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Abstract
Recent research has focused on weight sparsity
in deep neural network training to reduce FLOPs,
aiming for improved efficiency (test accuracy w.r.t
training FLOPs). However, sparse weight training
often compromises accuracy, requiring extended
training schedules to attain the accuracy of dense
models. In contrast, our approach, Sparse Iso-
FLOP Transformations (Sparse-IFT), uses spar-
sity to improve accuracy while maintaining dense
model FLOPs. Using a single hyperparameter
(i.e., the sparsity level), Sparse-IFTs efficiently
replace dense layers, expanding the search space
for optimal sparse masks. In addition, dynamic
sparse training (DST) with Sparse-IFT models ef-
fectively navigate this larger sparse mask-weight
space, which is evidenced by a spectral analysis
using Ramanujan graph properties. Our study re-
veals a robust correlation among mask topology,
weights, and final performance. Notably, without
adjusting any training hyperparameters, replacing
dense layers with Sparse-IFT yields significant
improvements, such as a +3.5% boost for ResNet-
18 on ImageNet and +0.9% for GPT-3 Small on
the Open LLM leaderboard. To the best of our
knowledge, this is the first work to demonstrate
the use of sparsity for improving the accuracy
of dense models through a set of simple-to-use
sparse transformations. Code is available at: https:
//github.com/CerebrasResearch/Sparse-IFT.

1. Introduction
Increases in model size and training data have led to many
breakthroughs in deep learning (e.g., AlexNet (Krizhevsky
et al., 2012), ResNet (He et al., 2016), Transform-
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Figure 1: Top-1 Accuracy vs. Training FLOPs for variants
of ResNet on ImageNet. Sparse-IFT provides significant
accuracy gains across different models and sparsity lev-
els, s ∈ {50%, 75%, 90%}, while using the same training
FLOPs as its dense counterpart.

ers (Vaswani et al., 2017), GPT (Radford et al., 2018; 2019),
AlphaGo (Silver et al., 2017), etc.). Consequently, compu-
tational and memory demands for training and deploying
deep neural networks (DNNs) have surged dramatically. To
enable the deployment of large models, multiple techniques
(e.g., distillation (Hinton et al., 2015), quantization (Han
et al., 2015a), pruning (Han et al., 2015b)) have been intro-
duced to reduce inference FLOPs and memory requirements.
While these techniques improve inference efficiency (test
accuracy w.r.t inference FLOPs), the associated training
costs are still prohibitive. Our work focuses on improving
the training efficiency (test-accuracy w.r.t training FLOPs)
of DNNs through weight sparsity. In recent years, we have
witnessed progress in using weight sparsity to reduce train-
ing FLOPs (Evci et al., 2020; Liu et al., 2021a; Jayakumar
et al., 2020). Frankle & Carbin (2018) show that sparse sub-
networks (“lottery tickets”) exist at initialization and can be
trained to match dense network accuracy. Dynamic sparse
training (DST) methods (Ma et al., 2022; Evci et al., 2020;
Liu et al., 2021b; Jayakumar et al., 2020) iteratively adjust
sparsity patterns to facilitate the discovery of optimal sparse
subnetworks within a single training run. However, they
often lag behind dense baselines or require longer training
schedules (e.g., 2-5x training steps) to close the gap (Yuan
et al., 2021; Tai et al., 2022; Liu et al., 2021a). Our unique
contribution focuses on using sparsity to improve a given
dense model’s accuracy. We introduce the Sparse Iso-FLOP
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Transformations (Sparse-IFT), a family of techniques serv-
ing as drop-in replacements for dense layers in DNNs.

