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Abstract

We present Self-Play Preference Optimization
(SPO), an algorithm for reinforcement learning
from human feedback. Our approach is minimal-
ist in that it does not require training a reward
model nor unstable adversarial training and is
therefore rather simple to implement. Our ap-
proach is maximalist in that it provably handles
non-Markovian, intransitive, and stochastic pref-
erences while being robust to the compounding
errors that plague offline approaches to sequen-
tial prediction. To achieve the preceding qual-
ities, we build upon the concept of a Minimax
Winner (MW), a notion of preference aggregation
from the social choice theory literature that frames
learning from preferences as a zero-sum game be-
tween two policies. By leveraging the symmetry
of this game, we prove that rather than using the
traditional technique of dueling two policies to
compute the MW, we can simply have a single
agent play against itself while maintaining strong
convergence guarantees. Practically, this corre-
sponds to sampling multiple trajectories from a
policy, asking a preference or teacher model to
compare them, and then using the proportion of
wins as the reward for a particular trajectory. We
demonstrate that on a suite of continuous con-
trol tasks, we are able to learn significantly more
efficiently than reward-model based approaches
while maintaining robustness to the intransitive
and stochastic preferences that frequently occur
in practice when aggregating human judgments.
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Figure 1: The standard pipeline (left) for preference-based
RL / RLHF involves training a reward model (i.e. a clas-
sifier) based on a dataset of pairwise preferences and then
optimizing it via RL. We introduce SPO (right), a method
that instead optimizes directly based on preference feedback
provided by a preference or teacher model, with each trajec-
tory getting a reward based on the proportion of other on-
policy trajectories it is preferred to. We prove and validate
empirically that this approach is more robust to intransitive,
non-Markovian, and noisy preferences than prior works.

1. Introduction
Reinforcement learning from human feedback (RLHF,
Christiano et al. (2017)) also known as preference-based
reinforcement learning (PbRL, Akrour et al. (2012); Wirth
et al. (2017); Sadigh et al. (2017); Ibarz et al. (2018); Lee
et al. (2021b;a); Sikchi et al. (2022)), is a technique for
policy optimization based on relative, rather than absolute,
feedback. Owing to the relative ease of providing compara-
tive feedback rather than absolute scores for agent behavior
for human raters (Miller, 1956), RLHF has been success-
fully applied across fields from robotics (Zucker et al., 2011;
Cakmak et al., 2011; Tucker et al., 2020; Swamy et al., 2020;
Bıyık et al., 2020) to recommendation (De Gemmis et al.,
2009; Ailon & Mohri, 2010; Viappiani & Boutilier, 2010;
Afsar et al., 2022), to retrieval (Yue & Joachims, 2009). As
of late, RLHF has attracted renewed interest as a leading
technique for fine-tuning large language models (LLMs)
(Ziegler et al., 2020; Stiennon et al., 2020; Bai et al., 2022a;
Ouyang et al., 2022).

The predominantly studied approach to RLHF is via Reward-
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Figure 2: SPO gives us a unified approach to optimize a variety of preference structures. Starting with the “nicest" case where preferences
are consistent with a single reward signal (a), SPO is more sample-efficient than iterative Reward Modeling (RM) based approaches.
Moreover, SPO learns comparable to RM-based approaches with stochastic preferences, where we flip preferences corresponding to a
ground truth reward, without the burden of an extra model (b). Furthermore, SPO handles complex non-Markovian preferences (c) such
as learning to maximize rewards over the first three-quarters of a trajectory while not crossing a threshold on returns in the last quarter,
despite searching over a class of Markovian policies. Lastly, considering intransitive preferences generated by aggregating sub-populations
where a single reward function cannot explain the preferences, SPO computes a Minimax Winner (MW) consistently across problem
instances (d). In Fig. 5(a), we show that the RM based approach fails in this setting and always converges to a deterministic policy.

based RLHF, a two-stage procedure. First, given pairs of
preferred and dis-preferred behavior, one trains a reward
model to assign higher scores to the former via a classifica-
tion objective. One then optimizes this reward function via
some reinforcement learning algorithm.

Simple as the above recipe is, the key ingredient of a reward
model can have some undesirable effects. First, assuming
an underlying reward function exists is equivalent to assum-
ing that there exists a total order over agent behavior. This
means that there are no intransitivities in rater preferences
(i.e. A ≻ B,B ≻ C ⇒ A ≻ C), which contradicts what
psychology tells us about actual human decision making
(Tversky, 1969; Gardner, 1970). Even if one believes an
individual person’s preferences are transitive, when aggre-
gated across a population of raters, as is necessary at scale,
transitivity is unlikely to be satisfied (May, 1954). Second,
given the inherent stochasticity of human preferences (Agra-
nov & Ortoleva, 2017), one often learns a reward model that
leads to a collapse in generation diversity. For example, con-
sider a problem where the agent can pick one of two options,
each of which is preferred by a sub-population of raters that
makes up half of the total population. Due to either finite
sample or optimization error, we can easily learn a model
that assigns a slightly higher reward to one option over the
other. Then, if we were to optimize our policy under this
model, we would learn to (almost) exclusively select one
option, leaving half of the population unsatisfied.

In recognition of the above concerns, various reward-model-
free approaches have been proposed in the prior literature.
One particularly promising set of techniques frames RLHF
as a two-player zero-sum game between two policies, each
of which attempts to produce behavior that is preferred by a
rater to the other’s (Yue et al., 2012). While elegant theoreti-
cally, this “dueling” framing inherits the inherent instability
of adversarial training in practice and has therefore mostly
been applied to bandit problems (Dudík et al., 2015; Saha
et al., 2021; Saha & Krishnamurthy, 2022) (with some re-

cent exceptions: Wang et al. (2023); Munos et al. (2023)).

Motivated by these issues, we provide a simple, theoretically
rigorous, and empirically performant approach to RLHF that
eliminates reward modeling and does not require adversarial
training. Our approach follows from two key insights. First,
by framing RLHF as a two-player zero-sum game, we are
able to truly eliminate reward models and therefore are
robust to noisy, intransitive, and non-Markovian preferences
that frequently occur in practice. Second, by leveraging the
symmetry of the game, we prove that we can simply train a
single agent in a self-play fashion, eliminating the need for
unstable adversarial training. Practically, this corresponds
to sampling multiple trajectories from the agent, asking
a preference or teacher model to compare each pair, and
setting the reward to be the trajectory’s win rate. We call our
approach SPO: Self-Play Preference Optimization. More
explicitly, our contributions are as follows:

1. We derive SPO: an algorithm for RLHF that avoids
reward modeling, compounding errors, and adversarial
training. By building upon the concept of a Minimax Win-
ner from social choice theory, we are able to frame RLHF
as a two-player zero-sum game. We then leverage the sym-
metry of the payoff matrix of this game to prove that we can
simply train a single agent against itself.

2. We use a reduction-based analysis to investigate the
convergence properties of SPO. When intransitive prefer-
ences exist, we prove that SPO converges to an approximate
Minimax Winner at the rate of the underlying no-regret al-
gorithm. We also prove that when an underlying reward
function does exist, our approach converges to the optimal
policy at a fast rate that matches that of standard techniques.

3. We demonstrate that on a suite of continuous con-
trol tasks with realistic preference functions, SPO is
more performant than reward-model based approaches.
We find that our approach is able to learn more sample-
efficiently than reward-model based approaches across a
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Approach Example Compounding Errors Intransitive Prefs Learning Setup

Offline, Reward-Based DPO (Rafailov et al., 2023) ✗, Example D.1 ✗, Theorem 2.4 Offline, log-loss

Online, Reward-Based PPO (Ouyang et al., 2022) ✓ ✗, Theorem 2.4 Online RL

Online, Dueling DBGD (Yue & Joachims, 2009) ✓ ✓ Online adversarial RL

Online, Preference-Based SPO (ours) ✓ ✓ Online RL

Table 1: An taxonomy of RLHF algorithms and the sorts of issues they are robust to.

variety of preference setups. This includes trajectory-level
comparisons based on ground-truth Markovian rewards in
the easiest case, stochastic preferences, trajectory-level non-
Markovian preferences and intransitive preferences induced
by aggregating over sub-populations. The strong perfor-
mance of SPO in the latter three challenging setups, all
motivated by practical situations, is illustrated in Figure 2.

Due to limited space, we discuss related work in detail in
Appendix A. Table 1 describes the relationships between
and relative benefits of the different approaches to RLHF.

2. Reinforcement Learning from Human
Feedback via Game Solving

We begin by introducing the notation we will use throughout
the paper before defining our solution concept and deriving
an efficient algorithm to compute it.

2.1. Preliminaries

Consider a finite-horizon reward-free Markov Deci-
sion Process (MDP) (Puterman, 2014) parameterized by
⟨S,A, T , H⟩ where S, A are the state and action spaces,
T : S × A → ∆(S) is the transition operator, and H is
the horizon. 1 We use Ξ ≜ (S × A)H to denote the space
of trajectories and Φh ≜ ×(S × A)h−1 × S to denote the
space of histories of length h.

Preference Oracle. In the preference-based RL setup, we
are given query access to a preference function

P : Ξ× Ξ→ [−1, 1] (1)

which, given two trajectories ξ1, ξ2 ∈ Ξ × Ξ, outputs a
scalar that indicates the preferred trajectory. Explicitly,
given some comparison function P (ξ1 ≻ ξ2), we define
P(ξ1, ξ2) = 2P (ξ1 ≻ ξ2) − 1. Practically, this could be
either be a preference model trained on an offline dataset
(RLAIF, Bai et al. (2022b); Munos et al. (2023); Zhao et al.
(2023)) or a human-in-the-loop (RLHF, Tucker et al. (2020)).
The former setup is similar to reward-based RLHF, except
that the reward model learning step is replaced by learn-
ing a pairwise preference model, which is more natural

1We omit contexts for simplicity of presentation but they can
be added without much overhead, as we detail in Appendix C.8.

when learning from pairwise preference data. 2 Viewed this
way, the preference-model based RLHF based methodology
strictly generalizes reward-based RLHF, as we can still rep-
resent a preference function that is induced by a difference
of rewards, but not every preference function is expressible
this way, as we illustrate in the following sections. Also, in
the “alignment” of generative models the preference func-
tion sometimes consists of a prompted generative model
that is asked to compare two outputs, rather than a model
trained explicitly on a preference dataset (Bai et al., 2022b).
In this setting, we are able to optimize directly based on
the outputs of such a model, rather than requiring a reward
model detour – see Figure 4 for a full workflow.

By construction, preference functions are anti-symmetric,
i.e. ∀ξ1, ξ2 ∈ Ξ × Ξ, P(ξ1, ξ2) = −P(ξ2, ξ1). Similarly,
we have that ∀ξ ∈ Ξ, P(ξ, ξ) = 0.

