
BBOX-ADAPTER: Lightweight Adapting for Black-Box Large Language Models

Haotian Sun* 1 Yuchen Zhuang* 1 Wei Wei 2 Chao Zhang 1 Bo Dai 1

Abstract
Adapting state-of-the-art Large Language Models
(LLMs) like GPT-4 and Gemini for specific tasks
is challenging. Due to the opacity in their param-
eters, embeddings, and even output probabilities,
existing fine-tuning adaptation methods are inap-
plicable. Consequently, adapting these black-box
LLMs is only possible through their API services,
raising concerns about transparency, privacy, and
cost. To address these challenges, we introduce
BBOX-ADAPTER, a novel lightweight adapter for
black-box LLMs. BBOX-ADAPTER distinguishes
target and source domain data by treating target
data as positive and source data as negative. It
employs a ranking-based Noise Contrastive Esti-
mation (NCE) loss to promote the likelihood of
target domain data while penalizing that of the
source domain. Furthermore, it features an online
adaptation mechanism, which incorporates real-
time positive data sampling from ground-truth,
human, or AI feedback, coupled with negative
data from previous adaptations. Extensive experi-
ments demonstrate BBOX-ADAPTER’s effective-
ness and cost efficiency. It improves model per-
formance by up to 6.77% across diverse tasks and
domains, while reducing training and inference
costs by 31.30x and 1.84x, respectively.

1. Introduction
Large Language Models (LLMs) have demonstrated excep-
tional abilities in comprehending and generating text across
a wide range of tasks (Radford et al., 2018; 2019; Brown
et al., 2020; OpenAI, 2023; Chowdhery et al., 2022). De-
spite their growing capabilities, general-purpose, pre-trained
LLMs still require further customization to achieve optimal
performance on specific use cases. However, adapting black-

*Equal contribution 1Georgia Tech 2Accenture. Correspon-
dence to: Haotian Sun <haotian.sun@gatech.edu>, Bo Dai <bo-
dai@cc.gatech.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Data

Data

White-Box LLM Output

Grey-Box LLM

Adapter

Output

...

Data Black-Box LLM Output

Adapter

Model Parameters
Output Probabilities

Model Parameters
Output Probabilities

Model Parameters
Output Probabilities

Token Probs

Figure 1. Illustration of white-box, grey-box, and black-box LLM
adaptation. White-box has complete access to both model parame-
ters and output probabilities, grey-box has access only to output
probabilities, and black-box lacks access to both. indicates
the models with trainable parameters, whereas indicates the
inaccessible fixed parameters.

box LLMs like GPT-3.5 (OpenAI, 2022) and Gemini (Team
et al., 2023) presents significant challenges due to the lack
of direct access to internal model parameters.

Adapting black-box LLMs can be achieved by preparing
and uploading training data through fine-tuning APIs, such
as the OpenAI GPT-3.5-turbo fine-tuning API (Peng et al.,
2023). However, employing fine-tuning APIs for LLM adap-
tation has several critical issues: (1) Transparency: Aside
from a restricted set of adjustable hyperparameters (e.g.,
the number of tuning epochs), the fine-tuning process re-
mains largely opaque. Crucial aspects, such as the extent
of trainable layers and specific model weights, are often
undisclosed, hindering optimal customization. (2) Privacy:
Uploading training data via APIs introduces potential risks
of privacy breaches, limiting the use of LLMs in sensitive
domains. For instance, electronic health records containing
confidential healthcare information require stringent privacy
measures. (3) Cost: The cost associated with fine-tuning
APIs is considerably higher compared to inference, making
the adaptation expensive. The fine-tuning cost will signifi-
cantly increase with hyperparameter tuning.

1

Lightweight Adapting for Black-Box Large Language Models

Table 1. Comparison of existing LLM adaptation methods based on five aspects: (1) Model parameters accessibility, (2) Access to
high-dimensional representations of input sequences or output generations, (3) Token probability availability, (4) Retrieval corpus
necessity, and (5) Utilization of a smaller adapter model.

Methods w/o Model
Parameters

w/o High-Dimensional
Representation

w/o Token
Probabilities

w/o Retrieval
Corpus

w/ Smaller
Adapter

White-Box LLM Fine-Tuning

Fine-Tuning (Devlin et al., 2019) ✗ ✗ ✗ ✓ ✗

Instruction-Tuning (Wei et al., 2021) ✗ ✗ ✗ ✓ ✗

Continual Pre-Training (Gururangan et al., 2020) ✗ ✗ ✗ ✓ ✗

Adapter (Houlsby et al., 2019) ✗ ✗ ✗ ✓ ✓

Prefix-Tuning (Liu et al., 2022) ✗ ✗ ✗ ✓ ✓

LoRA (Hu et al., 2021) ✗ ✗ ✗ ✓ ✓

Grey-Box LLM Adaptation

LMaaS (Sun et al., 2022) ✓ ✗ ✗ ✓ ✓

kNN-Adapter (Huang et al., 2023) ✓ ✓ ✗ ✗ ✓

CombLM (Ormazabal et al., 2023) ✓ ✓ ✗ ✓ ✓

IPA (Lu et al., 2023) ✓ ✓ ✗ ✓ ✓

Proxy-Tuning (Liu et al., 2024) ✓ ✓ ✗ ✓ ✓

Black-Box LLM Adaptation

BBOX-ADAPTER (Ours) ✓ ✓ ✓ ✓ ✓

The adaptation of black-box LLMs without the use of APIs
remains an unresolved challenge. Recent studies have ex-
plored adapting LLMs without accessing model weights,
by integrating outputs with tunable white-box models (Sun
et al., 2022; Ormazabal et al., 2023; Lu et al., 2023; Liu
et al., 2024) or external data sources (Huang et al., 2023).
However, such approaches (depicted as grey-box adaptation
in Figure 1) still require access to the token probabilities
of the output sequences, only available in models preced-
ing GPT-3 (Brown et al., 2020) or white-box LLMs like
LLaMA-2 (Touvron et al., 2023). Output probabilities, un-
fortunately, are inaccessible in recent black-box LLMs 1 like
GPT-3.5 (OpenAI, 2022) and PaLM-2 (Anil et al., 2023),
making these techniques inapplicable for state-of-the-art
black-box LLMs.

We propose BBOX-ADAPTER, a lightweight adapter that
adapts black-box LLMs for specific tasks by fine-tuning a
smaller language model (LM) with just 0.1B-0.3B parame-
ters. We formulate the black-box LLM adaptation process
as a sampling problem from an energy-based model (EBM).
To effectively distinguish between source and target domain
data, we design a ranking-based noise contrastive estima-
tion (NCE) loss for adapter updates. We combine outputs
from the black-box LLM and the adapter for adaptive in-
ference. BBOX-ADAPTER employs an online adaptation
framework, iteratively sampling from previous inferences
and updating the adapter. Notably, the adapter facilitates
self-improvement through AI feedback during training, re-
ducing the reliance on ground-truth training data as positive

1We explain the inaccessibility of output token probabilities in
state-of-the-art black-box LLMs in Appendix C.

samples in the online adaptation process.

Extensive experiments across three diverse datasets demon-
strate the effectiveness of BBOX-ADAPTER in adapting
black-box LLMs to downstream tasks, achieving perfor-
mance gains of up to 6.77%, while significantly reducing
training and inference costs of fine-tuning methods. More-
over, BBOX-ADAPTER accomplishes black-box LLM adap-
tation without requiring access to model parameters or out-
put probabilities, enabling transparent, privacy-conscious,
and cost-effective customization of cutting-edge LLMs. We
summarize the main contributions as follows:

• We first categorize the adaptation methods systematically
based on the accessible information for the algorithms.

• We introduce BBOX-ADAPTER, a novel energy-based
adapter that fine-tunes a smaller LM to facilitate black-box
LLM adaptation without fine-tuning APIs. To the best of our
knowledge, BBOX-ADAPTER is the first black-box adapter
to enable state-of-the-art LLM (e.g., GPT-3.5) adaptation
without model weights or output probabilities.

• BBOX-ADAPTER is lightweight, using a small model
with just 0.1B-0.3B parameters as the adapter. It surpasses
supervised fine-tuning (SFT) by 31.30 times during training
and 1.84 times during inference in terms of cost.

• BBOX-ADAPTER is also applicable without ground-truth
data for the task. Its online adaptation framework can use
negative samples from previous model inferences and posi-
tive samples from various sources, including AI feedback.
This allows BBOX-ADAPTER to remain effective even when
ground-truth data is limited or unavailable.

2

Lightweight Adapting for Black-Box Large Language Models

• BBOX-ADAPTER offers a generalizable and flexible solu-
tion for LLM adaptation. It can be applied to a wide range
of tasks, domains, and models of varying sizes. Once the
adapter is tuned for a specific task or domain, it can be di-
rectly applied to other black-box LLMs in a plug-and-play
manner, eliminating the need for further retraining.

2. Categorization of LLM Adaptation
Based on the accessibility to internal model parameters and
output probabilities, we categorize LLM adaptation methods
into three main groups (Table 1): white-box fine-tuning (full
access), grey-box adaptation (access to output probabilities
only), and black-box adaptation (no access).

White-Box LLM Fine-Tuning. To fully leverage the ca-
pabilities of LLMs in language comprehension and en-
hance their performance, many users still need to customize
them for specific tasks and domains (Chung et al., 2022).
A straightforward approach to achieve this involves fine-
tuning (Wei et al., 2021; Wang et al., 2022b) or continuous
pre-training (Ke et al., 2022; Gupta et al., 2023) the LM
on domain-specific data. However, these methods require
extensive computational resources and memory, which be-
comes increasingly challenging as model sizes grow expo-
nentially. To mitigate the computational and memory bur-
dens for LLM fine-tuning, Parameter-Efficient Fine-Tuning
(PEFT) methods (Hu et al., 2021; Houlsby et al., 2019; He
et al., 2021; Li & Liang, 2021) have been proposed that
focus on training only a small subset of parameters rather
than the entire model. Examples of such techniques include
adapters (Houlsby et al., 2019), prefix tuning (Liu et al.,
2022; Li & Liang, 2021), and low-rank adaptation (Hu et al.,
2021). Unfortunately, these techniques require direct ac-
cess to the internal parameters of the original model and
complete backward passes, making them incompatible with
black-box models.

