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Abstract
The accurate classification of quantum states is
crucial for advancing quantum computing, as it
allows for the effective analysis and correct func-
tioning of quantum devices by analyzing the statis-
tics of the data from quantum measurements. Tra-
ditional supervised methods, which rely on ex-
tensive labeled measurement outcomes, are used
to categorize unknown quantum states with dif-
ferent properties. However, the labeling process
demands computational and memory resources
that increase exponentially with the number of
qubits. We propose SSL4Q, manage to achieve
(for the first time) semi-supervised learning specif-
ically designed for quantum state classification.
SSL4Q’s architecture is tailored to ensure per-
mutation invariance for unordered quantum mea-
surements and maintain robustness in the face of
measurement uncertainties. Our empirical studies
encompass simulations on two types of quantum
systems: the Heisenberg Model and the Varia-
tional Quantum Circuit (VQC) Model, with sys-
tem size reaching up to 50 qubits. The numeri-
cal results demonstrate SSL4Q’s superiority over
traditional supervised models in scenarios with
limited labels, highlighting its potential in effi-
ciently classifying quantum states with reduced
computational and resource overhead.

1. Introduction
The classification of quantum states is a fundamental process
for extracting classical information from quantum systems,
essential for the certification and verification of quantum de-
vices (Eisert et al., 2020; Kliesch & Roth, 2021). Quantum
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Figure 1. An Overview of Quantum State Classification. Given
the quantum evolution specified by Hamiltonian H and time step
T or by unitary feature map U(θ), the quantum system initiates
from state |ψs⟩ and evolves to the final state |ψf ⟩ = e−iHT |ψs⟩
or |ψf ⟩ = U(θ)|ψs⟩ in either physical or simulated experiments.
Measurements are then performed on this final state, generating
records that are stored in classical memory (referred to as quan-
tum data). Classification involves the statistical analysis of these
records to categorize |ψf ⟩ into different groups. This is achieved
by deducing properties of the state, such as coupling strengths of
H , and the category of quantum feature maps.

systems, when subjected to noise, often deviate from their
expected evolutionary trajectories, resulting in output states
with significant discrepancies. This deviation necessitates
the development of a reproducible protocol for accurately
classifying quantum states, which in turn facilitates bench-
marking and comparison across different quantum systems.
By analyzing the outcomes of quantum measurements, this
protocol aims to ensure consistent classification regardless
of inherent system variabilities. This approach is crucial for
advancing the practical application and reliability of quan-
tum technologies. For a comprehensive understanding, an
illustrative overview is provided in Fig. 1.

The classification of quantum states hinges on the effec-
tive classical representation of these states. However, this
task is fraught with challenges, primarily due to the ex-
ponential complexity inherent in quantum many-body sys-
tems (Nielsen & Chuang, 2010). Despite this complexity,
it is not an insurmountable barrier. It is crucial to recog-
nize that physical systems, especially those governed by
the dynamics of local Hamiltonians, are not generic. Their
intrinsic structural properties suggest that the full complex-
ity of the Hilbert space is not always necessary for their
accurate description (Carrasquilla et al., 2019).

There has been a burgeoning effort dedicated to develop-
ing efficient methodologies for quantum state classification.
These methods encompass various aspects, ranging from the
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fidelity estimation with respect to the reconstructed wave
functions (Jullien et al., 2014; Flammia et al., 2012; Hibat-
Allah et al., 2020; Cha et al., 2021; Hu et al., 2023) to the
properties estimation of quantum states (Huang et al., 2020;
2022; Wu et al., 2023b; Lewis et al., 2023). The primary
objective of these approaches is to enhance the precision of
state characterization while minimizing the need for mul-
tiple copies of the quantum states. This work focuses on
developing a discriminative model for categorizing quantum
states with respect to specific properties such as coupling
strengths, without the need to reconstruct the density repre-
sentations. This can be formulated as a classification task to
predict the categories of unknown quantum states.

Recently, there has been a surge in learning-based meth-
ods for addressing the challenges of learning classical rep-
resentations of quantum states (Carleo et al., 2019; Car-
rasquilla, 2020; Karagiorgi et al., 2022; Xiao et al., 2022;
Miles et al., 2023; Zhang & Di Ventra, 2023; Tang et al.,
2024), which are instrumental for quantum state classifica-
tion. These methods stand in contrast to traditional learning-
free approaches (Burgarth & Yuasa, 2012; Gammelmark &
Mølmer, 2014; Zhang & Sarovar, 2015), which typically
address these problems through optimization techniques.
Instead, learning-based methods typically reframe the prob-
lem as a supervised learning task (Gebhart et al., 2023).
The versatility of neural networks enables the concurrent
modeling of multiple systems, uncovering latent features
across diverse quantum data (Zhang & Di Ventra, 2023;
Wu et al., 2023b). Moreover, these methods often surpass
traditional learning-free approaches in predictive accuracy
and sample complexity for unknown quantum systems, a
crucial advantage in resource-intensive quantum physics
experiments (Zhang et al., 2021b).

A significant challenge inherent to supervised approaches is
the assumption that an extensive, labeled quantum dataset is
available (Gebhart et al., 2023). This premise rarely holds
true in real-world scenarios. Labeling quantum data neces-
sitates meticulous statistical analysis of measurement out-
comes from (simulated) experiments (D’Ariano et al., 2003).
This process not only incurs considerable experimental costs
but also relies heavily on substantial classical computing
resources. Moreover, the computational complexity tends
to increase exponentially with the size of the quantum sys-
tem (Jullien et al., 2014). A more realistic scenario, however,
is one where a significant volume of quantum measurement
data is available, but only a fraction of it is labeled. This
situation closely mirrors the challenges faced in traditional
semi-supervised learning (Van Engelen & Hoos, 2020). De-
spite this, the potential of semi-supervised learning in the
context of quantum physics remains largely untapped.

To fill this gap, we focus on the development of a semi-
supervised learning model specifically tailored for quantum

data in the application of quantum state classification. By do-
ing so, we aim to fully harness the potential of the available
label information while concurrently extracting valuable
insights from the expansive pool of unlabeled quantum data.
Although there is a plethora of semi-supervised learning
techniques available (Van Engelen & Hoos, 2020; Chen
et al., 2022; Søgaard, 2022), their direct application to the
classification of quantum states poses distinct challenges. In
this paper, we introduce the SSL4Q, especially designed to
excel in scenarios where quantum data is sparsely labeled.
SSL4Q is structured to overcome four obstacles: 1) adapt-
ability to any number of measurements; 2) permutation
invariance for unordered measurements; 3) robustness
against measurement uncertainties and 4) effective ex-
ploitation of unlabeled data for regularization.

The contributions of this paper are: 1) We introduce two
novel methods: shadow embedding and the PEA (Permu-
tation Equivalence Attention) layer. Shadow embedding
acts as a universal technique for converting string-like quan-
tum measurement data into a format suitable for machine
learning models. The PEA layer ensures the preservation of
permutation invariance in measurements through the use of
aggregation functions; 2) We propose SSL4Q, a pioneering
semi-supervised learning model specifically designed for
quantum data analysis. SSL4Q addresses a critical gap in
current quantum computing research by offering a frame-
work for processing quantum data with limited labeled in-
formation, a scenario frequently encountered in practical
quantum computing applications; 3) We validate the ef-
fectiveness of SSL4Q through extensive experiments on
quantum state classification using the Heisenberg model
and the Variational Quantum Circuit (VQC) model with
up to 50 qubits. Despite the sparse labeling of the dataset,
SSL4Q demonstrates significant improvements over tradi-
tional supervised learning models.