Sparse-IFTs increase layer representational capacity, facil-
itating the discovery of optimal sparse subnetworks while
maintaining constant FLOPs (i.e., Iso-FLOP). For example,
widening a layer with maintained sparsity increases dimen-
sionality without impacting FLOPs; expanding the sparse
mask-weight space for more diverse configurations. This en-
ables DST methods to navigate the search space effectively,
potentially finding improved sparse subnetworks for higher
accuracy. Drawing inspiration from prior works (Hoang
et al., 2023b;a), we analyze the connectivity of Sparse-IFT
models as Ramanujan graphs and their impact on perfor-
mance when trained with DST. All Sparse-IFTs are parame-
terized by a single hyperparameter, the sparsity level. Fig-
ure 1 summarizes ImageNet performance, showing signifi-
cant accuracy gains with Sparse Wide IFT ResNet variants.
Sparse Wide ResNet-18 achieves +3.5% top-1 accuracy at
90% sparsity, surpassing a dense ResNet-34 (74.2%) with
2x fewer FLOPs. These gains result from replacing dense
layers with Sparse-IFTs, requiring no changes to training
hyperparameters. The main contributions of our work are:

1. We introduce Sparse Iso-FLOP Transformations
(Sparse-IFTs), a family of techniques aimed at enhanc-
ing DNN training efficiency. These transformations
boost accuracy while maintaining a constant FLOP
count. Sparse-IFTs are parameterized by a single hy-
perparameter, sparsity level, and can be seamlessly
used as drop-in replacements for dense layers.

2. We empirically validate the consistent advantage of
DST over static sparse training for Sparse-IFT net-
works. Our investigation into the dynamic evolution of
sparse topologies in DST via Ramanujan graph spec-
tral analysis highlights optimized connectivity patterns
and improved spectral characteristics.

3. We show consistent benefits of Sparse-IFT across com-
puter vision and natural language processing domains.
Sparse-IFT enhances ResNet-18 and ResNet-34 top-1
accuracy on ImageNet by 3.5% and 2.6%, respectively.
Fine-tuning for object detection (MS COCO) and seg-
mentation (CityScapes) yields improvements of 5.2%
mAP and 2.4% mIoU. Sparse-IFT with GPT-3 results
in a 0.9% improvement on the Open LLM leaderboard.

4. We showcase the practical value of Sparse-IFT with
real-world timings for training on the Cerebras CS-
2 (Lie, 2023) and inference with Neural Magic
DeepSparse (NeuralMagic, 2021) using unstructured
sparsity. Despite being 2x wider at 75% sparsity with
Sparse Wide IFT, we observe minimal compute over-
head on both platforms compared to GPUs.

2. Method
In this section, we first explain our intuition and hypotheses,
followed by our methodology to improve training efficiency.

Training with Dense Matrices is FLOP Inefficient Mod-
ern DNNs are often overparameterized, showing sparsity
in features and weights across layers. The Lottery Ticket
Hypothesis (Frankle & Carbin, 2018; Chen et al., 2020)
suggests sparse DNNs, initialized with an effective sparsity
mask (“lottery ticket”), can achieve the same accuracy as
dense counterparts. Sparse training methods theoretically
enhance efficiency but often yield lower accuracy than dense
baselines. This discrepancy may stem from challenges in
identifying optimal masks within a single training run. Ex-
isting sparse training methods (Jayakumar et al., 2020; Evci
et al., 2020; Yuan et al., 2021; Tai et al., 2022; Liu et al.,
2021a) invest these FLOP savings into longer training sched-
ules to bridge accuracy gaps, inefficiently requiring more
FLOPs than dense baselines for the same target accuracy.

In our work, we take an orthogonal approach and invest
these FLOP savings to (1) enhance a layer’s representa-
tional capacity and (2) expand its search space, aiming to
discover an optimal sparse mask (Ramanujan et al., 2020;
Stosic & Stosic, 2021). Larger sparse models show poten-
tial for improved accuracy, but designing an appropriate
architecture is challenging. For instance, achieving perfor-
mance surpassing ResNet-18 on ImageNet requires careful
balance of sparsity and network size. Existing studies ex-
plore diverse combinations but often lack FLOP efficiency,
requiring multiple iterations for optimal settings and hyper-
parameter tuning. To address this, we propose the Sparse
Iso-FLOP Transformation (Sparse-IFT) family, replacing
dense layers with FLOP-equivalent sparse transformations.
Notably, Sparse-IFT is parameterized by a single hyperpa-
rameter—the sparsity level, simplifying the tuning process.

