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Abstract
Visual Model-Based Reinforcement Learning
(MBRL) promises to encapsulate agent’s knowl-
edge about the underlying dynamics of the en-
vironment, enabling learning a world model as
a useful planner. However, top MBRL agents
such as Dreamer often struggle with visual pixel-
based inputs in the presence of exogenous or ir-
relevant noise in the observation space, due to
failure to capture task-specific features while fil-
tering out irrelevant spatio-temporal details. To
tackle this problem, we apply a spatio-temporal
masking strategy, a bisimulation principle, com-
bined with latent reconstruction, to capture en-
dogenous task-specific aspects of the environ-
ment for world models, effectively eliminating
non-essential information. Joint training of rep-
resentations, dynamics, and policy often leads
to instabilities. To further address this issue, we
develop a Hybrid Recurrent State-Space Model
(HRSSM) structure, enhancing state representa-
tion robustness for effective policy learning. Our
empirical evaluation demonstrates significant per-
formance improvements over existing methods in
a range of visually complex control tasks such as
Maniskill (Gu et al., 2023) with exogenous dis-
tractors from the Matterport environment. Our
code is avaliable at https://github.com/
bit1029public/HRSSM.

1. Introduction
Model-Based Reinforcement Leanring (MBRL) utilizes pre-
dictive models to capture endogenous dynamics of the world,
to be able to simulate and forecast future scenarios, en-
hancing the agent’s decision making abilities by leveraging
imagination and prediction in visual pixel-based contexts
(Hafner et al., 2019a; Kalweit & Boedecker, 2017; Hafner
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Figure 1. Our framework is composed of a Hybrid-RSSM and
actor-critic architecture. Hybrid-RSSM learns robust representa-
tions and dynamics through four distinct objectives: latent recon-
struction, which aligns features between masked and raw obser-
vations; similarity loss based on the bisimulation principle; and
two additional objectives same as in Dreamer series (Hafner et al.,
2020; 2023).

et al., 2019b; Ha & Schmidhuber, 2018; Janner et al., 2020).
Most importantly, these world models such as recurrent
state-space model (RSSM) (Hafner et al., 2019b), enable
agents to understand and represent dynamics in the learnt
representation space, consisting of task specific information
with the hope to have filtered out exogenous or irrelevant
aspects from the observations, leading to superior perfor-
mance compared to model-free RL algorithms. However,
most MBRL methods face challenges in environments with
large amounts of unpredictable or irrelevant exogenous ob-
servations (Burda et al., 2018; Efroni et al., 2022; 2021).

Arguably, the Dreamer series of algorithms (Hafner et al.,
2019a; 2020; 2023) are probably the most effective and rep-
resentative class of MBRL approaches where agents learn
representations and dynamics in latent space by minimiz-
ing reconstruction errors. Most MBRL approaches such
as Dreamer often includes a forward dynamics model to
predict observations and a reward model that evaluates the
potential of future states. Recent works however have shown
the ineffectiveness of forward dynamics based models when
learning from exogenous observation based visual inputs
(Efroni et al., 2022; Lamb et al., 2022; Islam et al., 2022).
This is because in noisy environments, emphasis on recon-
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struction can lead to disproportionate focus on irrelevant
details such as textures or noise, at the expense of smaller
but task-relevant elements. This can result in inaccuracies
in the dynamics model (Xiao et al., 2019; Asadi et al., 2019)
and overfitting to specific environmental traits (Zhang et al.,
2020a), leading to compounded errors in latent space world
models for planning.

While a body of work has addressed exogenous noise, pri-
marily in reward-free (Efroni et al., 2021; 2022; Lamb et al.,
2022) or offline visual settings for model-free RL (Islam
et al., 2022), only limited research has explored model-
based agents in the context of exogenous noise. These
studies have developed in a way of decoder-free matter, i.e.,
excluding pixel-level reconstruction, to mitigate reconstruc-
tion issues, but they still face significant challenges: either
lacking in capturing task-specific information (Deng et al.,
2022; Okada & Taniguchi, 2021), not being robust against
various noise types (Fu et al., 2021), or sensitive to hyper-
parameters (Zhu et al., 2023; Henderson et al., 2018). This
work is therefore primarily driven the question :

How to learn sufficiently expressive state representation
for a world model without the reliance of the pixel-level
reconstruction?

In principle, the ideal representation objective for model-
based planners should address two desired criterion : i)
effectively capturing task-relevant endogenous dynamics
information, and ii) be robust and compact enough to fil-
ter exogenous task irrelevant details. Despite several prior
works trying to address this (Lamb et al., 2022; Efroni et al.,
2021; Islam et al., 2022) in reward free settings, these works
do not show effectiveness of the learnt representation for
use in world models. We address this question through the
promising approach of bisimulation principle (Ferns et al.,
2011; Castro, 2020; Zhang et al., 2020b; Castro et al., 2021;
Zang et al., 2022a), learning representations specific to task
objectives that can reflect state behavioral similarities. How-
ever, the effectiveness of the bisimulation metric heavily
relies on the accuracy of the dynamics model (Kemertas
& Aumentado-Armstrong, 2021). Under an approximate
dynamics model, the state representation guided by the
bisimulation principle may be task-specific but not necessar-
ily compact, indicating a gap in the bisimulation principle’s
ability to foster expressive state representations for robust
model-based agents.

To effectively apply bisimulation principle in world mod-
els, we propose to develop a new architecture - the Hybrid-
RSSM (HRSSM). This architecture employs a masking strat-
egy to foster more compact latent representations, specifi-
cally targeting the integration of the bisimulation principle
to improve the efficiency and effectiveness of the model.
Our Hybrid-RSSM consists of two branches: 1) the raw
branch, which processes original interaction sequences, and

2) the mask branch, which handles sequences that have been
transformed using a masking strategy. This masking, involv-
ing cubic sampling of observation sequences, is designed to
reduce spatio-temporal redundancy in natural signals. A key
feature of our approach is the reconstruction of masked ob-
servations to match the latent features from the raw branch
in the latent representation space, not in pixel space. This
ensures semantic alignment for both branches. Meanwhile,
we incorporate a similarity-based objective, in line with the
bisimulation principle, to integrate differences in immediate
rewards and dynamics into the state representations.

Furthermore, to enhance training stability and minimize
potential representation drift, the raw and mask branches
share a unified historical information representation. This
holistic structure defines our Hybrid Recurrent State Space
Model (HRSSM), serving as a world model that leverages
the strengths of the RSSM architecture to effectively cap-
ture task-specific information, guided by the bisimulation
principle, and efficiently condense features through mask-
based latent reconstruction. Our primary contributions are
summarized as follows.

• We introduce Hybrid RSSM that integrates masking-
based latent reconstruction and the bisimulation prin-
ciple into a model-based RL framework, enabling the
learning of task-relevant representations capturing en-
dogenous dynamics.

• We study the roles of masking-based latent reconstruc-
tion and the bisimulation principle in model-based RL
with empirical and theoretical analysis.

• Empirically, we evaluate our Hybrid-RSSM and actor-
critic architecture by integrating it into the DreamerV3
framework, and show that the resulting model can be
used to solve complex tasks consisting of a variety of
exogenous visual information.

2. Related Work
MBRL and World Model Model-based Reinforcement
Learning (MBRL) stands as a prominent subfield in Re-
inforcement Learning, aiming to optimize total reward
through action sequences derived from dynamics and reward
models (Sutton, 1990; Hamrick, 2019). Early approaches
in MBRL typically focus on low-dimensional and com-
pact state spaces (Williams et al., 2017; Janner et al., 2019;
2020), yet they demonstrated limited adaptability to more
complex high-dimensional spaces. Recent efforts (Hafner
et al., 2019b;a; 2020; 2023; Hansen et al., 2022a; Rafailov
et al., 2021; Gelada et al., 2019) have shifted towards learn-
ing world models for these intricate spaces, utilizing visual
inputs and other signals like scalar rewards. These meth-
ods enable agents to simulate behaviors in a conceptual
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model, thereby reducing the reliance on physical environ-
ment interactions. As a notable example, Dreamer (Hafner
et al., 2019a; 2020; 2023) learns recurrent state-space mod-
els (RSSM) and the latent state space via reconstruction
losses, though achieving a good performance in conven-
tional environments yet fails in environments with much
exogenous noise.

Model-based Representation Learning Many recent
MBRL methods start to integrate state representation learn-
ing into their framework to improve the robustness and
efficiency of the model. Some approaches formulations rely
on strong assumptions (Gelada et al., 2019; Agarwal et al.,
2020). Some approches learn world model via requiring
latent temporal consistency (Zhao et al., 2023; Hansen et al.,
2022b; 2023). Some approaches develop upon Dreamer
architecture, combining the transformer-based masked auto-
encoder (Seo et al., 2023a), extending Dreamer by explicitly
modeling two independent latent MDPs that represent use-
ful signal and noise, respectively (Fu et al., 2021; Wang
et al., 2022a), optimizing the world model by utilizing
mutual information (Zhu et al., 2023), regularizing world
model via contrastive learning (Okada & Taniguchi, 2021;
Poudel et al., 2023) and prototype-based representation
learning (Deng et al., 2022). Unlike other approaches that
either neglect reward significance or are limited by mod-
eling predefined noise form, our approach learns robust
representations and dynamics effectively by incorporating
reward-aware information and masking strategy, we provide
a more detailed comparison and additional related works in
Appendix C.

