
Learning High-Frequency Functions Made Easy
with Sinusoidal Positional Encoding

Chuanhao Sun 1 Zhihang Yuan 1 Kai Xu 2 Luo Mai 1 Siddharth N 1 Shuo Chen 1 Mahesh K. Marina 1

Abstract
Fourier features based positional encoding (PE) is
commonly used in machine learning tasks that in-
volve learning high-frequency features from low-
dimensional inputs, such as 3D view synthesis and
time series regression with neural tangent kernels.
Despite their effectiveness, existing PEs require
manual, empirical adjustment of crucial hyperpa-
rameters, specifically the Fourier features, tailored
to each unique task. Further, PEs face challenges
in efficiently learning high-frequency functions,
particularly in tasks with limited data. In this pa-
per, we introduce sinusoidal PE (SPE), designed
to efficiently learn adaptive frequency features
closely aligned with the true underlying func-
tion. Our experiments demonstrate that SPE, with-
out hyperparameter tuning, consistently achieves
enhanced fidelity and faster training across vari-
ous tasks, including 3D view synthesis, Text-to-
Speech generation, and 1D regression. SPE is
implemented as a direct replacement for existing
PEs. Its plug-and-play nature lets numerous tasks
easily adopt and benefit from SPE.

Code: github.com/zhyuan11/SPE

1. Introduction
Fully connected neural networks, a.k.a multilayer percep-
trons or MLPs, are trained to generate representations of
high-dimensional data such as shapes, images, and signed
distances, by processing low-dimensional coordinates. Re-
cent works have shown that the Fourier series regression us-
ing MLP (Tancik et al., 2020) can enable neural networks to
learn high-frequency functions in low-dimensional spaces.
In neural radiance fields (NeRFs) and its follow-up stud-
ies (Tancik et al., 2020; Mildenhall et al., 2021), Fourier

1The University of Edinburgh, Edinburgh, UK 2MIT-IBM Wat-
son AI Lab, Cambridge, MA, US. Correspondence to: Chuan-
hao Sun <chuanhao.sun@ed.ac.uk>, Mahesh K. Marina <ma-
hesh@ed.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

features, induced by positional encoding (PE), are applied
to learn 3D representations of objects or scenes by taking in
1D sequences that represent samples of light.

Despite its effectiveness, a successful application of PE is
non-trivial. A series of studies emerge to resolve the practi-
cal issues of PE on its sensitivity to hyper-parameters (Gao
et al., 2023), difficulty to capture high-frequency compo-
nents during training (Yang et al., 2023), etc. Those practi-
cal issues also block a wider application of PE in emerging
generative AI tasks, especially those involving complex
high-frequency details. For example, our experiment shows
that a direct application of PE in speech synthesis does not
offer any benefit in capturing high-frequency details (Ren
et al., 2019b; 2020), though “by design” it should do.

In this study, we delve into the challenges of training neu-
ral networks for machine learning tasks that demand the
retention of high-frequency components in their outputs.
Our exploration into the quantity and training dynamics of
frequency components within PE has led us to identify two
primary factors that can undermine the effectiveness of PE:
(1) the difficulty in configuring stationary frequency features
without adequate prior knowledge, which can result in PE
failing to learn if configurations are incorrect, and (2) the
detrimental impact on performance caused by compelling
the model to perfectly align with the specific frequency com-
ponents of the training set (e.g., the case of overfitting PE
for an original NeRF).

To overcome the challenges identified, we seek to develop
a new PE that can effectively learn the appropriate number
of components and their frequencies conditionally on the
inputs. Our development has led to sinusoidal positional
encoding (SPE) which augments PE (Tancik et al., 2020)
with periodic activation functions (Sitzmann et al., 2020),
thus making the number and frequencies of Fourier series
trainable and adaptive to inputs. Although we initially pro-
pose SPE for challenging few-view NeRF tasks, we find it
is a generic method that can benefit a diverse set of tasks
which need modelling complex high-frequency features.
With SPE, we have a simple yet effective form of PE for the
first time that can effectively work in a wide range of tasks
without manually tuning the numbers as well as the values
of the Fourier features.

1

github.com/zhyuan11/SPE

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

We have evaluated SPE against a wide range of baseline
methods in various generation tasks. In the task of few-view
NeRF, we achieve a significant gain in synthesizing high-
frequency details with limited views by replacing PE with
SPE. In the task of text-to-speech generation, we achieve a
significant performance gain on a state-of-the-art (SOTA)
model: FastSpeech (Ren et al., 2019b) with a single-line
change of codes. In the task of 1D regression with neural
tangent kernel (NTK) (Jacot et al., 2018), we significantly
enhance both the fidelity and convergence speed by simply
replacing the PE with SPE, which also avoids the need for
expensive hyperparameter tuning.

2. Background and Motivation
PE is designed for learning high-frequency functions in
machine learning tasks such as NeRF (Tancik et al., 2020;
Mildenhall et al., 2021), 1D or 2D regression (Tancik et al.,
2020; Nguyen et al., 2015), 3D shape regression (Mescheder
et al., 2019) and audio generation (Ren et al., 2019b; 2020).
It refers to the expansion of input x with sinusoidal function
pairs (sin(αix), cos(αix)), i ∈ {0, . . . , L − 1} where L
is a hyper-parameter determining the number of frequency
components, also known as a special case Fourier features in
(Rahimi & Recht, 2007). In PE, the Fourier features αi are
predefined per scenario empirically. A typical default setup
in NeRF-related tasks (Mildenhall et al., 2021; Yang et al.,
2023; Tancik et al., 2023) with αi = 2i−1π is illustrated in
Equation 1:

PEL(x) = [sin(πx), cos(πx), · · · ,
sin(2L−1πx), cos(2L−1πx)]⊤

(1)

However, such a formulation has obvious limitations. The
optimal setting of L should be conditional on two factors:
(i) the task setup and (ii) the number of parameters in an
MLP. While the second factor is a natural concern, the
task-specific setup makes an optimal L difficult to set. We
illustrate how the optimal setting of L will affect the effec-
tiveness of a learnt high-frequency function in the context of
a NeRF task in Figure 1. We find that when setting L to 10
and 4 for RGB and density threads respectively, it achieves
significantly better performance than using L = 3 for both
threads. Nevertheless, our method, SPE, can improve upon
it, as shown in the last column of the same figure.

In (Rahimi & Recht, 2007; Tancik et al., 2020), another vari-
ation of PE is discussed as well (called Gaussian Random
Fourier Features or GRFF), where the Fourier features αi

is defined as a pseudo random sequence sampled from a
Gaussian distribution N (0, σ2), with a form

GRFFL(x) = [sin(Bx), cos(Bx)]⊤, (2)

where B ∈ RL×d, d is the input sequence length. Although

L = 3, L = 3 L = 10, L = 4

(NeRF Optimal)
r rd dGround Truth Ours

Figure 1: New view generation in NeRF with 8 input views
on Blender dataset (Mildenhall et al., 2021). Lr is the
number of components taken when processing coordinates
in PE and Ld for the direction processing in PE.

sample from a Gaussian distribution, the GRFF still uses a
stationary encoding methodology. In practice, GRFF only
brings negligible gain on tasks such as NeRF, and so far
PE is the common option. For the clarity and convenience
of analysis, we focus the discussion with PE in this paper,
and the same conclusion can be applied to GRFF as well.
More detailed evaluation and discussion about GRFF can
be found in §B.2.