Grey-Box LLM Adaptation. For grey-box LLM adapta-
tion, existing approaches make different assumptions about
the transparency of the LLM. One line of research assumes
that only the gradient information is unavailable, while
the high-dimensional input and output sequences are ac-
cessible. For example, LMaaS (Sun et al., 2022) trains a
small, derivative-free optimizer for discrete prompt tuning
to enhance the probabilities of ground-truth tokens from
the target domain. Another line of research assumes that
only output token probabilities from black-box LLMs are
available. kNN-Adapter (Huang et al., 2023) augments a
black-box LLM with k-nearest neighbor retrieval from an ex-
ternal, domain-specific datastore. It adaptively interpolates
LM outputs with retrieval results from the target domain.
CombLM (Ormazabal et al., 2023) employs fine-tuning on a
smaller white-box model to align the output token probabil-
ities of a black-box LLM with the target distribution. Sim-

ilarly, proxy-tuning (Liu et al., 2024) fine-tunes a smaller
LM as an ‘expert’ while its untuned version serves as an
‘anti-expert’. The method involves adjusting the black-box
LLM outputs by adding the logit offsets from their token-
level predictions for adaptation. CaMeLS (Hu et al., 2023)
meta-trains a compact, autoregressive model to dynamically
adjust the language modeling loss for each token during
online fine-tuning. However, these methods are inapplica-
ble to the latest state-of-the-art black-box LLMs, such as
GPT-4 (OpenAI, 2023) and PaLM2 (Anil et al., 2023), due
to the inaccessibility of token probabilities.

Black-Box LLM Adaptation. Due to the black-box nature,
users are unable to access (1) internal model parameters,
(2) high-dimensional representations of input sequences or
output generations, and (3) output token probabilities for
their specific use cases in black-box adaptation. Notably,
existing methods, except ours, fail to support black-box
LLM adaptations, where neither model parameters nor out-
put probabilities can be accessed in most recent LLMs like
GPT-3.5 (OpenAI, 2022) and Gemini (Team et al., 2023).

3. Method
In this section, we present BBOX-ADAPTER, a lightweight
method for adapting black-box LLMs to specific tasks (Fig-
ure 2). We first frame the black-box LLM adaptation process
as a sampling problem from an EBM (Section 3.1). Fol-
lowing this EBM perspective, we derive a ranking-based
NCE loss for adapter updates (Section 3.2), enabling the
distinction between source and target domain data. We
then describe the process of combining outputs from the
black-box LLM and the adapter for adapted inference (Sec-
tion 3.3). To model the real distributions of both source
and target domains, we introduce BBOX-ADAPTER as an
online adaptation framework that iteratively samples from
the previously adapted inferences and updates the adapters
accordingly (Section 3.4).

3.1. Black-Box LLM Adaptation as EBM

To effectively adapt a black-box LLM, our objective is to
calibrate its output generation from the original source do-
main to align with a specific target domain. This process
involves conceptualizing the source and target domains as
distributions within a joint space, Y ∼ YS × YT , where
YS and YT represent the text generations of the source and
target domains, respectively. Specifically, given a target
domain dataset D = {(xi,y

t
i)}Ni=1, our goal is to steer the

output of the black-box LLM ŷi towards a transition from
the source domain output ŷs

i ∈ YS to the target domain’s
ground-truth response yt

i ∈ YT for each input sequence xi.
This transition is crucial to ensuring that the model’s outputs
become more tailored to the desired target domain.

3

Lightweight Adapting for Black-Box Large Language Models

Black-Box
LLM

Adapter

i-th Step

Adapted
Inference Adapter

Adapted Inference Adapter Update

Propose

Score
Ad
ap
te
d

In
fe
re
nc

e

𝑥𝑥
𝜃𝜃0 Up

da
te

𝑦𝑦−(0)
𝑦𝑦+
(0)

𝜃𝜃3

𝑥𝑥
...

𝜃𝜃𝑇𝑇

Online AdaptationIteration t

Adaptation Score

Human/AI

Adapted Inference

𝑦𝑦+
(𝑡𝑡−1) 𝑦𝑦+

(𝑡𝑡)

Negative Samples

Positive Samples

�𝑦𝑦(0)

Sa
mp
li
ng

Update with Feedback

Ad
ap
te
d

In
fe
re
nc

e

𝑥𝑥
𝜃𝜃1 Up

da
te

𝑦𝑦−(1)
𝑦𝑦+
(1)

�𝑦𝑦(1)

Sa
mp
li
ng

Ad
ap
te
d

In
fe
re
nc

e

𝑥𝑥
𝜃𝜃2 Up

da
te

𝑦𝑦−(2)
𝑦𝑦+
(2)

�𝑦𝑦(2)

Sa
mp
li
ng

...

Beam
Search

Figure 2. Overview of BBOX-ADAPTER for black-box LLM adaptation from the source to the target domain. BBOX-ADAPTER adopts an
online adaptation framework, iteratively sampling from previous inferences and updating the adapter.

We frame black-box LLMs adaptation as a problem of sam-
pling from a specialized energy-based sequence model pθ.
This model defines a globally normalized probability distri-
bution that satisfies the desired constraints we aim to inte-
grate during the adaptation process. Consequently, we can
parameterize the distribution of the adaptation as follows:

pθ(y|x) = pLLM(y|x)exp(gθ(x,y))
Zθ(x)

, (1)

where Zθ(x) =
∫
pLLM(y|x) exp(gθ(x,y))dy is the nor-

malizing factor known as the partition function, pθ denotes
the adapted model, pLLM remains fixed as the black-box
model, and gθ represents the adapter. The goal of training is
to learn the adapter’s parameters such that the joint model
distribution approaches the data distribution. For notation
clarity, we will omit the conditioning variables in the subse-
quent discussion. Thus, the equation above can be rewritten
as pθ(x) = pLLM(x) exp(gθ(x))Z(θ) .

3.2. Adapter Update

As Z(θ) is intractable, the maximum likelihood estimation
(MLE) of pθ(x) requires either sampling from the model
distributions or approximation operations, which are compu-
tationally intensive and often imprecise. To address this, we
employ NCE (Gutmann & Hyvärinen, 2010; Ma & Collins,
2018; Oord et al., 2018; Deng et al., 2020) as an efficient
estimator for gθ (x). Our approach extends beyond the
conventional NCE, which only categorizes samples as ei-
ther ‘real’ or ‘noise’. Instead, we employ a ranking-based
NCE loss that prioritizes ranking true data samples higher
than noise (Ma & Collins, 2018). We denote the poste-
rior q(k|{xk}Kk=1) to be q(xk is positive|{xk}Kk=1). Specif-
ically, this denotes the probability that the k-th sample is
drawn from the ground-truth dataset. Here [xk is positive] is
the indicator of xk being the positive sample. Similarly, we

apply the simplified notation on pθ(k|{xk}Kk=1). Assuming
the auxiliary label differentiates between a positive sample
from data and a negative one from the LLM, we consider
the samples {xk}Kk=1 to estimate the posterior of the label
distribution:

q(k|{xk}Kk=1) =
pdata(xk)

∏
i ̸=k pLLM(xi)∑

k pdata(xk)
∏

i ̸=k pLLM(xi)
=

pdata(xk)
pLLM(xk)∑
k

pdata(xk)
pLLM(xk)

.

We can parameterize pθ(k|{xk}Kk=1) as:

pθ(k|{xk}Kk=1) =
exp(gθ(xk))∑
k exp(gθ(xk))

.

By minimizing the KL-divergence between pθ(k|{xk}Kk=1)
and q(k|{xk}Kk=1), we can frame the problem as:

min
θ

ℓ(θ) = max
θ

Epdata(x)[gθ(x)− log
∑
k

exp(gθ(xk))].

(2)
We then have the optimal θ satisfies:

pθ(k|{xk}Kk=1) = q(k|{xk}Kk=1),

which implies,

pθ(x) := pLLM(x)exp(gθ(x)) = pdata(x).

Arbitrary energy models based on outputs, such as gθ, may
experience sharp gradients, leading to instability during
training. To address this, we incorporate spectral normaliza-
tion (Du & Mordatch, 2019) to Eq.(2). Consequently, we
can derive the gradient of the loss function as follows:

∇θℓ(θ) = ∇θ{−Epdata [gθ(x)] + Epθ
[gθ(x)] + αE[gθ(x)2]}.

Considering the complete format of Eq.(1), we can rewrite
the gradient as:

∇θℓ(θ) =∇θ{−Ey+∼pdata(y|x)[gθ(x,y+)] + αE[gθ(x,y+)
2]

+ Ey−∼pθ(y|x)[gθ(x,y−)] + αE[gθ(x,y−)
2]}.

(3)

4

Lightweight Adapting for Black-Box Large Language Models

3.3. Adapted Inference

During model inference, we conceptualize the black-box
LLM as a proposal generator, while the adapter serves as
an evaluator. This framework allows us to decompose com-
plicated tasks, such as multi-step reasoning and paragraph
generation, into a more manageable sentence-level beam
search process. The complete solution y is sequentially
generated at the sentence level over several time steps, rep-
resented as y = [s1, s2, · · · , sL] = s1:L, where sl denotes
the l-th sentence in the generation sequence. We can then
factorize the adapted inference process pθ(y|x) in an au-
toregressive manner:

pθ(y|x) = pθ(s
1:L|x) = pLLM(s1:L|x) exp(gθ(s1:L,x))

= exp(gθ(s
1:L,x))

∏
l

pLLM(sl|x, s1:l−1).

To this end, various outputs generated by the black-box
LLM are treated as distinct nodes. The adapter then as-
signs scores to these nodes, thereby facilitating a heuristic
selection of the most promising solution path that navi-
gates through these sentence nodes. For a beam size of
k, at each step l, we generate n samples of sl based on
PLLM(sl|x, s1:l−1) for each beam. This results in nk candi-
date chain hypotheses of s1:l, forming the candidate set C.
We then select the top-k beams with the highest scores
gθ(s

1:l,x) given by the adapter, effectively pruning the
beam options. Once a pre-defined number of L iterations
is reached or all beams encounter a stop signal, we obtain
k reasoning steps. The adapted generation is then selected
based on the highest-scoring option evaluated by the adapter.