We assume access to a convex and compact policy class
Π ⊆ {S → ∆(A)}. With a slight abuse of notation, we can
now define the preference function over policy pairs as

P(π1, π2) ≜ Eξ1∼π1,ξ2∼π2
[P(ξ1, ξ2)]. (2)

2.2. A Brief Introduction to Social Choice Theory

Given choices from a population of raters that are repre-
sented as a preference function P , social choice theory (Sen,
1986) studies the question of how best to select options that
satisfy the diversity of preferences inherent in the said popu-
lation. For example, consider the set of preferences P1 over
options (a, b, c, d) in Figure 3.

a b c d

a 0 +1 +1 −1

b −1 0 +1 −1

c −1 −1 0 +1

d +1 +1 −1 0

Figure 3: An intransitive
preference function P1 over
(a, b, c, d). P1(x, y) = 1 if
P (x ≻ y) = 1, −1 if P (x ≻
y) = 0, and 0 if P (x ≻ y) =
0.5. Observe that there is no
unique Copeland Winner.

Given this preference function, perhaps the most natural idea
would be to pick the option that beats the largest number

2e.g. P̂ = argminP̃ E(ξ+,ξ−)∼D[− log( 1
2
(P̃(ξ+, ξ−) + 1)].
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of other options. In the above matrix, this would be either
option a or d as they have the largest row sums. More
formally, this technique is known as a Copeland Winner and
can be expressed mathematically as

CW(P) ≜ argmax
π∈Π

∑
π′∈Π

P(π, π′). (3)

While intuitively appealing, Copeland Winners are often not
unique as in our above example, raising the question of how
to break ties. For example, if half of the group feels like
a ≻ d and the other half like d ≻ a, picking either option
would leave half of the group unsatisfied. This problem
only gets worse as the number of options to choose between
increases, as there is unlikely to be a single option that
everyone prefers to every other option (Dudík et al., 2015).3

In essence, approaches that train reward models like reward-
based RLHF (or implicitly assume them like DPO) are akin
to computing Copeland Winners. Observe that our above
matrix has an intransitivity: a ≻ c, c ≻ d, d ≻ a. This
means that no reward function can explain the above prefer-
ences as it would need to satisfy r(a) > r(c), r(c) > r(d)
and r(d) > r(a) simultaneously, an impossibility. Thus, the
model is forced to tie-break between a and d, potentially
leaving half of the population rather unsatisfied. In prac-
tice, this tie-breaking is performed based on the incredibly
noisy data used to train the reward model (Taori et al., 2023;
Touvron et al., 2023), making it entirely arbitrary. When
combined with the fact that an ϵ difference in reward model
outputs can lead to an entirely different optimal policy, we
are left with an unsatisfying solution.

One potential solution to the issues with the Copeland Win-
ner is to randomize. For example, we could attempt to pick
a distribution over options such that we prefer samples from
this distribution to those from any other distribution with
probability at least 1

2 . For P1, this would correspond to us
picking (a, c, d), each with probability 1

3 , as

min
z∈{a,b,c,d}

(P1(a, z) + P1(c, z) + P1(d, z))/3 = 0.

Intuitively, this means that while we don’t always make ev-
eryone happy (an impossibility, Arrow (1950); Satterthwaite
(1975)), we never pick a solution that makes a significant
portion of the population consistently unhappy. Readers
familiar with game theory might recognize that the above
corresponds to computing the Nash equilibrium of the two-
player zero-sum (2p0s) game with payoffs given by the pref-
erence function. Formally, we define the Minimax Winner
(MW, Kreweras (1965); Simpson (1969); Kramer (1973);
Fishburn (1984)), also known as a von Neumann Winner

3For example, we see empirical evidence of this point in the
high rates of inter-annotator disagreement (Taori et al., 2023; Tou-
vron et al., 2023) in LLM finetuning datasets.

(Dudík et al., 2015), as the following pair of strategies:

MW(P) ≜
(
argmax
p∈∆(Π)

min
q∈∆(Π)

Eπ1∼p,π2∼q[P(π1, π2)],

argmin
q∈∆(Π)

max
p∈∆(Π)

Eπ1∼p,π2∼q[P(π1, π2)]
)
.

Via Sion’s minimax theorem (Sion, 1958), we can guaran-
tee that the above solution concept always exists, unlike a
unique Copeland Winner. We note that because we assumed
Π is convex, we are always able to collapse down any distri-
bution p ∈ ∆(Π) to a single policy p̃ ∈ Π while preserving
solution quality by performing a weighted average:

p̃(ξ) =
∑
π∈Π

p(π)p(ξ|π). (4)

In short, this means that we never need to explicitly maintain
a distribution over policies in practice. We conclude with a
few observations about MWs. First, nowhere in defining a
MW did we need to assume the existence of an underlying
reward function, rendering the above solution concept truly
reward model-free. Second, in the case where there actually
does exist an underlying reward function that explains the
observed preferences, the MW coincides with the optimal
policy for that reward (Dudík et al., 2015), rendering the
MW a strict generalization of the CW. Third, MWs satisfy
a variety of desirable consistency properties (e.g. merging
populations that agree on a MW cannot change the outcome,
which is especially important when attempting to re-use
preference datasets), which deterministic options like the
CW cannot satisfy simultaneously (Brandl et al., 2016). We
now turn our attention to efficiently computing MWs.

2.3. One Player is All You Need for RLHF

Efficient algorithms for computing Nash equilibria of 2p0s
games are a central focus in computational game theory. A
popular approach is to run two no-regret algorithms (e.g.
Hedge (Freund & Schapire, 1997) or Online Gradient De-
scent (Zinkevich, 2003)) against each other, known more
commonly as adversarial training (Goodfellow et al., 2014).
When applied to computing MWs, this is known as dueling
(Yue et al., 2012) and is commonly applied in the bandit
setting. While elegant in theory, this technique inherits all
of the notorious instabilities of adversarial training when
function approximation is introduced. Even ignoring op-
timization issues, simply storing both models in memory
might be difficult in our current era of “foundation” models
(Bommasani et al., 2021). These issues may explain why
dueling techniques have seen limited practical use.

In light of the above difficulties, we ask a simple question:
do we actually need two players to compute MWs? We
prove rigorously that we only need a single player due to
the anti-symmetry of preference functions. All proofs for
this section can be found in Appendix C.
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First, we prove that there always exists a symmetric MW.

Lemma 2.1. ∃(p̂, q̂) ∈ MW(P) s.t. p̂ = q̂. [Proof]

Next, we prove that we can compute a symmetric MW by
running a single no-regret algorithm against its own iterates.
We assume access to the following optimization oracle.

Definition 2.2. O is a no-regret online linear optimiza-
tion algorithm over ∆(Π) if it produces iterates pt+1 =
O(ℓ1:t) ∈ ∆(Π) such that, for any sequence of T linear
loss functions of the form ℓt(p) = Eπ∼p[ft(π)] ∈ [−1, 1]
(with ft : Π→ [−1, 1]), we have

T∑
t=1

ℓt(pt)− min
p⋆∈∆(Π)

T∑
t=1

ℓt(p
⋆) ≤ Reg(T ), (5)

with limT→∞
Reg(T )

T = 0.

Common algorithms like gradient descent satisfy this prop-
erty (Zinkevich, 2003). See Hazan et al. (2016) for a more
extensive list. We define the SPO Loss at round t ∈ [T ] as
the negative preference against the current iterate pt,

ℓSPOt (p) ≜ Eπ∼p,π′∼pt
[−P(π, π′))]. (6)

We can now state our main result.

Theorem 2.3. Consider a single copy of an algorithm O
which satisfies Definition 2.2. Initialize p1 ∈ ∆(Π) and
set pt+1 = O(ℓSPO1:t ). Then, p̄ = (p1 + . . . + pT )/T is a
2Reg(T )

T -approximate Minimax Winner. [Proof]

For ease of presentation, Theorem 2.3 is stated and proved
assuming full feedback, where we observe ℓSPOt (pt) at round
t. In Appendix C.7, we generalize the argument to the more
realistic bandit feedback setting, where we only observe a
preference P(π, π′) for some π, π′.
Proof Sketch. Consider a pair of strategies, p, q ∈ ∆(Π).
Define ℓ1t (p) = Eπ∼p,π′∼qt [−P(π, π′))] and ℓ2t (q) =
Eπ∼pt,π′∼q[P(π, π′))]. By the results of Freund & Schapire
(1997), we know that updating pt+1 = O(ℓ11:t) and qt+1 =
O(ℓ21:t) implies that average strategies p̄ = 1

t

∑t
i pi, q̄ =

1
t

∑t
i qi converge to a Nash equilibrium (Minimax Win-

ner) at the rate of the underlying no-regret algorithm. By
construction, we set p0 = q0. This implies that ℓ10(p) =
Eπ∼p,π′∼q0 [−P(π, π′))] = Eπ∼p,π′∼p0

[−P(π, π′))] =
Eπ∼p0,π′∼p[−P(π, π′))] = ℓ20(p) due to the anti-symmetry
of P . We now proceed by induction. If, at some time
τ , pτ and qτ have the same strategy and perform updates
based on the same loss function, for any deterministic O,
pτ+1 = qτ+1. For randomizedO, our argument still applies
as we describe in the full proof. Then, by the anti-symmetry
of P , we have that ℓ1τ+1 = ℓ2τ+1. Hence, by induction, we
have that pt = qt, ∀t ∈ [T ].

The above result implies that if we run our algorithm for
long enough, we can get arbitrarily close to an exact MW.4

Observe that we didn’t need to assume we were running a
particular algorithm O, rendering the above a reduction of
computing minimax winners to no-regret online learning.5

The above update can also be viewed from the perspective
of a dynamic reward model: it is equivalent to performing
an RL step with a policy-dependent reward model:

rSPOt (ξ) ≜ Eπ′∼pt
[Eξ′∼π′ [P(ξ, ξ′)]]. (7)

This reward model incentivizes the learner to play trajec-
tories that are preferred to its current distribution. Game-
solving amounts to repeatedly taking a small step along
this direction before (implicitly) updating the reward model.
Thus, one can view SPO as using a perfectly shaped curricu-
lum to gently guide the learner. We now pause and further
contextualize our results by considering a few questions.

Q1: Do reward-based RLHF algorithms also compute
MWs? We prove that this is not the case in general by ana-
lyzing multiple algorithms which assume that there exists a
reward function that explains the observed preferences, even
if it is not maintained explicitly, e.g., as in Direct Preference
Optimization (DPO, Rafailov et al. (2023)).

Theorem 2.4. There exists a P and reference policy πref

such that the optimal policies of reward-based RLHF and
DPO are not the Minimax Winner. [Proof]

Proof Sketch. Consider a three element Π. We can construct
a P , with a unique Minimax Winner of the form [x, x, 1−
2x] for x ∈ ( 13 ,

1
2 ). Assume πref = [ 13 ,

1
3 ,

1
3 ]. Then, reward-

based methods can only pick a reward model that makes
(a) one option preferred to all others (resulting in some
permutation of [1, 0, 0]), (b) making two options preferred
to the third (resulting in some permutation of [ 12 ,

1
2 , 0]) or

(c) makes all equally preferred (resulting in [ 13 ,
1
3 ,

1
3 ]). None

of these options can represent the Minimax Winner.

However, by appeal to Equation 7, standard RLHF algo-
rithms / DPO applied iteratively with each batch of prefer-
ences collected on-policy and a sufficiently high frequency
of reward model updates may be able to compute MWs on
average – we explore this idea in our experiments

Q2: If there exists an optimal policy / Copeland Winner
for my problem, could running SPO be an inefficient way
to compute it? We prove that this is not the case in a strong
sense: when there exists a clearly optimal policy, our above
algorithm converges to it at a fast statistical rate – Õ( 1

T )

4For last iterate (rather than average iterate) convergence, one
can simply set the no-regret algorithm to be Optimistic Mirror
Descent and apply the results of Daskalakis et al. (2017).