2.1. Sparse Iso-FLOP Transformations

Setup For clarity, we explain our method in the context
of a fully connected network. Let N denote a L layered
DNN parameterized by ΘN . Let ΘN ∈ {θ1, . . . , θL} de-
note the parameters of the DNN. The output of the l-th layer
is defined as: zl = σ(fθl(zl−1)) for some activation func-
tion σ (e.g., ReLU (Nair & Hinton, 2010)) and feedforward
function fθl . Specifically, let fθl(zl−1) = θTl zl−1, where
θl ∈ RDin×Dout , zl−1 ∈ RDin×B andB,Din,Dout denote
the batch-size, input, and output dimensionality of features
respectively. The total FLOPs needed for fθl are given by
B·Din·Dout. In Appendix A.1, we detail a straightforward
extension to convolutional layers. In the standard setup, the
feedforward function fθl computes output features through
a linear transformation of input features. While theoreti-
cally, arbitrary non-linear transformations can be applied,
practical implementations often resort to expressing transfor-
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Figure 2: Different members of the Sparse-IFT family, each parameterized by a single hyperparameter (i.e., sparsity level,
s). Black and white squares denote non-active and active weights, respectively. Green block indicates a non-linear activation
function (e.g., ReLU). Derived with sparsity set at 50% as an example, all transformations are Iso-FLOP to the dense
feedforward function fθl , making them suitable drop-in replacements for fθl . Details about each member are in Section 2.2.

mations as dense matrix multiplications for efficient GPU
support (Nvidia, 2023). We aim to boost DNN training
efficiency by enhancing the representational capacity of
the feedforward function. Unlike conventional methods
that increase capacity by stacking more layers (Lin et al.,
2014a), widening (Zagoruyko & Komodakis, 2016), or en-
sembling (Littwin et al., 2020), our approach introduces
unstructured sparsity in weight matrices, achieving the same
FLOPs as a dense feedforward function.

Let Ψl denote the set of Sparse Iso-FLOP Transformations
(Sparse-IFT) for a particular layer l:

Ψl : {ψl(s), 0 ≤ s < 1, g(ψl) ≈ g(fθl)},
where ψl is a transformation, s represents the sparsity level,
and g(·) returns the computational FLOPs. Each transfor-
mation in this set satisfies the following properties: (1) the
computational FLOPs of the transformation ψl are same as
that of dense transformation fθl , and (2) the transformation
is parameterized by a single hyperparameter - the sparsity
level. These Iso-FLOP transformations serve as drop-in
replacements for dense feedforward functions, preserving
layer FLOPs. While there may be other FLOP-invariant
transformations, in this work, we explore: Sparse Wide,
Sparse Parallel, Sparse Factorized, and Sparse Doped.

2.2. Members of Sparse-IFT

Sparse Wide This transformation augments the represen-
tational capacity of a layer by increasing the number of
output features while keeping s fraction of weights sparse.
Hence, it widens the input and output features for all L
layers of the network with the same widening factor, ksw, to
avoid mismatch in feature dimensionality across layers. Let
θswl ∈ Rksw·Din×ksw·Dout denote the transformation matrix,
with s fraction of weights being sparse. Since the fraction
of non-sparse weights is given by 1− s, the FLOPs required

by this transformation areB·(ksw·Din)·(ksw·Dout)·(1−s).
Setting these equal to the FLOPs of the original dense fθl ,
we obtain the widening factor ksw =

