Absolute Deviations Ridge
Regression

1: Initialize:B, η > 0, W1 satisfying ∥W1∥F ≤ B, q0 ≥
1, p0 ≥ 1

2: for t = 1, . . . , T do
3: Choose {jt,r : r ∈ [p0]} uniformly from [p] without

replacement
4: x̃t ←

∑p0

r=1 xt,jt,re
[p]
jt,r

5: Choose Ot ≜ {jt,r : r ∈ [q0]} uniformly from [q]
without replacement

6: ϕt,Ot
← any element from the set ∂∥W T

t,:Ot
x̃t −

yt,Ot
∥1

7: Ğt ← q
q0
x̃tϕ

T
t , where ϕt ∈ Rq with Ot-elements

being ϕt,Ot and the remaining being 0
8: Vt ←Wt − ηĞt

9: Wt+1 ← BVt/max{∥Vt∥F , B}
10: end for
11: Return: 1

T

∑T
t=1 Wt

4. Algorithms for Least Absolute Deviations
4.1. Least Absolute Deviations Ridge-like Regression

In this subsection, we propose an algorithm to solve the
problem (2) using the L1 loss function, with an extension
feasible for accommodating general Lipschitz convex loss
functions. Here, we use notations analogous to those in
Algorithm 1. For a d× 1 vector u = (u1, . . . , ud)

T, with d
being a positive integer, let ∂∥u∥1 denote the subgradient of
function ∥ · ∥1 at u, with the jth component denoted ∂|uj |
for j = 1, . . . , d, where ∂|uj | equals the sign of uj when
uj ̸= 0 and ∂|uj | = [−1, 1] when uj = 0. For a vector
v ∈ Rq and a subset O ⊂ {1, . . . , q}, let vO denote the
subvector of v restricted on the indices setO. For any p× q
matrix Wt, Wt,:O represents the p × |O| submatrix with
columns indices O, where |O| is the cardinality of O.

The crucial aspect of Algorithm 1 lies in the construction of
an unbiased estimate of the gradient of the L2 loss. However,
this approach becomes infeasible now when dealing with
the absolute value loss function that is non-differentiable.
Instead, we resort to subgradient methods and carefully
manage the resulting error bound to ensure PAC guarantees
when there are no missing input features (i.e., p0 = p), as
shown in Theorem 4.1. It is important to note that intro-
ducing multi-dimensional outcomes poses challenges when
employing the absolute value loss function. Merely com-
puting the subgradient of the absolute value loss function at
W Tx̃t− ỹt would lead to an unsatisfactory error bound due
to substantial bias, where x̃t and ỹt are constructed similarly
to those in Algorithm 1. This issue, however, diminishes
when dealing with univariate outcome.

Theorem 4.1. Assume that (4) holds. Let Ŵ denote the

5



Multivariate Regression with Limited Observations

Algorithm 4 Multivariate Least Absolute Deviations Lasso
Regression

1: Initialize:B, ηt > 0, W1 satisfying ∥W1∥F ≤ B,
q0 ≥ 1, p0 ≥ 1

2: for t = 1, . . . , T do
3: Construct Ğt as in Line 8 of Algorithm 3
4: Vt ←Wt − ηtĞt

5: W ∗
t+1 ← argmin

W

{
1
2∥W − Vt∥2F + ηtPλ(W )

}
6: Wt+1 ← BW ∗

t+1/max{∥W ∗
t+1∥F , B}

7: end for
8: Return: 1

T

∑T
t=1 Wt

output of Algorithm 3. Then ∥Ŵ ∥F ≤ B, and futhermore,

(a). for any p× q matrix W ∗ with ∥W ∗∥F ≤ B,

E{R(Ŵ )} ≤R(W ∗) +
2B2

ηT
+

q2p0B
2
xη

2pq0

+ 2
√
qBBx

√
1− p0

p
;

(b). with η in Algorithm 3 set as η = 2B
Bxq

√
pq0
p0T

,

E{R(Ŵ )} ≤R(W ∗) + 2BBx

√
q2p0
pq0T

+ 2
√
qBBx

√
1− p0

p
. (9)

Theorem 4.1 extends the results in Bullins et al. (2016, The-
orem 8) from the case with q = q0 = 1 to accommodate
multivariate outcomes with q ≥ 1. The expression (9) pro-
vides an upper bound for the expected risk of the algorithm
output. If p = p0, the last term in (9) becomes exactly 0, and
thus, Algorithm 3 is a PAC-learning algorithm, following
from similar arguments after Theorem 3.1. On the contrary,
when p0 < p, unlike the last term in (6) that approaches 0 as
T →∞, the last term in (9) remains a constant irrespective
of T . Indeed, Bullins et al. (2016, Corollary 4) showed that
for the case with q0 = q = 1, no PAC algorithm exists if
p0 < p.

4.2. Least Absolute Deviations Lasso-type Regression

Analogous to Section 3.2, we now study least square devia-
tions regression with sparsity-inducing penalty (7) included.
In the same spirit of Algorithm 2, we propose Algorithm 4,
whose theoretical guarantee is presented as follows.
Theorem 4.2. Assume that (4) holds. Let Ŵ denote the
output of Algorithm 4. Then ∥Ŵ ∥F ≤ B, and furthermore,

(a). for an any p× q matrix W ∗ with ∥W ∗∥F ≤ B,

E{R(Ŵ ) + Pλ(Ŵ )} ≤ R(W ∗) + Pλ(W
∗) + ∆2,

where

∆2 ≜
2B2

ηTT
+
q2p0B

2
xη̄

2pq0
+2
√
qBBx

√
1− p0

p
+
Pλ(W1)

T

with η̄ = 1
T

∑T
t=1 ηt;

(b). with ηt in Algorithm 4 set as ηt = 2B
Bxq

√
pq0
p0T

for all

t = 1, . . . , T ,

E{R(Ŵ ) + Pλ(Ŵ )} ≤ R(W ∗) + Pλ(W
∗) + ∆′

2,

where

∆′
2 ≜ 2BBx

√
q2p0
pq0T

+2
√
qBBx

√
1− p0

p
+
Pλ(W1)

T
;

(c). with {ηt : t = 1, 2, . . . } satisfying that

ηTT →∞ and
1

T

T∑
t=1

ηt → 0 as T →∞,

we have that

lim sup
T→∞

E{R(Ŵ ) + Pλ(Ŵ )}

≤R(W ∗) + Pλ(W
∗) + 2

√
qBBx

(√
1− p0

p

)
.

Theorem 4.2 further extends Theorem 4.1 by incorporating
an additional penalization and decreasing step sizes. Assum-
ing W ∗

0 is optimal as in Theorem 4.1, it is straightforward
to show that

lim inf
T→∞

E{R(Ŵ ) + Pλ(Ŵ )} ≥ R(W ∗
0 ) + Pλ(W

∗
0 ).

Unlike Theorem 3.3(d) which delineates the limit of
E{R(Ŵ ) + Pλ(Ŵ )} for the output of Algorithm 2,
here, for the output of Algorithm 4, we can only char-
acterize the inferior and superior limits of E{R(Ŵ ) +

Pλ(Ŵ )}, which are bounded between R(W ∗
0 ) + Pλ(W

∗
0 )

and R(W ∗
0 ) + Pλ(W

∗
0 ) + 2

√
qBBx

√
1− p0

p . The term

2
√
qBBx

√
1− p0

p indicates that if p0 < p, there may exist
a gap between the output of the algorithm and the optimal
weight matrix W ∗

0 even as T →∞.

5. Experiments
5.1. Synthetic Data: Merit of Multivariate Algorithms

The algorithms proposed in Sections 3 and 4 consider all ob-
served outcomes simultaneously. While one might question
the necessity of such an approach, as existing algorithms for
univariate observable outcomes can be extended directly, we

6
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demonstrate the superiority of Algorithm 1 over the “multi-
variate AERR” using various synthetic datasets. The AERR
algorithm, proposed by Hazan & Koren (2012), is designed
for one dimensional outcomes and incomplete features. In
essence, we execute the AERR procedure separately for
each observed coordinate of outcomes. The detailed pseudo
code of “multivariate AERR” is presented in Section A.1.