To optimize the hyper-parameters of PE, existing approaches
follow two ways: (i) empirically tune the parameters of sta-
tionary Fourier features for PE, or (ii) make the parameters
associated with Fourier features trainable.

2.1. Empirically optimized stationary Fourier features

NeRF, our major use case, is a technology to generate
new views based on existing views of the same object or
scene. Few 2D images representing available views along
with the 3D coordinates of image pixels and direction of
viewpoint make up the input to the network. The network
is then trained to generate the density (how much light is
blocked or absorbed at that point) and RGB colors from new
input viewpoints. Basically, a MLP is used in NeRF with
two different input threads: 3D coordinates and direction
of viewpoint, where the two threads are processed with
different feature length L of PE for better representing high
frequency details. The choice of L significantly influences
the performance of NeRF.

Practitioners often empirically choose stationary L based on
the specific task setup. We show this empirical approach is
problematic using concrete examples. Specifically, we first
assess a few-view NeRF model (Mildenhall et al., 2021)
with varied L for different objects on the Blender dataset
(used in (Sitzmann et al., 2019; Mildenhall et al., 2021)).
Additionally, we repeat the same experiments for a SOTA
speech synthesis model, named FastSpeech (Ren et al.,
2019b).

For the few-view NeRF , we summarize the results in Ta-
ble 1. For different objects to generate, different settings for
L bring about 2dB variation on Peak Signal-to-Noise Ratio

2

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

PSNR↑ Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

L=5 32.19 25.29 30.73 36.06 30.77 29.77 31.66 28.26 30.59
L=10 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.00
L=15 32.87 24.65 29.92 35.78 32.50 29.54 32.86 28.34 30.80
Best 33.0 25.29 30.73 36.18 32.54 29.77 32.91 28.65 31.13

Table 1: NeRF with different settings for L in PE.

Ground
Truth

With PE Without PE
With
SPE

Ours SOTA
Ground

Truth

With SPE

Ours With PE
Without

PE
Ours

Figure 2: The Optimal PE for NeRF on Blender dataset
only has negligible influence on speech generation with
FastSpeech, while our method achieves better alignment of
the red regions with the ground truth.

(PSNR). However, none of the settings for L can achieve
the best performance on all objects. Overall, we find that
L = 10 yields the best average performance on this task.

We apply the best setting of L = 10 from above to another
task: Fastspeech. We apply PE to the MLP layer at the end
of the text-to-speech transformer. Here we would expect
this modification with PE can bring more details since, if we
use MLP without PE, the output audio loses many details
with a blurring spectrum. According to Figure 2, with all
L ∈ {5, 10, 15}, adding PE in form as Equation 1 does not
change the result, supporting our claim that the stationary L
which shows best performance in a task cannot be applied
to other tasks.

It is worth noting that for both NeRF and speech synthesis
tasks, SPE achieves the best performance, even better than
all methods that rely on extensive manual tuning.

2.2. Adaptive Fourier features & probabilistic encoding

To address the issues with stationary Fourier features, adap-
tive positional encoding (Gao et al., 2023) has been pro-
posed to make the Fourier features trainable. More formally,
a trainable Fourier feature APE(·) is defined as

APEWSPE(x) = [sin(ω0x), cos(ω0x), · · · ,
sin(ωKx), cos(ωKx)]⊤

(3)

where WSPE = [ω1, . . . , ωK] is the trainable frequency fea-
tures and K is the number of possible features. However,
training ω from data is still challenging. For an MLP, the
input x is a 1D sequence, whereas the output matrix [ωi] of
ω is a N × K matrix, N is the length of x. The learning
task for training [ωi] is a non-trivial 1D-to-2D problem that
requires learning high dimensional functions in unbounded
space (§3.4), complicating the training of [ωi]. From Fig-
ure 3, we can observe that while APENeRF can produce
a reasonable outline of the chair, the detailed patterns on
the chair appear blurred. In contrast, our method (i.e., SPE)
mitigates this blurriness, generating more accurate flower
patterns.

Ground Truth OursInstantNeRFAPENeRF

Figure 3: Objects generated by APENeRF, InstantNeRF and
our method. APENeRF uses hash encoding and it is hard to
train with 8 views on the Blender synthetic dataset whereas
ours (i.e., SPE), even with limited data, can already achieve
high-quality generation close to the ground truth.

Apart from APE, probabilistic encoding methods, such as
hash encoding (Müller et al., 2019; 2022; Tancik et al.,
2023) are also proposed to learn Fourier features based on
inputs. These methods, though adaptive, exhibit a high de-
pendency on the amount of available training data. Without
sufficient data, an effective encoding is often difficult to
find (which is detailed in §3.1 and experimentally shown
in §4.1). Essentially, the encoding part of these works per-
forms a Monte Carlo search and the rest of the network
need to take care of learning the composition of those en-
codings and handle Hash collision, which requires many
more samples to capture sufficient statistics. If we train a
NeRF with hash encoding with a limited number of views
(denoted as InstantNeRF—the SOTA NeRF which adopts
hash encoding), the fidelity is poor, as Figure 3 shows. In
contrast, SPE generates a high-quality object close to the
ground truth, achieving noticeably enhanced performance
over InstantNeRF.

3. Sinusoidal Positional Encoding
We want to make the adoption of PE in generative AI tasks
simple and effective. To achieve this, we design Sinusoidal
Positional Encoding or SPE, defined as follows

SPE(x) = sin(ωPE(x)) (4)

where the ω is a trainable vector that represents the learned
features, L ∈ N+; the value of PE(x) is between [−1, 1].
With MLP, SPE has trainable matrix WSPE in the form as:

sin(WSPEPE(x)) =

[sin(ω1 sin(πx)), sin(ω2 cos(πx)), . . . ,

sin(ω2L−1 sin(2
L−1πx)), sin(ω2L cos(2L−1πx))]⊤

where WSPE = [ω1, . . . ,ω2L] is the weight of the first fully
connected layer, L is the number of components after PE,
the function sin(·) is performed by a sinusoidal activation.
Note that we omit the bias term to simplify the discussion.

Intuitively, we observe that the behavior of representation
in (4) is close to a normal sinusoidal wave with trainable

3

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

0 200 400 600 800 1000 1200 1400 1600
Fourier Features *

0
100

101

102

103

Nu
m

be
r o

f F
ea

tu
re

s

SPE:Ficus
SPE:Chair
SPE:Ship
PE:Hardcode

Figure 4: Learned features by SPE in different objects in
the Blender dataset. A learned feature rarely goes beyond
L = 9, and therefore set L = 10 is the optimal configuration
for PE. ω∗ is the feature: ω∗ = ω · 2l−1, l ∈ {1, 2, . . . , L}.

features. A comparison between SPE learned features and
the hard-coded features in PE is illustrated in Figure 4,
where we use larger L = 12 to search the features. We
find that, with SPE, even with large L the actual learned
frequency is within the band where L = 10, which explains
why PE takes L = 10 as the optimal setup. From Figure 4,
we also notice that the difference between objects on
features is mainly high-frequency components. Therefore,
learning high-frequency details are critical to ensure a high
fidelity synthesis.