Remark. In our initial investigation, we discovered that
Zhang et al. (2023) asserts the classification of quantum
states through semi-supervised learning. However, we con-
tend that their method falls short of providing a viable ap-
proach for applying machine learning to quantum physics.
Their technique, which involves using quantum states di-
rectly as inputs, is largely impractical due to the founda-
tional requirement in learning of quantum states: the neces-
sity to first gather quantum data via quantum measurements
on the states themselves. Consequently, our method stands
as the first to apply semi-supervised learning for the quan-
tum data, addressing the oversight in Zhang et al. (2023).

2. Preliminaries and Related Work
We provide definitions and notations related to quantum
computing and refer readers to Nielsen & Chuang (2010)
for details. For related work, please see Appendix A.
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Figure 2. Generating Quantum Dataset. The L-qubit quantum
system is evolved over T , governed by the Hamiltonian or specified
quantum circuits. Random measurements are repeated M times
on identical copies of the quantum states and the measurement
operators and their outcomes are stored in classical memory.
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Figure 3. Shadow Embedding. The specified measurement op-
erator and its binary output are first transformed into eigenvector
representations. Then the density operator for each single-qubit
measurement is reconstructed. The final embeddings are obtained
by combining the real and imaginary parts of the density matrix.

Qubit and Multi-Qubit Quantum State. Qubit is the ba-
sic unit in quantum systems. In this paper we consider the
spin-1/2 system in which one qubit can be described math-
ematically as a 2-dimensional normalized complex vector
|ϕ⟩ =

[ α
β

]
in the space C2, where α, β ∈ C is the ampli-

tudes satisfying |α|2 + |β|2 = 1. Such quantum state can
be also written as a linear combination |ϕ⟩ = α|0⟩+ β|1⟩,
where |0⟩ =

[
1
0

]
and |1⟩ =

[
0
1

]
are the Z-basis, i.e., the

eigenvectors of σz namely the Pauli-Z operator written as[
1 0
0 −1

]
. The same qubit can be decomposed to different

orthonormal basis, such as X-basis and Y-basis, denoted as
|±⟩ = 1√

2

[
1
±1

]
and |i±⟩ = 1√

2

[
1
±i

]
respectively. Notation

i is the imaginary unit. An alternate formulation for repre-
senting a qubit is possible using a tool known as the density
operator or density matrix, e.g., the density matrix of |0⟩ is
ρ0 = |0⟩⟨0| =

[
1 0
0 0

]
. See Appendix B for more details.

Projective Measurement. Quantum measurement is the
testing or manipulation of a physical system to yield a
numerical result. A quantum measurement is described
by a set of measurement operators {Πk}K−1

k=0 satisfying

∑
k Πk = I, where K is the total number of measurement

operators. In this paper, we consider the projective mea-
surement which means K = 2 and ΠkΠk′ = δkk′Πk. It
is easy to check that the density operator of Z-basis, i.e.
{|0⟩⟨0|, |1⟩⟨1|} is one of the projective measurements, so
are the X-basis and Y -basis. Measuring a qubit leads to
collapse of the wave function and produces an outcome k
with the probability p(k) satisfying the Born rule (Born,
1926), which states that p(m) = tr(ρΠk). For a quantum
state with L qubits, performing quantum measurement in-
dependently on L qubits is easy to be implemented. The
most common strategy is to combine L single-qubit mea-
surement operators to Πk,1 ⊗ · · · ⊗Πk,L (Leibfried et al.,
1996; Jullien et al., 2014) where ⊗ is the Kronecker product.
Such measurement procedure outputs a measurement string
σ = (σ1, . . . , σL) where σi ∈ {1, . . . ,K}.

Classical Shadow. The classical shadow formalism uses
randomized (single-shot) measurements to predict many
properties of an unknown quantum state, such as phases
of quantum matter, correlation function and entanglement
entropy of ground state (Huang et al., 2020). Supposing
that the quantum state ρ contains L qubits, one can per-
form randomized single-qubit Pauli measurements and re-
peat the following procedure a total of M times: (i) pre-
pare an independent copy of the quantum state; (ii) select
L single qubit protective measurement uniformly at ran-
dom (X , Y , Z-basis occur with probability 1/3 each) and
(iii) perform the associated measurement to obtain L clas-
sical bits. Subsequently, the total M × L measurement
outcomes O ∈ {0, 1}M×L are stored in the classical mem-
ory. Relevantly, the m-th measurement causes the quan-
tum state to collapse to SM = |s(m)

1 ⟩ ⊗ · · · ⊗ |s(m)
L ⟩ with

|s(m)
l ⟩ ∈ {|0⟩, |1⟩, |+⟩, |−⟩, |i+⟩, |i−⟩} for l ∈ {1, . . . , L}

and m ∈ {1, . . . ,M}. Such measurement procedure is sim-
ulable in physical quantum computers (Zhang et al., 2021b).
Then we can approximate ρ via taking the expectation value
of the collection results given as

ρ̂ =
1

M

M∑
t=1

(3|s(m)
1 ⟩⟨s(m)

1 |−I)⊗· · ·⊗(3|s(m)
L ⟩⟨s(m)

L |−I).

(1)
For predicting properties of quantum states, classical
shadow has been proven to be effective for extracting mean-
ingful features from random measurements (Huang et al.,
2022; Lewis et al., 2023).

3. Methodology
We first formulate our task in Sec. 3.1. Sec. 3.2 delves
into the intricacies of assembling the quantum data and the
process of embedding quantum measurement results into a
format amenable to learning algorithms. We present the key
methods and insights behind SSL4Q in Sec. 3.3.
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Figure 4. Pipeline of the Proposed SSL4Q. a) SSL4Q utilizes semi-supervised learning for quantum data from physical or simulated
sources, with partial label masking. Measurement records are encoded through the shadow embedding. The embeddings are augmented
randomly before they are fed to the model. SSL4Q incorporates teacher and student models with identical structures but different
initializations. The student model learns via standard gradient descent, while the teacher model is an exponential moving average (EMA)
of the student model’s parameters. b) The architecture of the student and the teacher model.

3.1. Problem Formulation

In typical learning-based quantum many body problems,
given a set of quantum data Dtr = {Xi, yi}N

tr

i=1 for training
where Xi generally denotes the embedded measurement
results and y denotes its ground-truth prediction target re-
lated to certain quantum properties, our objective is to train
a model fθ: X → y to predict the labels on the testing
dataset Dte = {Xi}N

te

i=1 . Throughout this paper, we focus
on quantum state classification problem. In our context, the
input X ∈ RM×8L is conceptualized as shadow embedding
while the target y is a one-hot label delineating the category
of quantum states with specific properties such as the evolu-
tion time and coupling strengths. The model is optimized
by the training dataset and identifies categories of unknown
quantum systems. Here, M is the number of measurements
and L is the number of qubits.