Set q = 5, q0 = 2, p = 20, and p0 = 10. Let W0 be a
p×q matrix whose coordinates are chosen from the uniform
distribution over {1,−1, 2,−2}. For i = 1, . . . , T , we
generate each feature vector xi ∈ Rp independently from
a centered multivariate normal distribution having variance
matrix with (j, j′) element being 0.5|j−j′|. Outcomes are
then generated from the linear model:

yi = W T
0 xi + εi for i = 1, . . . , T, (10)

where yi ∈ Rq, and the random error εi ∈ Rq is sampled
from the normal distribution having mean 0 and variance
matrix with the (j, j′) element being σ2

ε · 0.1|j−j′|.

We examine various settings for the sample size T (10000,
20000 or 50000) and the noise level σ2

ε (5 or 10). In each set-
ting, the entire procedure is repeated 300 times to compare
the performance of three methods by presenting the asso-
ciated average results: Algorithm 1 (abbreviated as LSR),
multivariate AERR with p0 = 10 (abbreviated as AERR1),
and multivariate AERR with p0 redefined as 12 (abbrevi-
ated as AERR2). A summary of the observed features is
displayed in Table 2. Specifically, since AERR involves
sampling observation indices with replacement, differing
from Line 6 in Algorithm 1, there are instances where the
total number of observations may be smaller than that of
Algorithm 1. To address this, we set a larger q0 to ensure
that the number of observations is slightly larger than that of
Algorithm 1. The comparison between LSR and AERR1 is
based on the same sample size T , whereas the comparison
between LSR and AERR2 focuses on a similar total number
of observations. In implementing all methods, B is set to
be 100.

According to Hazan & Koren (2012, Theorem 3.1), the opti-

mal constant step size for AERR is of order O
(√

p0−1
2pT∗

)
,

where T∗ = q0T/q represents an effective sample size,
given that each coordinate of outcomes is observed with

the probability of q0/q. We set the step size to be 1
9

√
p0−1
2pT∗

.
By Theorems 3.1, the optimal step size for Algorithm 1 is

O
(√

2(p0−1)
Tp(1+q/q0)

)
. Hence, the step size for LSR is set to

be 1
9

√
2(p0−1)

Tp(1+q/q0)
.

For additional comparisons, we employ two imputation
methods utilizing the R package ‘mice’. The first method,
referred to as ‘Imp1’, involves imputation on the entire
dataset using the ‘mice’ function. Missing indices are gen-

Table 2. Synthetic data: Mean of the observed features attributes
across 300 replicates.

T = 104 T = 2× 104 T = 5× 104

LSR 95500.26 190999.3 477498.2
AERR1 86237.33 172480.4 431179.1
AERR2 97327.83 194657.8 486670.9

erated using LSR (Algorithm 1), followed by using the
multivariate linear regression model to estimate coefficients.
In contrast, the second method, denoted ‘Imp2’, employs
mean imputation for missing feature attributes, followed by
employing ‘mice’ to impute missing outcomes.

The performance of each method is evaluated by the mean
prediction error: 1

T ′

∑T ′

i=1 ∥y∗
i − Ŵ Tx∗

i ∥2, where y∗
i and

x∗
i represent new, fully observed samples generated inde-

pendently and identically to the training sample, and Ŵ
denotes the output obtained from method. We set T ′ = 5000
and display the results in Table 3. As anticipated, a larger
q0 makes AERR2 perform better than AERR1, although the
improvement is marginal. Additionally, the prediction error
decreases as the sample size increases or the noise level
decreases. Across all settings, the proposed LSR method
significantly outperforms AERR1 and even AERR2, which
requires a larger q0 for each sample. This advantage of LSR
over AERR may stem from Line 8 of Algorithm 1, where
the gradient computation is not only more efficient com-
pared to Lines 7-9 of Algorithm 5 but also more effective
in terms of optimization. Finally, Imp1 greatly outperforms
all other methods, whereas Imp2 performs worse than our
method. However, it is worth noting that comparing Imp1
and Imp2 with other three methods is not fair, as the former
methods are batch mode, utilizing the entire dataset at the
cost of increased computation, whereas the latter methods
use the data sequentially with a smaller size of data at each
time point.

5.2. Synthetic Data: Robustness

We conduct simulations to compare Algorithms 1 and 3 in
this subsection. The data generation setting is analogous to
that in Section 5.1, with σ2

ε now fixed at 5 and p0 allowed
to vary. While Algorithm 3 (abbreviated as LADR) cannot
produce arbitrarily precise prediction as T → ∞, as per
Theorem 4.1, in certain situations with outliers, LADR may
outperform Algorithm 1. Specifically, we introduce 20%
of training samples as outliers, with their corresponding
random errors generated independently from the standard
Cauchy distribution with center 0 and scale 1.

We consider different sample sizes for T (10000,20000
or 50000) and values for p0 (10,15 or 20). We compare
LADR to Algorithm 1 (abbreviated as LSR) and Algorithm

7
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Table 3. Experiment results: Mean (and standard variation) of
mean prediction errors over 300 replicates for LSR, AERR1,
AERR2, Imp1, and Imp2.

σ2
ε T = 1× 104 T = 2× 104 T = 5× 104

5 LSR 25.08 (1.65) 20.38 (1.13) 16.31 (0.60)
AERR1 37.41 (4.18) 30.18 (3.14) 22.19 (1.49)
AERR2 36.77 (7.13) 28.99 (3.06) 21.52 (2.04)
IMP1 14.18 (0.24) 13.88 (0.21) 13.68 (0.17)
IMP2 28.91 (3.21) 28.82 (3.29) 28.62 (3.34)

10 LSR 37.63 (1.69) 32.95 (1.16) 28.84 (0.66)
AERR1 49.54 (5.41) 42.21 (2.60) 34.84 (1.80)
AERR2 48.69 (3.86) 41.42 (2.78) 33.86 (1.37)
IMP1 26.46 (0.31) 26.09 (0.26) 25.86 (0.27)
IMP2 41.53 (3.31) 41.25 (3.28) 41.00 (3.36)

Table 4. Experiment results: Mean (and standard variation) of
mean prediction errors over 300 replicates for LADR, LSR and
LSR0.

T (104) p0 = 10 p0 = 15 p0 = 20

1 LSR 79.66 (73.76) 66.53 (60.23) 51.25 (38.94)
LADR 29.96 (3.27) 17.14 (0.64) 12.70 (0.12)
LSR0 25.19 (1.68) 21.36 (1.08) 18.95 (0.87)

2 LSR 77.39 (62.29) 53.75 (37.55) 35.85 (21.02)
LADR 29.56 (3.49) 16.72 (0.60) 12.59 (0.11)
LSR0 20.41 (1.05) 17.62 (0.73) 16.13 (0.53)

5 LSR 52.76 (30.82) 38.81 (19.24) 29.25 (12.15)
LADR 29.89 (3.63) 16.60 (0.60) 12.53 (0.11)
LSR0 16.32 (0.57) 14.84 (0.38) 14.14 (0.28)

1 under non-contaminated samples (abbreviated as LSR0)
with the same sample size. The average results for 300
repeated implementations are displayed in Table 4. First,
LADR significantly outperforms LSR under all settings,
showing the robustness of Algorithm 3 in the presence of
outliers. Secondly, in some situations, especially when
p0 is large and T is small, LADR is even more accurate
and stable than LSR0. Thirdly, increasing p0 improves the
prediction accuracy for all three methods. On the other
hand, increasing T decreases the prediction error for LSR
and LSR0 only. This suggests that Algorithm 3 can be
more efficient than Algorithm 1 under certain finite sample
cases, although theoretically, it may not be as accurate as
Algorithm 1 when T →∞. The comparison of Algorithms
2 and 4 follows a similar pattern and is deferred to Section
A.2.