We also find that the proposed form in Equation (4) is signif-
icantly more efficient to train than learning Fourier features
which directly operate on x, i.e. learning sin(ωx) as in
Equation (3) (Gao et al., 2023). We analyze this enhanced
learning efficiency with detail in §3.4.

3.1. Design Choices

We discuss different possible designs for Equation (4). We
could consider (1) other periodic activation functions instead
of the sinusoidal function and (2) other encoding methods
instead of sinusoidal-based encoding.

Choice of periodic activation functions We first discuss
which periodic activation functions are effective for SPE.
According to the Fourier theorem, any continuous series can
be expanded as a combination of sinusoidal waves. There-
fore representing sinusoidal waves is critical to guarantee
that all target outputs can be potentially represented. Basi-
cally, to make sure the network can represent the sinusoidal
wave, Equation 8 in Theorem 3.2 must be met, otherwise
the rest of the network after SPE has to learn a weight that is
conditional on the Fourier features, which makes the learn-
ing more difficult. For instance, if there is significant linear
mapping in the activation, then I(·) or S(·) will have a form
(proof in §A.1.1) where each feature has to be learned in
coupling with specific input x as:

S(t) =
sin(ω · t)√

ω2 − (2nπ)2 mod 2π
(5)

where ω is a trainable vector and t = 2lπx, l ∈ {0, . . . , L−
1}. The function in Equation 5 is much harder to learn than
Equation 9 and 10, potentially representing wrong frequency
features for x that is not in the training set. Therefore we
propose using sinusoidal activation as a simple-yet-effective
periodic activation. As for the other common periodic acti-
vation functions, we empirically test their performance in
NeRF and find that they perform significantly worse than the
sinusoidal function. More detailed discussion about other
activation functions in §B.3.

Choice of encoding methods We now discuss different
candidate encoding methods: one blob encoding and hash
encoding (Müller et al., 2022). While claiming faster train-
ing, we find that the hash encoding based method shows
much worse performance than the PE or SPE-based method
in few-view NeRF. Instead of using sinusoidal functions, in
hash encoding the input x is encoded by hashing (Müller
et al., 2022)

h(x) =

(
d⊕

i=1

xiπi

)
mod T (6)

where ⊕ denotes the bit-wise XOR operation and πi are
unique, large prime numbers. Looking from the PE view-
point, hash encoding uses a pseudo random function (Müller
et al., 2019) to replace the sinusoidal function of PE. Essen-
tially, since there are multiple hash tables, hash encoding
essentially performs a Monte Carlo search for proper encod-
ing. Then the model needs to learn from the encoding to
match actual features.

When using hash encoding, there will be a hash collision,
where different xi might be mapped into the same value
in a pseudo-random manner. In the implementation with
MLP, such as InstantNeRF (Müller et al., 2022) and NeRF-
facto (Tancik et al., 2023), they do not explicitly handle
collisions of the hash functions by typical means like prob-
ing, bucketing, or chaining. Instead, we rely on the neural
network to learn to disambiguate hash collisions themselves,
avoiding control flow divergence, reducing implementation
complexity and improving performance. Through the illus-
tration from Figure 3 and an experiment in §4.1, we find that
NeRF with hash encoding on a small number of training
views performs much worse than SPE in terms of fidelity.
Both searching for appropriate encoding and learning to fix
hash collision requires lots of effective inputs (i.e., distinct
views in NeRF), and hence it is hard to train NeRF with
Hash encoding on limited views.

Generally speaking, although hash encoding has a signif-
icant advantage in terms of computation (training time),
its learning efficiency, i.e. the ability to extract appropriate
features, is worse than SPE.

4

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

(x,y,z)

Dir

PE

PE

FC FC
R
e
l
u

Concatnate FC
R
e
l
u

Density

RGB

Multiple

FC

S
I
N
E

SPE

SPE

S
I
N
E

Figure 5: Example of implementing SPE in NeRF: Using
periodic activation function for Frequency Encoded series.
(x,y,z) is the coordinates of the object. Dir indicates direc-
tion of the view.

3.2. Practical implementation

Here we provide a practical guide to implement SPE. For
a given network, one can replace the first activation func-
tion of the MLP after PE with a sinusoidal activation. We
illustrate this using an SPE-enabled NeRF in Figure 5. In-
corporating SPE into existing neural networks requires no
additional hyperparameter tuning and maintains a similar
network structure, thereby preserving the original training
process for seamless integration.

The only hyper-parameter of SPE is the L. Since Fourier
feature ω is trainable, larger the value of L in SPE the better
and should match the network size, i.e., L ∝ Npara where
Npara is the number of parameters in the network, which we
establish in Theorem 3.1.

Theorem 3.1. L determines the approximation accuracy of
SPE to a trainable PE (proof in §A.1.2).

sin(ωPE(x)) = PE(ω(x+
1

2L
)) (7)

Using larger L should not cause unexpected artefacts be-
cause the features in the PE part will be tuned by ω. In our
experiments, we can optimize L by increasing the number
until the result does not improve.

3.3. Analysis of representation power

In the following, we analyze the representation power of
SPE by showing that SPE after learning can effectively
represent PE with optimal parameters.

Theorem 3.2. For arbitrary input x, the network can learn
ω agnostic functions I(·) and S(·) to make SPE have the
same effect as PE with Fourier features tuned by ω.

Proof. Let t = 2lπx, l ∈ {0, . . . , L− 1}

∃I(t),S(t) →
sin(ω sin(t)) · I(t) + sin(ω cos(t)) · S(t) = sin(ω · t)

(8)

As we prove in §A.1.2, I(·) and S(·) have a simple form

If: t → (n+
1

2
)π, Then: I(t) = 1,S(t) = 0 (9)

If: t → nπ, Then: I(t) = 0,S(t) = 1 (10)

Combining 8, 9, and 10, the sinusoidal wave is approxi-
mated with both the sin and cos parts.

Remark 3.3. Intuitively, Equation 9 and 10 approach si-
nusoidal wave for different values of x by using different
frequency parts of SPE to make the approximation. The I(·)
and S(·) is ω agnostic and a simple linear binary classifica-
tion of input value x, therefore there is no extra overhead to
learn such functions.

Theorem 3.4. Equation 4 is an effective approximation to
PE when the absolute value of learned feature ω is small

lim
|ω|→0

sin(ωPE(x)) = PE(x) (11)

Details proof in §A.1.3. In the case original PE has captured
the appropriate features, SPE can easily approach PE by
using small weights. The smaller weights can be scaled
up by subsequent fully connected layers without impacting
the corresponding frequency band’s power. Therefore, we
prove that PE is an easy-to-learn sub-case of SPE.