3.2. Quantum Dataset Building from Quantum System

We briefly describe the quantum dataset’s definition and
its construction methodology. See Sec. 4 for an exhaustive
explanation. Consider a quantum system transitioning from
an initial state |Φ0⟩ to a final state |Φt⟩ = e−iH(w)t|Φ0⟩
governed by the Hamiltonian H(w) over time t, with w
as the parameters within H . For each sample, we adjust
the values of w to generate N tr (resp. N te) distinct final
states for the training (resp. testing) dataset. As shown in
Fig. 2, for each sample we perform M independent random
Pauli measurements on the final state and afterwards
store the Pauli operators as well as the measurement
outcomes into two separate matrix-like records. Echoing
the discussions in Sec. 2, for each measurement on a single
copy of |Φt⟩, L measurement operators {{Πk,l}1k=0}Ll=1

are randomly and independently sampled, where {Πk,l} ∈
{{|0⟩⟨0|, |1⟩⟨1|}, {|+⟩⟨+|, |−⟩⟨−|}, {|i+⟩⟨i+|, |i−⟩⟨i−|}}

corresponding to the eigenvectors of the Pauli-Z, Pauli-X
and Pauli-Y operator, respectively. Measuring the l-th qubit
with the sampled operator {Πk,l}1k=0 leads to either an
output 0 with probability tr(ρlΠ0,l) or 1 with probability
tr(ρlΠ1,l). The combined L-qubit measurement operator
is performed on |Φt⟩ and we obtain the L-length binary
output. The same procedure is repeated M times and we
finally have a collection of two M × L matrix-like records,
where one contains the relative Pauli operators and another
contains binary measurement outcomes.

However, given that one data format is string-like and the
other is binary, concurrently processing these two distinct
types of records poses a challenge for machine learning
methods. The difficulty is compounded when Pauli strings
are converted into matrices, as these contain complex num-
bers, which are not readily manageable by neural networks
designed to operate on real parameters. In Sec. 3.3, we will
introduce our approach to embed these disparate types of
raw data into a format that is amenable to machine learning.
We will also present an effective strategy for learning from
such unstructured measurement data.

3.3. SSL4Q

Fig. 4a depicts the architecture of our SSL4Q. it comprises
a student and a teacher model, both sharing identical struc-
tural designs. The student’s learning process is guided by
a dual-loss approach, involving supervised loss applied to
labeled quantum data and a consistency loss implemented
across the entire training dataset. Meanwhile, the teacher
is maintained as an exponential moving average (EMA) of
the student. Within the SSL4Q framework, we propose
two critical innovations crafted for unordered quantum mea-
surement data: the shadow embedding and the permutation
equivalence attention (PEA) layer.
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3.3.1. SHADOW EMBEDDING

We develop a simple yet effective method for embedding
Pauli operators and their measurement outcomes, drawing
inspiration from the concept of classical shadow (Huang
et al., 2020). For simplicity, below we discuss the shadow
embedding for a single input sample. As depicted in
Fig. 3, the initial step involves producing the correspond-
ing Pauli basis, derived from the Pauli operator and binary
outcome (Step 1). Following this, we generate the den-
sity matrix representation for each outcome, expressed as
ρi = 3|ψi⟩⟨ψi| − I for i ∈ {1, . . . , L}, where |ψi⟩ denotes
the i-th basis state determined by the sampled Pauli opera-
tor and the binary outcome, resulting in a complex-valued
matrix. Subsequently, rather than performing a Kronecker
product of all the L single-qubit density matrices as the
operations in Eq. 1, which would result in an impractically
large size relative to the system, we adopt a more efficient
approach. This involves concatenating the real and imagi-
nary parts of each 2× 2 complex density operator into an
8-element vector (Step 2), transforming two challenging
M × L data formats into a manageable M × 8L matrix,
designated as the input X.

It is important to note that previous research has provided
insights into the definition and processing methodologies of
quantum data. However, unlike studies such as Xiao et al.
(2022); Tang et al. (2024), which primarily rely on discrete
measurement outputs, our model uniquely incorporates in-
formation from random measurement operators, with the
hope of capturing a more comprehensive representation of
the quantum state. Contrasting with methods that average all
measurement results, as seen in Zhu et al. (2022); Du et al.
(2023), we treat each measurement as an individual entity,
with the hope of retaining the essential information inherent
in the measurement data. Also, our model contains a PEA
layer with aggregation function, specifically designed for
this type of data. This layer is distinctly advantageous com-
pared to the approach in (Qian et al., 2023), which utilizes
PointNet (Qi et al., 2017) to process shadow-like inputs.

3.3.2. PERMUTATION EQUIVALENCE ATTENTION LAYER

Contrasting with the recent quantum systems learning
model (Tang et al., 2024), which treats quantum data as
ordered and language-like inputs, SSL4Q acknowledges
and preserves the inherently unordered nature of random
measurements. Specifically, for a shadow embedding
X ∈ RM×8L, our aim is to develop a permutation-invariant
neural network structure fθ for both the student and teacher
models. This network satisfies the condition fθ(π1 ◦X) =
π1 ◦ fθ(X) for any permutation π1, where πi represents
the permutation along the i-th axis. The permutation invari-
ance is usually realized by a network that performs pooling
over embeddings extracted from the permutation equiva-

lence layer (Wu et al., 2020). We incorporate a permutation
equivalence attention (multi-)layer (PEA) followed by a
feed-forward network layer (FFN) to effectively discern
patterns from unordered quantum data. An aggregation op-
eration is integrated into the final layer to ensure the entire
model’s permutation invariance.

As seen in Fig. 4b, the core of both student and teacher mod-
els is akin to the multi-layer transformer decoder (Vaswani
et al., 2017). The distinction lies in our omission of po-
sitional encoding and exclusion of dropout within the at-
tention layer. Suppose that the (f − 1)-th layer’s output
Hf−1 ∈ RM×d where d is the hidden dimension, we have:

H
f
= PEA(Hf−1) = [Of

1 , . . . ,O
f
h]W

f
o1 ,

Hf = FFN(H
f
) = H

f
Wf

o2 ,

with Of
j =

(Hf−1Wf
q,j)(H

f−1Wf
k,j)

⊤
√
d

Hf−1Wf
v,j ,

(2)
where [·] denotes the concatenation operation, Wf

q,j , Wf
k,j ,

Wf
v,j ∈ Rd×d/h and Wf

o1 ,W
f
o2 ∈ Rd×d are the parame-

ters to be learned. The same process is looped F times and
then we use the average pooling operation to turn the output
HF of the last layer into a d-dimensional feature vector.

3.3.3. TRAINING THE SSL4Q

Having outlined the key components of SSL4Q, we now
turn our focus to its training methodology. The student and
teacher models, while structurally identical, commence with
distinct random parameter initializations. In the rest of the
paper, we refer to the student model as fθ with parame-
ters θ, and teacher model as f ′θ′ with θ′. In each training
iteration, a combination of labeled and unlabeled shadow
embeddings is randomly selected. Allocating a fraction of
each batch to labeled examples is beneficial, ensuring that
the supervised training signal is sufficiently robust from
the outset to enable rapid learning and avoid the pitfalls
of uncertainty. In our experiments, the proportion of la-
beled samples is set to between 1/8 and 1/4 of the total
batch size. Prior to processing the shadow embeddings,
each sample is subjected to data augmentation, a step cru-
cial for the computation of the consistency loss. The extent
of augmentation can differ between labeled and unlabeled
samples. We opt for Gaussian noise since we find that it
significantly enhances model performance despite its sim-
plicity. The student model learns through both supervised
loss and consistency loss L = Lsup + λLcon, where

Lsup = − 1

B

∑
i∈B

C∑
c=1

I [yi = c] log (fθ (Xi)c) ,

Lcon =
1

B

∑
i∈B

|fθ(Xi)− f ′θ′(Xi)|
2
,

(3)
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Table 1. Classification accuracy in identifying different classes of Heisenberg model quantum systems w.r.t. different number of
measurements M . The mask rate is fixed as η = 0.9. The SSL4Q sup. denotes the variant of SSL4Q trained only by labeled samples
using supervised loss. The best results are emphasized in red while the second-best results are distinguished in blue.