5We note that in contrast to the usual asymptotic convergence
guarantees one gets for self-play (Leslie & Collins, 2006), we
inherit the rate of the underlying no-regret algorithm.
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Figure 4: Left: In the setting where we are able to query the preference function online, SPO saves us a detour through a reward model.
Right: In the setting where we are given a fixed dataset, we are still able to apply SPO. Rather than fit a reward model, we fit a preference
model P̂ : Ξ × Ξ → [−1, 1] that takes in both trajectories in each preference pairs and attempts to maximize the likelihood of the
preferred trajectory. Intuitively, this model is modeling relative probabilities rather than absolute scores. One would then use this P̂ as a
plug-in estimate for P and runs SPO as usual. We do not explore the offline dataset paradigm in our experiments.

Algorithm 1 SPO (Theoretical Version)
1: Input: Learning rate η, Iterations T , Preference fn. P .
2: Output: Trained policy π.
3: Initialize πh(·|ϕ) = Unif(A), ∀ϕ ∈ Φh, h ∈ [H].
4: for t in 1 . . . T do
5: // Preference to πt as reward
6: Compute rt(ξ) = Eξ′∼πtP(ξ, ξ′).
7: Set Qh

t (ϕ, a) = Eξ∼πt
[rt(ξ)|ϕh = ϕ, ah = a].

8: Set Ah
t (ϕ, a) = Qh

t (ϕ, a)− Ea′∼πh
t (ϕ)

[Qh
t (ϕ, a

′)].
9: for ϕ, a, h ∈ Φh ×A× [H] do

10: // use no-regret algo for update
11: πh

t+1(a|ϕ) ∝ πh
t (a|ϕ) exp (ηAh

t (ϕ, a)).
12: end for
13: end for
14: Return π̄, trajectory-level mixture of π1:T .

instead of the usual Õ( 1√
T
) average regret. This matches

the rates for UCB-style methods, previously been studied in
more restricted versions of the dueling setup (Bengs et al.,
2021). We give a simpler version of the result here, with a
more general form and proof in Appendix C.6.

Corollary 2.5 (Informal). Suppose that there exists π∗ ∈
Π such that P(π∗, π) > ∆ for all π ̸= π∗ and −∆ ≤
P(π, π′) ≤ ∆ for all π, π′ ̸= π∗. Then, after T rounds, the
average solution p̄ computed using Hedge as oracle O and
ℓSPOt is an Õ( |Π|

∆T )-approximate Minimax Winner.

2.4. SPO: Self-Play Preference Optimization.

For single-step problems with a small and discrete policy
class, it is common to maintain a distribution over policies
/ arms. However, as we transition to the sequential setting

with a large and often continuous policy class, it is difficult
to scale such an approach. We are therefore faced with the
question of what is the right no-regret algorithm to optimize
the sequence of SPO losses (Equation 7) in the RL setting?

To answer this question, we turn to the celebrated idea of
local regret minimizers (Zinkevich et al., 2007; Even-Dar
et al., 2009). Consider a problem with a finite state space.
Then, at each state s ∈ S, we could independently instanti-
ate a no-regret algorithm that optimizes over ∆(A), feeding
it a loss that depends on the cumulative reward received after
exiting the state, i.e. Q(s, a). Then, regardless of the state
distribution our resulting policy induces, we can guarantee
that we’re improving at each iteration. For a specific no-
regret algorithm (Hedge, Freund & Schapire (1997)), this
leads to the well-known soft policy iteration (SPI) procedure
(Ziebart, 2010). Because our reward function is at the trajec-
tory level, we technically need to have a regret minimizer at
each history rather than at each state. We describe in Algo-
rithm 1 an instantiation of SPO that uses history-dependent
SPI as its policy optimizer (Lines 6-10) and now present a
performance guarantee on the learned policy.

Corollary 2.6. With an appropriate setting of η, run-
ning Algorithm 1 for T iterations guarantees that π̄ is a

8H
√

log(|A|)
T -approximate Minimax Winner. [Proof]

This follows directly from our Theorem 2.3.

SPO in the Contextual Bandit Setting. For certain RLHF
applications (i.e. LLM preference fine-tuning), it is common
to model the problem as a contextual bandit rather than a
bona fide RL problem. In such settings, SPI simplifies back
down to the Hedge algorithm (Freund & Schapire, 1997).
This means that for all contexts (prompts) x ∈ X and all

6
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Algorithm 2 SPO (Practical Version)
1: Input: Iterations T , Preference fn. P , Queue size B,

Reinforcement learning algo. RL : Π×D → Π.
2: Output: Trained policy π.
3: Initialize π1 ∈ Π, Queue Q ← [ξ1:B ∼ π1].
4: for t in 1 . . . T do
5: Sample ξt ∼ πt.
6: // Win-rate over queue as reward
7: Compute rt(ξt) =

1
|Q|
∑B

q=1 P(ξt, ξq).
8: Set rht = rt(ξt)/H , ∀h ∈ [H].
9: // use PPO, TRPO, SAC ...

10: πt+1 ← RL(πt,D = {(sht , aht , rht )}h∈[H]).
11: Q ← [ξ2, . . . , ξB , ξt].
12: end for
13: Return best of π1:T on validation data.

arms (completions) y ∈ Y , SPO (Algorithm 1) simplifies to

πt+1(y|x) ∝ πt(y|x) · exp
(
ηEy′∼πt(x)[P(y ≻ y′|x)]

)
.

We do not explore the contextual setting in our experiments
and leave a thorough study of approximations of the above
update that scale to modern-day generative modeling appli-
cations to future work. See Appendix C.8 for the natural
extension of Algorithm 1 the contextual MDP setting.

SPO in Continuous Control. One often uses a deep net-
work to represent their policy rather than the tabular repre-
sentation we assume in Algorithm 1. It turns out that for
certain policy parameterizations, the Natural Policy Gradi-
ent (NPG) algorithm of Kakade (2001) is exactly equivalent
to the soft policy iteration procedure (Agarwal et al., 2021).
Many standard deep RL algorithms like TRPO (Schulman
et al., 2015) and PPO (Schulman et al., 2017) are explic-
itly motivated as approximating NPG, while techniques
like SAC (Haarnoja et al., 2018) can also be viewed as ap-
proximate soft policy iteration. Thus, as we move towards
practice, we are free to choose from a wide set of deep RL
techniques as reasonable approximations of Algorithm 1.

One other concern we need to resolve is how to do credit
assignment with trajectory-level feedback. In fact, if we
are unable to provide rewards for each timestep in the prob-
lem, our options for policy optimization are quite limited
outside of notoriously high variance REINFORCE-style pol-
icy gradients (Williams, 1992). We suggest a simple fix to
this problem: just split the trajectory-level reward equally
amongst all state-action pairs. We prove in Appendix C that
doing so preserves policy optimality.

Lemma 2.7. Consider a trajectory-level reward function
r and define Π⋆ = argmaxπ∈Π Eξ∼π[r(ξ)] as the corre-
sponding set of optimal policies. For all (st, at) in any
ξ, let r̃(st, at) = r(ξ)/H . Then, we have that Π⋆ =

dTV(pRM, p ) = 0.51 dTV(pRM, p ) = 0.07 dTV(pRM, p ) = 0.63

dTV(pSPO, p ) = 0.01 dTV(pSPO, p ) = 0.02 dTV(pSPO, p ) = 0.00

RM Minimax Winner SPO

(a) Intransitive Prefs. (Discrete)

0

4
2

3
4

5
4 3

2

7
4

10
20

(b) Intransitive Prefs. (Ant-v3)

Figure 5: (a): Across a variety of intransitive preferences over a
discrete set of three options, SPO learns the MW almost exactly,
while RM always converges to a corner – see Appendix F.1 for
details. (b): We visualize the position of our agent in a Mujoco
Ant-v3 environment at the end of an episode over the course of
training. Each dot represents 100k steps of training. We see that
our agent traces out a circle of radius 10 (the MW) on average.
More seeds and results in Fig. 13.

argmaxπ∈Π Eξ∼π[
∑H

h r̃(st, at)]. [Proof]

In general, such a transformation can cause issues with
learning good state-based critics due the fundamentally non-
Markovian nature of a trajectory-level reward. However, we
find that in practice, this reward transformation (Line 7 in
Algorithm 2) significantly speeds up policy search.

Lastly, in theory, SPO requires sampling multiple trajecto-
ries per policy update. In practice, we simply keep a queue
Q of a small, fixed size (typically 10-100) and use the win
rate against this queue for labeling trajectories sampled from
the current policy (Line 6 in Algorithm 2). This makes our
approach strikingly lightweight to implement on top of any
policy optimization method of choice: it is just reward rela-
beling. We describe our full approach in Algorithm 2. We
remark that this trick of maintaining a queue only works
in settings without context, and in contextual settings like
LLMs, we still need to query and compare multiple actions
at each context – see Algorithm 4 for details.

3. Experimental Evaluation
We evaluate SPO experimentally and compare it against an
iterative Reward Modeling (RM) approach along several
axes. We focus on the context-free, online oracle setting and
leave exploration of the contextual, offline dataset setting to
future work. Specifically, we ask the following questions:

1. Can SPO compute MWs when faced with intransitive
preferences? We consider aggregating three populations
in different proportions, each of which has transitive pref-
erences internally. We measure how far off SPO is from
the exact MW. We also present qualitative results on a con-
tinuous control task from Mujoco, (Brockman et al., 2016)
where computing the MW for comparison is infeasible.

2. How sample efficient is SPO on problems with unique

7
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(c) Non-Markovian Preferences

Figure 6: (a): When the preferred trajectory is that with the higher ground-truth reward, SPO is able to match or improve upon the
RM-based approach. (b) We ablate the robustness of SPO and reward-model based approaches to preference feedback being flipped w.p.
ϵ. Despite the fact that SPO doesn’t learn an extra model to average out the noisy feedback, on some environments, it is able to match
the performance of RM. (c) We compare SPO and RM-based approaches on a non-Markovian task: maximize the reward subject to the
constraint that the total reward accrued during the last quarter must be at most rmax. SPO learns policies that exploit their freedom early in
the episode while RM struggles to cross the 4 · rmax threshold. Standard errors are computed across 10 seeds.

Copeland Winners / optimal policies? We evaluate SPO
and RM with preferences based on ground truth rewards
from the DMControl (Tassa et al., 2018) continuous con-
trol environments. This setting is tailor-made for RM as
there exists a deterministic, Markovian reward function that
explains the observed preferences.

3. How robust is SPO to stochastic preferences? We study
the robustness of RM and SPO to corruptions of various
probabilities (i.e. Bernoulli noise) in preference labels. This
setup is meant to capture some of the stochasticity in human
preferences that makes RLHF challenging in practice.

4. Can SPO handle Non-Markovian preferences? We
consider a challenging situation where we want to elicit
qualitatively non-Markovian behavior (e.g. constraints on
just a part of a trajectory) from a Markovian policy purely
on the basis of trajectory-level relative feedback.