√
1/(1− s). If we

set the sparsity s to 0, we obtain ksw as 1 and recover the
dense feedforward function.
Sparse Parallel The sparse parallel transformation re-
places the feedforward function with a sum of ksp non-linear
functions. Let θspl ∈ {θsp,1l , . . . , θ

sp,ksp

l } denote the pa-
rameters of this transformation, where θsp,jl ∈ RDin×Dout

denotes the transformation matrix of jth function, where s
fraction of weights are sparse. The sparse parallel transfor-
mation in this case is ψsp

l =
∑ksp

j=1 σ((θ
sp,j
l )T zl), where σ

is a non linear function. In practice, ψsp
l is implemented

as a layer with ksp parallel branches. The computational
FLOPs of this transformation is ksp·B·Din·Dout·(1 − s).
Setting these FLOPs equal to FLOPs of fθ, we obtain
ksp = 1/(1 − s). Note, at s = 0, the number of paral-
lel branches ksp is 1. If we replace σ with Identity, we can
recover the original dense feedforward function.
Sparse Factorized The transformation matrix of the feed-
forward function fθl is denoted by θl ∈ RDin×Dout . Multi-
ple works have explored matrix factorization techniques to
express the transformation matrix θl as a product of two ma-
trices θl = UV T , where U ∈ RDin×d, V ∈ RDout×d. Kho-
dak et al. (2020); Tai et al. (2016) and Chen et al. (2021b)
have explored low-rank factorization (d << Dout) as a
form of structured sparsity to improve training and infer-
ence efficiency, while Arora et al. (2018) and Guo et al.
(2020a) have explored overparameterized factorizations for
better generalization and faster convergence. In contrast,
we use factorization to augment the representational ca-
pacity without decreasing or increasing the FLOPs. More
precisely, let θsfl ∈ {Ul, Vl} denote the parameters of this
transformation, where Ul ∈ RDin×dsf , Vl ∈ Rdsf×Dout

are sparse matrices with s fraction of their weights being
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Table 1: Cardinality of search space for sparsity masks of
different members of the Sparse-IFT family.

TRANSFORMATION
CARDINALITY OF
SEARCH SPACE

SPARSE WIDE (ksw)
2·(Din·Dout)

SPARSE PARALLEL ksp·(Din·Dout)
SPARSE FACTORIZED dsf ·(Din +Dout)

SPARSE DOPED Din·Dout

sparse. The functional transformation in this case is ψsf
l =

V T
l σ(U

T
l zl). The computational FLOPs of this transforma-

tion is dsf ·B·(Din +Dout)·(1− s). Setting these FLOPs
equal to FLOPs of fθl , we obtain dsf = Din·Dout

(Din+Dout)·(1−s) .
Note, setting sparsity s = 0, we recover a non-linear low-
rank factorization with dense matrices.
Sparse Doped is inspired by previous works which ap-
proximate a dense matrix with a combination of low-
rank factorization and sparse matrix (Chen et al., 2021a;
Thakker et al., 2021; Udell & Townsend, 2019; Candès
et al., 2011). In our approach, we replace the feedforward
function with low-rank factorization (with rank dsd) and
an unstructured sparse weight matrix (with sparsity s). Let
Ul ∈ RDin×dsd , Vl ∈ Rdsd×Dout denote the low-rank matri-
ces, and θsdl ∈ RDin×Dout denote the matrix with unstruc-
tured sparsity. The functional transformation, in this case,
is given by ψsd

l = V T
l (UT

l zl) + σ((θsdl )T zl). The com-
putational FLOPs associated with this transformation are
B·dsd·(Din +Dout) + (1− s)·B·Din·Dout. Setting these
FLOPs equal to FLOPs of fθl , we obtain dsd = s·Din·Dout

(Din+Dout)
.