5.3. Synthetic Data: Penalization

In this subsection, we present simulation results for Algo-
rithm 2 and compare it to Algorithm 1. We consider a

Table 5. Experiment results: Mean (and standard variation) of PEP,
PE and PE0 over 300 replicates.

p0 T = 4× 104 T = 6× 104 T = 8× 104

20 PEP 35.10 (12.87) 17.77 (4.45) 12.26 (2.32)
PE 28.15 (11.53) 12.81 (3.65) 8.21 (1.77)
PE0 43.27 (17.27) 18.14 (5.26) 11.61 (2.87)

40 PEP 8.92 (1.16) 7.04 (0.72) 6.34 (0.51)
PE 5.73 (0.79) 4.33 (0.41) 3.81 (0.27)
PE0 7.21 (1.02) 5.16 (0.56) 4.38 (0.35)

setting with q = 5, q0 = 2, and p = 50. The elements of
the first 5 rows of W0 in model (10) are generated from
{0, 1,−1, 2,−2} with equal probabilities of 0.2 each, while
the remaining elements of other 45 rows are all set to 0. The
distributions of xi and εi are identical to those in Section
5.1, except that the noise level σ2

ε is fixed to be 1. The two
tuning parameters in (7), λ1 and λ2, are set to 0.1 and 0.001,
respectively. The choices of B and step size η are the same
as those in Section 5.1.

We calculate the mean prediction error with penalty (abbre-
viated as PEP) for T ′ = 5000 new, fully observed samples:
1
T ′

∑T ′

i=1 ∥y∗
i −Ŵ T

2 x∗
i ∥2+Pλ(Ŵ2), where Ŵ2 represents

the output of Algorithm 2. In addition, we compare the mean
prediction error of Algorithm 2 (abbreviated as PE) and Al-
gorithm 1 (abbrevaited as PE0): 1

T ′

∑T ′

i=1 ∥y∗
i − Ŵ T

l x∗
i ∥2,

where l = 1 for PE0 and l = 2 for PE.

Table 5 displays average values for PEP, PE and PE0 under
various values of p0 and T . It is evident that all three crite-
ria decrease as T increases. A smaller p0 requires a larger
sample size to achieve comparable prediction accuracy. The
comparison between PE and PE0 indicates that Algorithm
2 may yield better predictions than Algorithm 1, especially
when p is large and p0 is small. The advantage of penaliza-
tion for the least absolute deviation loss is shown in Section
A.2.

5.4. Yeast Cell Data

We apply the proposed method to the yeast cell dataset,
available from R package “spls”. The objective is to explore
the influence of transcription factors (TFs) on the regulation
of the yeast cell cycle. The outcomes represent gene expres-
sion measurements of 542 genes related to the cell cycle. A
total of 18 mRNA levels are measured every 7 minutes over
a period of 119 minutes. The features include the binding
information for 106 transcription factors for these genes.
Using the notation in Section 3, we have p = 106, q = 18,
and T = 542. For futher details, refer to Chun & Keleş
(2010).
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We centralize the outcomes at each time point by subtracting
the sample average from individual measurements. Each
TFs feature is standardized such that the empirical mean
and variance are 0 and 1, respectively. We randomly split
the entire sample into training data and test data using 10
fold cross validation. For each split, Algorithm 1 is applied
to training data, with B = 2, and η is chosen similar to
that in Section 5.1. The prediction error is then computed
using test data, and the mean prediction error (MPE) is
computed for those 10 prediction error values obtained from
the 10 splits. To assess the performance of the proposed
Algorithm 1 under different values of p0 and q0, we consider
settings with p0 ∈ {5, 10, 15, 20} and q0 ∈ {5, 10, 15}
and plot the mean of MPE values over 50 repetitions of
the random split cross-validation procedure in Figure 1.
For comparison, we also report results obtained using the
“multivariate AERR” method. Analogous to the results in
Section 5.1, it is clearly that Algorithm 1 (LSR) consistently
outperforms the multivariate AERR across various settings
of (p0, q0). Both methods produce smaller prediction error
as p0 or q0 increases.

2.20

2.25

2.30

2.35

5 10 15 20
p0

M
P

E

q0

5
10
15

method

AERR
LSR

Figure 1. Application results for yeast cell data: The mean predic-
tion error for p0 = 5, 10, 15, 20, and q0 = 5 (solid line), 10 (dash
line), 15 (dotted line), using Algorithm 1 (LSR, blue triangle) or
the “multivariate AERR” (red dot).

6. Discussion
Within the framework of multivariate linear regression, we
explore a scenario where learners are constrained to observe
only a limited number of attributes for both outcomes and
features. We introduce efficient and easily implementable al-
gorithms tailored to various loss functions and regularization
techniques. Our research establishes the PAC property for
the least squares loss function, while highlighting the infea-
sibility of achieving PAC for algorithms employing the least
absolute value loss function unless the features are fully ob-

served. This work significantly expands the analytical scope
beyond existing investigations on univariate regression with
restricted feature observation. Extensive experiments un-
derscore the superiority of our proposed method over the
naive method that applies univariate outcome algorithms to
individual components of outcomes.

In line with common practice in the literature, our devel-
opment assumes that {(xt,yt) : t = 1, 2, . . .} are inde-
pendent and identically distributed (iid). Departure from
this iid assumption may affect the applicability of our pro-
posed methods. When the assumption is not strictly met but
remains reasonably close to the iid scenario, our learning
results can still provide reasonably good approximations
to the underlying truth. However, if the iid assumption is
deemed completely implausible, it is crucial to exercise
extra caution when interpreting the results of our learning
algorithms.

While all algorithms and associated theorems fall within the
scope of online learning, inspired by the work of Hazan &
Koren (2012), we do not necessarily view online learning
as indispensable for managing missing data in our context.
Alternative approaches, such as batch mode algorithms, can
also be developed by modifying our current development.

An interesting future exploration involves bridging the gap
between L1 regression with complete observation and in-
complete observation. Although building a PAC learning
algorithm within the considered framework is deemed im-
possible (Bullins et al., 2016), the gap may be asymptotically
eliminated if a certain proportion of the entire sample is fully
observed. If we can select the number of instances for their
full information access, a natural question arises: how many
queries are needed to achieve a good approximation of the
optimal solution across the entire dataset?

Our development utilizes multiple linear regression models,
known for their simplicity and transparent interpretations.
It is interesting to generalize our methods to accommodate
other models that facilitate complex relationships between
outcomes and features. For example, exploring the integra-
tion of achine learning methods such as multi-outcome deep
learning or tree ensemble methods would be useful. We
anticipate that establishing theoretical results may become
more challenging than our derivations here.
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Supplementary Material
In Section A.1, we present the pseudo code for the multivariate AERR algorithm mentioned in Section 5.1. Section A.2
provides additional experiment results for Algorithm 4. Section B shows another real data application of the proposed
method. The proof for all theorems and lemmas are given in Section C.

A. Additional Experiment Results
A.1. The multivariate AERR

We use Ct,:j to denote the j-th column vector of matrix Ct. Let Ct,j′:j denote the (j′, j) element of Ct. The following
algorithm extends AERR (Hazan & Koren, 2012) to multivariate settings, which is identical to AERR when q = q0 = 1.

The number of the observed features in this algorithm may differ from Algorithm 1. On one hand, x̃t in Line 3 is constructed
by sampling with replacement, which differs from Line 6 in Algorithm 1. Thus, we observe at most p0 − 1 attributes in this
step, whereas we observe exactly p0 − 1 attributes in that step of Algorithm 1. On the other hand, due to the “for loop” in
Lines 7-11 we may need to observe at most q0 additional attributes; however, due to Line 7 of Algorithm 1 we may only
need to observe at most one extra attribute. When q0 is small, as in the setting of Section 5.1, the total number of observed
feature attributes may be smaller than in Algorithm 1.