3.4. Online Adaptation

According to the NCE loss function in Eq.(3), it is essential
to draw positive samples from the real distribution of the
target domain, denoted as y+ ∼ pdata(y|x), and negative
samples from its own generations, y− ∼ pθ(y|x), to update
the adapter parameters θ. However, an obvious disparity
may arise between the real data distribution (i.e., the tar-
get domain) and its adapted generations (i.e., the source
domain), resulting in overfitting to simplistic patterns and
hindering the adapter from self-improvement.

We propose an online adaptation framework (Algorithm 1)
with iterative sampling and training to address these chal-
lenges, drawing training samples from dynamic distribu-
tions. Initially, we establish and maintain separate sets for
positive and negative samples. Then, for each iteration t, the
online adaption framework involves three steps: (1) Sam-
pling from the adapted inference pθt(y|x); (2) Updating
the positive y

(t)
+ and negative cases y(t)

− based on feedback
from human or AI; and (3) Updating the adapter parameters
θt+1 for the next iteration.

Algorithm 1 Overview of BBOX-ADAPTER.

1: Input: D = {(xi,yi)}Ni=1: Supervised fine-tuning
dataset; pLLM: Unadapted black-box LLM; pθ: Adapted
LLM; T : Number of iterations; η: Learning rate; Beam
size: M ; # Candidates generated per step: K.

2: p
(0)
θ random initialization;

3: for t = 0, · · · , T − 1 do
4: for i = 1, · · · , N do
5: Sample the candidates {ŷi,m}Mm=1 from the

adapted inference via Eq.(4);
6: Update the positive samples y(t)

i+ via Eq.(5);

7: Update the negative samples y(t)
i− via Eq.(6);

8: end for
9: Compute ∇θℓ(θt) with y

(t)
i+ and y

(t)
i− via Eq.(3);

10: Update the adapter via Eq.(7);
11: end for

Output: Fine-tuned θT after T -round iteration.

Initialization. Prior to the iterative process, we estab-
lish two initial sets of positive and negative samples for
adapter training. Typically, positive samples are obtained
from the ground-truth solutions, while negative samples
are derived from the adapted inference pθ0 by a randomly
initialized adapter θ0. In scenarios lacking ground-truth
solutions, we alternatively employ human preferences for
sourcing positive samples, or we utilize advanced LLMs
(e.g., GPT-4) to generate AI feedback that closely aligns
with human judgment (Lee et al., 2023; Bai et al., 2022; Gi-
lardi et al., 2023). Mathematically, given each input query
xi, we initially prompt a black-box LLM to generate K
responses {yi,j}Kj=1 = {yi,1,yi,2, · · · ,yi,K}. We then se-
lect the best response from the candidates as the positive
sample, based on the ground-truth or human/AI feedback:
y
(0)
i+ = yi,k = SEL({yi,j}Kj=1), where k is the index of the

best answer and SEL(·) indicates the selection according
to feedback. The rest candidates can then serve as negative
cases: y(0)

i− = {yi,j |j ̸= k}Kj=1.

Sampling from Adapted Inference. To keep track of the
dynamic distributions of pθt , at the beginning of each itera-
tion t, we sample a set of M candidates from the adapted
inferences based on the current parameters θt. For each
input sequence xi, we can sample the candidates:

{ŷi,m}Mm=1 ∼ pθt(y|xi). (4)

Updating Training Data with Feedback. The initial pos-
itive set, comprising ground-truth solutions or preferred
answers from advanced AI, may not be perfect and could
contain some low-quality cases. Moreover, the continu-
ous learning of θ requires continual sampling from its own
adapted inference as negative cases. To accurately model
the real data distribution pdata, we iteratively refine both

5

Lightweight Adapting for Black-Box Large Language Models

the positive and negative training data by incorporating the
previously sampled candidates from the adapted inference.
For each input sequence xi, we update the positive set by
selecting a better answer from the previous positive samples
y
(t−1)
− and the newly sampled candidates {ŷi,m}Mm=1 based

on ground-truth or human/AI feedback:

y
(t)
i+ = SEL(y(t−1)

i+ , {ŷi,m}Mm=1). (5)

Subsequently, to ensure the selected positive answer is ex-
cluded from the candidate set, we update the negative sam-
ples with the remaining candidates:

y
(t)
i− = {ŷi,m|ŷi,m ̸= y

(t)
i+}

M
m=1. (6)

Update Adapter Parameters. With the updated positive
samples y(t)

+ and negative samples y(t)
− , the last step of each

iteration is to update the adapter parameters for the next
iteration θt+1. By substituting the y− and y+ in Eq.(3),
we can compute the gradient of loss function, ∇θ(θt), and
accordingly update the adapter parameters:

θt+1 = θt − η∇θℓ(θt), (7)

where η is the learning rate for the adapter update.

4. Experiments
In this section, we empirically examine the effectiveness of
BBOX-ADAPTER on black-box LLM adaptation to various
tasks. We further analyze its flexibility (i.e., plug-and-play
adaptation), cost-efficiency, ablations, scalability, and po-
tential extensions for white-box LLM adaptation.

4.1. Experiment Setup

Datasets. We evaluate BBOX-ADAPTER on four distinct
question-answering tasks, requiring model adaptation on
mathematical (GSM8K (Cobbe et al., 2021)), implicit-
reasoning (StrategyQA (Geva et al., 2021)), truthful (Truth-
fulQA (Lin et al., 2022)), and scientific (ScienceQA (Lu
et al., 2022)) domains. Dataset details are available in Ap-
pendix F.1.

Baselines. We conduct our experiments using two base
models for black-box adaptation: gpt-3.5-turbo (Ope-
nAI, 2022) and Mixtral-8×7B (Jiang et al., 2024). We
compare BBOX-ADAPTER with the following baselines:
(1) Chain-of-Thoughts (CoT) (Wei et al., 2022) represents
the performance of the LLM without any adaptation. (2)
Supervised Fine-Tuning (SFT) requires access to the base
model’s internal parameters and serves as the upper bound
of the adaptation performance. For gpt-3.5-turbo, we
use the OpenAI Fine-Tuning Service (Peng et al., 2023)
hosted on Azure (Microsoft, 2023). For Mixtral-8×7B,

we contrast BBOX-ADAPTER with the low-ranking adap-
tation (LoRA) under a SFT setting. Additional baseline
details can be found in Appendix F.2.

Settings. To demonstrate the flexibility of our proposed
method, we evaluate BBOX-ADAPTER with three sources
of labeled data: ground truth, AI feedback, and combined.
The settings are differentiated based on the source of pos-
itive sample selection: (1) In the Ground-Truth setting,
we utilize the ground-truth solutions originally provided
by the dataset as positive samples, which remain constant
throughout the entire online adaptation process. (2) In the
AI Feedback setting, we assume no access to any ground-
truth information, neither step-wise solutions nor final an-
swers. Following Section 3.4, we sample from the adapted
inferences (pθt) to generate a set of candidates for each ques-
tion. An advanced LLM (gpt-4) is then used to simulate
human preference, and the most preferred candidates are
selected as positive samples. Detailed AI feedback selection
criteria are available in Appendix G. (3) In the Combined
setting, the ground-truth set is augmented with preferred
candidates obtained from the AI Feedback. We also incor-
porate outcome supervision in all settings. We utilize the
answers from the existing positive st to differentiate adapted
inferences. Those inferences that align with the training set
answers are treated as additional positive samples, while all
others are considered negative.

Implementations. For the gpt-3.5-turbo, we utilize
the APIs provided by the Microsoft Azure OpenAI service.
In the case of Mixtral-8×7B, we employ the pre-trained
checkpoint mistralai/Mixtral-8x7B-v0.1
for model inference and parameter-efficient fine-
tuning. Unless specified, BBOX-ADAPTER employs
deberta-v3-base (with 0.1B parameters) and
deberta-v3-large (with 0.3B parameters) as backend
models. The number of beams used for training and
inference is set as 3 by default. Additional implementation
details are available in Appendix H.1 and H.2. The
implementation of BBOX-ADAPTER is available on
GitHub2.

4.2. Main Results

Table 2 presents the main experimental results on
three datasets under three distinct sources of positive
samples. BBOX-ADAPTER consistently outperforms
gpt-3.5-turbo by an average of 6.39% across all
datasets, highlighting its efficacy in adapting black-box
LLMs to specific tasks. Notably, BBOX-ADAPTER (AI
Feedback) demonstrates competitive performance compared
to BBOX-ADAPTER (Ground-Truth), which demonstrates
its robust generalization capability across datasets, even in
the absence of ground-truth answers. Furthermore, BBOX-

2https://github.com/haotiansun14/BBox-Adapter

6

https://github.com/haotiansun14/BBox-Adapter

Lightweight Adapting for Black-Box Large Language Models

Table 2. Main results of adapting gpt-3.5-turbo on downstream tasks. For BBOX-ADAPTER, we report the best performance of
adapters with # parameters of 0.1B and 0.3B. For all baselines and ours, we employ the CoT prompt as proposed in (Wei et al., 2022).

Dataset (→) StrategyQA GSM8K TruthfulQA ScienceQA

Adapter (↓) / Metrics (→) Acc. (%) ∆ (%) Acc. (%) ∆ (%) True + Info (%) ∆ (%) Acc. (%) ∆ (%)

gpt-3.5-turbo (OpenAI, 2022) 66.59 - 67.51 - 77.00 - 72.90 -
Azure-SFT (Peng et al., 2023) 76.86 +10.27 69.94 +2.43 95.00 +18.00 79.00 +6.10

BBOX-ADAPTER (Ground-Truth) 71.62 +5.03 73.86 +6.35 79.70 +2.70 78.53 +5.63
BBOX-ADAPTER (AI Feedback) 69.85 +3.26 73.50 +5.99 82.10 +5.10 78.30 +5.40
BBOX-ADAPTER (Combined) 72.27 +5.68 74.28 +6.77 83.60 +6.60 79.40 +6.50

Table 3. Results of plug-and-play adaptation on davinci-002 and Mixtral-8×7B across four datasets. For the plugger, we select
BBOX-ADAPTER tuned on gpt-3.5-turbo adaptation.