To eliminate data staleness issues, we allow both SPO and
RM to query the preference function online, and thus con-
tinuously update the RM during policy search. Hence, RM
can be seen as a maximally iterative reward-based method
and therefore much closer to SPO than the traditional two-

stage procedure often employed in RLHF. 6 As we discussed
above, reward-based methods with sufficiently high update
frequencies resemble SPO, with the only difference poten-
tially being the training distribution for the underlying RM,
when compared with the implicit SPO reward (7). Thus,
our investigation focuses on the subtle questions: whether
learning a reward model provides any benefit over directly
using preference data when teacher queries are cheap.

We use Soft Actor Critic (SAC, Haarnoja et al. (2018))
for continuous control and Proximal Policy Optimization
(PPO, Schulman et al. (2017)) for discrete action tasks,
both as implemented in the ACME framework (Hoffman
et al., 2020). The actor, critic sizes and activations are kept
same between SPO and RM. Explicitly, the only distinction
between SPO and RM is how the reward of a trajectory is
estimated and fed into the policy optimization algorithm.

The reward model is Markovian and trained on trajectory
level comparisons using trajectories drawn from the agent’s

6In Figure 15, we observe that freezing the reward model part-
way through training (i.e. moving us closer to an offline RLHF
recipe) leads to a consistent decline in performance for RM.
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replay buffer by optimizing the Bradley-Terry loss (Bradley
& Terry, 1952). 7 During learning, the current reward model
is used to label samples that are drawn from the replay buffer
for performing policy search. The relabeling works better in
our experiments than using the rewards assigned when these
samples were put into the replay buffer. We keep the reward
model architectures consistent with Lee et al. (2021a) and
perform extensive sweeps over learning rates and update
rules – see Appendix F for more details. We postpone
additional results for all experiments to Appendix E.

Intransitive Preferences. We begin by testing whether SPO
is actually able to compute MWs in practice via attempting
to optimize cyclic (intransitive) preferences.

First, we consider 3 populations, each of which has inter-
nally transitive preferences over a discrete set of 3 options.
However, when aggregated, their preferences become intran-
sitive, as is common in real-world scenarios (May, 1954).
Because this problem is discrete, we can compute the MW
in closed form. As we show in Fig. 5 (a) (also Figs. 11,
12), SPO almost exactly computes the MW across a range
of sub-population weightings, agreeing with Theorem 2.3.
In contrast, RM forces a total order over the actions, and the
policy typically converges to a corner far from the MW.

Next, we consider the Mujoco Ant-v3 navigating atop a 2D
plane and consider its radius and angle with respect to the
origin at the end of the episode, (R(ξ), θ(ξ)). We consider
a preference where a trajectory looses to the “pizza-slice” of
angle θ̄ = π/4 in front of it and, within each slice, prefers
the “crust” to the “cheese”. While we are unable to compute
the exact MW here, the symmetry of the preference func-
tion over angles implies that the MW qualitatively chooses
points uniformly across the slices, while keeping a mini-
mum distance from the center. In Figures 5 (b) and 13, we
see that over the course of training, our agent matches this
behavior on average, continuously sweeping out full circles.

Maximum Reward Preference. We next consider tasks
where the preferences are determined according to compar-
isons based on the underlying ground truth reward func-
tion, i.e. P1(ξ, ξ

′) = 2 · 1[r(ξ) > r(ξ′)] − 1, where
r(ξ) =

∑H
t=1 rGT(s

ξ
t , a

ξ
t ), with rGT(s

ξ
t , a

ξ
t ) denoting the

ground truth reward for the tth state-action pair in trajectory
ξ. Naturally, this is the most favorable setting for utilizing
an RM based approach, where one might hope to leverage

7As prior work often uses snippet-level feedback in this domain
(Lee et al., 2021a), we ablate its effect in Figure 14 and find that
it can either help or hurt depending on the environment. We also
do not include several other techniques from Lee et al. (2021a)
like reward model ensembles, active query selection, or batched
rather than interleaved updates of the reward model as our work
focuses on the fundamental differences between preference-based
and reward-based methods, rather than query efficiency in RLHF.
We note that the aforementioned techniques are equally applicable
to both learned reward and preference models.

the generalization ability of an RM to perform careful credit
assignment for sample efficient learning. However, based on
Figure 5(b) and 8, this isn’t always the case. This dovetails
with our Corollary 2.5 on the fast rates enjoyed by SPO
when preferences are explained by a reward function.

Noisy Preferences. A natural followup to ground truth re-
ward based preferences is to test the robustness of these
methods to noisy preferences (representing annotator dis-
agreements). We study this setting by flipping the maximum
reward preference P1(·) above according to i.i.d Bernoulli
noise k, i.e. P2(ξ, ξ

′) = (1 − k)P1(ξ, ξ
′) + k · P1(ξ

′, ξ),
where k ∼ Bern(ϵ). As we do not learn an extra model
in our implementation of SPO, we would expect it to be
less robust to this sort of noise due to the lack of an addi-
tional averaging effect. In Figure 6 (a) and 9, we see that
SPO performs comparably to RM on some environments
while performing noticeably worse on some. Taken with
the preceding result, this result implies that while learning
a parametric model from preference feedback has limited
utility when raters are always correct, doing so can provide a
strong emperical benefit in some stochastic situations. Thus,
an interesting question to explore in future work is whether
learning an iterative preference model helps close this gap.

Non-Markovian Preferences. Lastly, we consider a chal-
lenging task where we want the agent to maximize their
cumulative reward as much as possible subject to the con-
straint that their total reward in the last quarter of a trajectory
is below a threshold rmax. The optimal strategy for this set-
ting is to exhibit qualitatively non-Markovian behavior, i.e.
maximize reward as much as possible during the first 3

4 ths
of an episode before switching to more conservative be-
havior. The reason this is challenging is because we are
optimizing over Markovian policies, which means the agent
needs to learn an unusually complex mapping. In Figs. 6 (b)
and 9, we see that while SPO is consistently able to cross the
4 · rmax threshold that corresponds to exhibiting qualitatively
non-Markovian behavior, RM often struggles to do so.

4. Discussion
This paper develops SPO, a simple and effective approach
to RLHF. We confirm the efficacy both in our theoretical
analysis and diverse evaluation in control tasks. In theory,
better understanding of last iterate convergence issues with
bandit feedback, and handling uncertainty in learned prefer-
ence functions are interesting research directions. A natural
empirical question is applying these ideas to fine-tuning gen-
erative models with AI feedback from large models, or using
preference models learned from human annotations. Relat-
edly, an computational limitation of preference model-based
methods compared to reward model-based in the contextual
setting worth exploring is the need to sample multiple times
(at least twice) to compute scores for a generation.
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S., Raichuk, A., Vincent, D., et al. Acme: A research
framework for distributed reinforcement learning. arXiv
preprint arXiv:2006.00979, 2020.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences and
demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In Proceedings of the
Nineteenth International Conference on Machine Learn-
ing, pp. 267–274, 2002.

Kakade, S. M. A natural policy gradient. Advances in neural
information processing systems, 14, 2001.

Kalai, A. and Vempala, S. Efficient algorithms for online
decision problems. Journal of Computer and System
Sciences, 71(3):291–307, 2005.

Kramer, G. H. On a class of equilibrium conditions for
majority rule. Econometrica, 41(2):285–97, 1973. URL
https://EconPapers.repec.org/RePEc:
ecm:emetrp:v:41:y:1973:i:2:p:285-97.

Kreweras, G. Aggregation of preference orderings. In
Mathematics and Social Sciences I: Proceedings of the
seminars of Menthon-Saint-Bernard, France (1–27 July
1960) and of Gösing, Austria (3–27 July 1962), pp. 73–79,
1965.

Lee, K., Smith, L., and Abbeel, P. Pebble: Feedback-
efficient interactive reinforcement learning via relabeling
experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021a.

11

https://www.scientificamerican.com/article/mathematical-games-1970-12/
https://www.scientificamerican.com/article/mathematical-games-1970-12/
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:41:y:1973:i:2:p:285-97
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:41:y:1973:i:2:p:285-97


A Minimaximalist Approach to Reinforcement Learning from Human Feedback

Lee, K., Smith, L., Dragan, A., and Abbeel, P. B-pref:
Benchmarking preference-based reinforcement learning.
arXiv preprint arXiv:2111.03026, 2021b.

Leslie, D. S. and Collins, E. J. Generalised weakened fic-
titious play. Games and Economic Behavior, 56(2):285–
298, 2006.

May, K. O. Intransitivity, utility, and the aggregation of
preference patterns. Econometrica: Journal of the Econo-
metric Society, pp. 1–13, 1954.

McMahan, B. Follow-the-regularized-leader and mirror de-
scent: Equivalence theorems and l1 regularization. In Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pp. 525–533. JMLR
Workshop and Conference Proceedings, 2011.

Miller, G. A. The magical number seven, plus or minus two:
Some limits on our capacity for processing information.
Psychological review, 63(2):81, 1956.

Munos, R., Valko, M., Calandriello, D., Azar, M. G., Row-
land, M., Guo, Z. D., Tang, Y., Geist, M., Mesnard, T.,
Michi, A., Selvi, M., Girgin, S., Momchev, N., Bachem,
O., Mankowitz, D. J., Precup, D., and Piot, B. Nash
learning from human feedback, 2023.

Nash, J. Non-cooperative games. Annals of mathematics,
pp. 286–295, 1951.

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., and Burdick, J.
Dueling posterior sampling for preference-based rein-
forcement learning. In Conference on Uncertainty in
Artificial Intelligence, pp. 1029–1038. PMLR, 2020.

OpenAI, :, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,

Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez,
H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S.,
Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Sel-
sam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker,
S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin,
J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Stau-
dacher, N., Such, F. P., Summers, N., Sutskever, I., Tang,
J., Tezak, N., Thompson, M., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.
F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright,
C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J.,
Weinmann, C., Welihinda, A., Welinder, P., Weng, J.,
Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich,
S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M.,
Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba,
W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,
T., Zhuang, J., Zhuk, W., and Zoph, B. Gpt-4 technical
report, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Pacchiano, A., Saha, A., and Lee, J. Dueling rl: Reinforce-
ment learning with trajectory preferences, 2023.

Pomerleau, D. A. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

Puterman, M. L. Markov decision processes: discrete

12



A Minimaximalist Approach to Reinforcement Learning from Human Feedback

stochastic dynamic programming. John Wiley & Sons,
2014.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. arXiv preprint
arXiv:2305.18290, 2023.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Rosset, C., Cheng, C.-A., Mitra, A., Santacroce, M., Awadal-
lah, A., and Xie, T. Direct nash optimization: Teaching
language models to self-improve with general preferences.
arXiv preprint arXiv:2404.03715, 2024.

Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A. Ac-
tive preference-based learning of reward functions. 2017.

Saha, A. and Krishnamurthy, A. Efficient and optimal algo-
rithms for contextual dueling bandits under realizability.
In International Conference on Algorithmic Learning
Theory, pp. 968–994. PMLR, 2022.

Saha, A., Koren, T., and Mansour, Y. Adversarial duel-
ing bandits. In International Conference on Machine
Learning, pp. 9235–9244. PMLR, 2021.