Algorithm 5 Multivariate AERR
1: Initialize:B, η > 0, W1 satisfying 0 < ∥W1∥F ≤ B, q0 ≥ 1, p0 ≥ 2
2: for t = 1, . . . , T do
3: Choose {jt,r : r ∈ [p0 − 1]} uniformly from [p] with replacement
4: x̃t ← p

p0−1

∑p0−1
r=1 xt,jt,re

[p]
jt,r

5: Vt ←Wt

6: Choose {jt,r : r ∈ [q0]} uniformly from [q] without replacement
7: for r = 1, . . . , q0 do

8: Pick an index j′t with probability
(Wt,j′t:jt,r

)2

∥Wt,:jt,r∥2 from [p] and observe xt,j′t

9: ğt ← x̃t(∥Wt,:jt,r∥2xt,j′t
/Wt,j′t:jt,r

− yt,jt,r )
10: Vt,:jt,r ←Wt,:jt,r − ηğt
11: end for
12: Wt+1 ← BVt/max{∥Vt∥F , B}
13: end for
14: Return: 1

T

∑T
t=1 Wt

A.2. Performance of Algorithm 4

We present additional experiment results for Algorithm 4 here. Let q = 100, p = 5, and p0 = 2. Set all elements of the last
90 rows of the true coefficient matrix W0 to 0 and the remaining elements are uniformly sampled from {0, 1,−1, 2,−2}.
The remaining data generation procedure is similar to that in Section 5.2, where σ2

ε = 2. For each of the 300 replicates,
we generate T ′ = 5000 new samples without outliers, denoted as {y∗

i ,x
∗
i }T

′

i=1, and compute the mean prediction error
(abbreviated as PE), defined as 1

T ′

∑T ′

i=1 ∥y∗
i − Ŵ Tx∗

i ∥1, and the mean prediction error with penalty (abbreviated as PEP),

defined as 1
T ′

∑T ′

i=1 ∥y∗
i − Ŵ Tx∗

i ∥1 + Pλ(Ŵ2), where Ŵ is the output of Algorithm 4. For comparison, we also conduct
Algorithms 3 and 2 and calculate the corresponding mean prediction error (abbreviated as PE0 and PE*, respectively). We
set B = 100 for all methods and let λ1 = 0.1 and λ2 = 0.001 for Algorithms 2 and 4.

Table S1 presents the means (and standard variations) of PEP, PE, PE0, and PE* values over 300 replicates under various
sample sizes of T and observable numbers of features p0. Both PEP and PE show slight reduction as T increases. As
indicated by Theorem 4.2, we cannot expect the prediction error to be arbitrarily precise as T →∞.

The comparison between PE and PE0 serves as a supplement of Section 5.3. It is observed that when p0 is relatively small,
penalization may be beneficial for achieving more accurate predictions, especially when T is not large. However, if p0 is
large enough, the performance of Algorithms 3 and 4 is comparable even when T is not large. The comparison between

12
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Table S1. Experiment results: Means (and standard variations) of PEP, PE, PE0 and PE* over 300 replicates.

p0 T = 1× 104 T = 2× 104 T = 5× 104

30 PEP 12.25 (0.61) 11.85 (0.56) 11.57 (0.61)
PE 9.80 (0.66) 9.67 (0.60) 9.63 (0.68)
PE0 12.25 (1.15) 11.48 (1.21) 11.04 (1.24)
PE* 42.82 (1.75) 41.37 (1.63) 39.30 (1.68)

60 PEP 11.03 (0.41) 10.51 (0.38) 10.20 (0.39)
PE 8.11 (0.38) 7.84 (0.33) 7.71 (0.35)
PE0 8.41 (0.36) 7.76 (0.34) 7.45 (0.34)
PE* 44.20 (1.91) 42.42 (1.89) 39.42 (1.60)

PE and PE* supplements Section 5.2, clearly demonstrating that Algorithm 4 outperforms Algorithm 2 in the presence of
outliers.

B. Another Real Data Application: Children Activity Data
To prevent childhood obesity, researchers investigated the relationship between children’s daily physical activity and potential
risk factors. The dataset can be accessed at http://jeffgoldsmith.com/IWAFDA/shortcourse_data.html.
The study involved 420 participants recruited from various Head Start centers. These participants wore accelerometers to
monitor their body activity intensity, resulting in 144 daily observations of outcomes for each child. The dataset includes 15
features for each participant, including BMI Z-score, three types of skinfold thicknesses, age at recruitment, sex, season of
the study, presence of asthma diagnosis, mother’s birthplace and education, work status, number of rooms at home, and two
behavioral variables related to daily time spent on TV and video games (Rundle et al., 2009; Lovasi et al., 2011).

We standardized the data and set the constraint parameter B to 5. The other settings remain consistent with those described
in Section 5.4. The mean prediction error was computed for different values of p0 ∈ {3, 6, 9, 12} and q0 ∈ {20, 50, 80},
and the results are presented in Figure S1. The observed trends closely resemble those depicted in Figure 1 in the main text,
confirming the superiority of our proposed method over the multivariate AERR.

90

100

110

120

3 6 9 12
p0

M
P

E

q0

20
50
80

method

AERR
LSR

Figure S1. Application results for children activity data: The mean prediction error for p0 = 3, 6, 9, 12, and q0 = 20 (solid line), 50 (dash
line), 80 (dotted line), using Algorithm 1 (LSR, blue triangle) or the “multivariate AERR” (red dot).
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C. Technical Proofs
C.1. Proofs of Theorems 3.1 and 3.3

To prove Theorems 3.1 and 3.3, we acknowledge two types of randomness involved in the output Ŵ of an algorithm.
The first arises from the algorithm, denoted as A, and the second is due to dependence on the associated random sample
S ≜ {(xt,yt) : t = 1, 2, . . . , T}. Give the algorithm, we use EA(·|S) to represent the expectation of the associated quantity
taken with respect to A conditional on the sample data S. Similarly, for t = 1, . . . , T , we let At represent the randomness
arising from the t-th iteration of the algorithm, let St denote the t-th random sample (xt,yt), and let EAt

(·|St) represent
the conditional expectation with respect to At given St. As A and S encompass all random objects under consideration but
At and St do not, EA(·|S) is essentially E(·|S), whereas EAt(·|St) is not always E(·|St).

We first present the following lemmas whose proofs are given in Section C.3.

Lemma C.1. Let f : Rp×q → R be a convex function. Then the following results hold:

(a). for any p× q matrices A and B,

f(A)− f(B) ≤ tr{(A−B)TD}, for any D ∈ ∂f(A),

where

∂f(A) ≜ {D ∈ Rp×q : f(Z) ≥ f(A) + tr{(Z −A)TD} for all Z}

is the subdifferential of f at A.

(b). if f is differentiable at A, then

∂f(A) = {∇f(A)},

where ∇f(A) is the gradient of f at A, defined as the p × q matrix with the (j, k) element given by ∂f(A)
∂Ajk

for
1 ≤ j ≤ p and 1 ≤ k ≤ q. Here Ajk represents the (j, k) element of A.

Lemma C.2. Consider Algorithm 1 and the given sample S. Assume the conditions of Theorem 3.1 hold. For any
∥W ∗∥F ≤ B, we have that

EA

[
1

T

T∑
t=1

tr{(Wt −W ∗)Txt(W
T
t xt − yt)

T}

∣∣∣∣∣S
]
≤ 2B2

ηT
+

ηB2
xp

p0 − 1

(
B2

yq

q0
+B2B2

x

)
.

Lemma C.3. Consider Algorithm 2 and the given sample S. Assume the conditions of Theorem 3.3 hold. For any
∥W ∗∥F ≤ B, we have that

EA

(
1

T

T∑
t=1

[
tr
{
(Wt −W ∗)Txt(W

T
t xt − yt)

}
+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

≤ 2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
B2

x ·
p

p0 − 1

(
B2

y ·
q

q0
+B2B2

x

)
+

1

T
Pλ(W1).