3.4. Discussion of training efficiency

We discuss the choice of optimization methods together with
SPE. One option is to learn sin(ωx) directly as in Equa-
tion (3). Compared with learning in the form of sin(ωx),
incorporating PE with SPE simplifies training by limiting
the search to a bounded space, unlike other methods that
operate in a larger, unbounded space. This constraint leads
to more stable training and faster convergence. Suppose
we have L components in SPE, then the hardcoded features
are fh = [π, 2π, . . . , 2L−1π], and the learned features (sup-
pose the actual features is distinct to the hardcoded features)
fl = [ω0 ·π, ω1 ·2π, . . . , ωL ·2L−1π]. Assume that the actual
feature is ωa, the difference between the nearest hardcoded
feature and actual feature ∆PE would be

∆PE =

{
min(2β0π − ωa, ωa − 2β1π) ωa < 2L−1π

ωa − 2L−1π ωa ≥ 2L−1π

(12)

where β0 = ⌈log2 ωa

π ⌉ and β1 = ⌊log2 ωa

π ⌋. Therefore
if we have PE, then tuning the frequency always can be
converted to a bounded range that is significantly smaller
than ωa when L is large enough. Without embedding PE
in SPE, the searching space to train ω is not bounded and

5

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

will be sensitive to initialization, which is hard to carry out
when the actual feature is unknown.

3.5. Quantifying Learned Fourier Features

As prior works, we use standard metrics for NeRF including
PSNR and SSIM. However, we find that PSNR and SSIM
cannot show the fidelity of learnt Fourier features explicitly.
Therefore, we further design metrics that can quantify the
effects of high-frequency and low-frequency details. These
new metrics include:

1. Wavelet Decomposition Power Ratio (WDPR) mea-
sures the high-frequency band that contributes to gain
in different methods. We first conduct wavelet decom-
position with λ levels on the image to separate the
high-frequency details. Level-λ wavelet power radio is
defined as the power of signal at the λth level decom-
position compared to the ground truth decomposition.
The WDPR is then can be calculated as follow

WDPR(ytrue,ysyn, λ) =
|P(W (ytrue, λ))−P(W (ysyn, λ))|

P(W (ytrue, λ))
(13)

where P(y) =
∑

y2i , yi ∈ y, ysyn denotes synthesis
view, and ytrue denotes the ground truth synthesis view.

2. Relative Wasserstein Distance Error (RWDE) which
assesses how accurately the model learns the distribu-
tion change. Let ytrain denote the training view, ysyn
denote a synthesis view, and ytrue denote the ground-
truth synthesis view, the RWDE is defined as:

RWDE(ytrain,ysyn,ytrue) =
WD(ytrain,ysyn)

WD(ytrue,ysyn)
(14)

where WD(a,b) compute the Wasserstein distance
between two images a,b, and take the average of dif-
ferent RGB channels if needed. Intuitively, RWDE
gives a sense of whether the model tends to overfit the
distribution of existing views. If RWDE < 1 then it
tends to overfit to existing views, and vice versa.

4. Experiments
We evaluate SPE against different baseline methods using
various generation tasks: few-view NeRF, Text-to-Speech
synthesis, and 1D regression with NTK. For NeRF, we focus
on the case with few views and compare the fidelity of the
new view synthesis (§4.1). For the speech synthesis task,
we focus on improving the FastSpeech (Ren et al., 2019b)
method, where the insufficient accuracy of MLP comes
as a main obstacle for high-quality generation. We show
the use of SPE significantly improves their performance

Ground Truth FreeNeRF

(SOTA)

FreeNeRF+SPE

(Ours)

Figure 6: Visual enhancement of Blender Chair with SPE.
Our method yields clearer patterns compared to FreeNeRF.

093 086 075 073 055 026 016 002
Training View Number

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

W
D

Er
ro

r

Ours
FreeNeRF
DietNeRF

Figure 7: RWDE with different training views.

with a single-line of change in their open-source code base
(§4.2). Finally, we compare SPE against PE in 1D regression
with NTK, following its original paper (Tancik et al., 2020),
for which we observe that SPE shows a significant gain
in convergence speed and fidelity by simply changing one
activation function (§4.3).

4.1. Few-View NeRF

We implement SPE in NeRF following the way depicted in
Figure 5. By default, we build our SPE method on top of the
SOTA model: FreeNeRF (Yang et al., 2023). Specifically,
for the training with SPE on FreeNeRF, we find that it is
effective to train FreeNeRF and SPE with adversarial loss to
minimize the Wasserstein distance to the target view. Details
of the experimental setup can be found in §B.1, and more
analysis results can be found in §A.2.

For baselines, we consider PE-based methods, including
DietNeRF (Jain et al., 2021), MipNeRF (Barron et al., 2021),
and FreeNeRF (Yang et al., 2023), as well as those with hash
encoding, such as InstantNeRF (Müller et al., 2022) and
NeRFfacto (Tancik et al., 2023). APENeRF (Gao et al.,
2023) is as far as we know the only method that learns the
Fourier features explicitly, so we also include this work
as a baseline. All the baselines are open-source and we
implement SPE on top of their official implementation.

We present a performance comparison of various NeRF
models and encoding techniques in Table 2. The table in-
cludes seven existing NeRF models categorized by four po-
sitional encoding techniques: (non-adaptive) PE (Equation

6

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

Non-Adaptive PE Hash Encoding APE SPE

Metric NeRF DietNeRF MipNeRF FreeNeRF InstantNeRF NeRFfacto APENeRF MipNeRF
+SPE

FreeNeRF
+SPE

FreeNeRF
+SPE+GAN

PSNR ↑ 14.983 23.142 23.344 24.259 14.681 14.934 23.067 23.563 24.951 25.202
SSIM ↑ 0.689 0.865 0.879 0.883 0.676 0.682 0.863 0.885 0.898 0.910

Table 2: Performance comparison of NeRF models and encoding methods.

Metric FreeNeRF w/ SPE w/ GAN w/ SPE + GAN

PSNR ↑ 24.259 24.951 24.531 25.202
SSIM ↑ 0.883 0.898 0.889 0.910

Table 3: Ablation Study on FreeNeRF.

λ DietNeRF NeRFfacto APENeRF FreeNeRF FreeNeRF
+ SPE

FreeNeRF
+ GAN

FreeNeRF
+ SPE + GAN

1 0.968 0.986 0.982 0.981 0.988 0.982 0.990
2 0.930 0.972 0.971 0.974 0.975 0.981 0.978
3 0.833 0.858 0.861 0.877 0.903 0.882 0.927
4 0.590 0.682 0.694 0.779 0.796 0.760 0.894

Table 4: WPDR with different levels λ.

1), hash encoding (Equation 6), APE (Equation 3), and SPE
(Equation 4). It is evident that our method, SPE, surpasses
all other positional encoding techniques in the NeRF task
for both PSNR and SSIM metrics. Notably, SPE achieves
approximately a 3% improvement in PSNR and a 1.7% in-
crease in SSIM compared to the state-of-the-art FreeNeRF
(Yang et al., 2023) method. This leads to a significant vi-
sual enhancement, as illustrated in Figures 6. Furthermore,
we discovered that GANs (Goodfellow et al., 2020; Gulra-
jani et al., 2017) can further enhance the performance of
PE-based NeRF models.