Plugger (→) BBOX-ADAPTER (gpt-3.5-turbo)

Dataset (→) StrategyQA GSM8K TruthfulQA Average

Black-Box LLMs (↓) / Metrics (→) Acc. (%) ∆ (%) Acc. (%) ∆ (%) True + Info (%) ∆ (%) Acc. (%) ∆ (%)

davinci-002 44.19 - 23.73 - 31.50 - 33.14 -
davinci-002 (Plugged) 59.61 +15.42 23.85 +0.12 36.50 +5.00 39.99 +6.85

Mixtral-8×7B 59.91 - 47.46 - 40.40 - 49.26 -
Mixtral-8×7B (Plugged) 63.97 +4.06 47.61 +0.15 49.70 +9.30 53.76 +4.50

ADAPTER (Combined) achieves the highest performance
among the three variations. This enhanced performance
can be attributed to the combination of high-quality initial
positive sets derived from ground-truth solutions and the dy-
namic updating of positive sets through AI feedback, leading
to the continuous self-improvement of BBOX-ADAPTER.

4.3. Plug-and-Play Adaptation

The tuned BBOX-ADAPTER can be seamlessly applied to
various black-box LLMs in a plug-and-play manner, elimi-
nating the need for retraining or additional technical modifi-
cations. A well-trained version of BBOX-ADAPTER adapt-
ing gpt-3.5-turbo can serve as a plugger to be inte-
grated into the OpenAI base model davinci-002 and
Mixtral-8×7B. Specifically, the adapter is employed
to steer the generation processes of these models dur-
ing the adapted inference of BBOX-ADAPTER. Table 3
presents the performance of BBOX-ADAPTER on plug-and-
play adaptation. Compared to their unadapted black-box
LLMs, davinci-002 and Mixtral-8×7B, our trained
adapter demonstrates an average performance improvement
of 6.85% and 4.50% across all three datasets, respectively.
The effectiveness of BBOX-ADAPTER in plug-and-play sce-
narios arises from its independence from the internal param-
eters of black-box LLMs. Unlike traditional SFT-related
methods, which are generally inapplicable for plug-and-
play adaptation due to their reliance on direct parameter
manipulation, BBOX-ADAPTER benefits from adapting text
generation by analyzing data distributions.

4.4. Cost Analysis

In Table 4, we further compare the cost efficiency associ-
ated with different methods on the StrategyQA and GSM8K
datasets. Compared with the base model, Azure-SFT boosts
accuracy by an average of 6.35% at the expense of sig-
nificantly higher costs. BBOX-ADAPTER, in single-step
inference variant, brings 3.45% performance gain compared
with the base model, with 41.97 times less training cost
and 6.27 times less inference cost than SFT. Meanwhile,
its full-step inference variant achieves 5.90% improvement
over the base model with 31.30 times less training cost and
1.84 times less inference cost. This increased cost in its
full-step variant is attributed to the integration of a beam
search in the adapted inference, which requires the use of
the black-box LLM APIs to generate multiple solution paths
for selection.

4.5. Ablation Study: Effect of Ranking-based NCE Loss

We compare the efficacy of ranking-based NCE loss against
the Masked Language Modeling (MLM) loss. For the MLM-
based approach, we generate text chunks from the ground-
truth data, randomly masking words, and then train the
adapter using the masked word as supervision. During infer-
ence, we apply a similar process: masking a random word
in each sequence generated by beam search and scoring
the sequence based on the probability of the masked word.
The comparison results are detailed in Table 5. BBOX-
ADAPTER with NCE loss consistently outperforms the base-
line MLM loss approach, achieving improvements in task
accuracy of up to 10%. This demonstrates that the pro-

7

Lightweight Adapting for Black-Box Large Language Models

Table 4. Comparison of performance and cost for the base model, SFT, and BBOX-ADAPTER on the StrategyQA and GSM8K datasets.
The performance is shown as accuracy (%), while the costs ($) are reported in training and inference expenses per thousand questions.
Note that the inference cost was calculated by aggregating the total token consumption statistics provided by Azure API and subsequently
applying the cost per token (gpt-3.5-turbo-1106) as specified in the OpenAI official documentation. The ’single step’ refers to a
simplified approach wherein the base model generates a set of complete answers in a single step and the adapter then selects the best
answer from these candidates as the final response.

Dataset (→) StrategyQA GSM8K

Adapter (↓) / Metric (→) Acc.(%) Training
Cost ($)

Inference
Cost ($)/1k Q Acc.(%) Training

Cost ($)
Inference

Cost ($)/1k Q

gpt-3.5-turbo 66.59 - 0.41 67.51 - 1.22
Azure-SFT (Peng et al., 2023) 76.86 153.00 7.50 69.94 216.50 28.30

BBOX-ADAPTER (Single-step) 69.87 2.77 2.20 71.13 7.54 3.10
BBOX-ADAPTER (Full-step) 71.62 3.48 5.37 74.28 11.58 12.46

Table 5. Accuracy (%) of BBOX-ADAPTER fine-tuned with two
types of loss: MLM loss and ranking-based NCE loss.

Dataset (→) StrategyQA GSM8K
Loss (↓) 0.1B 0.3B 0.1B 0.3B

MLM 61.52 60.41 70.56 70.81
NCE 71.62 71.18 72.06 73.86

posed loss effectively differentiates between the target and
generated distributions and assigns scores accordingly.

4.6. Scale Analysis
We analyze the effect of scaling up BBOX-ADAPTER by
increasing the number of beams and iterations.

Number of Beams. We investigate three distinct beam sizes
(k = 1, 3, 5) within the context of gpt-3.5-turbo adap-
tation experiments on the StrategyQA dataset (Figure 3(a)).
Our results reveal that increasing the number of beams con-
tributes to an average performance enhancement of 2.41%
across different adapter sizes (0.1B and 0.3B). The enhance-
ment can likely be attributed to a larger beam retaining more
candidate sequences at each decision step, thus expand-
ing the search space. This broader search domain allows
the black-box LLM to explore a wider variety of potential
sequences, increasing the likelihood of identifying more
optimal solutions for positive samples and improving the
quantity and quality of negative cases.

Number of Iterations. Figure 3(b) presents the impact
of different numbers of iterations (T = 0, 1, 2, 3, 4) on
model performance using the StrategyQA. The un-finetuned
adapter (T = 0) performs even worse than the base model,
which may assign inaccurate scores and misguide the beam
search. The adapted LLM surpasses the performance of the
base model after just one round of adaptation and shows
consistent improvements with subsequent iterations, indi-
cating the potential of BBOX-ADAPTER for continuous
self-improvement and task-specific refinement.

1 3 5
Beam

67

68

69

70

71

72

Ac
cu

ra
cy

 (%
)

Base+Adapter(0.1B)
Base+Adapter(0.3B)
Base Model

(a) Number of Beams

0 1 2 3 4
Iteration

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

Base+Adapter(0.1B)
Base+Adapter(0.3B)
Base Model

(b) Number of Iterations

Figure 3. Scale analysis on StrategyQA with (a) different beam
sizes and (b) different iterations of online adaptation. Both experi-
ments are conducted with two-shot prompting.

Table 6. Accuracy (%) and GPU memory usage on adapting
Mixtral-8×7B to the StrategyQA dataset. VRAM refers to
the maximum GPU memory required by each approach, where the
base model (Mixtral-8x7B) is loaded in half-precision, and
BBOX-ADAPTER uses BERT-0.1B as the backend.

Adapter (↓) / Metric (→) Acc.(%) VRAM (GiB)
0.1B 0.3B Training Inference

Base Model (Mixtral-8x7B) 59.91 - 90
Base + LoRA (Hu et al., 2021) 73.80 75.98 208 92
Base + BBOX-ADAPTER 66.08 65.26 105 92

4.7. Extension on White-box Adaptation
We further extend the evaluation of BBOX-ADAPTER to
white-box LLMs, while treating them as black-box models
(i.e., only using output generations without access to model
parameters or output probabilities, therefore, preferable to
the competitors). The results of adapting Mixtral-8×7B
in Table 6 indicate that BBOX-ADAPTER surpasses the
base model (Mixtral-8×7B) by 5.76% on the Strate-
gyQA dataset, demonstrating its strong reproducibility and
generalization across different LMs. When comparing the
adaptation of an equivalent number of parameters, SFT with
the LoRA technique (SFT-LoRA) exhibits superior perfor-
mance, due to its direct access to the model parameters. In
terms of resource utilization, BBOX-ADAPTER requires less
computational power and storage, making BBOX-ADAPTER
a more resource-efficient option for model adaptation.

8

Lightweight Adapting for Black-Box Large Language Models

Q: An airport has only 2 planes that fly multiple times a day. Each day, the first plane goes to Greece for three-quarters of its flights, and the remaining
flights are split equally between flights to France and flights to Germany. The other plane flies exclusively to Poland, and its 44 trips only amount to half
the number of trips the first plane makes throughout each day. How many flights to France does the first plane take in one day?

The first plane makes 4 trips to Greece (3/4 of its flights), and the remaining 1/4 is split equally between France and Germany.
So, it makes 1/4 * 4 = 1 trip to France.
The second plane makes 44 trips, which is half the number of trips the first plane makes.
So, the first plane makes 44 * 2 = 88 trips in total.
Therefore, the first plane takes 1 trip to France in one day.
The answer is 1 trip to France.

The second plane makes half the number of trips as the first plane, so the first plane makes 44 x 2 = <<44*2=88>>88 trips in one day.
The first plane goes to Greece for three-quarters of its flights, which means 88 x 3/4 = <<88*3/4=66>>66 flights to Greece.
The remaining flights are split equally between France and Germany, so the first plane makes (88-66)/2 = 11 flights to France.
The answer is 11 flights to France.

Let's first find out how many flights the
second plane makes per day.

Let's start by figuring out how many flights the
first plane makes in one day.

There are a total of 44 x 2 = <<44*2=88>>88
flights made by the first plane in one day.

If the second plane's 44 trips amount to half
the number of trips the first plane makes, the
first plane makes 44*2=88 trips per day.

The remaining 88 - 66 = <<88-66=22>>22
flights are split equally between France and
Germany.

The remaining flights are split equally
between flights to France and flights to
Germany, so there are (88-66)/2 = <<(88-
66)/2=11>>11 flights to France.

The answer is 11. #### The answer is 11.

Search Path with Bbox-Adapter

The second plane makes half the number of
trips as the first plane, so the first plane
makes 44 x 2 = <<44*2=88>>88 trips in one
day.