Proof of Theorem 3.1. By the definition of Wt+1 in Algorithm 1, it is immediate that ∥Wt+1∥F ≤ B, and thus, ∥Ŵ ∥F ≤
B by the triangle inequality.
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(a). For t ≥ 1 and (xt,yt) ∈ S, define Lt(W ) = 1
2∥W

Txt − yt∥2. Then

E

{
1

T

T∑
t=1

Lt(Wt)

}
=

1

T

T∑
t=1

E{Lt(Wt)}

=
1

T

T∑
t=1

E[E{Lt(Wt)|Wt}]

=
1

T

T∑
t=1

E{R(Wt)}

= E

{
1

T

T∑
t=1

R(Wt)

}
, (11)

where the second step is due to the law of iterative expectations, and the third step is due to E{Lt(Wt)|Wt} = R(Wt),
since by the construction in Algorithm 1, (xt,yt) in Lt(Wt) are independent of Wt. Here, the expectations are evaluated
with respect to the joint distributions for the associated random variables.

For any given (xt,yt) ∈ S and W ∗ with ∥W ∗∥F ≤ B, the convexity of Lt(W ) with respect to W leads to

Lt(Wt)− Lt(W
∗) ≤ tr{(Wt −W ∗)Txt(W

T
t xt − yt)

T} (12)

by Lemma C.1, where xt(W
T
t xt − yt)

T is in fact the gradient of Lt(W ) at Wt. Averaging (12) for t = 1, . . . , T and then
taking the conditional expectation given A and S, we have that

EA

[
1

T

T∑
t=1

{Lt(Wt)− Lt(W
∗)}

∣∣∣∣∣S
]
≤ EA

[
1

T

T∑
t=1

tr{(Wt −W ∗)Txt(W
T
t xt − yt)

T}

∣∣∣∣∣S
]

≤ 2B2

ηT
+ ηB2

x ·
p

p0 − 1

(
B2

y ·
q

q0
+B2B2

x

)
, (13)

where the second step follows from Lemma C.2.

Noting that by definition in Section 3.1, for any 1 ≤ t ≤ T , we have that

E{Lt(W
∗)} = R(W ∗). (14)

Consequently, by taking expectation of (13) with respect to S and using (14), we arrive at

E

{
1

T

T∑
t=1

Lt(Wt)

}
≤ R(W ∗) +

2B2

ηT
+

pηB2
x

p0 − 1

(
qB2

y

q0
+B2B2

x

)
. (15)

Note that

E{R(Ŵ )} = E

{
R

(
1

T

T∑
t=1

Wt

)}
≤ E

{
1

T

T∑
t=1

R(Wt)

}
= E

{
1

T

T∑
t=1

Lt(Wt)

}
, (16)

where the second step is due to the convexity of R(W ) with respect to W , and the last step is due to (11). Combining this
inequality with (15) proves result (b).

(b). By the choice of η in (5) of Theorem 3.1(c),

2B2

ηT
+ ηB2

x ·
p

p0 − 1

(
B2

y ·
q

q0
+B2B2

x

)
= 2
√
2BBx

√
1

T
· p

p0 − 1
·
(
B2

y ·
q

q0
+B2B2

x

)

≤ 2
√
2B̃2

√
1

T
· p

p0 − 1
·
(

q

q0
+ 1

)
≤ 4B̃2

√
1

T
· p

p0 − 1
· q
q0

, (17)
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where the last step is due to q/q0 ≥ 1. Therefore, (15) can be rewritten as

E

{
1

T

T∑
t=1

Lt(Wt)

}
≤ R(W ∗) + 4B̃2

√
1

T
· p

p0 − 1
· q
q0

,

which proves (c) using the result of (b).

Proof of Theorem 3.3. The bound of the output can be proved identical to the proof of Theorem 3.1(a).

(a). Modifying the derivation for (13) by adding the penalty function, we obtain that by (12) and Lemma C.3,

EA

[
1

T

T∑
t=1

{Lt(Wt) + Pλ(Wt)− Lt(W
∗)− Pλ(W

∗)}

∣∣∣∣∣S
]

≤EA

(
1

T

T∑
t=1

[
tr
{
(Wt −W ∗)Txt(W

T
t xt − yt)

}
+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

≤ 2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
B2

x ·
p

p0 − 1

(
B2

y ·
q

q0
+B2B2

x

)
+

1

T
Pλ(W1). (18)

Taking the expectation of (18) with respect to S and using (14) yields that

E

[
1

T

T∑
t=1

{Lt(Wt) + Pλ(Wt)}

]
≤ R(W ∗) + Pλ(W

∗) + ∆1,

where the expectation is taken with respect to all sources of randomness, involving both A and S. Analogous to (16) and by
the convexity of Pλ(·), we have that

E{R(Ŵ ) + Pλ(Ŵ )} ≤ E

[
1

T

T∑
t=1

{Lt(Wt) + Pλ(Wt)}

]
.

Combining the above two inequalities proves result (b).

(b). Suppose that ηt is set as the constant η in (5) for each t = 1, . . . , T . Then using the same argument as (17), ∆1 can be
bounded by

4B̃2

√
1

T
· p

p0 − 1
· q
q0

+
1

T
Pλ(W1),

and result (c) is then immediate due to Theorem 3.3(b).

(c). Define W ∗
0 to satisfy

R(W ∗
0 ) + Pλ(W

∗
0 ) = inf

∥W ∥F≤B
{R(W ) + Pλ(W )}. (19)

If ηTT →∞ and 1
T

∑T
t=1 ηt → 0 as T →∞, the ∆1 → 0 as T →∞. Consequently, by Theorem 3.3(b), we have that

lim
T→∞

E{R(Ŵ ) + Pλ(Ŵ )} ≤ R(W ∗
0 ) + Pλ(W

∗
0 ).

By definition of W ∗
0 in (19) and Theorem 3.3(a), we have that given T , S and A,

R(Ŵ ) + Pλ(Ŵ ) ≥ R(W ∗
0 ) + Pλ(W

∗
0 )

for any output Ŵ , yielding that
E{R(Ŵ ) + Pλ(Ŵ )} ≥ R(W ∗

0 ) + Pλ(W
∗
0 )

for any T . Combining the proceeding inequalities proves the result.
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C.2. Proof of Theorems 4.1 and 4.2

Consider Algorithm 3 or 4 and the given sample S. For any matrix W , define

Lt(W ) = ∥W Txt − yt∥1 and L̃t(W ) =
q

q0
EAt(∥W T

:Ot
x̃t − yt,Ot∥1|St), (20)

where the use of At emphasizes the algorithm randomness at step t and St = (xt,yt). To prove Theorem 4.1, we first
introduce two lemmas whose proofs are given in C.3.

Lemma C.4. Consider Algorithm 3 and the given sample S. Assume the conditions of Theorem 4.1 hold. For any
∥W ∗∥F ≤ B, we have that

EA

[
1

T

T∑
t=1

tr{(Wt −W ∗)TĞt}

∣∣∣∣∣S
]
≤ 2B2

ηT
+

q2p0
2pq0

B2
xη.

Lemma C.5. Assume the conditions of Theorem 4.1 or Theorem 4.2 hold. Then for any t ≥ 1 and any matrix W satisfying
∥W ∥F ≤ B, we have that

|L̃t(W )− Lt(W )| ≤ √q BBx

√
1− p0

p
,

where L̃t(·) and Lt(·) are given by (20).

Lemma C.6. Consider Algorithm 4 and the given sample S. Assume the conditions of Theorem 4.2 hold. For any
∥W ∗∥F ≤ B, we have that

EA

(
1

T

T∑
t=1

[
tr{(Wt −W ∗)TĞt}+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

≤ 2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
q2p0
2pq0

B2
x +

1

T
Pλ(W1).

Proof of Theorem 4.1. The bound of the output can be verified identical to the proof of Theorem 3.1.