An ablation study on FreeNeRF, incorporating both SPE and
GAN enhancements, is presented in Table 3. In this study,
we use the SOTA NeRF, FreeNeRF (Yang et al., 2023), as
the main baseline. We observe that GANs contribute to
performance improvements for both the PE-based (vanilla)
FreeNeRF and our SPE-enhanced FreeNeRF, with notably
higher accuracy in terms of PSNR and SSIM when com-
bined with SPE. A primary reason is that SPE can provide a
richer frequency band (shown in Figure 4), where GANs
can be exploited with greater flexibility. This can be further
reflected in Figure 7 where GANs can effectively reduce the
RWDE which reflects the extent of pixel distortion.

Table 4 presents the WDPR across levels 1-4. The table illus-
trates that SPE surpasses all other NeRF models across var-
ious positional encoding techniques, particularly at higher
levels of wavelet decomposition, which correspond to higher
frequency features. Notably, at λ = 3, SPE achieves a 3%
improvement over the state-of-the-art FreeNeRF. Moreover,
while integrating GAN with FreeNeRF and PE reduces the
power ratio from 0.779 to 0.760, employing GAN with SPE
elevates the performance from 0.796 to 0.894, marking a
12.3% enhancement. This reinforces our assertion that the

Ground Truth
FreeNeRF

+ SPE+ GAN
FreeNeRF

L
e
v
el

 4
L

e
v
el

 3

Figure 8: Wavelet decomposition results.

Ground
Truth

Ours FastSpeech

High Frequency Details
Ground
Truth

Ours FastSpeech

Low Frequency Details

Figure 9: Speech spectrum details with red regions
indicating signal power. Our method achieves better
alignment of these red regions with the ground truth
compared to vanilla FastSpeech.

broader frequency bands facilitated by SPE enhance the
efficacy of GANs in training. Such improvements lead to
noticeable visual distinctions, as depicted in Figure 8.

4.2. Text-to-Speech

We then evaluate SPE in speech synthesis tasks. FastSpeech
(Ren et al., 2019b) is selected as the base method for speech
use case because the linear layers tend to be a bottleneck in
FastSpeech (see “Figure 1 (a), Feed-Forward Transformer”
in (Ren et al., 2019b)). For this model there is no official
code available, we therefore use the implementation in (Liu,
2020), which shows negligible difference on performance
compared with the official audio samples (Ren et al., 2019a).

In Table 5, a comparative analysis of three audio synthesis

7

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

METHOD CASE 1 CASE 2 CASE 3 CASE 4 CASE 5

SPE 104.4 97.7 103.2 103.9 97.6
PE 103.4 96.3 101.6 102.2 96.4
FS 100.7 94.4 100.2 99.3 94.7
SPE 0.223 0.223 0.239 0.240 0.262
PE 0.210 0.209 0.228 0.229 0.236
FS 0.191 0.191 0.205 0.204 0.225

Table 5: Performance comparison of position encoding
methods in speech sytnehsis for different cases. Top half is
PSNR and bottom half is SSIM, both the larger the better.

methods is conducted, with PSNR and SSIM as metrics.
In the table, “SPE” refers to a model integrating SPE with
the original FastSpeech. “PE” denotes the incorporation
of PE (Equation 1) into FastSpeech, and “FS” represents
the original FastSpeech model. To make a fair comparison,
we set L = 5 for PE in all methods. The computation of
PSNR and SSIM involves contrasting the synthesized audio
from three methods against the ground truth (target audio
spectrum graph). These metrics are crucial for assessing
the fidelity and perceptual quality of synthesized audio,
quantitatively measuring each method’s approximation to
the ground truth.

The table assesses metrics across five cases with high-
frequency features, similar to high-frequency details from
Figure 9. The results lead to two main observations. First,
SPE consistently has the best performance in both PSNR and
SSIM across all cases. Second, PE demonstrates superior
performance over FS in all scenarios. These findings affirm
that PE can enhance fidelity for high-frequency feature gen-
eration, and the new SPE further amplifies this benefit by
adaptively selecting the most relevant features.

Notably, Case 4 exhibits a remarkable improvement of 4.6%
compared to vanilla FastSpeech, highlighting the efficacy
of SPE in enhancing signal quality. Similarly, for SSIM val-
ues, which measure the structural similarity to the ground
truth, a parallel trend is observed. The SPE-augmented Fast-
Speech achieves SSIM scores ranging from 0.223 to 0.262,
outperforming the original FastSpeech model, which scores
between 0.191 and 0.225. This enhancement indicates that
SPE not only improves the fidelity of the audio signal but
also more effectively preserves its structural integrity com-
pared to the baseline model. These findings underscore
the capability of SPE to significantly boost performance in
speech generation use cases.

4.3. 1D Regression with Neural Tangent Kernel

We finally evaluate SPE on 1D regression with NTK. We ad-
hered to the official implementation of PE-based NTK (Tan-
cik et al., 2020) and conducted the experiments accordingly.
We modify only by replacing the PE component with SPE.
To ensure a fair comparison, we following the same im-

0 50000
Iteration

10−6

10−5

10−4

10−3

10−2

10−1

M
ea

n
 s

q
u
ar

ed
 e

rr
or

Train loss

Theory

Observed

0 40000 50000
Iteration

10−2

Test loss

p= 0.5

p= 1

p= 1.5

p= 2

(a) PE

0 50000
Iteration

10−6

10−5

10−4

10−3

10−2

10−1

M
ea

n
 s

q
u
ar

ed
 e

rr
or

Train loss

Theory

Observed

0 20000 50000
Iteration

10−2

Test loss

p= 0.5

p= 1

p= 1.5

p= 2

(b) SPE

Figure 10: Training and test performance of NTK with PE
and SPE. Each figure shows the trajectories with different p.
Dashed lines indicate the trend in theory and solid lines are
from experiments. The red vertical line marks the iteration at
which PE and SPE achieve equivalent levels of convergence.

plementaition in (Tancik et al., 2020), using Jax (Bradbury
et al., 2018) and the same Python library (Novak et al., 2019)
to calculate NTK functions automatically.

Figures 10 show the NTK regression performance. Here,
mappings with smaller p values are associated with NTKs
better equipped to capture high-frequency features. We
make several observations from this figure. First of all, the
training loss plots indicate that, within 50,000 iterations,
SPE achieves 2 × faster convergence across all p values
compared to PE. Furthermore, the training loss with SPE
is notably reduced, being two orders of magnitude smaller
compared to PE when p equals 0.5. This significant reduc-
tion highlights SPE’s enhanced capability in effectively cap-
turing high-frequency features within the training dataset.

Additionally, in terms of testing loss, while the PE-based
NTK regression model requires up to 40,000 iterations to
converge, the SPE-based model demonstrates convergence
within approximately 20,000 iterations for all evaluated p
values with a smaller test loss.