Satterthwaite, M. A. Strategy-proofness and arrow’s condi-
tions: Existence and correspondence theorems for voting
procedures and social welfare functions. Journal of eco-
nomic theory, 10(2):187–217, 1975.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sen, A. Social choice theory. Handbook of mathematical
economics, 3:1073–1181, 1986.

Sikchi, H., Saran, A., Goo, W., and Niekum, S. A
ranking game for imitation learning. arXiv preprint
arXiv:2202.03481, 2022.

Simpson, P. B. On Defining Areas of Voter Choice: Profes-
sor Tullock on Stable Voting. The Quarterly Journal of
Economics, 83(3):478–490, 08 1969. ISSN 0033-5533.
doi:10.2307/1880533. URL https://doi.org/10.
2307/1880533.

Sion, M. On general minimax theorems. 1958.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. Ad-
vances in Neural Information Processing Systems, 33:
3008–3021, 2020.

Sui, Y., Zhuang, V., Burdick, J. W., and Yue, Y. Multi-
dueling bandits with dependent arms. arXiv preprint
arXiv:1705.00253, 2017.

Swamy, G., Reddy, S., Levine, S., and Dragan, A. D.
Scaled autonomy: Enabling human operators to control
robot fleets. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5942–5948. IEEE,
2020.

Swamy, G., Choudhury, S., Bagnell, J. A., and Wu, S. Of
moments and matching: A game-theoretic framework for
closing the imitation gap. In International Conference on
Machine Learning, pp. 10022–10032. PMLR, 2021.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford
alpaca: An instruction-following llama model, 2023.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,
de Las Casas, D., Budden, D., Abdolmaleki, A., Merel,
J., Lefrancq, A., Lillicrap, T. P., and Riedmiller, M. A.
Deepmind control suite. CoRR, abs/1801.00690, 2018.
URL http://arxiv.org/abs/1801.00690.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Tucker, M., Novoseller, E., Kann, C., Sui, Y., Yue, Y., Bur-
dick, J. W., and Ames, A. D. Preference-based learning

13

https://doi.org/10.2307/1880533
https://doi.org/10.2307/1880533
https://doi.org/10.2307/1880533
http://arxiv.org/abs/1801.00690


A Minimaximalist Approach to Reinforcement Learning from Human Feedback

for exoskeleton gait optimization. In 2020 IEEE interna-
tional conference on robotics and automation (ICRA), pp.
2351–2357. IEEE, 2020.

Tversky, A. Intransitivity of preferences. Psychological
review, 76(1):31, 1969.

Viappiani, P. and Boutilier, C. Optimal bayesian recom-
mendation sets and myopically optimal choice query sets.
Advances in neural information processing systems, 23,
2010.

Wang, Y., Liu, Q., and Jin, C. Is rlhf more difficult than
standard rl?, 2023.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Wirth, C., Akrour, R., Neumann, G., Fürnkranz, J., et al. A
survey of preference-based reinforcement learning meth-
ods. Journal of Machine Learning Research, 18(136):
1–46, 2017.

Yue, Y. and Joachims, T. Interactively optimizing informa-
tion retrieval systems as a dueling bandits problem. In
Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 1201–1208, 2009.

Yue, Y., Broder, J., Kleinberg, R., and Joachims, T. The
k-armed dueling bandits problem. Journal of Computer
and System Sciences, 78(5):1538–1556, 2012.

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., and
Liu, P. J. Slic-hf: Sequence likelihood calibration with
human feedback. arXiv preprint arXiv:2305.10425, 2023.

Zhu, B., Frick, E., Wu, T., Zhu, H., and Jiao, J. Starling-
7b: Improving llm helpfulness & harmlessness with rlaif,
November 2023.

Ziebart, B. D. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. Carnegie Mel-
lon University, 2010.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences, 2020.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
international conference on machine learning (icml-03),
pp. 928–936, 2003.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C.
Regret minimization in games with incomplete informa-
tion. Advances in neural information processing systems,
20, 2007.

Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell,
J. A., Atkeson, C. G., and Kuffner, J. Optimization and
learning for rough terrain legged locomotion. The Inter-
national Journal of Robotics Research, 30(2):175–191,
2011.

14



A Minimaximalist Approach to Reinforcement Learning from Human Feedback

A. Related Work
Dueling Bandits and Dueling RL. Beginning with the seminal work of Yue et al. (2012), various authors have viewed
preference-based optimization of a multi-armed or contextual bandit as a two-player zero-sum game (Dudík et al., 2015;
Saha et al., 2021; Saha & Krishnamurthy, 2022; Bengs et al., 2021). Dudík et al. (2015) carry out a detailed theoretical study
of the two-player approach in contextual bandits, where they use the name von Neumann winner to refer to the concept of a
Minimax Winner. We adopt the latter name due to its older roots in the social choice theory literature. More recently, various
authors have investigated dueling reinforcement learning algorithms from a theoretical perspective. In contrast to Pacchiano
et al. (2023), we do not need to assume preferences are explained by an underlying reward function. We build upon the
work of Wang et al. (2023) by utilizing their reduction of RLHF to adversarial MDP solving. However, we further leverage
the structure of the problem to derive single-player algorithms, while all aforementioned approaches requires adversarial
training.

Both in the bandit and sequential settings, prior work has considered single-player algorithms for RLHF. However, these
results require strong linearity assumptions and are only applicable in the bandit domain (Sui et al., 2017) or assume an
underlying Markovian reward function (Novoseller et al., 2020). In contrast, we provide a reduction to no-regret online
learning that allows one to plug in any no-regret algorithm (e.g. Online Gradient Descent, Zinkevich (2003)) without
additional assumptions. In particular, by leveraging a recent result from Wang et al. (2023), we are able to prove that
we can utilize a variation of the Natural Policy Gradient (Kakade, 2001; Agarwal et al., 2021), which practical policy
gradient algorithms like PPO (Schulman et al., 2017) and TRPO (Schulman et al., 2015) approximate, to efficiently compute
Minimax Winners, bypassing the hardness result of Daskalakis et al. (2020) by utilizing the structure of our particular game.

Perhaps the most similar work to ours is the concurrent work of Munos et al. (2023). They derive a specific algorithm, focus
on quantal response equilibria to be able to prove last-iterate convergence, and treat the problem as a normal-form game.
Instead, we focus on a general algorithmic framework, provide convergence guarantees to the Nash equilibrium, and account
for the sequential nature of the game. Empirically, they focus on a particular task of learning document summarization
from human feedback, while we study continuous control tasks where we experiment with a range of realistic preference
functions. Recent work by Chen et al. (2024) formulates inverse RL for LLM fine-tuning as a kind of self-play – we focus
on optimizing from preferences rather than from demonstrations.

Our reward model baseline and our continuous control setup are heavily influenced by the works of Christiano et al.
(2017); Lee et al. (2021a). One critical distinction from this prior work is rather than assuming that the rater is able to
provide snippet-level feedback, we only assume they can perform trajectory-level comparisons, a much less dense form of
supervision.

RLHF without Reward Models. Recently, several authors have proposed eliminating reward models from RLHF by
leveraging the well-known bijection between the optimal policies of minimum-relative-entropy RL problems and their
advantage functions (Ziebart, 2010) to directly optimize the policy by substituting it into the classification loss usually
used to train the reward model (Zhao et al., 2023; Rafailov et al., 2023; Hejna et al., 2023; Azar et al., 2023). While these
approaches are appealing for their conceptual simplicity and ease of implementation, they suffer from the same issues with
intransitive and noisy preferences as they are derived on the basis of an implicit reward model. Additionally, as we discuss
further in Appendix D, they can suffer from compounding errors (Ross et al., 2011) due to their offline nature. In a sense,
this family of approaches can be thought of as the preference-based analog to behavioral cloning techniques (Pomerleau,
1988) in imitation learning. 8 In contrast, the technique we propose is the preference-based analog of inverse reinforcement
learning approaches (Ziebart, 2010). We summarize this taxonomy in Table 1.

Self-Play In Language Modeling. Various works have explored self-play for preference fine-tuning LLMs. Conceptually,
this can be thought of as an instantiation of the general SPO reduction on a contextual bandit problem, using a variety of
base learners to approximate the idealized update we propose. Concurrent to our work, Munos et al. (2023) propose using
policy gradients to optimize a family of objectives, including the SPO losses. Subsequent to our work, Calandriello et al.
(2024) propose using Online IPO, Rosset et al. (2024) propose using Online DPO, and Gao et al. (2024) propose using
Online REBEL to optimize the sequence of SPO losses. We do not explore the contextual nor preference fine-tuning settings
in our experiments and refer interested readers to the above papers for details on scalable approximations of SPO.

8While preferences are collected on the initial policy’s distribution (unlike in BC), this data becomes off-policy after policy optimization.
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B. Frequency of Querying Online Preference Oracle.
Our presentation assumed access to a preference function P which can be queried at each round with new trajectories. This
is natural when preference labels are generated by a model learned from a previously collected preference dataset, as in
recently studied RLAIF settings (Bai et al., 2022a; Zhao et al., 2023). However, in other settings, it is desirable to directly
obtain the preference labels from humans or other expert models (RLHF, Tucker et al. (2020)), where online querying is not
possible. SPO is compatible with batched queries the queries in these settings. Specifically, we can freeze the policy for
some batch size B, accumulate a dataset of B trajectory pairs to compare, and then query the labels for all of them. This
corresponds to mini-batching in the no-regret algorithm being used by SPO, which preserves no-regret for B < O(

√
T ).

C. Proofs
Contents

C.1 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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C.1. Proof of Lemma 2.1

Proof. We follow a similar proof strategy to Fey (2012). For convenience, we interpret the preference P as a matrix of size
|Π|× |Π| and will write things in matrix notation, i.e. Eπ1∼p,π2∼q[P(π1, π2)] = pTPq. We consider some (p̂, q̂) ∈ MW(P)
and will show that also (q̂, p̂) ∈ MW(P). Since (p̂, q̂) ∈ MW(P) and by the definition of a Nash equilibrium,

max
q∈∆(Π)

p̂TPq ≤ min
p∈∆(Π)

pTP q̂

⇒ max
q∈∆(Π)

qTPT p̂ ≤ min
p∈∆(Π)

q̂TPT p

⇒ max
q∈∆(Π)

−qTP p̂ ≤ min
p∈∆(Π)

−q̂TPp (By the anti-symmetry of P)

⇒ − min
q∈∆(Π)

qTP p̂ ≤ − max
p∈∆(Π)

q̂TPp

⇒ min
q∈∆(Π)

qTP p̂ ≥ max
p∈∆(Π)

q̂TPp

⇒ max
q∈∆(Π)

q̂TPq ≤ min
p∈∆(Π)

pTP p̂

Thus, (q̂, p̂) also forms a Nash equilibrium. Then, because of the interchangeability of Nash equilibrium strategies for
two-player zero-sum games (Nash, 1951), we have that (p̂, p̂) and (q̂, q̂) are symmetric MWs.

C.2. Proof of Theorem 2.3

Proof. We follow the strategy outlined in our preceding proof sketch.