Note, as s → 0 and dsd → 0, the low-rank component
of disappears, and we can recover the dense feedforward
function as a special case by setting σ to Identity.
Cardinality of Search Space Increasing the sparsity
mask search space with Sparse-IFT is anticipated to enhance
training efficiency, as indicated by prior works (Ramanujan
et al., 2020; Liu et al., 2022c; Stosic & Stosic, 2021). The
likelihood of finding a lottery ticket in a randomly initialized
network increases with network width (Ramanujan et al.,
2020). Both Liu et al. (2022b) and Stosic & Stosic (2021)
show that expanding the search space through increased
width or depth improves accuracy. The search space cardi-
nality, defined as the weights a sparse training method can
explore, is detailed in Table 1. Sparse Wide, Sparse Parallel,
and Sparse Factorized scale with width, parallel branches,
and hidden dimension size, respectively. Sparse Doped
maintains a constant search space by allocating FLOPs be-
tween a low-rank and an unstructured sparse weight matrix.
Therefore, DST becomes crucial for effectively traversing
this larger parameter subspace, as discussed in Section 3.1.

3. Sparse-IFT Ablation Studies
In this section, we present a comprehensive analysis of
Sparse-IFT networks, focusing on their training methodolo-

Table 2: Sparse Wide IFT with ResNet-18 trained using var-
ious sparse training methods on CIFAR-100 across different
sparsity levels (columns). Best accuracy for each sparse
training method is highlighted in bold.

DENSE SPARSE METHOD 0.50 0.75 0.90

77.0 ± 0.2

STATIC 78.5 ± 0.3 78.3 ± 0.1 78.2 ± 0.3
SNIP 77.8 ± 0.3 77.0 ± 0.2 75.8 ± 0.2

GRASP 77.7 ± 0.3 76.5 ± 0.3 76.5 ± 0.3
FORCE 77.2 ± 0.3 76.9 ± 0.3 75.4 ± 0.4

SET 78.8 ± 0.1 79.2 ± 0.2 79.8 ± 0.2
RIGL 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2

GRANET 79.2 ± 0.2 79.6 ± 0.2 80.0 ± 0.2

gies and design considerations. First, we compare static
sparse training with DST, highlighting DST’s superior per-
formance in handling larger parameter spaces through em-
pirical results using the ResNet-18 architecture on CIFAR-
100. Then, we explore critical design aspects of Sparse-IFT,
including the role of non-linearities, and the benefits of dy-
namic unstructured sparsity over structured sparsity. Finally,
we evaluate the efficacy of DST by comparing it against
densely trained Sparse-IFT models.

3.1. Impact of Sparse Training Techniques

This section provides a comparative analysis of Sparse-IFT
networks trained with two classes of methods: static sparse
training and DST. The focus is on demonstrating DST’s
effectiveness in navigating larger parameter spaces, as evi-
denced by previous research (Huang et al., 2023; Tai et al.,
2022). Our empirical results consistently show DST’s su-
periority over static sparse training. All experiments utilize
the ResNet-18 architecture on CIFAR-100 with published
settings (DeVries & Taylor, 2017). Detailed model infor-
mation and hyperparameters are available in Appendix C.1,
and all results are averaged over 3 seeds.