M = 16 M = 32 M = 64 M = 128
Method

L = 20 L = 30 L = 40 L = 50 L = 20 L = 30 L = 40 L = 50 L = 20 L = 30 L = 40 L = 50 L=20 L = 30 L = 40 L = 50

Gaussian Kernel 53.73 54.87 55.07 60.90 56.70 57.87 61.80 56.30 59.33 62.37 59.30 57.83 66.57 60.67 49.37 59.30
NTK 53.17 54.27 55.03 60.67 56.17 57.27 61.07 55.07 59.47 61.03 59.33 57.00 66.30 60.17 49.30 58.80
RNN 61.17 64.47 62.90 66.13 72.60 70.93 69.47 69.67 81.93 74.53 72.50 73.13 85.83 83.43 76.90 73.40
LLM4QPE 63.90 64.13 64.53 67.60 76.73 73.80 70.23 70.57 83.20 77.30 74.83 74.57 88.70 84.87 79.13 75.57

SSL4Q (sup.) 64.07 65.20 65.47 68.07 78.90 75.87 72.77 70.23 83.67 76.27 75.73 74.90 92.77 86.23 82.17 81.67
SSL4Q 71.97 68.63 72.87 71.40 84.53 80.13 78.03 73.40 89.77 81.50 82.43 83.60 93.83 88.00 83.83 84.43

where λ is the consistency weight, B denotes the batch size,
C is the number of classes and I[·] is an indicator function.
Whereas the teacher model’s parameters are an EMA of
the student’s, i.e., θ′

u = αθ′
u−1 + (1 − α)θu for the u-th

iteration where α is a smoothing coefficient. Our model can
also be easily adapted for fully supervised learning mode
which entails using only labeled shadow embeddings in each
iteration and omitting data augmentation. The numerical ex-
periments reveal that incorporating Gaussian noise and con-
sistency loss into the semi-supervised learning framework
significantly enhances SSL4Q’s efficacy in classification of
quantum states.

4. Experiments
We perform experiments on two types of quantum mod-
els: the Heisenberg model (Takahashi & Suzuki, 1972),
which is important for Hamiltonian simulation (Feynman
et al., 2018) in quantum information sciences, and the VQC
model (Cerezo et al., 2021) noted for its applicable to quan-
tum algorithms for near-term quantum devices (Schuld et al.,
2015). We utilize the VQC to encode classical inputs from
the MNIST dataset (LeCun et al., 1998) into quantum states
through parameterized quantum gates. For both models, we
experiment with different mask rates η, randomly obscuring
a portion of the training data labels.

Baselines. To our best knowledge, there is no semi-
supervised models for quantum many body problems. Thus
we only consider fully supervised baselines. For the Heisen-
berg model, we establish our baselines using kernel methods
including the Gaussian Kernel and Neural Tangent Kernel
(NTK) implemented in Huang et al. (2022). To broaden our
comparative scope, we also explore advanced deep learn-
ing approaches. These include a Recurrent Neural Net-
work (RNN)-based model (Carrasquilla et al., 2019), and
a transformer-based model LLM4QPE (Tang et al., 2024).
For our experiments involving the VQC model, we consider
the convolutional neural network (CNN) (He et al., 2016)
and the quantum CNN (QCNN) (Cong et al., 2019). In both
cases, we utilize the implementation provided by Hur et al.
(2022) for comparison. In this paper, all our experimental
results are reported for a model configuration consisting of

4 heads, 2 layers, and 128 hidden dimensions. We refer the
readers to Appendix D for more about the hyper-parameter
configurations of SSL4Q and baselines. To demonstrate
the effectiveness of the proposed semi-supervised learning
framework, a fully supervised variant (SSL4Q sup.) is intro-
duced to evaluate the model’s ability to effectively utilize
the abundance of unlabeled data for model’s regularization.

4.1. Experiments on Heisenberg Model

Our first investigation focuses on the quantum system under-
going time evolution governed by a parameterized Hamilto-
nian. We start by introducing the fundamentals of generating
the datasets and then we report the numerical results.

4.1.1. DATASET

We examine the one-dimensional transverse-field Ising
model, described by the Hamiltonian:

H(J, g) = −J

∑
⟨ij⟩

σz
i σ

z
j + g

∑
i

σx
i

 , (4)

where ⟨ij⟩ represents adjacent qubits i and j, and σz
i and

σx
i denote the Pauli-Z and Pauli-X operator acting on the

i-th qubit, respectively. For specific values of J and g, the
quantum system evolves over time as |Φt⟩ = e−iHt|Φ0⟩.
We explore various evolution times t ∈ {5, 10, 20}ms. Dif-
ferent time evolution leads to a distinguishable variation
pattern such as entanglement entropy (Xiao et al., 2022),
resulting in three classes of quantum systems based on time
t. Additionally, the dynamic evolution of the quantum sys-
tem is influenced by the strength of J and g. We set J = 1
and assume g is uniformly distributed within [0, 2]. The sys-
tem enters an ordered phase for |g| < 1 and an unordered
phase for |g| > 1 (Heyl et al., 2013), leading to two classes
based on phase. Consequently, there are a total of 6 distinct
classes, each characterized by its own phase and evolution
time. For the testing dataset, we randomly select 1000 dif-
ferent values of g for each t ∈ {5, 10, 20}ms, resulting in
N te = 3000. For the training dataset, we randomly sample
the time step t and the strength g to generate data and we
set N tr = 2000. Simulating the quantum system with up to
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Figure 5. Left) Classification Accuracy of teacher model and stu-
dent model on the testing dataset. Right) The curve of Lsup and
Lcon of SSL4Q on the training dataset. For illustrative clarity, this
visualization is confined to the initial 200 training epochs.
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Figure 6. Classification accuracy for Heisenberg model quantum
systems by mask rates η. The number of measurements is M=16.

50 qubits is generally nontrivial and we employ the matrix
product state (MPS) (Orús, 2014) to represent the quantum
state and generate the measurement records. More details
can be found in Appendix C. We vary the mask rate η and
the number of measurements M for different system sizes
and examine the performance among SSL4Q and baselines.

4.1.2. EXPERIMENTAL RESULTS

We perform experiments on various system sizes L ∈
{20, 30, 40, 50}, with constant mask rate η = 0.9, implying
that merely 10% (200 out of 2000) of the training samples
are labeled. Our focus is on the most challenging scenario
with M=16, where a lower count of measurements intro-
duces greater uncertainties in the resultant shadow embed-
dings. As listed in Tab. 1, SSL4Q consistently outperforms
baselines, achieving the highest mean accuracy across all
system sizes. Intriguingly, even when the parameter up-

dates rely solely on the supervised loss from the labeled
samples, it consistently outperforms baseline models, in-
cluding LLM4QPE in which transformer is used akin to
ours. A notable distinction in SSL4Q is the absence of a
LSTM layer for embedding, which in LLM4QPE transforms
discrete measurement outcomes into continuous features,
thereby disrupting the permutation invariance characteris-
tic of quantum measurements. Moreover, the number of
LSTM’s parameters linearly scales with the number of mea-
surements M , predisposing the model to overfit training
data yet underfitting in test.