3. Preliminaries
MDP The standard Markov decision process (MDP) frame-
work is given by a tuple M = (S,A, P, r, γ), with state
space S, action space A, reward function r(s, a) bounded
by [Rmin, Rmax], a discount factor γ ∈ [0, 1), and a transition
function P (·, ·) : S ×A → ∆S that decides the next state,
where the transition function can be either deterministic,
i.e., s′ = P (s, a), or stochastic, i.e. s′ ∼ P (·|s, a). In the
sequel, we use P as to denote P (·|s, a) or P (s, a) for sim-
plicity. The agent in the state s ∈ S selects an action a ∈ A
according to its policy, mapping states to a probability dis-
tribution on actions: a ∼ π(·|s). We make use of the state
value function V π(s) = EM,π [

∑∞
t=0 γ

tr (st, at) | s0 = s]
to describe the long term discounted reward of policy π
starting at the state s, where EM,π denotes expectations
under s0 ∼ P0, at ∼ π(·|st), and st+1 ∼ P as . And the goal
is to learn a policy π that maximizes the sum of expected
returns EM,π [

∑∞
t=0 γ

tr (st, at) | s0 = s].

Visual RL and Exogenous noise We address visual rein-
forcement learning (RL) where the agent perceives high-
dimensional pixel images as observations, represented by

Imagination

Actor Critic
Observation

Replay Buffer

Environment

Endogenous State

Exogenous Noise

HRSSM
(World Model)

Figure 2. The entire pipeline of our framework in the presence of
exogenous information. The HRSSM processes the observations
into the latent space, enabling the agent to learn control within
this space. Subsequently, the policy network generates actions for
interacting with the environment.

ot ∼ P (ot|o<t, a<t). These observations are mapped into a
lower-dimensional space via a transformation T and an en-
coder E , i.e., T ◦E : O → X , then generating a latent state in
a latent space: ζt ∈ Z through a world model. The agent’s
actions follow a policy distribution π(a|ζ) under this latent
state space. We introduce a setting with exogenous noise,
where observations come from a mix of controllable endoge-
nous states st ∈ S and uncontrollable exogenous noise ξt ∈
Ξ. Here, ζt is composed of these two components, with tran-
sitions P (ζt|ζ<t, a<t) = P (st|s<t, a<t)P (ξt|ξ<t), and re-
wards r(ζt, at) = r(st, at). We strive to compress latent
state ζt by maximizing endogenous state st and minimiz-
ing exogenous noise ξt, deriving an “exogenous-free” pol-
icy, essentially π(a|ζ) ≈ π(a|s). Under a mild assump-
tion of existing mapping function ϕ⋆ from the observation
o ∈ O to the endogenous state s ∈ S, for any o1 and o2,
if ϕ⋆(o1) = ϕ⋆(o2), then π(·|o1) = π(·|o2). The primary
goal is to learn a world model that can discard exogenous
noise and learn exo-free policy to improve the sample effi-
ciency and robustness.

4. Method
In this section, we describe our overall approach of inte-
grating the masking strategy and bisimulation principle in
model-based RL methods, to learn effective world models
for planning. We show that out method can be adapted to
learn effective representatons in the presence of exogenous
noise, and the resulting planner can be used to solve com-
plex tasks, building on the DreamerV3 (Hafner et al., 2023).
The whole pipeline is shown in Figure 2.

Modified Dreamer Architecture Dreamer utilizes a re-
current state space model (RSSM) (Hafner et al., 2019b)
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for differentiable dynamics, learning representations of sen-
sory inputs through backpropagation of Bellman errors from
imagined trajectories. Its training process involves: optimiz-
ing the RSSM, training a policy using latent imaginations,
and applying this policy in the real environment. This cycle
repeats until the desired policy performance is achieved.
The RSSM includes several crucial components:

Recurrent model: ht = fϕ(ht−1, zt−1, at−1)

Representation model: zt ∼ qϕ(zt | ht, ot)
Transition predictor: ẑt ∼ pϕ(ẑt | ht)
Reward predictor: r̂t ∼ pϕ(r̂t | ht, zt)
Continue predictor: ĉt ∼ pϕ(ĉt | ht, zt)
Decoder: ôt ∼ pϕ(ôt | ht, zt),

(1)
where ot is the sensory input, zt the stochastic representa-
tion, ht the recurrent state, ôt the reconstructed input, and
r̂t and ĉt are the predicted reward and the episode continua-
tion flag. While the decoder network is crucial in Dreamer
for learning environment dynamics, its reliance on recon-
structing high-dimensional sensory inputs like pixels causes
computational inefficiency, which arises from recovering
unnecessary, control-irrelevant visual elements such as back-
ground noise, impeding policy learning in environments
with distractions. Prior works have explored how to recover
the full endogenous latent states, by ignoring exogenous
noise (Islam et al., 2022); however, effectively recovering
endogenous dynamics for model-based planning remains
unaddressed. We aim to develop a method for recovering
these dynamics for model-based planning. Simply omitting
pixel reconstruction from Dreamer, as suggested by (Hafner
et al., 2019a), results in inadequate performance. Therefore,
we propose modifying Dreamer to preserve accurate dynam-
ics and enhance its awareness of essential downstream task
features, while reducing dependency on reconstruction.

4.1. Learning latent representation and dynamics

In visual control tasks, our state representation concentrates
on two key aspects: (i) visual inputs includes much spatio-
temporal redundancy, and (ii) the encapsulation of behav-
iorally relevant information for the task. We introduce two
novel components: masking-based latent reconstruction and
similarity-based representation. The former filters out re-
dundant spatiotemporal data while preserving semantic use-
ful environmental knowledge. The latter, aligning with
the bisimulation principle, retains task-specific information
within the world model. This approach results in latent
representations that are concise and effective.

Notably, our method may not recover the full endogenous
dynamics, but can still be exo-free, distinguishing from
other works (Lamb et al., 2022). Our key contribution is
demonstrating adaptability to MBRL methods for planning,

an area not fully addressed by prior research. We include
detailed analysis of our proposed methodology in section
5. To keep the notation succinct, we will replace ζ with s
since our goal is to disregard ξ and we will ensure to remind
readers of this when necessary.

Masking strategy Our goal is to design world models
for planning that can be effective in the presence of visual
exogenous information. To do this, we employ a mask-
ing strategy to reduce the spatio-temporal redundancy for
enhanced control task representations. In visual RL tasks,
previous works (Tong et al., 2022; Wei et al., 2022) in-
dicate that significant spatio-temporal redundancy can be
removed via masking based reconstruction methods. Con-
sequently, we randomly mask a portion of pixels in the
input observation sequence across its spatial and temporal
dimensions. For a series of K environmental interaction
samples {ot, at, rt}Kt=1, we transform the observation se-
quence o = {ot}Kt=1 ∈ RK×H×W×C into cuboid patches
ô = {ôt}Kt=1 ∈ RkPK×hPH×wPW×C , where the patch
size is (PK × PH × PW ) and k = K/PK , h = H/PH ,
w = W/PW are the number of patches along each dimen-
sion. We then randomly mask a fraction m of these cuboid
patches to capture the most essential spatio-temporal in-
formation while discarding spatio-temporal redundancies.
Subsequently, both the masked and original sequences are
encoded to latent encoding space using an encoder and
a momentum encoder respectively, where the momentum
encoder is updated using an exponential moving average
(EMA) from the masked sequence’s encoder.
Behavioral update operator To capture the task relevant
information for control tasks, we adopt a similarity-based
objective following the bisimulation principle (Ferns et al.,
2012b;a), which requires the learnt representation to be
aware of the reward and dynamics similarity between states.
Our mask-based behavioral update operator, for masked and
original sequences can be written as :

Fπd(si, smj ) = |rπsi − rπsj |+ γEsi+1∼P̂π
si
,

smj+1∼P̂
π
sm
j

[d(si+1, s
m
j+1)],

(2)
where smj and si represent latent states of the mask branch
and the raw branch, respectively, with P̂πsmj and P̂πsi denoting
their approximated latent dynamics, and d is the cosine
distance to measure the difference between latent states.

We use equation 2 to minimize bisimulation error for learn-
ing representation. However, this process involves sampling
from latent dynamics, which, when coupled with the simul-
taneous learning of representations, dynamics, and policies
in the world model, can lead to instabilities that adversely
impact dynamics learning and consequently, bisimulation
training. Therefore, we develop a hybrid RSSM specifically
to address complex tasks, providing a level of stability in
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Table 1. Model components of our hybrid structure. EMA means the corresponding model is updated via exponential moving average.
Gradient back-propagates through mask models and reward/continue predictor.