Sparse-IFTs employ unstructured sparsity in its transforma-
tions. This study investigates the impact of sparse training
methods on various Sparse-IFT configurations, focusing on
Sparse Wide IFT with sparsity ∈ {50%, 75%, 90%}. In Ta-
ble 2, we evaluate: random static sparsity, SNIP (Lee et al.,
2018), GraSP (Wang et al., 2020a), FORCE (de Jorge et al.,
2020), SET (Mocanu et al., 2018), RigL (Evci et al., 2020)
and GraNet (Liu et al., 2021a). SET, RigL, and GraNet are
DST methods, with SET updating the mask randomly, RigL
updating it with gradient information and GraNet incor-
porating gradual magnitude pruning (Zhu & Gupta, 2017)
with RigL. Pruning at Initialization (PaI) methods (e.g.,
SNIP, GraSP, FORCE) and GraNet increase training FLOPs
due to non-uniform sparsity and dense-to-sparse training.
We address this by adjusting target sparsity levels to align
Sparse-IFT training FLOPs with the dense baseline (see
Appendix A.2). In Iso-FLOP scenarios, PaI methods under-
perform because they heavily prune parameter-rich layers
to match target sparsity levels, leading to layer-collapse and
poor gradient flow. Furthermore, DST methods consistently
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Figure 3: Ablation studies with Sparse-IFT on the ResNet-18 model for CIFAR-100 across sparsity ∈ {50%, 75%, 90%}.
(left) Sparse Wide IFT trained with dynamic unstructured and structured sparsity. (middle) Sparse-IFT family members
trained with RigL, where Sparse Wide performs the best. (right) Sparse Wide IFT trained in a sparse and dense manner.

outperform static sparsity, with improvements persisting
at higher sparsity levels. Sparse-IFTs expand the sparse
mask-weight space ∝ sparsity, benefiting DST in thorough
exploration and exploitation within this space. While RigL
and GraNet attain similar performance, RigL is chosen as
the sparse training method for simplicity in all experiments.

3.2. Assessing the Effects of Architecture Variations

This section analyzes different design considerations for
Sparse-IFT by first, exploring the role of non-linearities in
enhancing representational capacity. Then, the advantage of
training with dynamic unstructured sparsity over structured
is investigated. Next, we compare between densely and
sparsely trained Sparse-IFT models. Finally, by applying
top-performing Sparse-IFTs to efficient vision models, these
insights contribute to a synthesized framework.
Importance of Using Non-Linear Activations For some
of the Sparse-IFT members, we draw inspiration from lin-
ear overparameterization methods, which fold the feedfor-
ward function into a dense matrix post-training (Ding et al.,
2021b;a; Guo et al., 2020a; Ding et al., 2019). Our method
enhances representational capacity through an Iso-FLOP
transformation without increasing training FLOPs. Main-
taining original dense FLOP levels eliminates the need for
post-training modifications, enabling efficient inference and
incorporation of non-linearities (i.e., ReLU) in Sparse-IFT.
Experiments on ResNet-18 on CIFAR-100 show notable
accuracy gains across all sparsity levels with non-linear acti-
vations. For example, at 90% sparsity, using non-linearities
in Sparse Factorized IFT yields a 1.8% accuracy increase
over the dense baseline, in contrast to a 0.5% decrease with-
out non-linearities. These findings extend to all Sparse-IFT
members (see Appendix C.2 for details). The accuracy im-
provements at all sparsity levels highlight the effectiveness
of incorporating non-linear activations in Sparse-IFT.
Unstructured vs. Structured Sparsity We compare dy-
namic unstructured and structured sparsity using Sparse-IFT.
Unstructured sparsity explores all mask variations, but most
hardware accelerators do not support unstructured sparse ac-
celeration. Prior works have investigated structured sparsity,