We further investigate the efficiency of training SSL4Q with
and without supervised labels. As shown in Fig. 5 (left),
the EMA-weighted model (i.e., the teacher model) provides
more accurate predictions than the bare student models after
an initial period. For the SSL4Q variant that relies exclu-
sively on supervised loss, we report the student model’s
evaluation accuracy, as the teacher model’s consistency loss
is deactivated. In contrast, in the generic SSL4Q framework,
the teacher model’s evaluation accuracy is emphasized due
to its superior performance and generalization capabilities
on test datasets. This performance distinction is illustrated
in Fig. 5 (right). In the early training phase (before the 20th
epoch), the model rapidly adapts to the labeled training sam-
ples, evidenced by the precipitous decline in supervised loss.
This supervised training signal facilitates rapid training and
prevents entrapment in uncertainty. For comparison, the con-
sistency loss escalates sharply at first, as we adopt a ramp-up
schedule for the consistency loss coefficient λ to stabilize
the training (Tarvainen & Valpola, 2017). As training pro-
gresses (after the 20th epoch), the consistency loss assumes
a dominant role in the loss function, thereby increasing the
penalty for output inconsistencies. This strategic shift al-
lows the model to progressively enhance its adaptation to
the inherent uncertainties of quantum measurements.

In Fig. 6, we study the impact of varying mask levels on the
model’s performance. A higher mask rate indicates fewer la-
beled training samples, introduce an augmented challenge to
the model’s capacity for learning and generalization within
datasets constrained by limited labels. It’s crucial to note
that all baseline models rely solely on supervised loss for
parameter updates, fundamentally due to their fully super-
vised nature and a lack of consideration for semi-supervised
learning frameworks by their original developers. To this
end, a supervised learning variant of SSL4Q (SSL4Q sup.)
is designed to evaluate the SSL4Q’s ability to effectively
utilize the abundance of unlabeled data for model’s regular-
ization. For a fair comparison, a shadow embedding layer is
utilized as the input across all models. SSL4Q exhibits con-
sistent superiority over the baselines, with an improvement
margin ranging between 2% and 5% except in the cases of
L = 20 and L = 50 with η = 0.7. Notably, SSL4Q (sup.)
also marginally exceeds the other two neural network-based
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methods including RNN and LLM4QPE. This advantage
is ascribed to our innovative PEA layer. Moreover, neu-
ral network-based methods generally surpass kernel meth-
ods, aligning with the results reported in papers Wang et al.
(2022); Tang et al. (2024), thus underscoring the superiority
of deep learning approaches over traditional kernel-based
machine learning methods in representing quantum states
and their characteristics.

4.2. Experiments on VQC

We then delve into the Variational Quantum Circuit (VQC),
an approach in harnessing quantum advantage on Noisy
Intermediate-Scale Quantum (NISQ) devices (Cerezo et al.,
2021). Below we briefly discuss how we employ VQC to
construct the quantum dataset.

4.2.1. DATASET

Given a set of classical data ωr ∈ RP for r ∈ {1, . . . , R},
VQC can be envisioned as a quantum feature map encoding
classical data into quantum states:

U(ω) = UR(ωR) · · ·U2(ω2)U1(ω1),

with Ur(ωr) =
∏
p

e−iωr,pHr,p/2, (5)

where Ur(ωr) is a unitary satisfying Ur(ωr)U
†
r(ωr) = I

(† denotes the conjugate transpose), Hr,p is a Hermitian
operator satisfying H†

r,p = Hr,p and ωr,p is the p-th ele-
ment in ωr. We follow the pre-processing protocal of Hur
et al. (2022), wherein each 28× 28 image is condensed to a
16-dimensional feature vector v via Principal Component
Analysis (PCA). We set R = 2 and P = 8 to encode the im-
age into its quantum representation, where v[1:8] is assigned
to ω1 and v[9:16] to ω2. The Hermitian operator is chosen to
be H1,p = σx and H2,p = σy for p ∈ {1, . . . , 8}. This spe-
cific quantum circuit is applied to the initial state to produce
an 8-qubit quantum representation of an image, denoted
as |Ψ(ω)⟩ = U(ω)|0⟩⊗8. Subsequent measurements from
this quantum state yield the necessary measurement records,
with further details available in Appendix C. The image’s
category is treated as the class identifier for the quantum
systems. In this paper we consider binary classification. We
generate a quantum dataset including images of class 0 and
class 1, resulting in a training dataset of size N tr = 12665
and a testing dataset of size N te = 2115.

4.2.2. EXPERIMENTAL RESULTS

The average classification accuracy across three runs with
distinct random seeds is listed in Tab. 2. We incrementally
adjust the mask rate η from 0.6 to 0.95 while maintaining
M = 512 andN tr = 12665. Our SSL4Q framework, along
with its supervised variant SSL4Q (sup.), outperforms the
other two baseline models across all evaluated mask rates.

Table 2. Accuracy in predicting categories of quantum states en-
coded by ‘0’ and ‘1’ of MNIST. We fix M = 512 and N tr =
12665. Best and second-best are in red and blue, respectively.

Method η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 0.95

CNN 88.82 92.85 94.50 86.10 93.24
QCNN 97.40 96.80 96.95 96.38 95.74

SSL4Q (sup.) 98.44 98.77 99.01 98.68 98.96
SSL4Q 99.20 99.15 99.20 99.10 99.24

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Mask Rate 

93

94

95

96

97

98

99

A
cc

ur
ac

y 
(%

)

SSL4Q (sup.), M=64
SSL4Q, M=64
SSL4Q (sup.), M=128
SSL4Q, M=128
SSL4Q (sup.), M=256

SSL4Q, M=256
SSL4Q (sup.), M=512
SSL4Q, M=512
QCNN

5 10
Training Size (103)

82.5

85.0

87.5

90.0

92.5

95.0

97.5

A
cc

ur
ac

y 
(%

)

SSL4Q, M=64
SSL4Q, M=256
QCNN
CNN

Figure 7. Left) Classification accuracy for VQC models across
various mask rates with N tr = 12665. Right) Accuracy among
different sizes of training dataset with η = 0.9.

Notably, SSL4Q achieves exceptional accuracy, consistently
exceeding 90% even at a mask rate of 0.95.

Further study into how the number of measurements affects
model performance is shown in Fig. 7 (Left), SSL4Q and
SSL4Q (sup.) consistently surpass QCNN when M ≥ 128,
with performance improving as M increases. This suggests
that directly applying VQC as quantum neural networks for
processing classical data does not fully leverage the benefits
of quantum computing, often yielding results inferior to
those of well-engineered classical neural networks (Cerezo
et al., 2021). Although information may be lost when per-
forming limited measurements, the results show that SSL4Q
can effectively discern the quantum systems corresponding
to image categories from the measurement records. Addi-
tionally, an analysis of the impact of various training set
sizes on model performance is presented in Fig. 7 (Right). It
is observed that SSL4Q’s prediction accuracy at M = 256
surpasses both QCNN and CNN, significantly improving
upon SSL4Q’s accuracy at M = 64. With increasing train-
ing set size, SSL4Q’s prediction accuracy exhibits a pro-
gressively upward trend, with notably reduced oscillation
amplitude compared to QCNN and CNN.
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Table 3. Comparison of classification accuracy for VQC model
under noisy conditions with different depolarizing noise levels.