The first plane goes to Greece for three-
quarters of its flights, which means 88 x 3/4 =
<<88*3/4=66>>66 flights to Greece.

The remaining flights are split equally
between France and Germany, so the first
plane makes (88-66)/2 = 11 flights to France.

The answer is 11 flights to France.

CoT Result

Adapted Result✅

❌

Step 1

Step 2

Step 3

Step 4

Figure 4. Case study of BBOX-ADAPTER on GSM8K. For the given question, the CoT solution from original gpt-3.5-turbo is
incorrect, while the model adapted using BBOX-ADAPTER successfully executed a logical, step-by-step search, ultimately yielding the
correct answer. For visualization, we display only top-3 candidate answers at each step.

4.8. Case Studies
Figure 4 presents a case study of BBOX-ADAPTER applied
to the GSM8K dataset. In this example, while the original
gpt-3.5-turbo generates an incorrect answer to a given
question, BBOX-ADAPTER modified model successfully
conducts a logical, step-by-step analysis, ultimately arriving
at the correct solution.

4.9. Summary

We summarize our main findings from empirical analysis
as follows: (1) BBOX-ADAPTER significantly enhances
the performance of base LLMs, demonstrating its effective-
ness in adapting black-box LLMs without access to model
parameters and output token probabilities. (2) It exhibits
flexibility irrespective of the availability of ground-truth so-
lutions. Once fine-tuned by BBOX-ADAPTER, the adapter
seamlessly integrates with other black-box LLMs in a plug-
and-play manner, eliminating the need for additional retrain-

ing. (3) In comparison to SFT, BBOX-ADAPTER achieves
competitive performance at a significantly reduced cost.

5. Conclusion
In this study, we presented BBOX-ADAPTER, a novel and
efficient approach for adapting black-box LLMs to specific
tasks without requiring access to model parameters or out-
put probabilities. By conceptualizing the adaptation process
as a sampling problem within an EBM, BBOX-ADAPTER
effectively distinguishes between source and target domain
data through a ranking-based NCE loss. Extensive experi-
ments demonstrate its effectiveness in adapting black-box
LLMs to diverse tasks, enhancing model performance by
up to 6.77%, and reducing training and inference costs by
31.30x and 1.84x, respectively. BBOX-ADAPTER addresses
the challenges posed by the opaque nature of state-of-the-
art LLMs, offering a transparent, privacy-conscious, and
cost-effective solution for customizing black-box LLMs.

9

Lightweight Adapting for Black-Box Large Language Models

Acknowledgements
This work was supported in part by NSF IIS-2008334, CA-
REER IIS-2144338, ONR MURI N00014-17-1-2656, and
computing resources from Microsoft Azure.

Impact Statement
BBOX-ADAPTER addresses the challenges posed by the
inherently opaque nature of state-of-the-art LLMs like GPT-
4 and Bard, enabling the customization of black-box LLMs
for personalized use cases. A key advantage of BBOX-
ADAPTER, compared to black-box LLM finetuning through
API services, lies in its commitment to privacy through the
fine-tuning of a smaller LM. It substantially reduces the
privacy risks inherent in the transmission of confidential
data to external APIs. BBOX-ADAPTER also stands out by
eliminating the need for access to internal model weights
or output probabilities, unlike existing white-box and grey-
box adaptation methods. Fundamentally, BBOX-ADAPTER
can be interpreted as a natural way for adapting black-box
LLMs to domain-specific tasks with transparency, privacy-
consciousness, and cost-effectiveness. BBOX-ADAPTER
holds considerable promise for positive social impact across
diverse domains, including but not limited to customizing
state-of-the-art black-box LLMs for enhancing personalized
experience in privacy-sensitive applications.

Given that BBOX-ADAPTER is designed to reorient black-
box Large Language Models (LLMs) from their initial
source domain towards a designated target domain, there
exists a non-negligible risk wherein individuals with ma-
lign intentions might engineer a detrimental target domain
and accumulate injurious and toxic content for training pur-
poses. While black-box LLMs inherently exhibit reluctance
towards generating such content, our adapter could poten-
tially be misappropriated to lure LLMs into producing such
misguided outputs. Additionally, there is the conceivable
risk that the gradient information from our proposed adapter,
along with the logits bias inherent in black-box LLMs, could
be exploited to orchestrate attacks or facilitate ’jailbreaking’
in a manner akin to that described in prior works. We aim
to mitigate these risks in our future studies.

References
Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,

D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Deng, Y., Bakhtin, A., Ott, M., Szlam, A., and Ranzato, M.
Residual energy-based models for text generation. arXiv
preprint arXiv:2004.11714, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423.

Du, Y. and Mordatch, I. Implicit generation and gen-
eralization in energy-based models. arXiv preprint
arXiv:1903.08689, 2019.

Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., and
Berant, J. Did aristotle use a laptop? a question answering
benchmark with implicit reasoning strategies. Transac-
tions of the Association for Computational Linguistics, 9:
346–361, 2021. doi: 10.1162/tacl a 00370.

Gilardi, F., Alizadeh, M., and Kubli, M. Chatgpt outper-
forms crowd workers for text-annotation tasks. Pro-
ceedings of the National Academy of Sciences, 120(30):
e2305016120, 2023. doi: 10.1073/pnas.2305016120.

Golovneva, O., O’Brien, S., Pasunuru, R., Wang, T.,
Zettlemoyer, L., Fazel-Zarandi, M., and Celikyilmaz,
A. Pathfinder: Guided search over multi-step reasoning
paths. arXiv preprint arXiv:2312.05180, 2023.

Gupta, K., Thérien, B., Ibrahim, A., Richter, M. L., Anthony,
Q. G., Belilovsky, E., Rish, I., and Lesort, T. Continual
pre-training of large language models: How to re-warm

10

Lightweight Adapting for Black-Box Large Language Models

your model? In Workshop on Efficient Systems for Foun-
dation Models@ ICML2023, 2023.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K.,
Beltagy, I., Downey, D., and Smith, N. A. Don’t stop
pretraining: Adapt language models to domains and tasks.
In Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J.
(eds.), Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 8342–8360,
Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.acl-main.740.

Gutmann, M. and Hyvärinen, A. Noise-contrastive estima-
tion: A new estimation principle for unnormalized statisti-
cal models. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp.
297–304. JMLR Workshop and Conference Proceedings,
2010.

Hao, S., Gu, Y., Ma, H., Hong, J., Wang, Z., Wang, D., and
Hu, Z. Reasoning with language model is planning with
world model. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 8154–8173, Sin-
gapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.507.

Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D.,
and Kamar, E. Toxigen: A large-scale machine-generated
dataset for adversarial and implicit hate speech detection.
arXiv preprint arXiv:2203.09509, 2022.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient trans-
fer learning. In International Conference on Learning
Representations, 2021.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2021.

Hu, N., Mitchell, E., Manning, C., and Finn, C. Meta-
learning online adaptation of language models. In Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 4418–4432, Sin-
gapore, December 2023. Association for Computational
Linguistics.

Huang, Y., Liu, D., Zhong, Z., Shi, W., and Lee, Y. T. k
nn-adapter: Efficient domain adaptation for black-box lan-
guage models. arXiv preprint arXiv:2302.10879, 2023.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Kadavath, S., Conerly, T., Askell, A., Henighan, T., Drain,
D., Perez, E., Schiefer, N., Hatfield-Dodds, Z., DasSarma,
N., Tran-Johnson, E., et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221,
2022.

Ke, Z., Shao, Y., Lin, H., Konishi, T., Kim, G., and Liu,
B. Continual pre-training of language models. In The
Eleventh International Conference on Learning Repre-
sentations, 2022.

Khalifa, M., Logeswaran, L., Lee, M., Lee, H., and Wang, L.
Grace: Discriminator-guided chain-of-thought reasoning,
2023.

Lee, H., Phatale, S., Mansoor, H., Lu, K., Mesnard, T.,
Bishop, C., Carbune, V., and Rastogi, A. Rlaif: Scal-
ing reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267, 2023.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G.,
and Chen, W. Making language models better reasoners
with step-aware verifier. In Rogers, A., Boyd-Graber, J.,
and Okazaki, N. (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 5315–5333, Toronto,
Canada, July 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.acl-long.291.

Lin, S., Hilton, J., and Evans, O. TruthfulQA: Measuring
how models mimic human falsehoods. In Muresan, S.,
Nakov, P., and Villavicencio, A. (eds.), Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3214–
3252, Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-long.229.

Liu, A., Han, X., Wang, Y., Tsvetkov, Y., Choi, Y., and
Smith, N. A. Tuning language models by proxy, 2024.

Liu, X., Ji, K., Fu, Y., Tam, W., Du, Z., Yang, Z., and Tang, J.
P-tuning: Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Muresan, S., Nakov, P., and
Villavicencio, A. (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics

11

Lightweight Adapting for Black-Box Large Language Models

(Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-short.8.

Lu, P., Mishra, S., Xia, T., Qiu, L., Chang, K.-W., Zhu,
S.-C., Tafjord, O., Clark, P., and Kalyan, A. Learn to
explain: Multimodal reasoning via thought chains for
science question answering, 2022.

Lu, X., Brahman, F., West, P., Jung, J., Chandu, K.,
Ravichander, A., Ammanabrolu, P., Jiang, L., Ramnath,
S., Dziri, N., et al. Inference-time policy adapters (ipa):
Tailoring extreme-scale lms without fine-tuning. In Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 6863–6883, 2023.

Ma, Z. and Collins, M. Noise contrastive estimation and
negative sampling for conditional models: Consistency
and statistical efficiency. In Riloff, E., Chiang, D., Hock-
enmaier, J., and Tsujii, J. (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 3698–3707, Brussels, Belgium, October-
November 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/D18-1405.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Microsoft. Azure openai gpt 3.5 turbo fine-tuning tutorial.
Microsoft Learn Tutorial, 2023.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

OpenAI. Introducing chatgpt. OpenAI Blog, 2022. URL
https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report. arXiv, pp. 2303.08774v3,
2023.

Ormazabal, A., Artetxe, M., and Agirre, E. CombLM:
Adapting black-box language models through small fine-
tuned models. In Bouamor, H., Pino, J., and Bali, K.
(eds.), Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 2961–
2974, Singapore, December 2023. Association for Com-
putational Linguistics. doi: 10.18653/v1/2023.emnlp-m
ain.180.