(a). We first show that EAt
(Ğt|St) ∈ ∂L̃t(Wt), where ∂L̃t(Wt) represents the subdifferential of L̃t(·) in (20) at Wt.

Indeed, L̃t(Wt) can be explicitly written as

L̃t(Wt) =
q

q0
EAt

(∥W T
t,:Ot

x̃t − yt,Ot
∥1|St),

since Wt is independent of At or St. Therefore, for any given W ,

L̃t(W )− L̃t(Wt) =
q

q0
EAt

(
∥W T

:Ot
x̃t − yt,Ot

∥1 − ∥W T
t,:Ot

x̃t − yt,Ot
∥1|St

)
≥ q

q0
EAt

[
tr{(W:Ot

−Wt:Ot
)Tx̃tϕ

T
t,Ot
}|St

]
=

q

q0
EAt

[
tr{(W −Wt)

Tx̃tϕ
T
t }|St

]
= tr{(W −Wt)

TEAt
(Ğt|St)},

where the second step is due to Lemma C.1, the convexity of ∥ · ∥1, the construction of ϕt,Ot
in Algorithm 3, and the

calculation of subgradient ∥W T
:Ot

x̃t − yt,Ot∥1 at Wt,:Ot ; the third step comes from the fact that the components of
ϕt on the complement of Ot is zero; and the last step uses the construction of Ğt in Algorithm 3. This proves that
EAt

(Ğt|St) ∈ ∂L̃t(Wt) by definition as stated in Lemma C.1(a).

Note that EA(Ğt|Wt, S) = EAt
(Ğt|St), since, by construction in Algorithm 3, the randomness of Ğt solely comes from At,

Wt and St, and thus, Ğt is independent of S\St or A\At, conditionally on Wt and St. Hence, EA(Ğt|Wt, S) ∈ ∂L̃t(Wt),
giving that

L̃t(Wt)− L̃t(W
∗) ≤ tr{(Wt −W ∗)TEA(Ğt|Wt, S)}. (21)
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Averaging (21) for t = 1, . . . , T and then taking the expectation with respect to A conditionally on S yields that

EA

[
1

T

T∑
t=1

{
L̃t(Wt)− L̃t(W

∗)
} ∣∣∣∣∣S

]
≤ EA

[
1

T

T∑
t=1

tr{(Wt −W ∗)TEA(Ğt|Wt, S)}

∣∣∣∣∣S
]

= EA

[
1

T

T∑
t=1

tr{(Wt −W ∗)TĞt}

∣∣∣∣∣S
]

≤ 2B2

ηT
+

q2p0
2pq0

B2
xη,

where the second step is due to the law of iterative expectations, and the third step is due to Lemma C.4. As a consequence
of Lemma C.5, we further have that

EA

{
1

T

T∑
t=1

Lt(Wt)

∣∣∣∣∣S
}
≤ 1

T

T∑
t=1

Lt(W
∗) +

2B2

ηT
+

q2p0
2pq0

B2
xη + 2

√
qBBx

(√
1− p0

p

)
,

which, by taking expectation with respect to S and by (11), gives that

E

{
1

T

T∑
t=1

R(Wt)

}
≤ R(W ∗) +

2B2

ηT
+

q2p0
2pq0

B2
xη + 2

√
qBBx

(√
1− p0

p

)
.

Result (b) is then proved due to the convexity of R(W ) with respect to W .

(b). Set η = 2B
Bxq

√
pq0
p0T

as required in Theorem 4.1. The proof follows the same steps as in (b) with all terms 2B2

ηT + q2p0

2pq0
B2

xη

replaced by 2BBx

√
q2p0

pq0T
.

Proof of Theorem 4.2. The proof of the bound is identical to the proof of Theorem 3.1.

(a). The proof of Theorem 4.2(b) combines the proofs of Theorems 3.3 and 4.1. Indeed, by the law of iterative expectations
and Lemma C.6,

EA

(
1

T

T∑
t=1

[
tr
{
(Wt −W ∗)TE(Ğt|Wt, S)

}
+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

=EA

(
1

T

T∑
t=1

[
tr
{
(Wt −W ∗)TĞt

}
+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

≤ 2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
q2p0
2pq0

B2
x +

1

T
Pλ(W1).

Then by (21), we have that

EA

[
1

T

T∑
t=1

{
L̃t(Wt)− L̃t(W

∗) + Pλ(Wt)− Pλ(W
∗)
} ∣∣∣∣∣S

]

≤EA

(
1

T

T∑
t=1

[
tr{(Wt −W ∗)TEA(Ğt|Wt, S)}+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

≤ 2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
q2p0
2pq0

B2
x +

1

T
Pλ(W1),

which, by Lemma C.5, gives that

EA

[
1

T

T∑
t=1

{Lt(Wt) + Pλ(Wt)}

∣∣∣∣∣S
]
≤ 1

T

T∑
t=1

Lt(W
∗) + Pλ(W

∗) + 2
√
qBBx

(√
1− p0

p

)

+
2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
q2p0
2pq0

B2
x +

1

T
Pλ(W1).
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Taking expectation with respect to S, we arrive at

E
{
R(Ŵ ) + Pλ(Ŵ )

}
≤R(W ∗) + Pλ(W

∗) + 2
√
qBBx

(√
1− p0

p

)
+

2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
q2p0
2pq0

B2
x +

1

T
Pλ(W1), (22)

due to the convexity of R(W ) + Pλ(W ) with respect to W .

(b). Assume that ηt = η = 2B
Bxq

√
pq0
p0T

for all t = 1, . . . , T , the last line of (22) can be rewritten as 2BBx

√
q2p0

pq0T
+

1
T Pλ(W1).

(c). Assume that ηTT →∞ and 1
T

∑T
t=1 ηt → 0 as T →∞, the last line of (22) converges to 0 as T →∞. Consequently,

lim sup
T→∞

E{R(Ŵ ) + Pλ(Ŵ )} ≤ R(W ∗) + Pλ(W
∗) + 2

√
qBBx

(√
1− p0

p

)
.

C.3. Proofs of Lemmas C.1-C.6 and Proposition 3.2

Proof of Lemma C.1. By the definition of ∂f(A), the result (a) for the general case follows immediately. Now consider the
special case (b) in which f is differentiable at A. The goal is to prove ∂f(A) = {∇f(A)}.

Let Ã = vec(A) ∈ Rpq denote the vectorization of matrix A. Define g(Ã) = f(A). It is immediate that g is also convex
over the vector space Rpq and that g is differentiable at Ã. The subdifferential of g at Ã (Mohri et al. (2018, Definition
B.31); Beck (2017, Definition 3.2)) is given by

∂g(Ã) ≜ {D̃ ∈ Rpq : f(Z̃) ≥ f(Ã) + (Z̃ − Ã)TD̃ for all Z̃}.

Simple algebra yields that the vectorization characterizes a one-to-one mapping between ∂g(Ã) and ∂f(A). By Mohri et al.
(2018, Lemma B.32), ∂g(Ã) = {∇g(Ã)}, where ∇g(Ã) represents the gradient of g evaluated at Ã. Furthermore, the
vectorization of∇f(A) is∇g(Ã). Hence, we conclude that ∂f(A) = {∇f(A)}.

Proof of Lemma C.2. By the condition ∥W ∗∥F ≤ B and the definitions of Vt and Wt+1 in Algorithm 1, we have that

∥Wt+1 −W ∗∥2F ≤ ∥Vt −W ∗∥2F
= ∥Wt − ηĞt −W ∗∥2F
= ∥Wt −W ∗∥2F − 2η · tr{(Wt −W ∗)TĞt}+ η2∥Ğt∥2F ,

yielding that

tr{(Wt −W ∗)TĞt} ≤
1

2η

{
∥Wt −W ∗∥2F − ∥Wt+1 −W ∗∥2F

}
+

η

2
∥Ğt∥2F .