such as low-rank and block-sparse matrices, for wall-clock
speed-ups (Khodak et al., 2020; Chen et al., 2021b; Hubara
et al., 2021; Dao et al., 2022). We explore structured spar-
sity through Iso-FLOP configurations with Sparse Wide
IFT, employing low-rank factorization and N:M sparsity
for GPU acceleration. In Figure 3 (left plot), we compare
dynamic unstructured sparsity with N:M transposable struc-
tured sparsity (Hubara et al., 2021) using Sparse-IFT. The
latter demonstrates improvements over the dense baseline at
75% and 90% sparsity levels. Results also indicate that N:M
block sparsity outperforms low-rank factorization (see Ap-
pendix C.3.3). However, unstructured sparsity still gives the
highest gains, as N:M sparsity has reduced mask diversity
in block-sparse matrices (Hubara et al., 2021), therefore, we
adopt unstructured sparsity in all subsequent experiments.
Sparse-IFT ResNet-18 We assess all Sparse-IFT family
members with ResNet-18 on CIFAR-100 across different
sparsity levels. The middle plot of Figure 3, highlights the
best accuracy achieved by each Sparse-IFT member. All
members exhibit substantial accuracy improvements com-
pared to the dense baseline (77%), using the same FLOPs.
Sparse Wide consistently performs the best, while Sparse
Doped is the only member not gaining accuracy at higher
sparsity. This is attributed to Sparse Doped maintaining con-
stant search space by distributing FLOPs between low-rank
and unstructured sparse matrices (see Table 1), leading to
a decrease in active weights in the unstructured matrix. In
Appendix C.3.1, we compare Sparse-IFT against other DST
baselines under the same training efficiency setup by ex-
tending the training steps, showing Sparse-IFT outperforms
them significantly at s ∈ {50%, 75%, 90%}. Since, Sparse
Parallel and Sparse Wide perform the best across ablations,
we use these two IFTs for the main experiments.
Sparse-IFT vs. Dense Overparametrization A crucial
element in the success of Sparse-IFT lies in its efficient ex-
ploration of the search space. In this section, to benchmark
this exploration, we establish an upper bound by training
the Sparse-IFT architectures in a dense manner (with spar-
sity levels s ∈ 50%, 75%, 90%). In Figure 3, the right plot
compares the sparse and dense versions of Sparse Wide
and Sparse Parallel IFTs. Both Sparse-IFT members ex-
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Table 3: Sparse Wide IFT with various efficient architectures
on CIFAR-100 across different levels of sparsity (columns).

DENSE 0.50 0.75

MOBILENETV2 72.4 ± 0.2 73.4 ± 0.2 73.7 ± 0.2
MOBILEVIT-S 73.5 ± 0.1 74.6 ± 0.2 74.8 ± 0.2

BOTNET-50 79.8 ± 0.2 80.3 ± 0.3 80.9 ± 0.3

cel in exploring a large search space with DST, achieving
accuracy comparable to their dense counterparts without
the computational overhead. These results highlight that
the sparsity search in DST approaches optimality and can
achieve accuracy comparable to that of densely trained mod-
els. This efficiency does not compromise accuracy and
offers substantial computational benefits, especially on hard-
ware optimized for sparsity (further discussed in Section 6).
Efficient Architectures To assess Sparse-IFT’s robust-
ness across diverse set of models, we evaluate it on architec-
tures optimized for efficient inference (MobileNetV2 (San-
dler et al., 2018) and MobileViT (Mehta & Rastegari, 2021))
and efficient training (BotNet (Srinivas et al., 2021)). Apply-
ing Sparse Wide IFT to dense layers significantly improves
test accuracy across all architectures (refer to Table 3). Simi-
larly, utilizing the Sparse Parallel IFT consistently enhances
performance across all architectures (see Appendix C.3.2).
We evaluate the best-performing model, BotNet-50, on Ima-
geNet, where the Sparse-IFT variant outperforms dense by
1% (see Section 5.1). We provide additional experimental
setup details in Appendix C.1. In summary, Sparse-IFT
significantly improves test accuracy across all efficient ar-
chitectures, demonstrating its robustness and effectiveness.

4. Spectral Analysis of DST in Sparse-IFT
In this study, we investigate the intricate properties of
Sparse-IFT networks and their training dynamics. We ana-
lyze the benefits of Sparse-IFT networks trained with DST
by analyzing the Ramanujan Gap and Spectral Gap charac-
teristics. Ramanujan graph structures which are known to ex-
hibit sparsity and high connectivity like expander graphs, are
investigated to reveal their correlation with the final perfor-
mance of sparse networks. Our analysis evaluates the impact
of model parameters and graph connectivity on the effective-
ness of DNNs with Sparse-IFTs, aiming to provide insights
into the training dynamics of Sparse-IFT models. Inspired
by Hoang et al. (2023b;a), in this analysis, we interpret the
ResNet-18 model as a series of bipartite compute graphs,
where each layer, {θ1, . . . , θL} in an L layered sparse DNN,
takes the form of a square adjacency matrix A. Hoang
et al. (2023b) proposed several graph metrics inspired by
Ramanujan properties for characterizing sparse networks,
via: 1) Ramanujan Gap: ∆r = 2 ∗