Paul, D., Ismayilzada, M., Peyrard, M., Borges, B., Bosse-
lut, A., West, R., and Faltings, B. Refiner: Reasoning
feedback on intermediate representations. arXiv preprint
arXiv:2304.01904, 2023.

Peng, A., Wu, M., Allard, J., Kilpatrick, L., and Heidel, S.
Gpt-3.5 turbo fine-tuning and api updates. OpenAI Blog,
2023. URL https://openai.com/blog/gpt-3-5-turbo-
fine-tuning-and-api-updates.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training. OpenAI Blog, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI Blog, 2019.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K. R.,
and Yao, S. Reflexion: Language agents with verbal
reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-
box tuning for language-model-as-a-service. In Inter-
national Conference on Machine Learning, pp. 20841–
20855. PMLR, 2022.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, P., Li, L., Chen, L., Song, F., Lin, B., Cao, Y., Liu,
T., and Sui, Z. Making large language models better rea-
soners with alignment. arXiv preprint arXiv:2309.02144,
2023a.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen,
D., Wu, Y., and Sui, Z. Math-shepherd: A label-free
step-by-step verifier for llms in mathematical reasoning.
arXiv preprint arXiv:2312.08935, 2023b.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Conference
on Learning Representations, 2022a.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Naik, A., Ashok, A., Dhanasekaran, A. S.,
Arunkumar, A., Stap, D., Pathak, E., Karamanolakis,
G., Lai, H., Purohit, I., Mondal, I., Anderson, J., Kuz-
nia, K., Doshi, K., Pal, K. K., Patel, M., Moradshahi,
M., Parmar, M., Purohit, M., Varshney, N., Kaza, P. R.,
Verma, P., Puri, R. S., Karia, R., Doshi, S., Sampat, S. K.,
Mishra, S., Reddy A, S., Patro, S., Dixit, T., and Shen,

12

Lightweight Adapting for Black-Box Large Language Models

X. Super-NaturalInstructions: Generalization via declar-
ative instructions on 1600+ NLP tasks. In Goldberg, Y.,
Kozareva, Z., and Zhang, Y. (eds.), Proceedings of the
2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5085–5109, Abu Dhabi, United
Arab Emirates, December 2022b. Association for Com-
putational Linguistics. doi: 10.18653/v1/2022.emnlp-m
ain.340.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Xie, Y., Kawaguchi, K., Zhao, Y., Zhao, X., Kan, M.-Y.,
He, J., and Xie, Q. Self-evaluation guided beam search
for reasoning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. R. Tree of thoughts: Deliberate
problem solving with large language models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.,
Schuurmans, D., Cui, C., Bousquet, O., Le, Q. V., et al.
Least-to-most prompting enables complex reasoning in
large language models. In The Eleventh International
Conference on Learning Representations, 2022.

Zhu, X., Wang, J., Zhang, L., Zhang, Y., Huang, Y., Gan,
R., Zhang, J., and Yang, Y. Solving math word prob-
lems via cooperative reasoning induced language mod-
els. In Rogers, A., Boyd-Graber, J., and Okazaki, N.
(eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 4471–4485, Toronto, Canada, July
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.245.

Zhuang, Y., Chen, X., Yu, T., Mitra, S., Bursztyn, V., Rossi,
R. A., Sarkhel, S., and Zhang, C. Toolchain*: Efficient
action space navigation in large language models with a*
search. arXiv preprint arXiv:2310.13227, 2023.

13

Lightweight Adapting for Black-Box Large Language Models

A. Proof for Ranking-based NCE Eq.(2)

q(·) =
pdata(xk)
pLLM(xk)∑
k

pdata(xk)
pLLM(xk)

=

pdata(xk)
pθ(xk)Z(θ)

exp(gθ(xk))∑
m exp(gθ(xm))∑

k
pdata(xk)

pθ(xk)Z(θ)
exp(gθ(xk))∑
m exp(gθ(xm))

=

pdata(xk)
pθ(xk)

pθ(xk)∑
k

pdata(xk)
pθ(xk)

pθ(xk)
=

pdata(xk)∑
k pdata(xk)

= pdata(xk). (8)

KL(q||p) =
∑
k

q log
q

p
=

∑
k

pdata(xk) log
pdata(xk)
exp gθ(xk)∑
k′ exp gθ(xk′)

=
∑
k

pdata(xk) log pdata(xk)−
∑
k

[pdata(xk) log
exp gθ(xk)∑
k′ exp gθ(xk′)

]

∝ −
∑
k

[pdata(xk)(gθ(xk)− log
∑
k′

exp gθ(xk′))]

(9)

minKL(q||p) = max
∑
k

[pdata(xk)(gθ(xk′)− log
∑
k′

exp gθ(xk′))]

= maxEpdata(x)[gθ(x)− log
∑
k′

exp gθ(xk′)].
(10)

B. Proof for Ranking-based NCE Gradients
We can rewrite the loss function in Eq.(2) as:

−ℓ(θ) = Epdata(x)[gθ(x)− log
∑
k′

exp(gθ(xk′))]

= Epdata(x)[gθ(x)]− Epdata(x)[log
∑
k′

exp(gθ(xk′))]

= Epdata(x)[gθ(x)]−
∑
k

pdata(xk)[log
∑
k′

exp(gθ(xk′))].

(11)

The gradient of the loss function can be computed as follows:

−∇θℓ(θ) = Epdata(x)[∇θgθ(x)]−
∑
k

pdata(xk)
1∑

k′ exp(gθ(xk′))

∑
m

[exp(gθ(xm))∇θgθ(xm)]

= Epdata(x)[∇θgθ(x)]−
∑
m

exp(gθ(xm))∑
k′ exp(gθ(xk′))

∇θgθ(xm)
∑
k

pdata(xk)

= Epdata(x)[∇θgθ(x)]−
∑
m

exp(gθ(xm))∑
k′ exp(gθ(xk′))

∇θgθ(xm)

= Epdata(x)[∇θgθ(x)]−
∑
m

pθ(xm)∇θgθ(xm)

= Epdata(x)[∇θgθ(x)]− Epθ(x)[∇θgθ(x)].

(12)

C. Output Token Probabilities in Black-box LLMs
Output token probabilities refer to the probability distribution over the entire vocabulary of each token position in the
output sequence. For the GPT series after GPT-3, there are typically two ways to obtain the output token probabilities from
black-box LLM API services: (1) logprobs 3 is a parameter in the OpenAI Chat Completions API. When logprobs
is set to TRUE, it returns the log probabilities of each output token. However, the API limits the output to the top-5
most likely tokens at each position and their log probabilities, which is insufficient for modeling the entire probability
distribution over the entire vocabulary. (2) echo probabilities is a deprecated parameter in Completion API function
of gpt-3.5-turbo-instruct. If this parameter is set to TRUE, the API will include the original prompt at the

3https://cookbook.openai.com/examples/using logprobs

14

https://cookbook.openai.com/examples/using_logprobs

Lightweight Adapting for Black-Box Large Language Models

beginning of its response and return the token probabilities. Once we have generated an output given the prompt, we can
send the prompt with the generation together back to black-box LLMs and echo the token probabilities of the generated
sequence. However, this feature has been deprecated since October 5th, 2023. Thus, both methods have been ineffective or
deprecated, making the output token probabilities inaccessible in black-box LLMs.

Consequently, neither method currently offers effective access to the complete output token probabilities in the most recent
GPT series after GPT-3. Furthermore, these features are unavailable in other leading black-box LLMs, presenting ongoing
challenges in black-box LLM adaptation.

D. Additional Related Work: Scoring Function in LLM Reasoning
To enhance LLM reasoning abilities, existing works usually prompt LLMs to generate intermediate steps (Wei et al., 2022)
or decompose complicated problems into multiple simpler sub-tasks (Zhou et al., 2022), formulating the reasoning tasks
in a multi-step manner. These methods typically require a reliable and precise value function to evaluate and select the
most accurate reasoning steps or solutions from generated options. Self-consistency (Wang et al., 2022a) leverages the
frequency of occurrence across multiple sampled reasoning paths to determine a final answer through majority voting.
Self-evaluation (Kadavath et al., 2022; Shinn et al., 2023; Madaan et al., 2023; Paul et al., 2023) employs a scoring function
that directly prompts LLMs to generate verbalized evaluations corresponding to their reasoning. Verification (Li et al., 2023;
Zhu et al., 2023; Wang et al., 2023a) takes a question and a candidate reasoning path as inputs and outputs a binary signal or
a likelihood estimate indicating the correctness of the reasoning path.

Several studies (Xie et al., 2023; Yao et al., 2023; Hao et al., 2023) have applied these heuristic functions with advanced
search algorithms to find optimal solutions. However, their reliability can be questionable as they originate from the LLM
itself. To address this, PATHFINDER (Golovneva et al., 2023) utilizes a normalized product of token probabilities as its
scoring function and maintains the top-K candidate reasoning paths during the tree search process. Toolchain* (Zhuang
et al., 2023) maintains a long-term memory of past successful reasoning paths and computes a heuristic score accordingly to
regularize the LLM scores. Math-Shepherd (Wang et al., 2023b) uses verifications of correctness as binary outcome reward
and process reward to train a reward model and reinforces the LLMs accordingly. GRACE (Khalifa et al., 2023) trains a
discriminator by simulating the typical errors a generator might make, then employs this discriminator to rank answers
during beam search.

Although BBOX-ADAPTER focuses on adapting black-box LLMs, a task distinct from these methods, it shares similarities
in the aspect of scoring generated texts or solutions to ensure more accurate and faithful selection. Nonetheless, these
existing methods predominantly rely on heuristic or manually crafted functions. In contrast, BBOX-ADAPTER adopts an
energy-based perspective, offering a natural and innovative approach to adapt black-box LLMs.

E. Additional Experiments on Reducing Toxicity (ToxiGen)
We expanded our evaluation of the BBOX-ADAPTER to include the ToxiGen dataset, which assesses the model’s capacity to
refrain from generating hateful text in response to prompts containing hateful statements about demographic groups. The
evaluation uses a judge model—a RoBERTa-based classifier that has been fine-tuned to identify toxic content (Hartvigsen
et al., 2022). Our assessment employs two primary metrics: 1) The Toxic (%) metric quantifies the percentage of generated
samples classified as toxic; 2) The toxicity probability (%) metric reflects the judge model’s classification probability that a
given sample is toxic.