Thus,

1

T

T∑
t=1

tr{(Wt −W ∗)TĞt} ≤
2B2

ηT
+

η

2T

T∑
t=1

∥Ğt∥2F , (23)

since 0 ≤ ∥Wt −W ∗∥2F ≤ 4B2 for any t.

By the construction of x̃t, it is direct to prove that each coordinate of x̃t is an unbiased estimate of the corresponding
coordinate of xt, and thus, EA(x̃t|S) = xt. Further, we can also verify that EA(∥x̃t∥2|S) = p

p0−1∥xt∥2. Analogously,

EA(ỹt|S) = yt and EA(∥ỹt∥2|S) = q
q0
∥yt∥2. Hence, according to the definition of Ğt and xt,jt in Algorithm 1, we obtain
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that

EA(Ğt|Wt, S) = EA(x̃t|Wt, S)EA{(xt,jt∥Wt∥2FW T
t,jt:/∥W

T
t,jt:∥

2 − ỹt)
T|Wt, S}

= xt

(
p∑

k=1

xt,kW
T
t,k: − yt

)T

= xt(W
T
t xt − yt)

T, (24)

where the second step is due to the independence between (x̃t, ỹt) and Wt. Therefore, by the law of iterative expectations,

EA[tr{(Wt −W ∗)TĞt}|S] = EA(EA[tr{(Wt −W ∗)TĞt}|Wt, S]|S)
= EA[tr{(Wt −W ∗)Txt(W

T
t xt − yt)}|S]. (25)

In addition, by the identity

∥Ğt∥2F = ∥x̃t(xt,jt∥Wt∥2FW T
t,jt:/∥W

T
t,jt:∥

2 − ỹt)
T∥2F

= ∥x̃t∥2
∥∥xt,jt∥Wt∥2FW T

t,jt:/∥W
T
t,jt:∥

2 − ỹt

∥∥2 ,
we obtain that

EA(∥Ğt∥2F |S) = EA(∥x̃t∥2|S)EA

(∥∥xt,jt∥Wt∥2FW T
t,jt:/∥W

T
t,jt:∥

2 − ỹt

∥∥2 |S)
≤ 2∥xt∥2 ·

p

p0 − 1

∥yt∥2 ·
q

q0
+ EA

∥∥∥∥∥xt,jtW
T
t,jt:

∥Wt∥2F
∥W T

t,jt:
∥2

∥∥∥∥∥
2 ∣∣∣S


≤ 2B2

x ·
p

p0 − 1

{
B2

y ·
q

q0
+ EA(∥Wt∥2F ∥∥xt∥2|S)

}
≤ 2B2

x ·
p

p0 − 1

(
B2

y ·
q

q0
+B2B2

x

)
, (26)

where the second step is due to the triangle inequality, and the third step is due to the construction of xt,jt .

By (25) and (26), taking conditional expectation EA(·|S) on both sides of (23) leads to

EA

[
1

T

T∑
t=1

tr{(Wt −W ∗)Txt(W
T
t xt − yt)

T}

∣∣∣∣∣S
]
≤ 2B2

ηT
+

ηB2
xp

p0 − 1

(
B2

yq

q0
+B2B2

x

)
.

Proof of Lemma C.3. Let ∂Pλ(W
∗
t+1) denote the subgradient of Pλ(·) at W ∗

t+1. According to Line 5 of Algorithm 2, we
obtain that

0 ∈W ∗
t+1 − Vt + ηt∂Pλ(W

∗
t+1).

Hence, by Line 4 of Algorithm 2, there exists a matrix Pλ,t+1 ∈ ∂Pλ(Wt+1) such that

W ∗
t+1 = Wt − ηtĞt − ηtPλ,t+1. (27)

Due to Line 6 of Algorithm 2 and the condition ∥W ∗∥F ≤ B, we can show that ∥Wt+1 −W ∗∥F ≤ ∥W ∗
t+1 −W ∗∥F .

Combining with (27), we have that

∥Wt+1 −W ∗∥2F ≤ ∥Wt − ηtĞt − ηtPλ,t+1 −W ∗∥2F
= ∥Wt −W ∗∥2F + η2t ∥Ğt + Pλ,t+1∥2F
− 2ηttr

{
(Wt −W ∗)T(Ğt + Pλ,t+1)

}
. (28)
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By the definition of subgradient, it is straightforward to obtain that

tr
{
(W ∗

t+1 −W ∗)TPλ,t+1

}
≥ Pλ(W

∗
t+1)− Pλ(W

∗),

and thus,

tr
{
(Wt −W ∗)TPλ,t+1

}
= tr

{
(W ∗

t+1 −W ∗)TPλ,t+1

}
+ tr

{
(Wt −W ∗

t+1)
TPλ,t+1

}
≥ Pλ(W

∗
t+1)− Pλ(W

∗) + tr
{
(Wt −W ∗

t+1)
TPλ,t+1

}
= Pλ(W

∗
t+1)− Pλ(W

∗) + tr
{
(ηtĞt + ηtPλ,t+1)

TPλ,t+1

}
≥ Pλ(Wt+1)− Pλ(W

∗) + tr
{
(ηtĞt + ηtPλ,t+1)

TPλ,t+1

}
, (29)

where the third step is due to (27) and the last step holds since the projection step in Line 6 of Algorithm 2 shrinks the
corresponding Pλ(·) value.

By (28) and (29), we obtain that

2ηttr
{
(Wt −W ∗)TĞt

}
+ 2ηt{Pλ(Wt+1)− Pλ(W

∗)}

≤∥Wt −W ∗∥2F − ∥Wt+1 −W ∗∥2F + η2t ∥Ğt + Pλ,t+1∥2F
− 2η2t tr

{
(Ğt + Pλ,t+1)

TPλ,t+1

}
= ∥Wt −W ∗∥2F − ∥Wt+1 −W ∗∥2F + η2t ∥Ğt∥2F − η2t ∥Pλ,t+1∥2F
≤∥Wt −W ∗∥2F − ∥Wt+1 −W ∗∥2F + η2t ∥Ğt∥2F . (30)

Summing up both side of (30) over t and using the fact that

T∑
t=1

Pλ(Wt+1) ≥
T∑

t=1

Pλ(Wt)− Pλ(W1),

we obtain that

1

T

T∑
t=1

[
tr
{
(Wt −W ∗)TĞt

}
+ Pλ(Wt)− Pλ(W

∗)
]

≤ 1

T

T∑
t=1

(
1

2ηt
∥Wt −W ∗∥2F −

1

2ηt
∥Wt+1 −W ∗∥2F +

ηt
2
∥Ğt∥2F

)
+

1

T
Pλ(W1)

=
1

2η1T
∥W1 −W ∗∥2F −

1

2ηT+1T
∥WT+1 −W ∗∥2F

+

T∑
t=2

(
1

2ηtT
− 1

2ηt−1T

)
∥Wt −W ∗∥2F +

1

2T

T∑
t=1

ηt∥Ğt∥2F +
1

T
Pλ(W1)

≤ 4B2

{
1

2η1T
+

T∑
t=2

(
1

2ηtT
− 1

2ηt−1T

)}
+

1

2T

T∑
t=1

ηt∥Ğt∥2F +
1

T
Pλ(W1)

=
2B2

ηTT
+

1

2T

T∑
t=1

ηt∥Ğt∥2F +
1

T
Pλ(W1), (31)

where the third step is because that ∥Wt −W ∗∥2F ≤ 4B2 for all t since ∥Wt∥F ≤ B and ∥W ∗∥F ≤ B. Taking the
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expectation of both sides over A conditional on S yields that

EA

(
1

T

T∑
t=1

[
tr
{
(Wt −W ∗)Txt(W

T
t xt − yt)

}
+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

=EA

(
1

T

T∑
t=1

[
tr
{
(Wt −W ∗)TĞt

}
+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

≤ 2B2

ηTT
+

1

2T

T∑
t=1

ηtEA(∥Ğt∥2F |S) +
1

T
Pλ(W1)

≤ 2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
B2

x ·
p

p0 − 1

(
B2

y ·
q

q0
+B2B2

x

)
+

1

T
Pλ(W1),

where we use (25) and (26) to derive the first and third steps, respectively.