Consider two players, p, q ∈ ∆(Π). An ϵ-approximate Nash equilibrium is a pair of strategies (p, q) such that

max
p⋆∈∆(Π)

Eπ∼p⋆,π′∼q[P(π, π′))]− min
q⋆∈∆(Π)

Eπ∼p,π′∼q⋆ [P(π, π′))] ≤ ϵ. (8)

We define the following per-round losses for both players:

ℓ1t (p) = Eπ∼p,π′∼qt [−P(π, π′)], ℓ2t (q) = Eπ∼pt,π′∼q[P(π, π′)]. (9)
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We can then define the (static) regret suffered by both players as

Regp(T ) =
T∑
t

ℓ1t (pt)− min
p⋆∈∆(Π)

T∑
t

ℓ1t (p
⋆), Regq(T ) =

T∑
t

ℓ2t (qt)− min
q⋆∈∆(Π)

T∑
t

ℓ2t (q
⋆). (10)

By construction, we set p0 = q0. This implies that

ℓ10(σ) = Eπ∼σ,π′∼q0 [−P(π, π′)] (11)
= Eπ∼σ,π′∼p0

[−P(π, π′)] (12)
= Eπ∼p0,π′∼σ[P(π, π′)] (By the anti-symmetry of P)

= ℓ20(σ) (13)

If, at some time τ , pτ and qτ have the same strategy and perform updates based on the same loss function, pτ+1 = qτ+1.9

Then, by the anti-symmetry of P , we have that ℓ1τ+1 = ℓ2τ+1. Therefore, by induction, we have that pt = qt, ∀t ∈ [T ].

We complete the proof by following the argument in Freund & Schapire (1997):

Regp(T ) + Regq(T )

T
=

1

T

(
T∑
t

ℓ1t (pt)− min
p⋆∈∆(Π)

T∑
t

ℓ1t (p
⋆) +

T∑
t

ℓ2t (qt)− min
q⋆∈∆(Π)

T∑
t

ℓ2t (q
⋆)

)
(14)

=
1

T

(
− min

p⋆∈∆(Π)

T∑
t

ℓ1t (p
⋆)− min

q⋆∈∆(Π)

T∑
t

ℓ2t (q
⋆)

)
(ℓ1t (pt) + ℓ2t (qt) = 0)

=
1

T

(
− min

p⋆∈∆(Π)

T∑
t

Eπ∼p⋆,π′∼qt [−P(π, π′))]− min
q⋆∈∆(Π)

T∑
t

Eπ∼pt,π′∼q⋆ [P(π, π′))]

)
(15)

=

(
max

p⋆∈∆(Π)
Eπ∼p⋆,π′∼q[P(π, π′))]− min

q⋆∈∆(Π)
Eπ∼p,π′∼q⋆ [P(π, π′))]

)
. (16)

Thus, (p, q) = (p, p) is a symmetric Regp(T )+Regq(T )

T =
2Regp(T )

T -approximate Nash equilibrium / Minimax Winner.

C.3. Proof of Theorem 2.4

Proof. Our preceding proof sketch ignored the effect of regularization for simplicity. We now provide a specific example
under which standard algorithms do not compute Minimax Winners, even with regularization to a prior.

We set πref to be uniform to remove any trivial failures due to a lack of data support and consider the following preference
matrix:

a b c

a 0 2
5
−1

b − 2
5

0 +1

c +1 −1 0

Figure 7: A preference function over Y = (a, b, c) with unique Minimax Winner ( 5
12 ,

5
12 ,

1
6 ) and unique Copeland winner b.

We begin by considering standard RLHF algorithms. First, we would fit a reward model via the standard Bradley-Terry loss.
This would peak at the Copeland Winner, which is b for the above matrix. Without loss of generality, we assume reward
model outputs are in the range [0, 1]. Thus,

9This is trivially true if O is deterministic. If O is a randomized no-regret algorithm like Follow the Perturbed Leader (Kalai &
Vempala, 2005), we can instead simply share the randomness between the two players.
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r⋆ = [0, 1, 0]. (17)

From Ziebart (2010), we have that

π⋆(y) ∝ πref(y) exp

(
1

β
r⋆(y)

)
=

[
1

3
,
1

3
,
1

3

]
⊙
[
1, exp(

1

β
), 1

]
∝
[
1, exp(

1

β
), 1

]
. (18)

Thus, for any finite non-negative β, π⋆ plays a and c equally often, which means it cannot play the Minimax Winner.

Next, we consider DPO. From Eq. 6 of Rafailov et al. (2023), we have that the optimal DPO policy has the form

p⋆(y1 ≻ y2) =
1

1 + exp
(
β log π⋆(y2)

πref(y2)
− β log π⋆(y1)

πref(y1)

) . (19)

As πref is uniform, we have that πref(y2) = πref(y1) and thus we can simplify our above expression

p⋆(y1 ≻ y2) =
1

1 + exp (β log π⋆(y2)− β log π⋆(y1))
(20)

=
1

1 +
(

π⋆(y2)
π⋆(y1)

)β (21)

=
π⋆(y1)

β

π⋆(y1)β + π⋆(y2)β
. (22)

As written, the DPO loss assumes unweighted preferences (i.e. it assumes that all positive samples are equally preferable to
their corresponding negative samples). We therefore perform the natural transformation from log likelihood to cross entropy:

ℓDPO(π) = −
∑

y1,y2∈Y×Y
[P(y1 ≻ y2) log (p

⋆(y1 ≻ y2))] (23)

= −
∑

y1,y2∈Y×Y

[
P(y1, y2) + 1

2
log

(
π(y1)

β

π(y1)β + π(y2)β

)]
(24)

(25)

Via Gibbs’ inequality, we know that cross-entropy is minimized when the two distributions are equal. We can then plug in
the values from our above preference matrix to arrive at the following set of constraints:

7

10
=

π⋆(a)β

π⋆(a)β + π⋆(b)β
, 1 =

π⋆(b)β

π⋆(b)β + π⋆(c)β
, 1 =

π⋆(c)β

π⋆(a)β + π⋆(c)β
. (26)

Clearly, it is impossible to simultaneously satisfy all of these constraints. Thus, DPO is unable to learn the minimizer of
the preference-level cross-entropy loss function because of its assumption of an implicit reward model. Unfortunately, this
makes analyzing the solution DPO would actually pick rather difficult from a theoretical perspective. In response, we show
that regardless of the setting of β, there exists another strategy (πref) with a lower loss than the Minimax Winner.

We can write out the above loss more explicitly as

ℓDPO(π) = −
(

7

10
log

(
π(a)β

π(a)β + π(b)β

)
+

3

10
log

(
π(b)β

π(a)β + π(b)β

)
+ log

(
π(b)β

π(b)β + π(c)β

)
+ log

(
π(c)β

π(a)β + π(c)β

))

First, observe that plugging in πref gives us a loss value log(2) for any value of β. Also, observe that limβ→0 ℓDPO(πMW) =
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log(2). Taking the derivative with respect to β, we get

∇βℓDPO(π) =
−7
10

log

(
π(a)

π(b)

)
π(b)β

π(a)β + π(b)β
(27)

+
−3
10

log

(
π(b)

π(a)

)
π(a)β

π(b)β + π(a)β
(28)

+−1 log
(
π(b)

π(c)

)
π(c)β

π(c)β + π(b)β
(29)

+−1 log
(
π(c)

π(a)

)
π(a)β

π(a)β + π(c)β
.

Now, plugging in the Minimax Winner, we get that

∇βℓDPO(πMW) = − log

(
5

2

)
πMW(c)β

πMW(c)β + πMW(b)β
− log

(
2

5

)
πMW(a)β

πMW(a)β + πMW(c)β
> 0.

Thus, ∀β ∈ (0,∞), ℓDPO(πMW) > ℓDPO(πref). Thus, DPO will never pick the Minimax Winner.

C.4. Proof of Corollary 2.6

Proof. We consider optimization over the full history-dependent policy class. That is, for each π ∈ Π, π = (π1, . . . , πH),
where πh ∈ Πh = {Φh → ∆(A)}. As ∆(A) is convex and compact, so is Πh (as the set of functions to a convex set
is convex), which means Π is as well (as Cartesian products preserve convexity). We therefore satisfy the conditions for
the application of Theorem 2.3. We proceed by bounding the regret of our policy selection strategy. Define J(π, rSPOt ) =
Eξ∼π[r

SPO
t (ξ)] as the performance of the policy π under the induced trajectory-level reward, rSPOt (Eq. 7). Then,

Reg(T ) = max
π∈Π

T∑
t=1

ℓSPOt (πt)− ℓSPOt (π) (30)

= max
π∈Π

T∑
t=1

J(π, rSPOt )− J(πt, r
SPO
t ) (31)

= max
π∈Π

HEh∼Unif([H])

ϕ∼ρh
π

[
T∑

t=1

Qh
t (ϕ, π)−Qh

t (ϕ, πt)

]
(By the finite-horizon PDL, Bagnell et al. (2003))

In the last step of the proof, we apply Bagnell et al. (2003)’s finite horizon variant of Kakade & Langford (2002)’s
Performance Difference Lemma (PDL) to the history-based MDP. The no-regret policy update in Line 9 of the Algorithm 1
is equivalent to running Hedge (Freund & Schapire, 1997) with ℓϕ,ht (a) = 1

2 (1−Qh
t (ϕ, a)) ∈ [0, 1] as loss function for all

h ∈ [H] and ϕ ∈ Φh (At
h and QT

h are interchangeable as they differ by a per-state constant and we’re taking a softmax).
Thus, by the regret bound of Hedge, we have that for any comparator policy π ∈ Π, h ∈ [H], and ϕ ∈ Φh,

T∑
t=1

Qh
t (ϕ, π)−Qh

t (ϕ, πt) ≤ 4
√
log(|A|)T . (32)

We can then apply this bound history-wise to our preceding expression to arrive at overall regret bound

Reg(T ) ≤ 4H
√

log(|A|)T . (33)

Thus, by our Theorem 2.3, we have that π̄ (the trajectory-level mixture of π1:T ) is a 8H
√
log(|A|)/T -approximate MW.
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C.5. Proof of Lemma 2.7

Proof. Observe that for any ξ ∈ (S ×A)H , r(ξ) =
∑H

h=1 r̃(st, at). Thus, ∀π ∈ Π,

Eξ∼π [r(ξ)] = Eξ∼π

[
H∑

h=1

r̃(st, at)

]
⇒ argmax

π∈Π
Eξ∼π [r(ξ)] = argmax

π∈Π
Eξ∼π

[
H∑

h=1

r̃(st, at)

]
. (34)

C.6. Proof of Corollary 2.5

We begin by stating the core assumption we will use in this section.

Assumption C.1 (Gap Condition). There is a subset Π⋆ ⊆ Π such that:

1. ∀π⋆ ∈ Π⋆, π ∈ Π/Π⋆, P(π⋆, π) ≥ ∆.

2. ∀π⋆
1 , π

⋆
2 ∈ Π⋆, −∆/2 ≤ P(π⋆

1 , π
⋆
2) ≤ ∆/2.

3. ∀π1, π2 ∈ Π/Π⋆, −∆ ≤ P(π1, π2) ≤ ∆.

Under this assumption, we can prove that rather than the Õ( 1√
T
) rate we usually get for Hedge, we instead get a Õ( 1

T ) rate.