Mask Encoder: emt = Eϕ(omt ) EMA Encoder: et = E ′ϕ(ot)
Mask Posterior model: zmt ∼ qϕ(z

m
t | hmt , emt ) EMA Posterior model: zt ∼ q′ϕ(zt|hmt , et)

Mask Recurrent model: hmt = fϕ(h
m
t−1, z

m
t−1, at−1) EMA Recurrent model: ht = f ′

ϕ(h
m
t−1, zt−1, at−1)

Mask Transition predictor: ẑmt ∼ pϕ(ẑ
m
t | hmt ) EMA Transition predictor: ẑt ∼ p′ϕ(ẑt|ht)

Reward predictor: r̂t ∼ pϕ(r̂t | hmt , zmt ) Continue predictor: ĉt ∼ pϕ(ĉt | hmt , zmt )

MBRL methods, which otherwise is typically difficult due
to the complexities associated with training joint objectives.

Hybrid RSSM We first follow the conventional setting of
RSSM in DreamerV3 to build in the masked encoding space,
i.e., a mask encoder emt = Eϕ(omt ) to encode the masked ob-
servation, a mask posterior model zmt ∼ qϕ(z

m
t | hmt , emt )

and a mask recurrent model hmt = fϕ(h
m
t−1, z

m
t−1, at−1) to

incorporate temporal information into representations, and
a mask transition predictor ẑmt ∼ pϕ(ẑ

m
t | hmt ) to model

the latent dynamics, where the concatenation of the mask
recurrent state hmt and the mask posterior state zmt forms
the mask latent state smt := [hmt ; zmt ]. We train the dy-
namics model by minimizing the KL divergence between
the posterior state zmt and the predicted prior state ẑmt , and
employ free bits (Kingma et al., 2016; Hafner et al., 2023),
formulated as:

Ldyn(ϕ) := β1max(1,L1(ϕ)) + β2max(1,L2(ϕ))

L1(ϕ) := KL
[
sg(qϕ(z

m
t | hmt , emt ))

∥∥ pϕ(ẑ
m
t | hmt )

]
L2(ϕ) := KL

[
qϕ(z

m
t | hmt , emt )

∥∥ sg(pϕ(ẑ
m
t | hmt ))

]
(3)

where sg means stopping gradient, and the values of β1 and
β2 are set to 0.5 and 0.1, respectively, following the default
configuration in DreamerV3. For now, we only construct
the network of the masked sequence, but without the uti-
lization of the original sequence. If the raw branch utilizes
a different RSSM structure from the mask one, merging
these complex networks could lead to training instability
and representation drift. To address this, we require the
raw branch and the mask branch share the same historical
representation, ensuring alignment between both branches
for temporal prediction. Therefore, for the raw branch, we
conduct the posterior state as zt ∼ q′ϕ(zt|hmt , et), the re-
current state ht = f ′

ϕ(h
m
t−1, zt−1, at−1) with the historical

representation from the mask branch, and the prior state
ẑt ∼ p′ϕ(ẑt|ht). Additionally, we define the latent state of
raw branch as st := [hmt ; zt] and the sampled latent state of
RSSM as ŝt = [ht; ẑt]. The networks q′ϕ, f ′

ϕ, and p′ϕ are all
updated using EMA from the mask branch.

We use latent reconstruction to align the feature between
the masked and original ones, to disregard the unnecessary
spatiotemporal redundancies, following the research within
the field of computer vision (He et al., 2022; Feichtenhofer

et al., 2022) that considering high-dimensional image space
consists tramendous spatiotemporal redundancies. We apply
a linear projection and ℓ2-normalize the latent state st and
smt to obtain s̄t and s̄mt respectively to ensure numerical
stability and then compute the reconstruction loss, which
can be formulated as:

Lrec(ϕ) := MSE(s̄t, s̄
m
t ). (4)

Meanwhile, we can minimize the bisimulation error and
formulate the similarity loss to capture the task-relevant
information as:

Lsim :=
(
d(si, s

m
j )−Fπd(si, smj )

)2
=

(
d(si, s

m
j )−

(
|rπsi − rπsj |+ γd(ŝi+1, ŝ

m
j+1)

))2

,

(5)
where d is the cosine distance, ŝi+1 and ŝmj+1 are sampled
from RSSMs.

Reward Prediction and Continue Prediction Following
DreamerV3 (Hafner et al., 2023), we train the reward predic-
tor via the symlog loss and the continue predictor via binary
classification loss, to predict the reward and the episode is
termination or not, they compose the prediction loss as:

Lpred(ϕ) := − ln pϕ(rt | smt )− ln pϕ(ct | smt ). (6)

Gradient backpropagation occurs exclusively through the
mask branch, updating the representation. Consequently,
we utilize only the masked latent state smt for predicting
both terms. Unlike the methods in Equations 4 and 5, we
employ un-normalized features for prediction. Empirically,
this approach enhances the model’s stability and sample-
efficiency, as detailed in Appendix D.

Overall The main components of our hybrid structure are
illustrated in Table 1. The total loss is:

L(ϕ) := Eqϕ

[∑T
t=1

(
Ldyn(ϕ) + Lrec(ϕ)+

Lsim(ϕ) + Lpred(ϕ)
)]
,

(7)

All components are optimized concurrently, with the joint
minimization of the loss function with respect to the param-
eter ϕ, encompassing all model parameters, using the Adam
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Figure 3. Pixel observations of the DeepMind Control suite (left
column) for cartpole (top) and reacher (bottom), Distracted Deep-
Mind Control suite (middle column) for cartpole (top) and reacher
(bottom), and Mani-skill2 environments with distractions (right
column) for cube (top) and faucet (bottom).

optimizer (Kingma & Ba, 2014). Notably, the additional
terms introduced do not require any extra user-specified
hyperparameters, which is easy to optimize in practice.

Learning to control With the latent representation and
dynamics model, we perform actor-critic policy learning by
rolling out trajectories in the latent space. The critic vψ(st)
is trained to predict the discounted cumulative reward given
a latent state, and the actor πψ(st) is trained to take the
action that maximizes the critic’s prediction, which follows
actor-critic training in DreamerV3 (Hafner et al., 2023).

5. Analysis
Our primary goal is to learn good state representations by
focusing on two key objectives: latent reconstruction via a
masking strategy for compact representations, and employ-
ing behavioral similarity for efficient representations. This
section will highlight both components are essential for our
world model, underscoring their necessity.

Consider an MDPM as defined in Section 3, with vector-
ized state variables ζ = [s; ξ], where ξ = [ξ0ξ1...ξn−1] is a
n-dim vector. We begin with an ideal assumption that our
masking strategy only applies on exogenous noise ξ, i.e.,
ξ̃ ⊆ ξ be an arbitrary subset (a mask) and ξ̄ = ξ\ξ̃ be the
variables not included in the mask. Then the state reduces to
ζ̄ = [s; ξ̄]. And we would like to know if the policy π̄ under
reduced MDP M̄ still being optimal for original MDPM.

Theorem 5.1. If (1) r(st, ξ
i
t, at) = 0∀ξi ∈ ξ̄,

(2) P (st+1|st, ξ, at) = P (st+1|st, ξ̃, at), and (3)
P (ξ̃t+1, ξ̄t+1|ξ̃t, ξ̄t) = P (ξ̃t+1|ξ̃t) · P (ξ̄t+1|ξ̄t), then we
have V̄π̄(ζ̄) = Vπ̄(ζ)∀ζ ∈ Z , where V̄π̄(ζ̄) is the value
function under reduced MDP. If π̄ is optimal for M̄, then
V̄π̄(ζ̄) = V ∗(ζ)∀ζ ∈ Z .

Proof. See Appendix B.

It reveals that if we can identify and eliminate exogenous

noise without altering the reward or the internal dynam-
ics of the underlying MDP, the resulting value function of
this underlying MDP remains optimal with respect to the
original problem. This scenario presents an opportunity
for implementing a masking strategy. In practical settings,
however, our masking approach involves random patch re-
moval. This randomness does not guarantee the exclusive
elimination of exogenous noise. Since elements of the en-
vironment crucial to the task may inadvertently be masked,
the reward and dynamics can be incorrectly reconstructed,
hence the underlying MDP (in latent space) is possibly
changed. Consequently, if the masking technique is not
sensitive to both the reward and the internal dynamics of
the system, an optimal policy can not be assured. This lim-
itation underscores why relying solely on masking-based
latent reconstruction is insufficient for learning an effective
world model in environments with distractions. Fortunately,
the bisimulation principle offers a promising solution. By
leveraging this principle, as detailed in Appendix B.2, we
can train representations that encapsulate both reward and
dynamic information. With bisimulation, the agent can be
aware of the reward and the internal dynamics, and therefore
can further update towards the optimal policies.