Finally, the test loss plots for SPE reveal a nuanced trend.
While employing NTK regression with PE yields best per-
formance at a p value of 1, as smaller p values tend to
cause overfitting, which is discussed in Tancik et al. (2020);

8

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

SPE demonstrates a marked improvement in this aspect.
Specifically, as illustrated in Figure 10, SPE maintains com-
parable performance levels even when p is reduced to 0.5.
This capacity to effectively handle smaller p values which
is intended to capture more high-frequency features sub-
stantiates our argument that SPE can adaptively select and
converge upon the most pertinent frequency features with-
out the typical drawbacks associated with smaller p values
in PE, which is aligned with Theorem 3.1 in §3.2 .

5. Related Work
Our study is motivated by the successful application of
Fourier features based PE in various tasks for processing
visual signals, including images (Stanley, 2007) and 3D
scenes (Mildenhall et al., 2021; Yang et al., 2023). Even ear-
lier, there are similar positional encoding methods in natural
language processing and time series analysis (Kazemi et al.,
2019; Vaswani et al., 2017). Among these works, Xu et al.
(2019) use random Fourier features to approximate station-
ary kernels with a sinusoidal input mapping and propose
techniques to tune the mapping parameters. Then in Tancik
et al. (2020), the authors extend Fourier features based PE
by comprehending such mapping as a modification of the
resulting network’s NTK.

At the same time as Tancik et al. (2020), another work on uti-
lizing sinusoidal activation via SIREN layers to learn from
the derivative information (Sitzmann et al., 2020) shows an-
other potential of using Fourier representations to help the
training process, which is then proved as a structural similar
representation as the PE with a trainable parameter (Ben-
barka et al., 2022). This provokes us to think about how to
use this connection to enable a trainable and adaptive PE.
Simultaneously, there are other attempts to learn the Fourier
features directly (Gao et al., 2023) or learn a pseudo random
encoding of the inputs (Müller et al., 2022; Tancik et al.,
2023). However, those works cannot fully address practical
concerns, such as why the empirical setting of NeRF should
be like in Mildenhall et al. (2021), for which we see a gap
between theory and empirical operation.

Building on the existing analysis of PE, we introduce SPE
to adaptively learn optimal Fourier features, thereby bridg-
ing theoretical understanding and practical implementation.
This approach not only enhances the effectiveness of PE in
capturing high-frequency functions but also broadens the
scope of its application across domains.

6. Conclusions
This paper presents SPE, a new positional encoding method
designed to learn adaptive frequency features closely aligned
with the true underlying function. Through extensive eval-
uation across three distinct scenarios – 1D regression, 2D

speech synthesis, and 3D NeRF – we have demonstrated
SPE’s superiority over traditional Fourier feature based PE.
Our findings indicate that SPE is effective and efficient at
learning high-frequency functions, underscoring its poten-
tial as a versatile tool for a broad set of applications.

Impact Statement
This paper presents work whose goal is to advance the field
of Deep Learning. There are many potential societal conse-
quences of our work, none which we feel must be specifi-
cally highlighted here.

References
Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. Fine-grained

analysis of optimization and generalization for overpa-
rameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR,
2019.

Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P.,
Martin-Brualla, R., and Srinivasan, P. P. Mip-nerf: A
multiscale representation for anti-aliasing neural radiance
fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5855–5864, 2021.

Benbarka, N., Höfer, T., Zell, A., et al. Seeing implicit
neural representations as fourier series. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 2041–2050, 2022.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., et al. Jax: composable transfor-
mations of python+ numpy programs. 2018.

Gao, Z., Dai, W., and Zhang, Y. Adaptive positional en-
coding for bundle-adjusting neural radiance fields. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 3284–3294, 2023.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
Advances in neural information processing systems, 30,
2017.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

9

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

Jain, A., Tancik, M., and Abbeel, P. Putting nerf on a
diet: Semantically consistent few-shot view synthesis. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5885–5894, 2021.

Kazemi, S. M., Goel, R., Eghbali, S., Ramanan, J., Sa-
hota, J., Thakur, S., Wu, S., Smyth, C., Poupart, P., and
Brubaker, M. Time2vec: Learning a vector representation
of time. arXiv preprint arXiv:1907.05321, 2019.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J., and Pennington, J. Wide neural networks of
any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32,
2019.

Liu, Z. Fastspeech-pytorch. https://github.com/
xcmyz/FastSpeech, 2020.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. Occupancy networks: Learning 3d re-
construction in function space. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 4460–4470, 2019.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Müller, T., McWilliams, B., Rousselle, F., Gross, M., and
Novák, J. Neural importance sampling. ACM Transac-
tions on Graphics (ToG), 38(5):1–19, 2019.

Müller, T., Evans, A., Schied, C., and Keller, A. Instant
neural graphics primitives with a multiresolution hash
encoding. ACM Transactions on Graphics (ToG), 41(4):
1–15, 2022.

Nguyen, A., Yosinski, J., and Clune, J. Deep neural net-
works are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
427–436, 2015.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-
Dickstein, J., and Schoenholz, S. S. Neural tangents:
Fast and easy infinite neural networks in python. arXiv
preprint arXiv:1912.02803, 2019.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. Advances in neural information pro-
cessing systems, 20, 2007.

Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., and
Liu, T.-Y. Fastspeech: Fast, robust and controllable text
to speech (audio samples). https://github.com/
xcmyz/FastSpeech, 2019a.

Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., and
Liu, T.-Y. Fastspeech: Fast, robust and controllable text
to speech. Advances in neural information processing
systems, 32, 2019b.

Ren, Y., Hu, C., Tan, X., Qin, T., Zhao, S., Zhao, Z., and
Liu, T.-Y. Fastspeech 2: Fast and high-quality end-to-end
text to speech. In International Conference on Learning
Representations, 2020.

Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein,
G., and Zollhofer, M. Deepvoxels: Learning persistent
3d feature embeddings. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 2437–2446, 2019.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and
Wetzstein, G. Implicit neural representations with peri-
odic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Stanley, K. O. Compositional pattern producing networks: A
novel abstraction of development. Genetic programming
and evolvable machines, 8:131–162, 2007.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Bar-
ron, J., and Ng, R. Fourier features let networks learn
high frequency functions in low dimensional domains.
Advances in Neural Information Processing Systems, 33:
7537–7547, 2020.

Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Wang, T.,
Kristoffersen, A., Austin, J., Salahi, K., Ahuja, A., et al.
Nerfstudio: A modular framework for neural radiance
field development. In ACM SIGGRAPH 2023 Conference
Proceedings, pp. 1–12, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan,
K. Self-attention with functional time representation
learning. Advances in neural information processing
systems, 32, 2019.

Yang, J., Pavone, M., and Wang, Y. Freenerf: Improving
few-shot neural rendering with free frequency regular-
ization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8254–
8263, 2023.

10

https://github.com/xcmyz/FastSpeech
https://github.com/xcmyz/FastSpeech
https://github.com/xcmyz/FastSpeech
https://github.com/xcmyz/FastSpeech

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

Figure 11: Saw-tooth Activation is periodic linear and cannot represent sinusoidal wave appropriately.