Proof of Proposition 3.2. For ease of notation, with a given iteration t, we write µ1 = ηtλ1 and µ2 = ηtλ2. Use x and y to
denote Wj: and Vt,j:, respectively, for any fixed j ∈ {1, . . . , p}. Since the optimization problem in Line 5 of Algorithm 2 is
decomposable, the minimizer of

f(x) =
1

2
∥x− y∥2 + µ1∥x∥+ µ2∥x∥1

is the jth row of W ∗
t+1.

By the convexity of f , suppose f(x) is minimized at x. Equivalently, we have that

0 ∈ ∂f(x) = x− y + µ1∂(∥x∥) + µ2∂(∥x∥1), (32)

where ∂(∥x∥) respectively equals x/∥x∥ if x ̸= 0, and {v ∈ Rq : ∥v∥ ≤ 1} if x = 0; and ∂(∥x∥1) equals
{(∂|x1|, . . . , ∂|xq|)T}, with ∂|xj | = xj/|xj | if xj ̸= 0 and ∂|xj | = [−1, 1] if xj = 0, for j = 1, . . . , q.

Let y = (y1, . . . , yq)
T. Consider the case where x = 0, i.e., f is minimized at 0. By (32), there exist v = (v1, . . . , vq)

T

satisfying ∥v∥ ≤ 1 and u = (u1, . . . , uq)
T satisfying |uj | ≤ 1 for all j = 1. . . . , q, such that

yj = µ1vj + µ2uj for j = 1, . . . , q. (33)

Focus on the minimization of g(u) ≜ 1
µ2
1

∑q
j=1(yj − µ2uj)

2 over the hypercube {u : |uj | ≤ 1, j = 1, . . . , q}, and let

u∗ = (u∗
1, . . . , u

∗
q)

T denote the minimizer. Clearly, for any j, u∗
j = yj/µ2 if |yj | ≤ µ2, and u∗

j = sign(yj) if |yj | > µ2,
where sign(u) = u/|u| for all u ̸= 0. The existence of decomposition (33) is equivalent to g(u∗) ≤ 1. By definition,
g(u∗) = ∥Sµ2

(y)∥2/µ2
1. Hence, (33) is equivalent to ∥Sµ2

(y)∥2 ≤ µ2
1.

Next, we examine the case where ∥Sµ2
(y)∥2 > µ2

1, implying x ̸= 0. Define J = {j : xj = 0} and J C = {j : xj ̸= 0}.
By (32), for any j ∈ J , we must have yj ∈ [−µ2, µ2], or equivalently, Sµ2

(yj) = 0. For any j ∈ J C , (32) gives that

yj = xj(1 + µ1/∥x∥+ µ2/|xj |), (34)

and thus, equivalently,
Sµ2

(yj) = yj − µ2xj/|xj | = xj(1 + µ1/∥x∥),
where the first step is because yj and xj must have the same sign, as indicated by (34). In summary, we have that

Sµ2
(yj) = xj(1 + µ1/∥x∥) for all j = 1, . . . , q. (35)

Taking the Euclidian norm over both sides of (35) yields that

∥Sµ2
(y)∥ = ∥x∥+ µ1.

Therefore, replacing ∥x∥ in (35) with ∥Sµ2
(y)∥ − µ1, we obtain that

x = (∥Sµ2
(y)∥ − µ1) ·

Sµ2
(y)

∥Sµ2(y)∥
. (36)
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To sum up, if x is the minimizer of f , then x = 0 if and only if ∥Sµ2
(y)∥2 ≤ µ2

1. Otherwise, x has the form (36).
Consequently, we obtain that

x = (∥Sµ2
(y)∥ − µ1)+ ·

Sµ2(y)

∥Sµ2
(y)∥

,

where we use the convention 0/0 = 0.

Proof of Lemma C.4. The proof for Lemma C.4 is analogous to the proof of Lemma C.2. Specifically, the inequality (23)
still holds. It suffices to provide an upper bound for EA(∥Ğt∥2F |S). By the construction of x̃t and Ğt in Algorithm 3, we
have that

EA(x̃t|S) =
p0
p
· xt, EA(∥x̃t∥2|S) =

p0
p
· ∥xt∥2, (37)

and ∥Ğt∥2F = q2

q20
∥x̃t∥2∥ϕt∥2 ≤ q2

q0
∥x̃t∥2. Therefore, we obtain that

EA(∥Ğt∥2F |S) ≤
q2p0
pq0
· ∥xt∥2 ≤

q2p0
pq0

B2
x, (38)

which by (23), leads to

EA

[
1

T

T∑
t=1

tr{(Wt −W ∗)TĞt}
∣∣∣S] ≤ 2B2

ηT
+

η

2
· q

2p0
pq0

B2
x.

Proof of Lemma C.5. By the construction of Ot in Algorithm 3, for any constant vector b ∈ Rq , we have that

E(∥bOt∥1) =
q0
q
∥b∥1.

By the law of iterative expectations, we then have that, for any fixed W ,

L̃t(W ) =
q

q0
EAt{EAt(∥W T

:Ot
x̃t − yt,Ot∥1|x̃t, St)|St} = EAt(∥W Tx̃t − yt∥1|St).

In addition, by Jensen’s inequality and (37),

EAt(∥x̃t − xt∥|St) = EA(∥x̃t − xt∥|S)

≤
{
EA(∥x̃t − xt∥2|S)

}1/2
=
{
EA(∥x̃t∥2|S) + ∥xt∥2 − 2xT

t EA(x̃t|S)
}1/2

= ∥xt∥
√
1− p0

p
,

where the first step is because that the randomness of x̃t − xt comes from St and At only. Therefore, for any matrix W
and any t, we arrive at

|L̃t(W )− Lt(W )| =
∣∣EAt

(∥W Tx̃t − yt∥1 − ∥W Txt − yt∥1
∣∣St)

∣∣
≤ EAt

{∣∣∥W Tx̃t − yt∥1 − ∥W Txt − yt∥1
∣∣ ∣∣St

}
≤ EAt

{
∥W T(x̃t − xt)∥1

∣∣St

}
≤ √q EAt

{
∥W T(x̃t − xt)∥

∣∣St

}
≤ √q B∥xt∥

√
1− p0

p
,

where the second step is due to Jensen’s inequality, the third step comes from the triangle inequality of the L1 norm, the
fourth step follows from the fact that ∥u∥1 ≤

√
q∥u∥ for any u ∈ Rq, and the last step is due to ∥Au∥ ≤ ∥A∥F ∥u∥ for

any matrix A and vector u with suitable dimensions. The proof is then completed due to the upper bound of ∥xt∥.
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Proof of Lemma C.6. Based on the proof of Lemma C.3, the proof of Lemma C.6 is straightforward. Indeed, results
(27)-(30) still hold for Algorithm 4. Hence, identical to (31), we have that

1

T

T∑
t=1

[
tr
{
(Wt −W ∗)TĞt

}
+ Pλ(Wt)− Pλ(W

∗)
]

≤ 2B2

ηTT
+

1

2T

T∑
t=1

ηt∥Ğt∥2F +
1

T
Pλ(W1),

which yields that

EA

(
1

T

T∑
t=1

[
tr
{
(Wt −W ∗)TĞt

}
+ Pλ(Wt)− Pλ(W

∗)
] ∣∣∣∣∣S

)

≤ 2B2

ηTT
+

1

2T

T∑
t=1

ηtEA(∥Ğt∥2F |S) +
1

T
Pλ(W1)

≤ 2B2

ηTT
+

(
1

T

T∑
t=1

ηt

)
q2p0
2pq0

B2
x +

1

T
Pλ(W1),

where the second step follows from (38).
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