On the other hand, learning state reperesentation only with
bisimulation objective is also not sufficient enough for
model-based control. In model-based framework, integrat-
ing bisimulation-based objective requires to sample consec-
utive state pairs from an approximate dynamics model, e.g.,
RSSM in this paper. Though bisimulation objective has prac-
tically shown effectiveness in model-free settings (Zhang
et al., 2020a; Zang et al., 2022a), (Kemertas & Aumentado-
Armstrong, 2021) illustrates that when refer to an approxi-
mate dynamics model, this dynamics model needs to meet
certain condition to ensure the convergence of the bisimula-
tion principle:
Theorem 5.2. (Kemertas & Aumentado-Armstrong, 2021)
Assume S is compact. For dπ, if the support of an ap-
proximate dynamics model P̂ , supp(P̂ ) is a closed subset
of S, then there exists a unique fixed-point dπ, and this
metric is bounded: supp(P̂ ) ⊆ S ⇒ diam (S; dπ) ≤
1

1−γ (Rmax −Rmin).

In practice, the support of an approximate dynamics model
cannot be assured to be a subset of the observation space
due to the presence of unpredictable exogenous noise. Con-
sequently, when exogenous noise is involved, objectives
dependent on transition dynamics, including bisimulation
objectives, are likely incapable of filtering out all task-
irrelevant information. A numerical counterexample illus-
trating this point is provided in Appendix B. Therefore, to
effectively reduce spatio-temporal redundancy in the obser-
vation space, additional methods are necessary. This is the
rationale behind our adoption of a masking strategy and
latent reconstruction in our approach.
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Figure 4. Performance comparison on DMC tasks over 6 seeds in the default setting. Colors from light to dark represent the results
evaluated at 100k, 250k, and 500k training steps, respectively, with different colors indicating different models.

6. Experiments
We aim to address the following questions through our ex-
periments : (1) Compared to prior approaches, does our
decoder-free model weaken the resulting performance of
the policy on downstream tasks? (2) Can we learn effective
world models for planning, in the presence of environments
containing exogenous spatio-temporal noise structures? (3)
We perform ablation studies showing the effectiveness of
each of the components in our proposed model (4) Can
the proposed Hybrid-RSSM architecture, along with the
masking strategy, outperform state-of-the-art Dreamer based
models, in presence of exogenous information in data?

Experimental Setup We evaluate our visual image-
based continuous control tasks to assess their sample ef-
ficiency and overall performance. We perform our ex-
periments in three distinct settings: i) a set of MuJoCo
tasks (Todorov et al., 2012) provided by Deepmind Con-
trol(DMC) suite (Tassa et al., 2018), ii) a variant of Deep-
Mind Control Suite where the background is replaced with
grayscale natural videos from Kinetics dataset (Kay et al.,
2017), termed as Distracted DeepMind Control Suite (Zhang
et al., 2018), and iii) a benchmark based on the Man-
iskill2 (Gu et al., 2023), enhanced with realistic images
of human homes (Chang et al., 2017) as backgrounds and
was introduced in (Zhu et al., 2023). Six tasks were tested
in the first two settings and two in the last, with a total of 14
tasks. Task examples are depicted in Figure 3.

Baselines We compare our proposed model against lead-
ing sample-efficient, model-free and model-based reinforce-
ment learning (RL) methods in continuous control tasks. For
model-free mehtods, our baselines include: DBC (Zhang
et al., 2020a) and SimSR (Zang et al., 2022a), both of which
are two representative bisimulation-based methods. For
model-based RL, experimental comparisons are made with
TD-MPC (Hansen et al., 2022b), DreamerV3 (Hafner et al.,
2023), and its extensions (TIA (Fu et al., 2021), Denoised
MDP (Wang et al., 2022a), RePo (Zhu et al., 2023)) that
enhance robust representation learning. In this experiment,
we use DreamerV3 as our backbone and build on top of
it to develop our hybrid structure, where we use an unoffi-

cial open-sourced pytorch version of DreamerV3(NM512,
2023). Notably, despite incorporating dual RSSMs, mask
branch and raw branch in our framework, our model main-
tains a slightly smaller overall size compared to the original
DreamerV3, which is notable considering the substantial
size of the decoder parameters in DreamerV3. Detailed
descriptions of our model are provided in the Appendix D.1.

Results on DMC tasks with default settings. As shown
in the left column of Figure 3, the default setting, which is
provided by DMC, has simple backgrounds for the pixel
observations. Figure 4 shows that our model consistently
surpasses all baselines including RePo at 100k, 250k and
500k training steps in all three tasks, showcasing superior
sample efficiency and final performance. Our model con-
sistently equals or betters the performance of DreamerV3,
illustrating our robustness against performance loss from
omitting pixel-level reconstruction. This also highlights that
the performance improvements of our model are primar-
ily attributed to the innovative hybrid RSSM structure and
objectives.

Results on DMC tasks with distraction settings. Figure 5
illustrates our model’s ability to ignore irrelevant informa-
tion, outperforming most other models in various tasks. This
underscores our method’s resilience and efficiency in learn-
ing exo-free policies even in the presence of significant
distractor information.Notably, we have almost the lowest
variance across all tasks, which illustrates the robustness
of our hybrid architecture, showing that our HRSSM is
well-suited for model-based agents and is capable of learn-
ing compact and effective representations and dynamics.
However, in the cartpole swingup task, our model slightly
underperforms compared to DeepMDP and RePo. This may
be due to our random masking strategy, which might inad-
vertently hide crucial elements like the small pole, crucial
for task-relevant information. A learned masking strategy
could be more effective than random masking in such cases,
which is deserved to further investigation.

Realistic Maniskill Table 2 not only demonstrates the com-
petitive performance of our method but also underlines its
distinct advantages in terms of consistency and robustness
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Figure 5. Performance comparison on DMC tasks with one standard error shaded in the distraction setting. The horizontal axis indicates
the number of gradient steps. The vertical axis represents the mean return. For our model, RePo, along with DreamerV3 and SimSR, the
returns are averaged with six random seeds. For the remaining models, the returns are averaged with three seeds.

Table 2. Summary of performance metrics evaluated at 100K training steps. The performance is quantified in terms of the average score ±
standard deviation. The highest result for each task is highlighted in bold. For RePo, DreamerV3, and our model, the returns are averaged
with six random seeds. For TIA and Denoised MDP, the returns are averaged with three seeds.

Task DreamerV3 TIA Denoised MDP RePo Ours
Lift Cube 167±45 274±173 155±71 83±22 284±85
Turn Faucet 138±83 47±23 71±27 92±88 278±97

across different tasks. In the Lift Cube task, our method
achieved a competitive score of 284±85, paralleling TIA.
However, the significantly lower variance in our results indi-
cates superior consistency and reliability. This is critical in
real-world scenarios where predictability and stability are
as crucial as performance. In Turn Faucet, our method’s
superiority is even more pronounced, substantially higher
than its closest competitor. This not only showcases our
method’s ability to handle complex tasks efficiently but also
its robust state representation.

Ablation Studies Our model comprises two key elements:
mask-based latent reconstruction and a similarity objective
guided by the bisimulation principle. We present their em-
pirical impacts in the distraction setting of DMC tasks in
Appendix E.3. To evaluate mask-based latent reconstruc-
tion, we eliminated the mask branch and reverted our hy-
brid RSSM to a standard RSSM, also omitting the cube
masking and the latent reconstruction loss. For the bisimu-
lation principle ablation, we simply removed the similarity
loss. Results indicate that models lacking these components
underperform relative to the full model, showcasing their
critical importance in our framework.

Training Time Comparison As our hybrid structure incor-
porates two RSSMs, one might wonder about the computa-
tional efficiency of our framework. Notably, gradients are
only backpropagated through the mask branch, while the
parameters of the RSSM in the raw branch are updated via

Exponential Moving Average (EMA). Moreover, since we
utilize the same historical representation, the computational
time required for the forward process is considerably less
than twice as much. To validate this, we compared the wall-
clock training time of our method against DreamerV3, with
the results provided in Appendix E.2. These results confirm
that our method is comparable to the original DreamerV3
in terms of computational efficiency, without incurring sub-
stantial additional time costs.

7. Discussion
Limitations and Future Work Our approach’s potential
limitation lies in the lack of a task-specific masking strategy,
which could partially damage the endogenous state and
slightly reduce the final performance. Future improvements
could involve signal-to-noise ratios (Tomar et al., 2023) to
reduce the original image, aiming to identify the minimal
information essential for the task.

Conclusion: In this paper, we presented a new framework
to learn state representations and dynamics in the presence
of exogenous noise. We introduced the masking strategy and
latent reconstruction to eliminate redundant spatio-temporal
information, and employed bisimulation principle to capture
task-relevant information. Addressing co-training instabili-
ties, we further developed a hybrid RSSM structure. Empir-
ical results demonstrated the effectiveness of our model.
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Impact Statement
This paper synthesizes theoretical and empirical results to
build more capable Model-Based Reinforcement Learning
(MBRL) agents in settings with exogenous noise. In real-
world applications, distractions are prevalent across differ-
ent scenarios. Enabling model-based agents to learn control
from such scenarios can be beneficial not only for solving
complex tasks but also for increasing sample efficiency dur-
ing deployments in environments with varying contexts. Our
framework is not only theoretically sound but also techni-
cally straightforward to implement and empirically compet-
itive. We believe that developing MBRL agents by focusing
on the compactness and effectiveness of the representation
and dynamics is an important step towards creating more
applicable Artificial General Intelligence (AGI).
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A. Hyperparameters
We present all hyperparameters in Table 3.