Method p = 0.01 p = 0.05 p = 0.1

SSL4Q 98.71 98.34 97.68
QCNN 94.47 92.59 72.34

4.3. Further Discussions

Ablation on Shadow Embedding and PEA Layer. To
evaluate the efficacy of shadow embedding, we substitute
it with discrete measurement outcomes. We also replace
the PEA layer with an LSTM layer. The results in Tab. 4
located Appendix E demonstrate that incorporating infor-
mation from the measurement operators can significantly
enhance the model’s performance. Moreover, compared
to the LSTM layer that overlooks the unordered nature of
quantum measurements, SSL4Q’s adoption of permutation
invariance further boosts its performance.

Impact of Different Levels of Noise. We simulate gate
noise and measurement noise as reported in IBM quan-
tum computers and simulators, and collect noisy quantum
datasets using the VQC model. Then the model is re-trained
from scratch to assess model’s performance under noisy
conditions. For a comparison, we present the accuracy of
SSL4Q in predicting categories of quantum states encoded
by ‘0’ and ‘1’ of MNIST under noiseless conditions. This
will serve as a benchmark for comparison with the model’s
performance under noisy conditions. The experiments are re-
peated 5 times with different random seed initailizations and
averaged classification accuracy of SSL4Q is 98.82%, con-
sistently outperforming CNN’s 86.1% and QCNN’s 96.38%.
We first evaluate the model’s performance under a common
type of gate noise, specifically depolarizing noise. The out-
put state of the input state ρ after the noise channel is given
as E(ρ) =

∑
iKiρK

†
i , where {Ki} are the Kraus operators

satisfying
∑

iKiK
†
i = I . Concretely, these operators are

written as

K0 =
√
1− p

(
1 0
0 1

)
, K1 =

√
p/3

(
0 1
1 0

)
,

K2 =
√
p/3

(
0 −i
i 0

)
, K3 =

√
p/3

(
1 0
0 −1

)
.

(6)
The depolarizing noise model is extracted from the
simulator statevector simulator from IBM quan-
tum cloud service, setting the intensity of depolarizing noise
p at three levels: 0.01, 0.05, and 0.1. The accuracy of
SSL4Q in predicting categories of quantum states under the
gate noisy conditions are listed in Tab. 3. It is observed that
while accuracy decreases with the increase in noise inten-
sity, the model’s accuracy remains higher than that of the
baselines including CNN and QCNN under noiseless con-

ditions, even at a noise intensity of p = 0.1. Furthermore,
we assess the SSL4Q’s performance under measurement
error. Specifically, we reference the reported measurement
errors of the IBM quantum computer ibm kyiv, setting
meas0 prev1 as 0.0088 (the probability that the measure-
ment result of |1⟩ is that of |0⟩) and meas1 prev0 as
0.0042 (the probability that the measurement result |0⟩ is
that of |1⟩). The experimental results show an accuracy in
predicting categories of quantum states of 98.91%. This
result also surpasses the baselines CNN and QCNN under
noiseless conditions.

Impact of Measurement Uncertainties. We construct a
toy dataset for the Heisenberg model specified by t = 5ms,
g = 1, L = 50, η = 0.9, and M = 16, with varied
g ∈ {0.5, 1.5}. The dataset is constructed with equal size
for training and testing (N tr = N te = 100), with balanced
positive and negative samples. This setup is intended for a
binary classification task, aiming to assess predictive accu-
racy under conditions of limited measurements with large
uncertainties. As demonstrated in Fig. 12 in Appendix E,
SSL4Q exhibits enhanced robustness in scenarios of high
measurement uncertainty. This is attributed to our strategy
of preserving the intrinsic unorder of quantum measure-
ments, contrary to approaches that assume ordered embed-
dings, as seen in RNN and LLM4QPE implementations.

Impact of Data Augmentation and Consistency Weight.
We study the effects of the noise used for data augmentation
and the consistency weight λ. The results are depicted
in Fig. 13. The predictive error (one minus accuracy) is
reported on the dataset with L = 20, M = 32 and η = 0.9.
Our findings indicate a nuanced relationship between test
accuracy and the standard deviation (std) of Gaussian noise,
where accuracy initially increases before declining as the
noise shifts from low to high values, typically peaking at
a std of 0.25. Besides, when the λ is relatively small, the
test accuracy improves. However, when λ is larger than
a threshold (10 under the dataset’s settings), the accuracy
would drop. In our experiments, we adopt a Gaussian noise
setting with a mean of 0 and a std of 0.25, alongside a λ
value of 10. This configuration is found to be optimal across
a broad range of settings, although further fine-tuning may
yield enhanced performance.

5. Conclusion and Outlook
We have introduced a semi-supervised approach, SSL4Q,
tailored for quantum data analysis with limited labeling.
Our empirical results show its superiority over conventional
supervised models in classification of quantum states of the
Heisenberg and VQC models, under varying label mask-
ing rates and measurement quantities. Future efforts will
explore the adaptability of our model to diverse quantum
systems.
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Impact Statement
Quantum computing has been a promising paradigm for ar-
tificial intelligence, with SSL4Q exemplifying its potential
through semi-supervised learning in quantum state classifi-
cation. This approach leverages limited labeled alongside
abundant unlabeled data, enhancing the improvements of
quantum technologies. While promising for quantum tech-
nology advancement, it also poses ethical challenges, such
as potential misuse and increased digital divide. We em-
phasize the importance of responsible research and policy
frameworks to mitigate these risks, advocating for an in-
terdisciplinary dialogue to ensure equitable and positive
societal contributions from quantum advancements.
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A. Related Work
A.1. Learning Classical Representations of Quantum States

Tensor networks (Shi et al., 2006) employ tensor decomposition to represent the quantum state as a series of small
tensors. These method attempt to approximately store the low-entangled quantum states and simulates their evolution
classically (Orús, 2019). The matrix product state (MPS) (Orús, 2014) is responsible for representing the one-dimensional
array of qubits, whereas the projected entangled pair state (PEPS) (Corboz, 2016) generalizes the MPS from a one-
dimensional array to an arbitrary graph. Recently, the classical shadow protocol (Huang et al., 2020) suggests to use random
measurements to characterize the quantum properties, facilitating applications in state tomography (Hu et al., 2023), direct
fidelity estimation (Struchalin et al., 2021), state function prediction (Zhang et al., 2021b).

Learning-based methods have recently gained attention, aiming to use neural networks as universal function approximators
for various nonlinear properties of quantum systems. A multitude of models has emerged, including RBM-based (Carleo &
Troyer, 2017), RNN-based (Carrasquilla et al., 2019), CNN-based (Wu et al., 2019; Sharir et al., 2020; Wu et al., 2023a),
and transformer-based (Cha et al., 2021; Zhang & Di Ventra, 2023; Xiao et al., 2022) approaches. The specific choice of
neural network depends on the topological structure of the corresponding physical problem. These methods are generally
empirical and experimental.

Notably, recent advanced literature has started incorporating physical inductive biases into learning. For instance, Chen
et al. (2023) integrates neural networks with tensor networks, where tensor networks preserve the physics structure and sign
structure in the learned representations of quantum systems. Another study (Tang et al., 2024) introduces a pre-training
paradigm that allows the model to effectively approximate the wave function of quantum states during the pre-training phase,
with the learned parameters being highly effective for predicting other quantum properties. The authors of Qian et al. (2023)
suggest to encode the circuit structure of the studied quantum system as input, significantly enhancing the model’s ability to
differentiate between various quantum states. Our method can serve as a universal paradigm for semi-supervised learning
for quantum data. All these learning-based methods can be adapted within our framework to better suit the more commonly
encountered scenario of sparsely labeled quantum data available.