Corollary C.2. Under Assumption C.1, after T calls to Hedge, p̄ is an 1+2|Π| lnT
∆T -approximate Minimax Winner.

Proof. We start by observing that under Assumption C.1, the loss function ℓ1t (p) = Eπ∼p,π′∼qt [−P(π, π′))] observed by
the minimizing player satisfies the following two properties:

1. For an policy π ∈ Π⋆, we have ℓt(π) ≤ ∆.

2. For any policy π ∈ Π⋆ and π′ /∈ Π⋆, ℓt(π′) ≥ ℓt(π) + qt(Π
⋆)∆/2, where qt(Π

⋆) is the probability of the max player
choosing policies from the set Π⋆.

The second property follows from the fact that the loss of any policy π′ /∈ Π⋆ is always larger than the loss of any action
π⋆ ∈ Π⋆ by Assumption C.1, and the two differ by at least ∆/2 whenever the comparator policy comes from the set Π⋆,
since:

ℓt(π
′) =

∑
π′′∈Π

qt(π
′′) [−P(π′, π′′)] =

∑
π′′∈Π⋆

qt(π
′′) [−P(π′, π′′)] +

∑
π′′∈Π/Π⋆

qt(π
′′) [−P(π′, π′′)]

≥
∑

π′′∈Π⋆

qt(π
′′)∆ +

∑
π′′∈Π/Π⋆

qt(π
′′)(−∆) (C.1, (1) and C.1, (3), resp.)

≥
∑

π′′∈Π⋆

qt(π
′′)

[
∆

2
− P(π⋆, π′′)

]
+

∑
π′′∈Π/Π⋆

qt(π
′′) [−P(π⋆, π′′)] (C.1, (2) and C.1, (1), resp.)

= ℓt(π
⋆) + qt(Π

⋆)∆/2.

Now let us consider the class of Follow The Regularized Leader (FTRL, McMahan (2011)) algorithms, which induce
probability distributions as

pt = argmin
p∈∆(Π)

ηLT
t−1p+R(p), (35)

for some convex regularizer R, and where we define Lt =
∑t

s=1 ℓs. As pt minimizes the above expression, we know it
satisfies the first-order optimality conditions, which imply that for any other distribution p ∈ ∆(Π),

⟨∇R(pt) + ηLt−1, p− pt⟩ ≥ 0. (36)

To proceed further, we consider coordinate-wise separable regularizers, that is R(p) =
∑|Π|

i=1 Ri(pi), and use the distribution
p = pt + αeπa − αeπb

, for actions πa ∈ Π⋆ and πb /∈ Π⋆, with α < max(min(pt(πa), pt(πb)), ϵ). We further assume that
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pt(πa) > 0, which is naturally satisfied by many no-regret strategies that play in the strict interior of the simplex. With
these choices, plugging on our preceding setting for p, and dividing both sides by α, we get that

∇Ri(pt(πa)) + ηLt(πa)−∇Ri(pt(πb))− ηLt(πb) ≥ 0.

Rearranging terms and combining with our second property, we get that

∇Ri(pt(πb))−∇Ri(pt(πa)) ≤ η(Lt(πa)− Lt(πb)) ≤ −η
t−1∑
s=1

qs(Π
⋆)∆/2. (37)

We now specialize to the case of Hedge, where Ri(x) = x lnx and ∇Ri(x) = lnx+ 1 but note that a similar argument
holds for a wide variety regularizers (i.e. other no-regret algorithms) under analogous assumptions. Then, by simplifying the
RHS and LHS of our preceding expression and exponentiating both sides, we have that

pt(πb) ≤ pt(πa) exp

(
−η∆
2

t−1∑
s=1

qs(Π
⋆)

)
.

Because the term inside the exponential is always negative and therefore the exponential is at most 1, the above expression
implies that ∀πb /∈ Π⋆, pt(πb) ≤ pt(πa) ≤ pt(Π

⋆). Thus, via Hölder’s inequality, we have that 1 =
∑

π∈Π pt(π) ≤
|Π|pt(Π⋆)⇒ 1

|Π| ≤ pt(Π
⋆)⇒ exp(−pt(Π⋆)) ≤ exp(−1

|Π| ). Since the same holds for qt by symmetry, we can conclude that

pt(πb) ≤ pt(πa) exp

(
−ηt∆
2|Π|

)
.

Consequently, once we have exp(−ηt∆/(2|Π|)) ≤ ϵ, the probability of any action b /∈ Π⋆ is at most ϵ. Inverting the
preceding expression shows this happens in at most t ≤ 2|Π|

η∆ ln 1
ϵ rounds. Hence,

Reg(T ) ≤ ϵT +
2|Π|
η∆

ln
1

ϵ
.

Choosing η = 1 and ϵ = 1/T gives a fast rate.

We note that the linear dependence on Π is similar to the linear dependence on the number of actions in most gap-dependent
bounds for UCB algorithms. We also note that in the bandit feedback setting, Equation 37 only changes in that we have
importance-sampled estimates L̂t(a) − L̂t(b) instead of the population losses. Adding and subtracting the true means
gives us the same quantity as Eq. 37 plus a martingale. This term is O(η

√
t). For

√
t = O(t∆/|Π|), or equivalently,

t = O((|Π|/∆)2), we get the same bound with slightly different constants.

C.7. Extension to Bandit Feedback

We now provide an extension of our main result to the bandit feedback setting via the standard importance sampling
argument.

Theorem C.3. Assume Π is finite. Let πt, π
′
t ∼ pt. For any fixed α ∈ [0, 1] and for some γ ∈ [0, 1], if we set O to be the

Hedge algorithm of Freund & Schapire (1997) and feed it the sequence of loss functions

ℓ̂SPOt (π) = −α1[π = πt]

pt(πt)
P(πt, π

′
t) + (1− α)

1[π = π′
t]

pt(π′
t)
P(πt, π

′
t),

and follow strategy (1− γ)pt +
γ
|Π| , p̄ is an Õ( 1√

T
)-approximate Minimax Winner. 10

Proof. Let πt ∼ pt, π′
t ∼ qt. We observe P(πt, π

′
t) by querying the preference function.

Define

ℓ̂1t (π) = −
1[π = πt]

pt(πt)
P(πt, π

′
t), ℓ̂2t (π) =

1[π = π′
t]

qt(π′
t)
P(πt, π

′
t) (38)

10For last iterate convergence, one can instead run the no-regret bandit feedback algorithm of Cai et al. (2023) on ℓ̂SPOt , albeit at the cost
of a slower rate.
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and as the importance-weighted losses for each player at round t. Next, observe that

Ept
[ℓ̂1t ] = ℓ1t ,Eqt [ℓ̂

2
t ] = ℓ2t , (39)

i.e. that they are unbiased estimates of the full-feedback losses. We now proceed similarly to our proof for the full feedback
case. If we set p0 = q0, we have that ℓ10 = ℓ20 by the anti-symmetry of P . We also have that

Ep0
[ℓ̂SPO0 ] = Ep0

[αℓ̂10 + (1− α)ℓ̂20] = ℓ10 = ℓ20. (40)

We now proceed by induction. If pτ = qτ at some time τ and we feed both players the same loss ℓ̂SPOτ , by the determinism
of Hedge, we have that pτ+1 = qτ+1. This implies ℓ1τ+1 = ℓ2τ+1, which in turn implies ℓ̂SPOτ+1 is an unbiased estimate of both
ℓ1τ+1 and ℓ2τ+1. Thus, by induction, we have that both players will have the same iterates and ℓ̂SPOt is an unbiased estimate of
both losses ∀t ∈ [T ], which means we can simulate game-solving with a single player.

To prove that above loss estimation scheme preserves the no-regret property, we can simply examine the proof of Exp3 in
Auer et al. (2002) and note that the only property required of the loss estimate (x̂t in the original paper) is that it is unbiased.
Thus, we inherit the regret rate of Exp3, which when plugged in completes the proof.

We note that while the above is not a general reduction per se, for a wide set of no-regret algorithms, a similar argument
applies, with slight differences in the effect of importance sampling on the final regret rate.

C.8. Extension to Contextual Setting

We now extend our above setup to include contexts. Consider a finite-horizon reward-free contextual Markov Decision
Process (MDP) (Puterman, 2014) parameterized by ⟨S,A,X , T , H, ρ⟩ where S, A, X are the state, action, and context
spaces, T : S×A → ∆(S) is the transition operator, H is the horizon, and ρ : ∆(X ) is the context / initial state distribution.
We use Ξ ≜ (S ×A)H to denote the space of trajectories and Φh ≜ X × (S ×A)h−1 × S to denote the space of h-length
histories. We assume that we are given access to a (contextual) preference function

P : X × Ξ× Ξ→ [−1, 1] (41)

which, given two trajectories ξ1, ξ2 ∈ Ξ, outputs a scalar that indicates which is preferred relative to the other. By
construction, preference functions are anti-symmetric, i.e. ∀x, ξ1, ξ2 ∈ X × Ξ × Ξ, P(x, ξ1, ξ2) = −P(x, ξ2, ξ1).
Similarly, we also have that ∀x, ξ ∈ X × Ξ, P(x, ξ, ξ) = 0. We assume access to a convex and compact policy class
Π ⊆ {S × X → ∆(A)}. With a slight abuse of notation, we can define the preference function over policy pairs as

P(π1, π2) ≜ Ex∼ρ,ξ1∼(π1,x),ξ2∼(π2,x)[P(x, ξ1, ξ2)].

We now re-state our algorithms, including the dependence on context. Their theoretical guarantees match those presented
in the main paper. The main difference in practice is that rather than simply maintaining a queue, we now have to sample
multiple trajectories based on a single context for comparison.
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Algorithm 3 SPO (Theoretical Version with Contexts)
Input: Learning rate η, Iterations T , Preference fn. P .
Output: Trained policy π.
Initialize πh(·|ϕ) = Unif(A), ∀ϕ ∈ Φh, h ∈ [H].
for t in 1 . . . T do

Observe context xt ∼ ρ.
Compute rt(ξ) = Eξ′∼πt

P(xt, ξ, ξ
′).

Define Qh
t (ϕ, a) = Eξ∼πt

[rt(ξ)|ϕh = ϕ, ah = a].
Define Ah

t (ϕ, a) = Qh
t (ϕ, a)− Ea′∼πh

t (ϕ)
[Qh

t (ϕ, a
′)].

for ϕ, a, h ∈ Φh ×A× [H] do
// use no-regret algo for update
πh
t+1(a|ϕ) ∝ πh

t (a|ϕ) exp (ηAh
t (ϕ, a)).

end for
end for
Return π̄, uniform mixture of π1:T .

Algorithm 4 SPO (Practical Version with Contexts)
Input: Iterations T , Preference fn. P , Num. samples k ≥ 2, Reinforcement learning algo. RL : Π×D → Π.
Output: Trained policy π.
Initialize π1 ∈ Π.
for t in 1 . . . T do

Observe context xt ∼ ρ and sample ξ1:k ∼ πt(xt).
Compute rt(ξi) =

1
k−1

∑k
j ̸=i P(xt, ξi, ξj).