Table 3. Our model’s hyperparameters, which are the same across all tasks in DMControl and Realistic Maniskill.

Name Symbol Value

General

Replay capacity (FIFO) — 106

Batch size B 16
Batch length T 64
Activation — LayerNorm+SiLU

World Model

Number of latents — 32
Classes per latent — 32
Learning rate — 10−4

Adam epsilon ϵ 10−8

Gradient clipping — 1000

Actor Critic

Imagination horizon H 15
Discount horizon 1/(1− γ) 333
Return lambda λ 0.95
Critic EMA decay — 0.98
Critic EMA regularizer — 1
Return normalization scale S Per(R, 95)− Per(R, 5)
Return normalization limit L 1
Return normalization decay — 0.99
Actor entropy scale η 3 · 10−4

Learning rate — 3 · 10−5

Adam epsilon ϵ 10−5

Gradient clipping — 100

Masking

Mask ratio — 50%
Cube spatial size h× w 10× 10
Cube depth k 4

B. Analysis and Example
B.1. Masking Strategy

Consider an MDPM as defined in Section 3, with vectorized state variables ζ = [s; ξ], where ξ = [ξ0ξ1...ξn] is a n-dim
vector. We begin with an ideal assumption that our masking strategy only applies on exogenous noise ξ, i.e., ξ̃ ⊆ ξ be an
arbitrary subset (a mask) and ξ̄ = ξ\ξ̃ be the variables not included in the mask. Then the state reduces to ζ̄ = [s; ξ̄]. And
we would like to know if the policy π̄ under reduced MDP M̄ still being optimal for original MDPM.

Theorem B.1. If (1) r(st, ξit, at) = 0∀ξi ∈ ξ̄, (2) P (st+1|st, ξ, at) = P (st+1|st, ξ̃, at), and (3) P (ξ̃t+1, ξ̄t+1|ξ̃t, ξ̄t) =
P (ξ̃t+1|ξ̃t) · P (ξ̄t+1|ξ̄t), then we have V̄π̄(ζ̄) = Vπ̄(ζ)∀ζ ∈ Z , where V̄π̄(ζ̄) is the value function under reduced MDP. If π̄
is optimal for M̄, then V̄π̄(ζ̄) = V ∗(ζ)∀ζ ∈ Z .

Proof. This proof mimics the proof of Theorem 1 in (Chitnis & Lozano-Pérez, 2020). Consider an arbitrary state ζ ∈ Z ,
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and its reduced state ζ̄, we have the following equations:

Vπ̄(ζ) = R(ζ, π̄(ζ̄)) + γ
∑
ζ′

P (ζ ′|ζ, π̄(ζ̄)) · Vπ̄(ζ ′). (8)

V̄π̄(ζ̄) = R(ζ̄, π̄(ζ̄)) + γ
∑
ζ̄′

P (ζ̄ ′|ζ̄, π̄(ζ̄)) · Vπ̄(ζ̄ ′). (9)

Now suppose V k
π̄ (ζ) = V̄ k

π̄ (ζ̄)∀ζ ∈ Z , for some k.

V k+1
π̄ (ζ) = R(ζ, π̄(ζ̄)) + γ

∑
ζ′

P (ζ ′ | ζ, π̄(ζ̄)) · V k
π̄ (ζ

′)

= R(s, π̄(ζ̄)) +

n∑
i=1

Ri(s, ξi, π̄(ζ̄)) + γ
∑
ζ′

P (s′ | s, π̄(ζ̄), ξ) · P (ξ′ | ξ) · V k
π̄ (ζ

′)

= R(ζ̄, π̄(ζ̄)) + γ
∑
ζ′

P (s′ | s, π̄(ζ̄), ξ) · P (ξ′ | ξ) · V k
π̄ (ζ

′)

= R(ζ̄, π̄(ζ̄)) + γ
∑
ζ′

P (s′ | s, π̄(ζ̄), ξ̄) · P (ξ′ | ξ) · V k
π̄ (ζ

′)

= R(ζ̄, π̄(ζ̄)) + γ
∑
s′,ξ̄′

∑
ξ̃′

P (s′ | s, π̄(ζ̄), ξ̄) · P (ξ̃′, ξ̄′ | ξ̃, ξ̄) · V k
π̄ (ζ

′)

= R(ζ̄, π̄(ζ̄)) + γ
∑
s′,ξ̄′

∑
ξ̃′

P (s′ | s, π̄(ζ̄), ξ̄) · P (ξ̃′ | ξ̃)P (ξ̄′ | ξ̄) · V k
π̄ (ζ

′)

= R(ζ̄, π̄(ζ̄)) + γ
∑
s′,ξ̄′

∑
ξ̃′

P (s′ | s, π̄(ζ̄), ξ̄) · P (ξ̃′ | ξ̃)P (ξ̄′ | ξ̄) · V k
π̄ (s

′, ξ̄′)

= R(ζ̄, π̄(ζ̄)) + γ
∑
ζ̄

P (ζ̄ ′ | ζ̄, π̄(ζ̄)) · V k
π̄ (ζ̄

′).

= V̄ k+1
π̄ (ζ̄).

Therefore, we have that V̄π̄(ζ̄) = Vπ̄(ζ)∀ζ ∈ Z . And if π̄ is optimal for M̄, then it is optimal for the full MDPM as
well.

B.2. Bisimulation Principle

Bisimulation measures equivalence relations on MDPs in a recursive manner: two states are considered equivalent if they
share equivalent distributions over the next equivalent states and have the same immediate reward (Larsen & Skou, 1989;
Givan et al., 2003).

Definition B.2. Given an MDPM, an equivalence relation E ⊆ S × S is a bisimulation relation if whenever (s, u) ∈ E
the following properties hold, where SE is the state space S partitioned into equivalence classes defined by E:

1. ∀a ∈ A,R(s, a) = R(u, a)

2. ∀a ∈ A,∀c ∈ SE ,P(s, a)(c) = P(u, a)(c) where P(s, a)(c) =
∑
s′∈c P(s, a) (s′).

Two states s, u ∈ S are bisimilar if there exists a bisimulation relation E such that (s, u) ∈ E. We denote the largest
bisimulation relation as ∼.

However, bisimulation, by considering equivalence for all actions including bad ones, often leads to ”pessimistic” outcomes.
To address this, (Castro, 2020) introduced π-bisimulation, which eliminates the need to consider every action and instead
focuses on actions induced by a policy π.

Definition B.3. (Castro, 2020) Given an MDPM, an equivalence relation Eπ ⊆ S × S is a π-bisimulation relation if the
following properties hold whenever (s, u) ∈ Eπ:
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1. r(s, π) = r(u, π)

2. ∀C ∈ SEπ , T (C|s, π) = T (C|u, π)

where SEπ is the state space S partitioned into equivalence classes defined by Eπ. Two states s, u ∈ S are π-bisimilar if
there exists a π-bisimulation relation Eπ such that (s, u) ∈ Eπ .

However, π-bisimulation is still too strict to be practically applied at scale, as it treats equivalence as a binary property:
either two states are equivalent or not, making it highly sensitive to perturbations in numerical values of model parameters.
This issue becomes even more pronounced when deep frameworks are employed. To address this, (Castro, 2020) further
proposed a π-bisimulation metric that incorporates the absolute difference between immediate rewards of two states and the
1-Wasserstein distance (W1) between the transition distributions conditioned on the two states and the policy π:

Theorem B.4 ( (Castro, 2020)). Define Fπ :M→M by Fπ(d)(u, v) = |R(u, π)−R(v, π)|+ γW1(d)(P
π
u , P

π
v ), then

Fπ has a least fixed point dπ∼, and dπ∼ is a π-bisimulation metric.

It suffices to show that above fixed-point updates are contraction mappings. Then the existence of a unique metric can be
proved by invoke the Banach fixed-point theorem (Ferns et al., 2011). An essential assumption is that the state space S
should be compact1. And the compactness of S implies that the metric space over this state space is complete such that the
Banach fixed-point theorem can be applied. And when considering the approximate dynamics, the situation becomes more
complicated. (Kemertas & Aumentado-Armstrong, 2021) show that:

Theorem B.5 ( (Kemertas & Aumentado-Armstrong, 2021)). Assume S is compact. For dπ , if the support of an approximate
dynamics model P̂ , supp(P̂ ) is a closed subset of S, then there exists a unique fixed-point dπ , and this metric is bounded:

supp(P̂ ) ⊆ S ⇒ diam (S; dπ) ≤ 1

1− γ
(Rmax −Rmin) (10)

Proof. The proof adapts from (Kemertas & Aumentado-Armstrong, 2021), which is also a slight generalization of the
distance bounds given in Theorem 3.12 of (Ferns et al., 2011).

dπ(u, v) = |R(u, π)−R(v, π)|+γW (d)(P (·|u, π), P (·|v, π)) ≤ Rmax−Rmin+γdiam(S; dπ),∀(u, v) ∈ S ×S, (11)

with the use of Lemma 5 in (Kemertas & Aumentado-Armstrong, 2021), we have:

diam(S; dπ) ≤ Rmax −Rmin + γdiam(S; dπ)

≤ 1

1− γ
(Rmax −Rmin)

(12)

In this paper, our bisimulation objective is defined as follows:

Fπd(si, sj) = |rπsi − rπsj |+ γEsi+1∼P̂a
si
,

sj+1∼P̂a
sj

[d(si+1, sj+1)], (13)

where we sample the next state pairs from an approximated dynamics model RSSM instead of the ground-truth dynamics,
and use the independent coupling instead of computing Wasserstein distance. In principle, iteration on conventional state
space is acceptable with such a method. While in practice, the above requirement is hard to be satisfied as we learn state
representation from an noisy observation space that includes unpredictable exogenous noise.