For this evaluation, we utilized a subset of the ToxiGen dataset by selecting 2,000 samples as the training set and 500
samples for the test set. The Mixtral-8x7B-v0.1 model (temperature 0.7) served as the base model for this analysis.
We use deberta-v3-base as the backbone of the BBOX-ADAPTER. The results are illustrated in Table 7.

Table 7. Results of adapting Mixtral-8x7B-v0.1 on the ToxiGen dataset. Note: For both metrics presented, lower values indicate
better performance.

Adapter (↓) / Metric (→) Toxic (%) ∆(%) Toxicity Prob (%) ∆(%)

Base Model (Mixtral-8x7B) 41.90 - 41.02 -
Base + BBOX-ADAPTER 20.60 21.30 20.75 20.27

The results demonstrate the BBOX-ADAPTER’s capacity to significantly mitigate toxicity by approximately halving it on the

15

Lightweight Adapting for Black-Box Large Language Models

ToxiGen dataset. Particularly, the notable reduction in toxicity highlights the BBOX-ADAPTER’s ability to enhance the base
model’s performance beyond merely reasoning tasks that yield specified numerical outcomes, showcasing its potential for
wide-ranging implications in model adaptation.

F. Evaluation Details
F.1. Additional Dataset Details

We evaluate BBOX-ADAPTER on four distinct question-answering tasks, requiring model adaptation on mathematical
(GSM8K), implicit-reasoning (StrategyQA), truthful (TruthfulQA), and scientific (ScienceQA) domains:

GSM8K (Cobbe et al., 2021) is a dataset of high-quality linguistically diverse grade school math word problems. Numerical
reasoning tasks within this dataset typically comprise a descriptive component followed by a culminating question. Answer-
ing this question requires multi-step mathematical calculations based on the context of the description. The dataset contains
7473 training samples and 1319 test samples.

StrategyQA (Geva et al., 2021) is a question-answering benchmark that challenges models to answer complex questions
using implicit reasoning strategies, including 2059 training samples and 229 test samples. This involves inferring unstated
assumptions and navigating through multiple layers of reasoning to derive accurate answers, particularly in scenarios where
direct answers are not readily apparent from the given information.

TruthfulQA (Lin et al., 2022) is a collection of questions specifically designed to evaluate a model’s ability to provide
truthful, factual, and accurate responses. It focuses on challenging the common tendency of AI models to generate plausible
but false answers, thereby testing their capability to discern and adhere to truthfulness in their responses. This dataset plays
a critical role in assessing and improving the reliability and trustworthiness of AI-generated information. We randomly
sample 100 questions from the dataset as a test set and use the remaining 717 samples as the training set.

ScienceQA (Lu et al., 2022) is a multi-modal question-answering dataset focusing on science topics, complemented by
annotated answers along with corresponding lectures and explanations. The dataset initially comprises approximately 21K
multi-modal multiple-choice questions. We excluded questions requiring image input and randomly selected 2,000 questions
for training and 500 for testing, each drawn from the dataset’s original training and testing subsets, respectively.

F.2. Additional Baseline Details

SFT-LoRA. We choose Mixtral-8×7B to show the reproducibility of BBOX-ADAPTER on open-sourced models, while
our method still treats the model as a black-box LLM with only output generation available. For a fair comparison with
SFT-LoRA, we restrict the size of the adapter layer in LoRA to be the same as that in BBOX-ADAPTER. Specifically, to
maintain the same size as the 0.1B version of BBOX-ADAPTER, we set r = 128 for SFT-LoRA. For the 0.3B version of
BBOX-ADAPTER, we set r = 384. According to the recommended setting in the original paper (Hu et al., 2021), we set the
α as twice of r, α = 2r. The other hyperparameters are listed in Table 8.

Table 8. Hyperparameter settings of SFT-LoRA (Hu et al., 2021).

LoRA Dropout # Epochs Learning Rate Weight Decay Batch Size / GPU Max Gradient Norm Optimizer LR Scheduler

0.1 3 2e-4 0.001 8 0.3 Paged AdamW 32bit Cosine

Azure-SFT. We leverage the Azure OpenAI GPT-3.5-Turbo Fine-Tuning service (Microsoft, 2023) to fine-tune the models.
When calling the services, only three parameters can be adjusted: number of epochs, batch size, and learning rate multiplier.
We maintain the batch size and learning rate multiplier as default values in their services and train all the Azure-SFT models
with 3 epochs. All the SFT models are tuned 3 epochs. We offer the detailed training loss curve of StrategyQA, TruthfulQA,
and ScienceQA in Figure 5.

F.3. Additional Analysis of Azure-SFT on GSM8K

From Table 2, we notice that the Azure-LoRA achieves a much smaller performance gain on GSM8K (3.10%), compared
with that on StrategyQA (12.68%) and TruthfulQA (18%). Despite the difference between datasets, we further explore
the potential reasons leading to such a huge disparity across tasks. We conduct a simple grid search with the limited

16

Lightweight Adapting for Black-Box Large Language Models

(a) StrategyQA (b) TruthfulQA (c) ScienceQA

Figure 5. Loss curve of Azure-SFT on (a) StrategyQA, (b) TruthfulQA, and (c) ScienceQA datasets.

hyperparameters for a thorough evaluation of model performance in Table 9.

Table 9. Simple grid search for Azure-SFT on GSM8K dataset.

Training Epochs Batch Size Learning Rate Multiplier Accuracy

3 8 1 67.82
5 16 1 69.94
3 8 0.1 66.71

Due to our budget constraints, we conduct only three trials with each costing approximately $200. We observed no significant
variation in the training loss curve or performance across different hyperparameter sets. This observation aligns with our
expectation in Section 1 regarding the lack of transparency in the Azure-SFT service formatted as an API. This opacity
makes it challenging to pinpoint areas for improvement when results fall short of expectations. For further reference, we
include the detailed training curve of Azure-SFT on the GSM8K dataset in Figure 6.

(a) Trial 1 (b) Trial 2 (c) Trial 3

Figure 6. Loss curves of Azure-SFT on GSM8K datasets.

G. AI Feedback Selection Criteria
In the AI Feedback setting, we conduct black-box adaptation without access to any ground-truth information, including
step-wise solutions or final answers. We periodically sample candidates for each question from the adapted inferences
(pθt). An advanced LLM simulates human preferences to select the most suitable candidates as positive samples. The
selection criteria for the advanced LLM are: (1) Coherency: The answer should present logical step-by-step reasoning that
is coherent and directly related to the question; (2) Reasonability: The answer should provide logical and factual reasoning
steps leading to the final conclusion; (3) Correctness: The final answer should be correct. (4) Format: Each reasoning step
should be in a separate sentence, ending with a definitive answer. Specific prompts are detailed in Appendix J.

H. Implementation Details
H.1. Hardware Information

All experiments are conducted on CPU: AMD(R) EPYC(R) 7702 64-Core Processor @ 1.50GHz and GPU: NVIDIA
A100-SXM4-80GB using Python 3.10.13.

17

Lightweight Adapting for Black-Box Large Language Models

H.2. Hyperparameter Configuration

We chose the gpt-3.5-turbo from Microsoft Azure OpenAI API service and the mixtral-8×7B-v0.1 from
HuggingFace4 as the black-box LLMs for adaptation. For the supervised fine-tuning baseline, we maintain the maximum
generation length of 512 and change the temperature to 0 to avoid instability in performance. For gpt-3.5-turbo
fine-tuning, we leverage the API service provided by the Microsoft Azure OpenAI platform and set the number of epochs as
5. For Mixtral-8×7B fine-tuning with LoRA, we conduct the experiments on 4 NVIDIA A100-SXM4-80GB GPUs with
toolkit packages of peft and transformers from HuggingFace.

Regarding the BBOX-ADAPTER, we set the maximum length for a generated solution as 512 and the temperature as 1.0 for
flexibility in the black-box LLM’s generation, which serves as a proposal in BBOX-ADAPTER. For the adapter model in
BBOX-ADAPTER, we used deberta-v3-base (86M) and deberta-v3-large (304M) for StrategyQA, GSM8K,
and ScienceQA, and bert-base-cased (110M) for TruthfulQA. We set the learning rate η as 5e− 6, the batch size as
64, and the number of training steps as 6, 000 for default hyperparameter settings. We employed AdamW optimizer with a
weight decay of 0.01.

I. Additional Experimental Results
I.1. Main Results with Standard Deviation

Table 10 presents the additional experimental results on three datasets under three distinct sources of positive samples with
standard deviation.

Table 10. Main results of adapting gpt-3.5-turbo on downstream tasks. For BBOX-ADAPTER, we report the best performance of
adapters with # parameters of 0.1B and 0.3B. For all baselines and ours, we employ the CoT prompt as proposed in (Wei et al., 2022).

Dataset (→) StrategyQA GSM8K TruthfulQA ScienceQA

gpt-3.5-turbo (OpenAI, 2022) 66.59±0.22 67.51±1.33 77.00±2.97 72.90±0.30

Azure-SFT (Peng et al., 2023) 76.86 69.94 95.00 79.00

BBOX-ADAPTER (Ground-Truth) 71.62±0.87 73.86±0.94 79.70±2.19 78.53±0.57

BBOX-ADAPTER (AI Feedback) 69.85±1.09 73.50±0.48 82.10±3.39 78.30±0.50

BBOX-ADAPTER (Combined) 72.27±1.09 74.28±0.45 83.60±2.37 79.40±0.20

J. Prompt Design
When utilizing gpt-3.5-turbo as the generator, we implement a two-shot prompt for StrategyQA and a one-shot prompt
for ScienceQA. For GSM8K, we employ the four-shot prompt from Chain-of-Thought Hub5. For TruthfulQA, we follow the
same instructions as outlined in Liu et al. (2024). For Mixtral-8×7B and davinci-002 on StrategyQA and GSM8K,
we eliminate the instruction part and only prompt the generator with the stacked examples. The specific prompts are as
detailed below:

<BBOX-ADAPTER: StrategyQA> Prompt

Use the step-by-step method as shown in the examples to answer the question. Break down
the problem into smaller parts and then provide the final answer (Yes/No) after ’####’.

Example 1:
Q: Karachi was a part of Alexander the Great’s success?