Set rhi = rt(ξi)/H , ∀i, h ∈ [k]× [H].
// use PPO, TRPO, SAC ...
πt+1 ← RL(πt,D = {(shi , ahi , rhi )}

h∈[H]
i∈[k] ).

end for
Return best of π1:T on validation data.
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D. Compounding Errors in RLHF
A common concern in sequential prediction tasks is compounding errors (Ross et al., 2011). Consider, for example, trying to
train a policy to drive laps around a track purely based on recorded demonstrations from an expert driver who always stays
close to the center of their lane. For example, one could regress from recorded states to recorded actions, an approach known
as behavioral cloning (BC, Pomerleau (1988)). However, if at test time, the agent makes a mistake and goes off the center of
their lane, they might end up in a state they hadn’t seen in their training data, have no idea what to do in this novel situation,
make another error, and quickly spiral out of control. At a fundamental level, the agent’s poor test-time performance is
caused by the covariate shift in terms of state distribution between the offline training data and their own induced state
distribution – a low training error does not necessarily correspond to a low test error. Thus, the standard solution is to allow
the learner to actually try out actions in the environment, see where they end up, and learn to correct their mistakes. This
approach is known as inverse reinforcement learning (IRL, Ziebart (2010)) and is known to prevent compounding errors
(Swamy et al., 2021).

A natural question might be if the learner gets preferences rather than demonstrations as feedback, whether the same
concerns arise. We now provide a simple, informal example of this.

Example D.1. Consider the H = 2 problem of completing sentences of the form “THE (A) ORBITS AROUND THE (B).”
where either blank can be filled in with utterances A = {EARTH, SUN, MOON}. We observe preferences of the form [MOON,
EARTH] ≻ [MOON, SUN]. At h = 1, we are forced to play a policy πϵ that outputs MOON w.p. 1− ϵ and EARTH w.p. ϵ. At
h = 2, we are allowed to choose between two policies: π1 that always outputs EARTH and π2 that outputs EARTH if the
preceding word was MOON and SUN if the preceding word was EARTH. Observe that both [πϵ, π1] and [πϵ, π2] have the
same probability of generating the preferred and dis-preferred generations and therefore will have the same value under
any loss function that depends on its inputs purely via their off-policy likelihoods.

We can think of πϵ as representing error from finite samples, imperfect optimization, or a limited function class. While
hopefully any post-Copernican preference (or reward) model would be able to tell the difference between these two policies,
offline approaches like DPO that simply compute likelihoods on off-policy data are unable to do so. 11 We emphasize that
this is a fundamental issue with all offline approaches, rather than with a particular offline algorithm (Swamy et al., 2021).
We conclude with a note that this problem only gets worse with longer task horizons as there are more timesteps to deviate.
This is perhaps one of the reasons that offline approaches can sometimes under-perform interactive techniques (Zhu et al.,
2023; Chen et al., 2024) and why, as of the writing of this paper, the world’s most performant models are trained using
interactive techniques (Team et al., 2023; OpenAI et al., 2023).

11An iterative application of DPO with batches of preferences collected frequently would likely mitigate this issue.
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E. Additional Results
We now present additional results we did not have space for in the main paper:

• Figure 8 contains results on a larger set of control environments with preferences based on reward maximization.

• Figure 9 contains results on a larger set of control environments with noisy preferences based on reward maximization.

• Figure 10 contains results on a larger set of control environments with non-Markovian preferences.

• Figure 11 contains results for SPO on a larger set of bandit environments with intransitive preferences. Figure 12
contains the results for RM in the same setting.

• Figure 13 shows additional seeds for SPO the Ant environment with intransitive preferences.

• Figure 14 ablates the effect of different snippet lengths on RM sample efficiency.

• Figure 15 contains the effect of freezing the reward model during training on RM performance.

Number of queries to the preference oracle. We report the performance of an agent as a function of the total steps in the
environment steps. We did not attempt to optimize performance of SPO or RM as a function of the number of calls to the
preference oracle it makes. That said, in our experiments, SPO makes fewer oracle calls than RM. The total number of calls
to an oracle made by SPO are the number of episodes collected times the queue length B, since each generated episode is
compared against the previous B ones. In comparison, the total number of calls made by RM are the number of updates to
the reward model times the batch size. For example, for the experiment with maximum-reward preferences (Figure 8), this
is a total of 1M calls for SPO and 2.5M calls for RM.
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Figure 8: All results for maximum reward preference experiments.
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Figure 9: All results for noisy preference experiments.
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Figure 10: All results for non-markovian preference experiments.
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Figure 11: Convergence of SPO on bandit instances with non-transitive preferences.
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Figure 12: Convergence of RM on bandit instances with non-transitive preferences.
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Figure 13: Additional results for intransitive preference experiments with Gym Ant-v3 environment. Here, we present
results with 4 seeds with these trends holding across all the 10 seeds we experimented with. As presented in the main paper,
in the polar plots, each dot corresponds to 100k timesteps of training (where the darker shade represents earlier environment
steps and lighter shade represent later environment steps). We see our agent traces out a circle of radius 10 (qualitatively the
behavior we expect from MW) on average. Alongside the polar plots, we plot the agent’s angle through the first 60 million
steps of training with the shaded region representing the cross section of iterations where the agent’s position and angle are
plotted in the corresponding polar plot.
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Figure 14: All results for reward model snippet length ablations.

30



A Minimaximalist Approach to Reinforcement Learning from Human Feedback

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

200

400

600

J(
)

cheetah:run
L = 1M
L = 2M
L = 5M
L = 10M

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

20

40

60

80

J(
)

hopper:hop
L = 1M
L = 2M
L = 5M
L = 10M

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

200

400

600

J(
)

hopper:stand
L = 1M
L = 2M
L = 5M
L = 10M

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

200

400
J(

)

quadruped:run
L = 1M
L = 2M
L = 5M
L = 10M

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

250

500

750

1000

J(
)

quadruped:walk
L = 1M
L = 2M
L = 5M
L = 10M

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

100

200

J(
)

walker:run
L = 1M
L = 2M
L = 5M
L = 10M

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

200

400

600

800

1000

J(
)

walker:stand
L = 1M
L = 2M
L = 5M
L = 10M

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

200

400

600

800

J(
)

walker:walk
L = 1M
L = 2M
L = 5M
L = 10M

Figure 15: All results for reward model freezing experiments.
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F.1. Discrete action experiment in Figure 5 (a)

Problem Setup. We use a 3-armed bandit with different preference functions that each induce a different (unique) Minimax
Winner. All our preference functions have the following form, represented as an |A| by |A| matrix

P =

 0 c −b
−c 0 a
b −a 0



where a, b, c > 0 are parameters. The Minimax Winner for this preference function is p⋆ ∝

ab
c

. This can be verified easily

since p⋆P =

00
0

 and thus any opponent strategy yields the same value 0. For a = b = c, this is the preference in the

popular Rock-Paper-Scissors game. More generally such preference functions can commonly occur when we estimate the
preference from a population of users that each just have a preference between two of the three actions. Assume we have 3
sub-populations that each make up a fraction a, b and c of the total population, respectively. Then the average preference in
the total population corresponds to P

a×

0 0 0
0 0 1
0 −1 0

+ b×

0 0 −1
0 0 0
1 0 0

+ c×

 0 1 0
−1 0 0
0 0 0

 = P,

where each of the 3 matrices corresponds to the preference in the respective subpopulation.

Common Parameters. We use the PPO implementation in Hoffman et al. (2020) with learning rate 10−4. For the policy
network, we use 2 hidden layer with 128 nodes each and ReLU activation. Since the purpose of this experiment is to verify
whether a method can approach the Minimax Winner, we run each algorithm for a very large number of of steps, 50M and
report the average action choice during the entire learning procedure.

SPO Parameters. We use a queue length of B = 1000 trajectories for computing the average preference of each trajectory.
We further found that the default entropy cost of 10−4 for PPO in ACME (Hoffman et al., 2020) to work well.

Reward Model Parameters. We use the same architecture for the reward model as for the policy network with a one-hot
encoding of the action. We update the reward model every 16 policy updates, use a batch size of 64, and a learning rate of
3 · 10−4. We further use an increased entropy cost of 10−2 for PPO. We found that less frequent reward-model updates
and a smaller entropy cost would lead to premature convergence at arbitrary deterministic policies. Since we want to learn
non-trivial MW strategies and theory suggests that a policy-dependent reward model could achieve that (see Equation 7 and
discussion around it), We also experimented with more frequent reward-model updates. These led to instabilities in the
learning process, however.

F.2. Continuous Control Experiments

We use the SAC implementation in Hoffman et al. (2020) for all of our continuous control experiments. We use the same
SAC hyperparameters for all methods, other than the fact that we use 3e-4 rather than 3e-5 as the learning rate for vanilla
SAC. We use Adam for all optimization. We use three layer networks of width 256 for all function approximation. We use
ReLU activations for the actor and critic.
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PARAMETER VALUE

MAX REPLAY SIZE 1000000
MIN REPLAY SIZE 10000
BATCH SIZE 256
γ 0.99
τ 0.005
N STEP 1
POLICY LEARNING RATE 3E-5
BATCH SIZE 256
SAMPLES PER INSERT 256
SAMPLES PER INSERT TOLERANCE RATIO 0.1
NUM SGD STEPS PER STEP 1

Table 2: Hyperparameters for SAC.

SPO Parameters. We use a queue length of B = 10 and a maximum replay buffer size of 1M for non-Markov and
intransitive preferences. For max-reward preferences (excl. and incl. noise), we use a queue length of B = 100 due to
the higher noise in the preferences. We further use a shorter maximum replay buffer size of 100k to avoid preference
information becoming too stale due to the increased queue length.

Reward Model Parameters. We use Leaky ReLU activations with a final tanh (following Lee et al. (2021a)) for the
reward model. We update the reward model every 256 policy updates, use a batch size of 64, and a learning rate of 3e-4.

F.3. Continuous Control Experiments with Intransitive Preferences

We use the MuJoCo Gym (Brockman et al., 2016) Ant-v3 environment as the base environment. The hyper-parameters for
SAC are identical to what is described above except for having a fixed entropy coefficient of 1e-4 since the learned policy
must exhibit stochasticity to capture the MW; we use a queue size of 100. The preference function we design is composed of
a distance and angular preference. The angular preference makes the trajectory lose to an angle of θ = π/4 in front of them.
The distance component encourages the agent to traverse non-trivial distance from the origin until it hits a certain threshold.
We found the distance component to be necessary in order for the agent to maintain effective control of the angle as it is very
easy to shift angles when the agent is very close to the origin. The Python code for the preference function is written below.

def intransitive_ant_preference(traj_1, traj_2):
return 0.3 * distance_preference(traj_1.radius, traj_2.radius, 10.0) +

0.7 * angular_preference(traj_1.angle, traj_2.angle, math.pi/4)

def angular_preference(traj_1_angle, traj_2_angle, angle):
difference = math.fmod(traj_1_angle + angle/2.0 - traj_2_angle, 2 * math.pi)
return difference < theta/2.0 or difference > 2 * math.pi - theta/2.0

def distance_preference(traj_1_dist, traj_2_dist, dist_threshold):
if traj_1_dist > dist_threshold and traj_2_dist > dist_threshold:

return 1.0
else:

return 1.0 if traj_1_dist > traj_2_dist else 0.0
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