B.3. Counterexample

Consider two vectorized states u = (1, 2, 3, 1, 1), v = (2, 1, 1, 1, 1), where the last two dimension of these states are
exogenous noise that irrelevant to the task. Under policy π, their next states are u′ = (2, 2, 1, 1, 1), v′ = (1, 1, 2, 1, 1)

1A continuous space is compact if and only if it is totally bounded and complete.
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respectively. Give γ = 0.92, rπu = 0.03, rπv = 0.02, and with an error of ϵ = 0.01, we almost reach the optimal bisimulation
distance:

d(u, v) = 0.7955

(rπu − rπv ) + d(u′, v′) = 0.7945

∆ = 0.7955− 0.7945 = 0.001 < ϵ.

(14)

Meanwhile, the endogenous states ū = (1, 2, 3), v̄ = (2, 1, 1), also achieve their optimal bisimulation distance:

d(ū, v̄) = 0.7638

(rπu − rπv ) + d(ū′, v̄′) = 0.7612

∆ = 0.7638− 0.7612 = 0.0026 < ϵ,

(15)

while u and v still contain exogenous noise. That is to say, only with bisimulation principle is sufficient to learn task-relevant
information, while not enough to learn compact representation.

C. Additional Related Work Discussion
In this section, we provide an additional related work description, and a detailed comparison between our model and other
baselines that developed based on Dreamer, including TIA, Denoised MDP, DreamerPro, and RePo.

State Representation Learning Recent advancements in Reinforcement Learning (RL) emphasize learning state represen-
tations to understand environment structures, with successful methods like CURL (Laskin et al., 2020) and DrQ (Kostrikov
et al., 2020; Yarats et al., 2021a) using data augmentation techniques such as cropping and color jittering, yet their efficacy
is closely tied to the specific augmentation employed. Approaches like masking-based approaches (Seo et al., 2023b; Yu
et al., 2022; Seo et al., 2023a; Liu et al., 2022) aim to reduce spatiotemporal redundancy but often overlook task-relevant
information. Bisimulation-based methods (Zhang et al., 2020b; Zang et al., 2022a) focus on learning reward-aware state
representations for value-equivalence and sample efficiency, but they face challenges in achieving compact representation
spaces since they sample consecutive states from approximated dynamics. Additionally, a branch of research investigates
causality to discover causal relationships between state representation and control (Wang et al., 2022b; Lamb et al., 2022;
Islam et al., 2023; Efroni et al., 2021; 2022; Fu et al., 2021; Zang et al., 2022b). Our work primarily follows the methods
based on bisimulation and masking, while developing a hybrid RSSM structure tailored for model-based agents.

TIA (Fu et al., 2021) extended Dreamer by creating a cooperative two-player game involving two models: the task model
and the distractor model. The distractor model aims to disassociate from the reward as much as possible, while the task
model focuses on capturing task-relevant information. Both models contribute to a reconstruction process involving an
inferred mask in pixel-space. Although TIA shares similarities with our model, such as the use of masks and a dual-model
framework, our hybrid RSSM structure differs in that it does not explicitly model exogenous noise, instead employing a
random masking strategy. Moreover, our approach has lower time complexity than TIA, as we utilize a shared historical
representation for both branches in the framework, eliminating the need for separate gradient computations. While TIA’s
learned mask effectively removes noise distractors through pixel-wise composition, it falls short in addressing more general
noise types, such as observation disturbances caused by a shaky camera. From this perspective, investigating the potential
solution of making masking strategy informed from the control task is still worthful for many approaches inlcuding TIA and
ours.

Denoised MDP (Wang et al., 2022a) classified RL information into four types based on controllability and its relevance
to rewards, defining useful information as that which is controllable and reward-related. Their approach tends to overlook
factors unrelated to control, even if they might influence the reward function. To address this, they introduced a variational
mutual information regularizer to separate control and reward-relevant information from overall observations. While this
method successfully distinguishes between task-relevant and irrelevant components, Denoised MDP demonstrated higher
variance and moderate performance in distraction settings. This may be attributed to its continued reliance on pixel-level
reconstruction, which, by focusing on minute details, could unintentionally diminish policy performance in distraction
settings. Conversely, our method, eschewing pixel-level reconstruction, flexibly eliminates spatio-temporal redundancies
while preserving semantic content, leading to enhanced performance.
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DreamerPro (Deng et al., 2022) proposed a reconstruction-free MBRL agent by combining the prototypical representation
learning with temporal dynamics learning. Borrowing idea from SwAV (Caron et al., 2020), they tried to align the temporal
latent state with the cluster assignment of the observation. However, their cluster assignment requires to apply the Sinkhorn
Knopp algorithm (Cuturi, 2013) to update prototypes. This requires more computational cost and more hyperparameters to
tune. Besides, DreamerPro still cannot learn task-relevant information as its representation is not informed by reward.

RePo (Zhu et al., 2023) developed its representation in a way of maximizing mutual information (MI) between the
current representation and all future rewards while minimizing the mutual information between the representation and
observation. Excluding pixel-level reconstruction, they ensure latents predictable by optimizing a variational lower bound on
the MI-objective which tractably enforces that all components are highly informative of reward. Though being task-specific
and compact, RePo is highly sensitive to the hyper-parameters since their objective refer to Lagrangian formulation that
includes various factors. Instead, our framework does not rely on hyper-parameter tuning, where we set all parameters fixed
for all tasks. This further shows the robustness of our framework.

D. Experimental Details
D.1. Model Architecture Details

We have developed our model based on DreamerV3, which employs RSSM to learn state representations and dynamics. We
fix the input image size to 64 × 64 and use a image encoder which includes a 4-layer CNN with {32, 64, 128, 256} channels,
a (4, 4) kernel size, a (2, 2) stride. As a result, our embedding size is 4096.

We implement our dynamics model as a hybrid RSSM, which contains an online RSSM for the mask branch and an EMA
RSSM for the raw branch, where the gradients only pass through the online RSSM. The online RSSM is composed of
a GRU and MLPs. The GRU, with 512 recurrent units, is used to predict the current mask recurrent state based on the
previous mask recurrent state, the previous mask posterior stochastic representation, and the previous action. All stochastic
repersentations are sampled from a vector of softmax distributions, and we use straight-through estimator to backpropagate
gradients through the sampling operation. The EMA RSSM has the same structure as the online RSSM. The size of mask
recurrent states hmt is 512 and the size of stochastic representations zmt and ẑmt is 32 × 32. The reward predictor, the
continue predictor, the transition predictor, the value function, and the actor are all MLPs with two hidden layers, each with
512 hidden units. And we use symlog predictions and the discrete regression approach for the reward predictor and the critic.
We use layer normalization and SiLU as the activation function, and update all the parameters using the Adam optimizer.

Notably, despite incorporating dual RSSMs, i.e., mask branch and raw branch, in our framework, our model maintains a
slightly smaller overall size (17.54M) compared to the original DreamerV3 (18.22M), which is notable considering the
substantial size of the decoder parameters in DreamerV3. Furthermore, our model is also time-efficient due to the removal
of the time-cost decoder and the use of a shared historical representation for both branches within the framework.

D.2. Baselines

For DreamerV3, we use an unofficial open-sourced pytorch version of DreamerV3 (NM512, 2023) as the baseline, and we
build our framework on top of it for fair comparison. For RePo and SimSR, we use the official implementation and the
reported hyperparameters in their papers. As for other baselines, we simply adopt the data from results reported in RePo.

D.3. Environment Details

DMControl tasks with default settings This setting consists several continuous control tasks, wherein the agent solely
receives high-dimensional images as inputs. These tasks include walker stand, where a bipedal agent, referred to as “walker”,
is tasked with maintaining an upright position; walker walk and walker run, which require the walker to move forward; and
cheetah run, where a bipedal agent, the “cheetah”, is required to run forward rapidly. We also utilized cartpole swingup, a
task involving a pole and cart system where the goal is to swing up and balance the pole; reacher easy, which involves
controlling a two-link reacher, to reach a target location; and finger spin, where a robotic finger is tasked with continually
rotating a body on an unactuated hinge. We set the time limit to 1000 steps and the action repeat to 2 for all tasks.