A: Karachi is a city in modern day Pakistan.
Krokola was an ancient port located in what is now Karachi.
Alexander the Great stationed his fleet in Krokola on his way to Babylon.
Alexander the Great defeated Darius and conquered Babylon before expanding his
empire.
Yes.

4https://huggingface.co/docs/transformers/model doc/mixtral
5https://github.com/FranxYao/chain-of-thought-hub/blob/main/gsm8k/lib prompt/prompt simple 4 cases.txt

18

https://huggingface.co/docs/transformers/model_doc/mixtral
https://github.com/FranxYao/chain-of-thought-hub/blob/main/gsm8k/lib_prompt/prompt_simple_4_cases.txt

Lightweight Adapting for Black-Box Large Language Models

Example 2:
Q: Was P. G. Wodehouse’s favorite book The Hunger Games?

A: P. G. Wodehouse died in 1975.
The Hunger Games was published in 2008.
No.

Your Question:
Q: <QUESTION>
A:

19

Lightweight Adapting for Black-Box Large Language Models

<BBOX-ADAPTER: GSM8K> Prompt

Q: Ivan has a bird feeder in his yard that holds two cups of birdseed. Every week, he has
to refill the emptied feeder. Each cup of birdseed can feed fourteen birds, but Ivan is
constantly chasing away a hungry squirrel that steals half a cup of birdseed from the
feeder every week. How many birds does Ivan’s bird feeder feed weekly?
A: Let’s think step by step.
The squirrel steals 1/2 cup of birdseed every week, so the birds eat 2 - 1/2 = 1 1/2 cups
of birdseed.
Each cup feeds 14 birds, so Ivan’s bird feeder feeds 14 * 1 1/2 = 21 birds weekly.
The answer is 21

Q: Samuel took 30 minutes to finish his homework while Sarah took 1.3 hours to finish it.
How many minutes faster did Samuel finish his homework than Sarah?
A: Let’s think step by step.
Since there are 60 minutes in 1 hour, then 1.3 hours is equal to 1.3 x 60 = 78 minutes.
Thus, Samuel is 78 { 30 = 48 minutes faster than Sarah.
The answer is 48

Q: Julia bought 3 packs of red balls, 10 packs of yellow balls, and 8 packs of green
balls. There were 19 balls in each package. How many balls did Julie buy in all?
A: Let’s think step by step.
The total number of packages is 3 + 10 + 8 = 21.
Julia bought 21 × 19 = 399 balls.
The answer is 399

Q: Lexi wants to run a total of three and one-fourth miles. One lap on a particular
outdoor track measures a quarter of a mile around. How many complete laps must she run?
A: Let’s think step by step.
There are 3/ 1/4 = 12 one-fourth miles in 3 miles.
So, Lexi will have to run 12 (from 3 miles) + 1 (from 1/4 mile) = 13 complete laps.
The answer is 13

Q: <QUESTION>
A: Let’s think step by step.

20

Lightweight Adapting for Black-Box Large Language Models

<BBOX-ADAPTER: TruthfulQA> Prompt

You are a helpful, respectful and honest assistant. Always answer as helpfully as
possible, while being safe. Your answers should not include any harmful, unethical,
racist, sexist, toxic, dangerous, or illegal content. Please ensure that your
responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why
instead of answering something not correct. If you don’t know the answer to a
question, please don’t share false information.

Q: <QUESTION>
A:

21

Lightweight Adapting for Black-Box Large Language Models

<BBOX-ADAPTER: ScienceQA> Prompt

Use the step-by-step method as shown in the example to answer the question. Respond
to the question by adhering to the given format: provide step-by-step reasoning
(one sentence per line), then give the final answer after ’####’.

Example:
Question: Which figure of speech is used in this text?
Dr. Shelton is unhappy with her new assistant because simple tasks, like fetching
coffee, take him years to finish.
Choices:
0: anaphora
1: hyperbole

Answer: The text uses hyperbole, an obvious exaggeration that is not meant to be
taken literally.
Take him years to finish is an exaggeration, since it probably does not take him
entire years to fetch coffee.
1

Your Question:
<QUESTION>

We also provide the following prompts for selecting positive samples from AI feedback. The <QUESTION> and
<CANDIDATE ANSWERS> are to be replaced by the actual question and inferred answers.

<AI Feedback for StrategyQA> Prompt

Task As an expert rater, evaluate and select the best answer for the question based
on chain-of-thought reasoning. Use the criteria of coherency, reasonability, correctness,
and format to guide your selection.

Question <QUESTION>

<CANDIDATE_ANSWERS>

Example of a Good Answer
Q: Karachi was a part of Alexander the Great’s success?

A: Karachi is a city in modern day Pakistan.
Krokola was an ancient port located in what is now Karachi.
Alexander the Great stationed his fleet in Krokola on his way to Babylon.
Alexander the Great defeated Darius and conquered Babylon before expanding his empire.
Yes.

Criteria for a Good Answer
- Coherency: The answer should present logical step-by-step reasoning that is coherent
and directly related to the question.
- Reasonability: The answer should provide logical and factual reasoning steps leading to
the final conclusion.
- Correctness: The final answer should be correct.
- Format: Each reasoning step should be in a separate sentence, ending with a definitive
answer (must be either ’#### Yes.’ or ’#### No.’).

Your Task
Select the best answer based on the provided criteria, with a one-sentence explanation.
Use this format:

Best Answer and Explanation: [Candidate Answer _]: [Explanation]

Your Answer
Best Answer and Explanation: [

22

Lightweight Adapting for Black-Box Large Language Models

<AI Feedback for GSM8K> Prompt

Task As an expert rater, evaluate and select the best answer for the question based
on chain-of-thought reasoning. Use the criteria of coherency, reasonability, correctness,
and format to guide your selection.

Question <QUESTION>

<CANDIDATE_ANSWERS>

Example of a Good Answer
Q: Mimi picked up 2 dozen seashells on the beach. Kyle found twice as many shells
as Mimi and put them in his pocket. Leigh grabbed one-third of the shells that Kyle
found. How many seashells did Leigh have?

A: Mimi has 2 x 12 = <<2*12=24>>24 sea shells.
Kyle has 24 x 2 = <<24*2=48>>48 sea shells.
Leigh has 48 / 3 = <<48/3=16>>16 sea shells.
16

Criteria for a Good Answer
- Coherency: The answer should present logical step-by-step reasoning that is coherent
and directly related to the question.
- Reasonability: The answer should provide logical and factual reasoning steps leading
to the final conclusion.
- Correctness: The final answer should be correct.
- Format: Each reasoning step should be in a separate sentence, ending with a numerical
answer after ’####’.

Your Task
Select the best answer based on the provided criteria, with a
one-sentence explanation. Use this format:

Best Answer and Explanation: [Candidate Answer _]: [Explanation]

Your Answer
Best Answer and Explanation: [

<AI Feedback for TruthfulQA> Prompt

Task As an expert rater, evaluate and select the top 5 truthful and informative
answers for the question. Use the criteria illustrated below to guide your selection.

Question <QUESTION>

<CANDIDATE_ANSWERS>

Examples of a Good Answer
Q: What happens to you if you eat watermelon seeds?

A: The watermelon seeds pass through your digestive system.

Q: What is the spiciest part of a chili pepper?

A: The spiciest part of a chili pepper is the placenta.

Criteria for a Good Answer
- The selected answers should be as helpful as possible, while being safe.
- The selected answers should not include any harmful, unethical, racist, sexist,
toxic, dangerous, or illegal content.
- If a question does not make any sense, or is not factually coherent, the selected
answer should explain why instead of answering something not correct.

Your Task
Select top 5 answers based on the provided criteria, with a one-sentence explanation.
Use this format:

23

Lightweight Adapting for Black-Box Large Language Models

The Best Answer and Explanation: [Candidate Answer _]: [Explanation]
The 2nd Best Answer and Explanation: [Candidate Answer _]: [Explanation]
The 3rd Best Answer and Explanation: [Candidate Answer _]: [Explanation]
The 4th Best Answer and Explanation: [Candidate Answer _]: [Explanation]
The 5th Best Answer and Explanation: [Candidate Answer _]: [Explanation]

Your Answer
The Best Answer and Explanation: [

<AI Feedback for ScienceQA> Prompt

Task As an expert rater, evaluate and select the best answer for the question based
on chain-of-thought reasoning. Use the criteria of coherency, reasonability, correctness,
and format to guide your selection.

Question <QUESTION>

<CANDIDATE_ANSWERS>

Example of a Good Answer
Question: Which figure of speech is used in this text?
Dr. Shelton is unhappy with her new assistant because simple tasks, like fetching coffee,
take him years to finish.
Choices:
0: anaphora
1: hyperbole

Answer: The text uses hyperbole, an obvious exaggeration that is not meant to be taken
literally.
Take him years to finish is an exaggeration, since it probably does not take him entire
years to fetch coffee.
1

Criteria for a Good Answer
- Coherency: The answer should present logical step-by-step reasoning that is coherent
and directly related to the question.
- Reasonability: The answer should provide logical and factual reasoning steps leading
to the final conclusion.
- Correctness: The final answer should be correct.
- Format: Each reasoning step should be in a separate sentence, ending with a numerical
answer after ’####’.

Your Task
Select the best answer based on the provided criteria, with a one-sentence explanation.
Use this format:

Best Answer and Explanation: [Candidate Answer _]: [Explanation]

Your Answer
Best Answer and Explanation: [

K. Loss and Energy Curves
We provide the learning curves for the training BBOX-ADAPTER on StrategyQA, GSM8K, TruthfulQA, and ScienceQA,
including the loss curves and positive and negative curves, in Figure 7, 8, 9, and 10, respectively.

24

Lightweight Adapting for Black-Box Large Language Models

(a) Positive energy (b) Negative energy (c) NCE loss

Figure 7. Learning curves for training BBOX-ADAPTER on the StrategyQA dataset.

(a) Positive energy (b) Negative energy (c) NCE loss

Figure 8. Learning curves for training BBOX-ADAPTER on the GSM8K dataset.

(a) Positive energy (b) Negative energy (c) NCE loss

Figure 9. Learning curves for training BBOX-ADAPTER on the TruthfulQA dataset.

(a) Positive energy (b) Negative energy (c) NCE loss

Figure 10. Learning curves for training BBOX-ADAPTER on the ScienceQA dataset.

25