A.2. Semi-Supervised Leaning in NLP and CV

In the realms of Natural Language Processing (NLP) and Computer Vision (CV), semi-supervised learning has emerged
as a pivotal technique due to its ability to leverage both labeled and unlabeled data (Chen et al., 2022; Søgaard, 2022).
This approach is particularly beneficial in scenarios where acquiring comprehensive labeled datasets is costly or unfeasi-
ble (Van Engelen & Hoos, 2020).

In NLP, semi-supervised methods have significantly advanced tasks such as language modeling (Peters et al., 2017) and
sentiment analysis (Khan et al., 2017). One key strategy is self-training (Zhai et al., 2019), where models initially trained on
labeled data are used to annotate and subsequently retrain on unlabeled data. This iterative cycle amplifies the training dataset,
enhancing the model’s learning capability. For example, the ULMFiT model (Howard & Ruder, 2018) has successfully
adopted this approach, demonstrating remarkable efficacy in text classification. Additionally, transformer-based models
like BERT (Devlin et al., 2019) and GPT (Brown et al., 2020), pre-trained on extensive unlabeled corpora, have set new
benchmarks in various NLP tasks by fine-tuning on smaller, task-specific labeled datasets.

In CV, semi-supervised learning has revolutionized fields such as image classification (Wu & Prasad, 2017; Liu et al., 2020a)
and object detection (Tang et al., 2021; Xu et al., 2021). Techniques like pseudo-labeling (Zhang et al., 2021a), where
labels generated by a model are used to augment training data, have been widely implemented. Models such as Mean
Teacher (Tarvainen & Valpola, 2017) and Noisy Student (Xie et al., 2020b) exemplify this approach, achieving high accuracy
in image classification tasks. Furthermore, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have been
leveraged for data augmentation in domains like medical imaging (Yi et al., 2019) for addressing the scarcity of labeled data.

B. More Basics of Quantum Computing
In the main text of the paper, we only introduce the mathematical formulation of Pauli-X operator and its eigen-
decomposition. Below we provide more details about the other two Pauli operators. For a comprehensive discussion, we
refer the readers who are interested in quantum computing and quantum information to the Section 2.1 of the book (Nielsen
& Chuang, 2010).
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A single qubit is a vector |ψ⟩ = α|0⟩+ β|1⟩ parameterized by two complex numbers satisfying |α|2 + |β|2 = 1. Operations
on a qubit must preserve this norm, and thus are described by 2× 2 unitary matrices. Of these, some of the most important
are the Pauli operators; it is useful to list them again here:

σx ≡
[

0 1
1 0

]
, σy ≡

[
0 −i
i 0

]
, σz ≡

[
1 0
0 −1

]
. (7)

One could do some linear algebras and check that |0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
are the eigenvectors of σz , |+⟩ = 1√

2

[
1
1

]
and

|−⟩ = 1√
2

[
1
−1

]
are the eigenvectors of σx, |i+⟩ = 1√

2

[
1
i

]
and |i−⟩ = 1√

2

[
1
−i

]
are the eigenvectors of σy . The same qubit

can be decomposed in to different orthonormal basis. For example,

|ψ⟩ = α|0⟩+ β|1⟩

=
1√
2
(α+ β)|+⟩+ 1√

2
(α− β)|−⟩

=
1√
2
(α− βi)|i+⟩+

1√
2
(α+ βi)|i−⟩.

(8)

The density matrix representations of these eigen-states fulfill the criteria for projective measurements. It means that
{|0⟩⟨0|, |1⟩⟨1|}, {|+⟩⟨+|, |−⟩⟨−|} and {|i+⟩⟨i+|, |i−⟩⟨i−|} are all the projective measurements. We employ these as
random Pauli measurements to observe the quantum system and gather the resultant measurement data.

We may consider a system of L qubits. It can be described by the so called wave function:

|Φ⟩ =
M∑

σ1=1

· · ·
M∑

σL=1

Ψ(σ1, . . . , σL)|σ1, . . . , σL⟩, (9)

where Ψ : ZL → C maps a fixed configuration σ = (σ1, . . . , σL) of L qubits to a complex number which is the amplitude
satisfying

∑K
σ1=1 · · ·

∑K
σL=1 |Ψ(σ1, . . . , σL)|2 = 1, and σi ∈ {1, . . . ,K} is one of theK possible outcomes by performing

quantum measurement on the i-th qubit. It is formulated in a complex Hilbert space where the vector representation of the
quantum state |Φ⟩ ∈ CKL

and its density matrix |Φ⟩⟨Φ| ∈ CKL×KL

, which becomes astronomical for large L.

C. More Details About the Dataset Construction
C.1. Heisenberg Model

In our study, we perform simulated experiments on the one-dimensional transverse-field Ising model, scaling up to 50 qubits.
Direct simulation of such a large-qubit quantum system, involving manipulation and storage of maximal 250-dimensional
complex vectors, is impractical due to computational constraints. To overcome this, we utilize Matrix Product State (MPS)
methods. Specifically, we leverage the Julia implementation provided by ITensor Fishman et al. (2022), for representing the
quantum state and simulating its temporal evolution.

In order to computing the time evolution of a quantum state under the dynamics of a Hamiltonian H , we adopt the technique
named as “time evolving block decimation” (TEBD) (Vidal, 2003). The idea is to decompose the time-evolution operator
into a circuit of quantum gates (two-dimensional unitaries) using the Trotter-Suzuki approximation (Hatano & Suzuki, 2005)
and to apply these gates in a controlled way to an MPS. Consider the Hamiltonian we use to generate the dataset given in
Eq. 4, and suppose that the total evolution time T is discreted as NT small time steps τ = T/NT , the Trotter decomposition
is given as

e−iτH ≈e−iσz
1σ

z
2Jτ/2e−iσz

2σ
z
3Jτ/2 · · · e−iσz

L−1σ
z
LJτ/2e−iσx

1Jgτ/2 · · · e−iσx
LJgτ/2×

e−iσx
LJgτ/2 · · · e−iσx

1Jgτ/2e−iσz
L−1σ

z
LJτ/2 · · · e−iσz

1σ
z
2Jτ/2 +O

(
τ3
)
.

(10)

The error in the above decomposition is of order τ3, so that will be the error accumulated per time step. Because of the
time-step error, one takes τ to be small and then applies the above set of operators to an MPS as a single sweep, then does
NT sweeps to evolve for a total time T . The total error will therefore scale as τ2 with this scheme, though other sources of
error may dominate for long times, or very small τ such as truncation errors. In our simuation, the initial state are set to
be the a product state alternating up (|0⟩) and down (|1⟩). The truncation error threshold is fixed as 1× e−12 to enable a
good approximation of the quantum state. Note that we only conduct unitary evolution for MPS time evolution since the
non-Hermitian evolution is relatively hard to be implemented based on linear tensor networks.
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Figure 8. The quantum circuit used for mapping the classical images into the quantum states.