DMControl tasks with distraction settings To evaluate our model’s ability to learn exo-free policy, we test our model in
the distraction settings of DMControl. In this setting, we follow DBC (Zhang et al., 2020b) and replace DMControl’s simple
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Figure 6. Performance comparison on DMC tasks over 6 seeds in the default setting.

static background with 1000 frames grayscale videos from the Kinectics-400 Dataset (Kay et al., 2017), and set the time
limit to 1000 steps and the action repeat to 2 for all tasks.

Realistic Maniskill This benchmark is based on the Maniskill 2 (Gu et al., 2023) environment, which encompasses a
variety of tasks for the agent to learn to master human-like manipulation skills. To evaluate our model’s ability to learn
policy in realistic environments, we follow RePo’s setting and use realistic backgrounds from Matterport (Chang et al.,
2017) as distractors. We use 90 scenes from Matterport3D, which are randomly loaded when the environment is reset as
distractions for Realistic Maniskill. We set the time limit to 100 steps and the action repeat to 1 for all tasks. We test our
method and baselines on the tasks Lift Cube and Turn Faucet: in Lift Cube, the agent is required to elevate a cube beyond a
specified height, while in Turn Faucet, the agent must turn on the faucet by rotating its handle past a target angular distance.

E. Additional Experiments
E.1. Additional performance comparison

We present the learning curve of the methods in the default setting in Figure 6, which is similar to Figure 4 while in a
different form of visualization.
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Figure 7. Bootstrapping distributions for uncertainty in IQM (i.e. inter-quartile mean) measurement on DMC tasks in the distraction
setting. (left) Averaged on 3 seeds. (right) Averaged on 6 seeds.

To further statistically illustrate the effectiveness of our model, we present the bootstrapping distributions for uncertainty
in IQM (i.e. inter-quartile mean) measurement on DMC tasks in the distraction setting, following from the performance
criterion in (Agarwal et al., 2021). Given that the performance results for certain algorithms have been sourced from (Zhu
et al., 2023) and are based on the average across three random seeds, we are unable to calculate the Interquartile Mean
(IQM) for all methods with six seeds. Consequently, we present two sets of IQM results in Figure 7. The first set includes
all compared methods and is averaged across three seeds. The second set, which we have derived from re-running and
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evaluating three representative methods, is based on an average across six seeds, providing us with a more robust statistical
measure. The result shows that the final performance of our proposed model is statistically better than all other baselines.

E.2. Wall clock time comparison
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Figure 8. Training Time Comparison on Lift Cube task.

We compare the wall-clock traning time of our method and Dream-
erV3 in the Realistic Maniskill environment, with the use of a sever
with NVidia A100SXM4 (40 GB memory) GPU. Figure 8 shows that
the running time of our method almost matches DreamerV3, which
represents that our model can achieve significant performance im-
provements at a lower cost, in the presence of exogenous noise, shows
that our method can learn effective representations faster.

E.3. Ablation studies

We evaluate the effectivenss of different components of our model by
running the ablation experiments on the DMControl’s environment
with exogenous noise. All results in this section are averaged across
3 seeds.

Masking-based latent reconstruction and Bisimulation principle
Our architecture comprises two main components: masking-based
latent reconstruction and a similarity-based objective that follows the bisimulation principle. To assess their effectiveness,
we conducted ablation studies by excluding each component individually. Specifically, to evaluate the importance of
masking-based latent reconstruction, we removed the mask branch, converting our hybrid RSSM back to a standard RSSM
and omitting both the cubic masking and the latent reconstruction loss. To assess the bisimulation principle, we removed
only the similarity loss while maintaining all other components.

The results, as shown in Figure 9, reveal that adding just the similarity-based objective to the DreamerV3 framework
does not consistently improve sample efficiency across all tasks. This approach often results in the lowest performance,
except in the cartpole swingup task. In tasks like reacher easy, the agent fails to develop an acceptable policy, significantly
lagging behind in performance compared to other ablations. These findings confirm our theoretical analysis: applying the
bisimulation principle directly to model-based agents faces challenges due to the use of an approximate dynamics model for
sampling consecutive state representations.

Conversely, utilizing masking-based latent reconstruction generally leads to higher final performance than solely relying on
a similarity-based objective. Notably, in nearly half of the tasks, the model with only masking-based latent reconstruction
performs comparably to our complete framework, indicating that spatio-temporal information is indeed sparse for these
control tasks. Nevertheless, our framework, which includes both components, consistently achieves better performance
in most tasks, supporting the necessity of these components. Interestingly, in the cartpole swingup task, the model with
only a similarity-based objective outperforms our full framework, suggesting that the integration of both components is not
optimal. A possible explanation is that our masking strategy, which is not selectively applied to exogenous noise but rather
uses random masking, might inadvertently impact the endogenous state in some contexts.

Normalization for the predictiors Our framework incorporates four distinct objectives: latent reconstruction, similarity
loss, reward prediction, and episode continuation prediction. For latent reconstruction and similarity loss, we employ
normalized state representations because ℓ2-normalization ensures that the resulting features are embedded in a unit
sphere, which is beneficial for learning state representations. However, the appropriateness of using ℓ2-normalization for
predicting rewards and episode continuation is not immediately clear. Conventionally, for reward prediction, the exact state
representation should be used rather than the normalized one. To investigate this, we conducted an ablation study on the
effectiveness of normalization for these two predictors.

The results, illustrated in Figure 10, indicate that normalization may introduce unwanted biases into the predictions, leading
to a decrease in performance and increased variance. Therefore, we choose un-normalized representation for reward
prediction and continuation prediction.
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Figure 9. Results of ablation study on masking-based latent reconstruction and the bisimulation principle.
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Figure 10. Results of ablation study on ℓ2-Normalizion for predictiors.

Mask-based Similarity Loss To integrate the masking strategy with similarity loss, we apply a mask to one state in each
pair according to the formula, while keeping the other state unmasked. An alternative approach is to use the masked state
representation as the current sample pair and the unmasked ones as the consecutive sample pair, i.e.,

Lsim :=
(
d(smi , smj )−Fπd(si, sj)

)2
=

(
d(smi , smj )−

(
|rπsi − rπsj |+ γd(ŝi+1, ŝj+1)

))2 (16)

However, the latter approach may compromise the consistency between the two branches. This is confirmed in Figure 11,
which demonstrates that the first approach is more effective, particularly in tasks like finger spin. This effectiveness can
likely be attributed to the inherent complexity of the task dynamics. The motion of the manipulated object is influenced
not only by the actions of the controllable finger but also by the object’s intrinsic inertia, as it undergoes rotational motion.
This complexity introduces stochasticity and instability into the environment, posing a significant challenge to dynamics
modeling and adversely affecting performance, especially as the policy requires forward-looking dynamics modeling. This
ablation study underscores the importance of maintaining consistency between the two branches across various tasks.

Masking ratio We conducted an investigation into the impact of varying mask ratios on the performance of models across
different diverse tasks in distraction settings, the result of each task is averaged with three distinct random seeds. The
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Figure 11. Results of ablation study on masking strategy for similarity loss.
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Figure 12. (left) Comparison of different mask ratios in 3 different environments. The final returns are computed at 500k gradient steps
updates. (Right) Comparvison of different patch sizes in 2 different environments. The final returns are computed at 500k gradient steps
updates.
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masking ratio is selected within a range of 0.1 to 0.9, with the interval of 0.1. The results are depicted in Figure 12. Contrary
to the widely-held assumption that image and video data inherently carry a significant degree of superfluous information,
our research indicates that the ideal mask ratio for tasks involving sequential control stands at around 0.5. This is notably
lower than the nearly 0.9 mask ratio commonly used in computervision domain, as reported in studies such as (He et al.,
2022) and (Feichtenhofer et al., 2022). We believe that this discrepancy can be attributed to the control tasks need to retain
more spatiotemporal information than CV tasks to facilitate the sequential control tasks.

Cuboid Patch Size We also experimented with different cuboid patch sizes , as (5×5×4), (10×10×4), and (20×20×4)
respectively. Throughout the experiments, we maintained a masking ratio of 0.5. The results in Figure 12 indicate that the
patch size of 10× 10× 4 outperformed both the other two choices. We believe that smaller patch sizes retain unnecessary
information, while larger patch sizes may introduce unsuitable masking. Therefore, choosing a moderate patch size is
crucial, and in our experiment, we selected (10× 10× 4) as the default patch size.

E.4. Interpretability visualizations

To verify that our model is indeed capable of filtering task-irrelevant redundancy and learning task-specific features, we
utilized the Gradient-weighted Class Activation Mapping (Grad-CAM) technique for feature visualization, as proposed by
Selvaraju et al.(Selvaraju et al., 2017). We generate saliency maps for DMC tasks, and then create a binary map, assigning a
value of 1 to pixels in the top 5% of intensity values, and 0 otherwise, as illustrated in Figure13.

The results demonstrate that DreamerV3 baseline does not capture any meaningful information that relevant to the task.
On contrary, RePo and Our model are proficient at capturing the essential information in images. While RePo struggle to
precisely identify the control-relevant parts of the image inputs as it also focus on some irrelevant background noises like
the reflections on the surface, our model filter out background noise and focuses on the objects that is crucial for control
tasks effectively. These results confirm HRSSM’s capability to maintain task-relevant information from visual inputs with
exogenous noise.