A. Appendix
A.1. Further Analysis of SPE

A.1.1. REASONS FOR USING SINUSOIDAL ACTIVATION

We provide an extended discussion of why Sinusoidal activation turns out to be a highly effective option for SPE. If
we denote the activation function in SPE with A(·), to effectively approximate a sinusoidal wave, the condition can be
formulated as:

∃I(t),S(t) → A(ω sin(t)) · I(t) +A(ω cos(t)) · S(t) = sin(ω · t) = sin(ω · 2lπx), (15)

the ω can be any element in WSPE = [ω1, . . . ,ω2L], and l ∈ {0, . . . , L− 1}. Suppose A(·) is a continuous, differentiable,
and periodic function, A(x) = A(x+ 2π), we have

lim
t→nπ

A(ω sin(t)) · I(t) +A(ω cos(t)) · S(t) = A(ω · |t− nπ|) · I(t) +A(ω cos(t)) · S(t) (16)

Considering cosnπ ∈ {−1, 1} in periodic, to make it works, we now investigate other common periodic activation.

Suppose A(·) is periodic linear, we need to have

f(t,ω) = α0 · (ω sin(t) mod 2π) · I(t) + α1 · (ω cos(t) mod 2π) · S(t), (17)

where A(·) is a local linear function such as periodic linear. α0 and α1 are constant value varies between different activation
and the range of input. To make Equation 15 work, I(·) and S(·) cannot be ω agnostic, for instance, we need

lim
ω sin(t)→2nπ

f(t,ω) = α1 · (ω cos(t) mod 2π) · S(t) = sin(ω · t), (18)

we also have, when ω sin(t) = 2nπ, because ω2 sin(t)2 + ω2 cos(t)2 = ω2

ω cos(t) =
√
ω2 − (2nπ)2 (19)

Then we get a ω related form of S(t)

S(t) =
sin(ω · t)√

ω2 − (2nπ)2 mod 2π
(20)

Therefore, we prove that if the periodic activation follows the form in Figure 11, to represent a mono-frequency feature, it
requires the following layers to perform the high-frequency behaviour as well. Because of the analysis in (Tancik et al.,
2020) and §A.2.2, the following layer can hardly learn this function. As a result, this form of activation cannot efficiently
represent a single frequency feature and tend to introduce artifacts on the final output.

We can further extend the discussion to any periodic activation function with significant linear behaviour in part of their
periodicity, simply by taking out the corresponding period and then we will get ω related representation of the following

11

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

layers. Hence not all periodic activation has the same effectiveness on representing frequency features, if a function has
significant linear mapping, then it cannot be a perfect approximation of frequency features as in PE.

Another advantage of Sinusoidal activation is the theoretical effectiveness of approximating arbitrary waveform, including
the Saw-tooth activation, if desired. According to Fourier transformation, we know that any continuous periodic series can
be represented by a linear combination of Sinusoidal waves. Suppose the L is large enough, the other continuous periodic
activation is a special case of SPE.

Nevertheless, the Sinusoidal activation used in this paper is not the only solution to make Equation 15 work. Theoretically,
for example, it can have low dimension input x related distortion to the Sinusoidal activation, and then the following layer
would have a chance to fix such distortion according to the low dimension input. We choose to use the Sinusoidal activation
because it makes the function need to be learned by the following layers to represent a frequency feature simple enough as
Equation 24 and Equation 25.

A.1.2. APPROXIMATION ABILITY

We provide an extended proof which shows SPE can learn an approximation of arbitrary frequency features effectively,
i.e., besides SPE, the rest part of MLP is frequency feature agnostic. Considering Equation 1, we want to prove (let
t = 2lπx, l ∈ {0, . . . , L− 1})

∃I(t),S(t) → sin(ω sin(t)) · I(t) + sin(ω cos(t)) · S(t) = sin(ω · t) = sin(ω · 2lπx), (21)

the ω can be any element in WSPE = [ω1, . . . ,ω2L], so that it can represent the frequency features without requiring the
rest layers to take in the new features but only condition on the input t. Assume frequency feature ω ∈ N+, when t → nπ,
if we have I(t) = 1 and S(t) = 0, then the Equation 21 can be simplified as following

lim
t→nπ

sin(ω sin(t)) = sin(ω · t) = sin(ω · 2lπx) (22)

Therefore, whenever t → nπ, ω is a good approximation of the actual frequency feature.

Similarly, when t → (n+ 1
2)π, if we have I(t) = 0 and S(t) = 1, Equation 21 can be simplified as following

lim
t→nπ

sin(ω cos(t)) = sin(ω · t) = sin(ω · 2lπx) (23)

Suppose we follow the conventional PE as the initial part of SPE, the requirement of approximation on t can be transmitted
into the following form:

If: 2lπx → (n+
1

2
)π, Then: I(t) = 1,S(t) = 0, (24)

If: 2lπx → nπ, Then: I(t) = 0,S(t) = 1 (25)

Therefore, as long as ∃L ∈ N+ → 2lπx ≃ nπ
2 , the corresponding input value of x will be approximately represented by

frequency ω. To evaluate the effectiveness, we take the highest frequency l = 2L−1, then we can compute the possible
non-zero value xi in x can always be represented in the following form

xi =
n

2L
+ ϵ, n ∈ N+, L ∈ N+, ϵ → 0 (26)

We now prove any real xi can be written in the form of Equation 26 with a marginal difference. Given arbitrary value of
xi ∈ R, let n is the nearest integer to 2Lxi, which has |n− 2Lxi| ≤ 1

2 , then

ϵ = xi −
n

2L
< xi −

2Lxi − 1

2L
=

1

2L
(27)

Therefore the length of PE L determines the resolution of frequency approximation. For the common configuration L > 10,
the error ϵ is an ignorable small value. Therefore, if write in the vector form of x, we have

12

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

sin(ωPE(x)) = PE(ω(x+
1

2L
)) (28)

The value L is larger the better, and it should match network size. L ∝ Npara.

We notice that I(·) and s(·) is easy to learn because it is just a linear classification to the value of x itself and totally ω
agnostic. Hence, the representation of SPE on the following layers is almost the same as PE with frequency feature ω, where
the error bound of approximation is controlled by L. We also prove that with SPE, using larger L is encouraged as it comes
with more possible frequency features and lower errors.

Keeping those low-frequency features in SPE is fine because MLP does not suffer from learning low-frequency features, and
those parts will be anyway trained well.

A.1.3. RELATION BETWEEN PE AND SPE

We provide extended proof to show PE is a special case of SPE. We discuss a function F(·) that maps the SPE components
into corresponding high-frequency functions, where we have

F(x) = F(SPE(x)), (29)

where F(·) is the network after SPE, and by default they are FC layers. With SIREN activation, the SPE can be formulated
as follows, for l ∈ {0, . . . , L− 1}

SPE(x) = sin(ωSPE · sin(2lx)) (30)

The original PE plus the first FC layer can be formulated as

PE(x) = ωPE · sin(2lx) (31)

When x = 0, PE(x) = SPE(x) = 0. Otherwise, the ratio between SPE and PE is

SPE(x)

PE(x)
=

sin(ωSPE · sin(2lx))
ωPE · sin(2lx)

(x ̸= 0) (32)

Essentially, when ωSPE → 0, because | sin(2lx)| ≤ 1, we have

sin(ωSPE · sin(2lx))
ωSPE · sin(2lx)

= 1 (33)

Therefore, SPE learn an approximation of input PE by learning small weight ωSPE

lim
ωSPE→ϵ

SPE(x)

PE(x)
≃ ωSPE · sin(2lx)

ωPE · sin(2lx)
=

ωSPE

ωPE
(34)

By using small weights in SPE 1, it achieve same performance a PE. Considering there are following layers that can easily
scale up the value, we conclude that SPE has a similar behaviour as the original PE with one FC layer.