C.2. VQC Model

In Sec. 4.2, we delve into the methodology of encoding images of classes 0 and 1 into quantum states using a Variational
Quantum Circuit (VQC). To elucidate this process, we present the layout of the VQC as utilized for dataset generation
in Fig. 8. This circuit, which comprises a total of 8 qubits, is conceptually akin to the embedding layer in the Quantum
Convolutional Neural Network (QCNN) as implemented by Hur et al. (2022). Notably, an entanglement layer, densely
populated with CNOT gates, is appended to this configuration. Specifically, followed by Hur et al. (2022), each 28× 28
grayscale image is first transformed into a 16-dimensional feature vector v using Principal Component Analysis (PCA).
Within this vector, the initial 8 elements are designated as parameters for the Rx gates, while the subsequent 8 elements are
allocated as parameters for the Ry gates, where

Rx(θ) = e−iθσx/2 =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
, Ry(θ) = e−iθσy/2 =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
. (11)

Then we perform a series of CNOT gates to generate an entangled quantum state, with the two-qubit CNOT gate written as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (12)

Ultimately, we execute quantum measurements and gather the resulting measurement records to assemble our dataset. The
simulation of the Variational Quantum Circuit (VQC) and the subsequent quantum measurements are conducted using the
Pennylane toolkit (Bergholm et al., 2018).

D. Detailed Experimental Settings
D.1. Baselines

Kernel Methods (Huang et al., 2022). We utilize Gaussian Kernel and Neural Tangent Kernel (NTK) to transform shadow
embeddings into a feature vector with dimensions M ×8L for all samples in both training and testing datasets. A grid search
is performed to identify the optimal regularization strength, with candidate values uniformly distributed on a logarithmic
scale from 0.001 to 100. We employ a 5-fold cross-validation strategy on the training dataset and present the predictive
performance of the model that achieves the highest accuracy on the test dataset.

RNN (Carrasquilla et al., 2019). We adopt a Gated Recurrent Unit (GRU) (Cho et al., 2014) to project the shadow
embeddings into a higher-dimensional feature space. A subsequent Feed-Forward Neural Network (FFN) is appended
to the final layer to compress the feature dimensions to match the number of target classes. Benefit from the inherent
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Figure 9. The pre-defined schedule of the consistency weight λ (left), the learning rate (middle) and the EMA decay coefficient α (right).

auto-regressive properties, RNN has been widely adopted to represent the wave functions and predict the properties of
quantum states (Carrasquilla, 2020). The hidden dimension of GRU is set to be 128.

LLM4QPE (Tang et al., 2024). LLM4QPE presents a versatile approach for predicting various properties of quantum
systems through a pre-training procedure that maximizes a likelihood function based on discrete measurement outcomes.
For a fair comparison, we bypass the pre-training phase and configure the model with 4 heads, 2 layers, and a hidden
dimension of 128.

CNN and QCNN (Hur et al., 2022). Following the pre-processing protocol in Hur et al. (2022), we apply PCA to condense
the 28× 28 images into a 16-dimensional feature vector prior to model input. For the CNN, we set the convolutional kernel
size to 2, stride to 1, and padding to 1. The number of free parameters used is 34. The QCNN model is equipped with 8
qubits and utilizes a hardware-efficient ansatz, comprising 26 trainable parameterized gates with convolutional circuit 2 in
Hur et al. (2022).

D.2. Our Proposed SSL4Q and SSL4Q sup.

The primary distinction between our SSL4Q model and existing supervised baselines lies in our approach to harnessing the
potential of unlabeled quantum data. We achieve this through the minimization of consistency loss during model training.
The key to this process are two hyper-parameters: the standard deviation (std) of Gaussian noise and the consistency weight
λ. Based on empirical evidence, we set the Gaussian noise mean to 0 and std to 0.25, which consistently yields optimal
predictive accuracy across various scenarios. The training duration is established at 500 epochs.

We employ a tailored schedule for the consistency weight λ, learning rate, and the Exponential Moving Average (EMA)
decay coefficient α, as depicted in the Fig. 9. Initially, λ is increased slowly to mitigate the impact of insufficient supervision
early in training, preventing significant training loss fluctuations or convergence issues. λ experiences an exponential rise in
the first 10 epochs, peaking at a value of 10. The learning rate ascends to a maximum of 0.001 and subsequently follows a
cosine-like decline. The α coefficient adjusts in three phases over the training process. The Adam optimizer is used for
optimization.

For SSL4Q, the architecture comprises 4 heads, 2 layers, and a hidden dimension of 128. The supervised variant of SSL4Q
shares the same structure without data augmentation and the parameters are optimized by minimizing supervised loss.

E. Additional Numerical Results
E.1. Impact of Different Quantum Data Embedding Strategies

Our proposed shadow embedding includes both the measurement string and the corresponding measurement operator, as
discussed in Sec. 3.3 and illustrated in Fig. 2 and 3. Firstly, we consider the scenario where the measurement operator
information is removed from the shadow embedding (denoted as Shadow Embedding w/o Meas. Op.). This is akin to the
embedding strategies discussed in [1,2], where the model’s input is the measurement string, with each element being discrete
(ranging from 0 to K − 1, where K is the number of possible outcomes when measuring a single qubit, where K = 6 in
our study). We conducted experiments on the Heisenberg model with M = 128 and η = 0.6 for L = 20. The results are
averaged over 3 runs with different random seed initializations and are listed in Fig. 10. For comparison, we also list the
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Table 4. Classification accuracy in predicting different classes of Heisenberg model quantum system, with η = 0.9 and M = 32. In the
table, ’w/o shadow embedding’ denotes we substitute the shadow embedding with discrete measurement outcomes, while ’w/o PEA’
represents we replace the PEA Layer with an LSTM layer. The best results are highlighted in bold.

Method L = 20 L = 30 L = 40 L = 50

SSL4Q (w/o shadow embedding) 52.57 54.60 53.23 51.37
SSL4Q (w/o PEA) 73.30 71.47 70.80 71.23

SSL4Q 84.53 80.13 78.03 73.40

performance of the original shadow embedding accordingly. The experimental results demonstrate that relying solely on the
discrete measurement string as input significantly decreases the prediction performance.

Furthermore, we study averaging the shadow embedding X ∈ RM×L (M is the number of measurements and L is the
system size) along the first axis before inputting it into the model, transforming it into a vector X ′ ∈ RL (denoted as
Averaged Shadow Embedding). The results are reported in Fig. 11. It is evident that there is a decrease in evaluation
performance on both the baselines and SSL4Q.

E.2. Other Results

We present additional ablation study for the model with and without shadow embedding and PEA layer and the results
are listed in Tab. 4. Further investigations about the impacts of measurement uncertainties are illustrated in Fig. 12. The
sensitivity to the data augmentation and consistency weight are reported in Fig. 13.
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F. Limitations
In this paper, we have confined our experiments within the typical semi-supervised learning framework of consistency
regularization (Tarvainen & Valpola, 2017). More advanced methods, such as generative methods (Liu et al., 2020b) and
pseudo-labeling methods (Wang et al., 2020), might also yield similar or improved predictive performance for quantum state
classification with limited labeled data.

Our studies focus on classification tasks which subject to identify different types of quantum states. A complementary task is
to estimate the properties of quantum states such as expectation values of observables, entanglement entropy of sub-systems
and correlation functions. We do not consider the regression tasks of quantum properties estimation in this paper. This
is mainly because limited labeled training samples may not fully represent the entire distribution of the whole data when
the labels have continuous values. If the labeled samples do not cover the range of labels in the test set, it could lead to
decreased model performance when predicting the properties of the unseen quantum data. The challenges of applying
semi-supervised learning to regression tasks in quantum properties estimation could potentially be overcome by employing
strategies such as data augmentation and interpolation (Verma et al., 2022), or active learning (Gao et al., 2020), but these
are beyond the scope of this paper.

In future work, we aim to further explore these aspects. Additionally, future studies could attempt to devise specialized data
augmentation techniques for quantum data to enhance model performance, as this has been proven to play a crucial role in
semi-supervised learning (Xie et al., 2020a).
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