Figure 13. The feature visualization of the learned representations using Grad-CAM.

E.5. More distractions

To evaluate the sample-efficiency and generalization ability of our model, we conduct several different distractions with
different nature of noise. Specifically, we have nine different distraction types in total, including the ones we benchmarked
in main paper. Examples are in Figure 14. They are:

DMC tasks with default settings This is the default setting of DMC tasks without any distractions. It can be seen as the
ideal setting in the realistic tasks.

DMC tasks with distraction settings In this setting, we test the agent in an environment with the background disturbed
by the videos from Kinetics dataset (Kay et al., 2017) with the label of driving car. During the training and evaluation, the
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Figure 14. All kinds of distractions.

Table 4. Overview of Distractions.
Tasks Distraction

DMC tasks with default settings no distraction
DMC tasks with distraction settings video distraction in background

Realistic Maniskill image distraction in background
Color easy in DMC-GS colors slightly change for both agent and background
Color hard in DMC-GS colors dramatically change for both agent and background
Video hard in DMC-GS video distraction in background, the surface is not visible
Video category changing different set of video distraction in background

Camera changing camera positions change
Distracting CS all distractions (color, video, camera)

environments are both disturbed by the same category of videos, so it is possible that the agent evaluated on the environments
that have been seen.

Realistic Maniskill Similar to DMC tasks with distraction settings. Further, to simulate real-world scenarios, we replace
the default background with realistic scenes from the Habitat Matterport dataset (Ramakrishnan et al., 2021), curating 90
different scenes and randomly loading a new scene at the beginning of each episode. So it can be viewed as image distraction
in background.

Color easy in DMC-GS One setting from DeepMind Generalization Benchmark(Hansen & Wang, 2021). We randomize
the color of background, floor, and the agent itself, while the colors used are similar to the colors of the original object.

Color hard in DMC-GS One setting from DeepMind Generalization Benchmark(Hansen & Wang, 2021). Similar to
Color easy, while the colors used is totally different from the colors of the original object.

Video hard in DMC-GS One setting from DeepMind Generalization Benchmark(Hansen & Wang, 2021). Similar to
DMC tasks with distraction settings, while the surface is no longer visible.

Video category changing A variation of DMC tasks with distraction settings. During the evaluation, we use a totally
different category of videos as background, which makes the testing environments all unseen.

Camera changing A variation from Distracting Control Suite (Distracting CS) (Stone et al., 2021) benchmark. We
change the span of camera poses and the camera velocity continually throughout an episode.

Distracting CS Distracting Control Suite (Distracting CS) (Stone et al., 2021) benchmark is extremely challenging, where
camera pose, background, and colors are continually changing throughout an episode. The surface remains visible, such that
the agent can orient itself during a changing camera angle.
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With the empirical findings presented for the first three distractions in Section 6, our analysis now focuses on the agents’
performance against the remaining six distractions. Due to the time limitation, we only have two baseline algorithms
tested in these distraction settings in our comparison: SVEA (Hansen et al., 2021) and RePo (Zhu et al., 2023). SVEA is a
model-free framework that enhances stability in Q-value estimation by selectively applying data augmentation, optimizing
a modified Bellman equation across augmented and unaugmented data. For RePo, we search several combinations of
hyperparameters, and choose the best hyperparameter pair in the DMC tasks with distraction setting as default for each task.
All average returns are averaged by 3 different random seeds. Notably, for Video category changing setting, we directly
evaluate the performance of the agent previously trained on DMC tasks with distraction settings, where we provide the
agent’s final performance metrics rather than a performance progression curve. The results from Figure 15 to Figure 19 and
Table 5 show that, our model consistently achieve the highest final performance and the best sample-efficiency among the
most distractions and most tasks, which indicate that our model’s robustness and generalization ability across these kinds of
distractions.
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Figure 15. Performance comparison on Color easy in DMC-GS.
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Figure 16. Performance comparison on Color hard in DMC-GS.
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Figure 17. Performance comparison on Video hard in DMC-GS.

E.6. Analysis of Failure Cases and Bottlenecks of HRSSM

Although our model is effective in most senarios, as illustrated in previous experiments, there still exist cases that our model
is not capable of handling well. For instance, the result of cartpole swingup task in our ablation study show that the final
return of the model that only follows bisimulation principle is higher than our entire model, we consider this can be partially
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Table 5. Final Performance on Video category changing. The second column is the final performance on DMC with distraction settings,
where the videos come from the same category. The result shows that our model has good generalization ability to adapt to the unseen
backgrounds.

Tasks Rewards on DMC with distraction Rewards on Video category changing
walker stand 946 ± 12 963 ± 11
walker walk 877 ± 35 868 ± 47
walker run 390 ± 18 406 ± 15
cheetah run 652 ± 47 628 ± 60

cartpole swingup 785 ± 25 755 ± 24
reacher easy 881 ± 72 905 ± 31
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Figure 18. Performance comparison on Camera changing.
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Figure 19. Performance comparison on Distracting CS.
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Figure 20. The performance on ball in cup catch task. The gray dotted line is the final performance of SAC+AE (Yarats et al., 2021b)
agent with pixel input (same input as ours) that evaluated at 5e5 gradient steps, and the black dotted line is SAC agent with raw state as
input that evaluated at 5e5 gradient steps. In this sparse reward task, the performance of our model is not good as the others.

attribute to the inappropriate masking. A better masking stategy may help. On the other hand, since our model follows the
bisimulation principle, it may fail in sparse reward domains, as the fact that the form of bisimulation computation relies on
bootstrapping with respect to the reward function in recursive terms. We present an evaluation on ball in cup catch task in
Figure 20. The result substantiates the conclusion that our model does not perform well on this kind of tasks. To address this
deficiency, employing goal-conditioned RL techniques or implementing reward re-labeling strategies could potentially offer
solutions to improve the performance, we leave this to future work.

F. Algorithm
Our traning algorithm is shown in Algorithm 1.
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Algorithm 1 HRSSM
Require: The mask encoder Eϕ, the mask posterior model qϕ, the mask recurrent model fϕ, the mask transition predictor
pϕ(ẑ

m
t | hmt ), their EMA part E ′ϕ, q′ϕ, f ′

ϕ, p′ϕ(ẑt|ht), the reward predictor pϕ(r̂t | hmt , zmt ) and continue predictor
pϕ(ĉt | hmt , zmt ), the critic vψ and the actor πψ ; the cube masking function CubeMask(·), the optimizer Optimizer(·, ·).

1: Determine the weight of bisimulation loss β, observation sequence length K, mask ratio η, cube shape k × h× w, and
EMA coefficient m.

2: Initialize a replay buffer D.
3: Initialize all parameters.
4: while train do
5: for update step c = 1...C do
6: // Dynamics learning
7: Sample B data sequences {(at, ot, rt)}k+T−1

t=k from replay buffer D
8: Cube masking the observation sequence: {omt }k+T−1

t=k ← CubeMask({ot}k+T−1
t=k )

9: Siamese Encoding: {emt }k+T−1
t=k ← Eϕ({omt }k+T−1

t=k ), {et}k+T−1
t=k ← E ′ϕ({ot}

k+T−1
t=k )

10: Compute mask states: zmt ∼ qϕ(z
m
t | hmt , emt ), hmt = fϕ(h

m
t−1, z

m
t−1, at−1), ẑmt ∼ pϕ(ẑ

m
t | hmt )

11: Compute true states: zt ∼ q′ϕ(zt|hmt , et), ht = f ′
ϕ(h

m
t−1, zt−1, at−1), ẑt ∼ p′ϕ(ẑt|ht)

12: Predict rewards and continuation flags: r̂t ∼ pϕ(r̂t | hmt , zmt ), ĉt ∼ pϕ(ĉt | hmt , zmt )
13: Calculate Ldyn according to Eq. 3
14: Calculate Lrec according to Eq. 4
15: Calculate Lsim according to Eq. 5
16: Calculate Lpred according to Eq. 6

17: Calculate total loss L(ϕ) = Eqϕ

[∑T
t=1

(
Ldyn(ϕ) + Lrec(ϕ) + Lsim(ϕ) + Lpred(ϕ)

)]
18: Update the encoder’s, RSSM’s and predictors’ parameters:Eϕ, qϕ, fϕ, pϕ← Optimizer(Eϕ, qϕ, fϕ, pϕ,L(ϕ))
19: Update the EMA part’s parameters:E ′ϕ ← mEϕ + (1−m)E ′ϕ, q′ϕ ← mqϕ + (1−m)q′ϕ, f

′
ϕ ← mfϕ + (1−m)f ′

ϕ,
p′ϕ(ẑt|ht)← mpϕ(ẑt|ht) + (1−m)p′ϕ(ẑt|ht)
// Behavior learning

20: Imagine trajectories {(st, at)}k+H−1
t=k from each st.

21: Compute rewards {rt}k+H−1
t=k , continuation flags {ct}k+H−1

t=k

22: Update the actor πψ and the critic vψ’s parameters using actor-critic learning.
23: end for
24: Interact with the environment based on the policy
25: end while
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