A.2. Further results of NeRF experiments

For the training of SPE in FreeNeRF, we include adversarial training, a.k.a., GAN to minimize the Wasserstein distance
between the output and target view. We find that when turning to a new view, the change in the distribution of pixels can
represent how different the new view to the previous one.

We follow a trajectory to observe a chair in the Bender dataset. The closer the number is, the closer the viewpoint is. We can
see the process of distribution shifting. From Figure 12 to Figure 15, we see the Wasserstein distance is a good metric to
describe how the pattern in the view is different to the others. Good fidelity means the Wasserstein distance between the
training set to the test set should be equal to the distance between the training set and the synthetic views. If the synthetic
data has a smaller distance, then it indicates the corresponding method cannot make the output conditional on the input by
overfitting the existing distribution.

13

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

Figure 12: Histogram of Pixels at view 0.

Figure 13: Histogram of Pixels at view 4.

This phenomenon is aligned with the fact that pixels will be removed, added, and distorted smoothly when shifting to a new
view gradually. However, we find some SOTA methods does not have any gain on learning the right distribution of pixels,
even when they have gain on the other metrics such as PSNR and SSIM. Therefore, we make sure the model converges on
Wasserstein distance as well to enhance the fidelity.

A.2.1. HASH ENCODING AND FEW-VIEW NERF

Besides Frequency Features, another encoding method — Hash Encoding or one-blob encoding, is used in NeRF (Müller
et al., 2022; Tancik et al., 2020), and can achieve more accurate results than frequency encodings in bounded domains at the
cost of being single-scale. The one-blob encoding discretizing the input into the bins, effectively shuts down certain parts of
the linear path of the network, allowing it to specialize the model on various sub-domains of the input. One-blob encoding
still uses a stationary kernel without adapting to the actual scene. Also during the discretizing, there is no guarantee it will
be done in a way that reflects the high-frequency features.

Because one-blob encoding uses stationary discretizing and does not learn the frequency feature, the network cannot process
the case when the input distribution is far from the training set, where the discretizing leads to a representation that the
network cannot generalize. This explains why the one-blob encoding-based method performs much worse on few-view
NeRF.

A.2.2. TRAINING EFFICIENCY OF SPE

Indeed the matrix of WSPE is a higher dimension representation than the input sequence. The training of SPE leverages the
same mechanism as the original PE, where WSPE perform as the first layer of weights as the original PE, therefore the PE
part will help the training of WSPE as well.

We conduct the same analysis as (Tancik et al., 2020; Lee et al., 2019; Arora et al., 2019) with neural tangent kernel (NTK)
based neural network approximation. Basically there is not difference when replacing one activation with sinusoidal function,
and therefore MLPs with SPE can be trained in the same way just as general MLPs.

1A simpler example is, limx→0
sin 5x

x
= 5

14

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

Figure 14: Histogram of Pixels at view 8.

Figure 15: Histogram of Pixels at view 24.

A.2.3. STATIONARY KERNELS

The significance of stationary kernels, highlighted in (Tancik et al., 2020), emphasizes their utility for achieving rotation-
invariance and translation-invariance in the Neural Tangent Kernel (NTK). This property is crucial for efficiently training
models on diverse data types, including both image (2D/3D) and regression tasks (1D). As demonstrated in Appendix A.1,
our SPE method seamlessly aligns with the conventional Positional Encoding (PE) from (Tancik et al., 2020), inheriting the
advantageous features of stationary kernels, thus offering a robust inductive bias for model training across varied domains.

B. Supplementary evaluation results
B.1. Configuration details

To ensure a fair comparison, we use L = 10 for the space position input (i.e., the (x, y, z) in Figure 5), and use L = 4 for
the space position input (i.e., the dir in Figure 5), which is the empirical configuration on the Blender dataset. By default, we
use the 8-views setup that is aligned with FreeNeRF (Yang et al., 2023) and DietNeRF (Jain et al., 2021). We select such a
few views setup because if there are too many training views, even the original setup of NeRF can achieve a high fidelity as
the new view is similar to the available view. Also when implementing FreeNeRF, we use DietNeRF as the base method of
FreeNeRF, which is aligned with the official implementation choice in (Yang et al., 2023).

B.2. Evaluation of Gaussian Random Fourier Features

There is another encoding method called Gaussian random Fourier features (GRFF). In GRFF, a pseudo random sequence
(still Non-adaptive) is used ((Tancik et al., 2020) §6.1) as Fourier Features. In the SOTA methods, GRFF is not used for two
reasons.

1. Gain is not promising. GRFF assumes Fourier features follow a Gaussian distribution. However, the actual distribution
may differ (e.g., Figure 4), making a Gaussian assumption not universally effective. GRFF’s best-case scenario achieves
only average performance across known cases, not optimal for specific instances. The FreeNeRF (see Table 6) and 1D
regression results (see link below) demonstrate that GRFF doesn’t significantly outperform PE.

2. Significant computation overhead. To align with the actual distribution of Fourier features in GRFF, an exhaustive

15

Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

Metric FreeNeRF w/ GRFF (σ = 1995) w/ SPE w/ GAN w/ SPE + GAN

PSNR ↑ 24.259 24.382 24.951 24.531 25.202
SSIM ↑ 0.883 0.886 0.898 0.889 0.910

Table 6: Evaluation of Gaussian random Fourier features.

Metric w/ReLU w/ Sinusoidal w/ Sawtooth w/ PReLU

PSNR ↑ 24.259 24.951 23.975 24.812
SSIM ↑ 0.833 0.898 0.821 0.889

Table 7: Evaluation of Different Activation Functions.

search of distribution parameters is required. For instance, the std σ for each task and dataset. Given the computational
demands, conducting such extensive sweeps for every NeRF task is impractical.

B.3. Evaluation of Other Activation Functions with PE

The ablation of the choice of a periodic function (based on FreeNeRF) is shown in Table 7:

In this Table 7, we consider four cases:

1. ReLU. Basically the original setting of PE.

2. Sinusoidal. The setting of SPE.

3. Saw-tooth functions f(x) = x − ⌊x⌋ has a bit worse performance to ReLU, perhaps due to the training issue of
sawtooth activation.

4. Periodic ReLU (PReLU), f(x) = max(0, x) + sin(x). shows a minimal decrease in average performance compared
to SPE. The reduction might be caused by the ReLU part as it encourages overfitting to incorrect high-frequency
components.

We also tried the case without PE inside, where SPE has a form sin(ωx). The result is very blurring with much worse
high-frequency features. PSNR is 15.183, and SSIM drops to 0.691.

We will also attend to the format and writing issues in the update version.

16