√
d− 1− µ̂(A), and

∆rimdb =
1

|K|
∑|K|

i=1(2
√
di − 1− µ̂(AKi

)), where d is the
average edge per node, and µ̂(A) is the non-trivial eigen-
value of A. Here, ∆r is the conventional view of measuring
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Figure 4: The relationship between the structure and weights
of Sparse-IFT ResNet-18 networks are analyzed through a
graph perspective in terms of performance. Top row: we
assess the relationship between ∆rimdb and λimsg . Bottom
row: investigates the correlation between ∆r and λ. The
Pareto curvature heatmap visually represents the classifica-
tion performance, with varying color gradients symbolizing
the spectrum from low to high test accuracy on CIFAR-100.

gap between Ramanujan’s upper bound 2 ∗
√
d− 1 and

µ̂(A). ∆r measures the network’s degree of connectivity to
reveal the flow of information propagation. ∆rimdb (Hoang
et al., 2023b), the Iterative Mean Difference Bound (imdb),
evaluates the average connectivity boundary across all sub-
graphs K within A. A higher ∆r in sparse networks signi-
fies efficient information flow, gradient propagation, and a
well-separated spectrum in the adjacency matrix of sparse
weights; indicating robust and efficient representation. In ad-
dition, an increasing ∆rimdb indicates more extensive con-
nectivity boundaries within subgraphs, enhancing commu-
nication among nodes and promoting stronger connections.
2) Weighted Spectral Gap: λ = µ0(|W |)− µ̂(|W |), and
λimsg = 1

|K|
∑|K|

i=1(µ0(|WKi |) − µ̂(|WKi |)). Here, the
gap between µ0, the trivial parameters, and µ̂, the non-trivial
eigenvalues of W , the weighted adjacency matrix, is de-
noted as λ, the weighted spectral gap. Then, λimsg (Hoang
et al., 2023a) is the iterative version which takes into ac-
count all subgraphs K within W . A higher λimsg indicates
enhanced spectral separation between µ0 and µ̂ of W , im-
plying a more distinct and well-defined spectral structure
within subgraphs. This improved separation in the spec-
trum, represented by a higher λ, facilitates better isolation
of meaningful signals. We train Sparse Wide and Sparse
Parallel ResNet-18 models at 50% sparsity on CIFAR-100.
Then, we generated a Pareto curvature heatmap, considering
weight magnitudes and graph topological structure details
(see Figure 4). See Appendix B for a detailed analysis.

∆rimdb and λimsg Analysis: In the initial to middle
stages of training, RigL’s dynamic pruning and regrowth
increases ∆rimdb for the network to explore diverse connec-
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tivity patterns (see top row, Figure 4). Subsequent pruning
removes less critical connections, diversifying subgraphs
in the adjacency matrix A. Later stages witness a decrease
in ∆rimdb as the network converges to more focused and
organized connectivity patterns. RigL prioritizes crucial con-
nections, exploiting an efficient subgraph structure linked
with highly accuracy regions of Sparse-IFT models. Early
in training, increasing λimsg suggests successful isolation
of different modes. Pruning leads to a distinct separation
between dominant and less dominant modes. The subse-
quent λimsg decrease signals the network’s convergence to
a more specialized representation, emphasizing key spectral
components and diminishing the influence of less critical
modes. While both Sparse Wide and Sparse Parallel IFTs
show increasing ∆rimdb, the larger search space cardinality
in Sparse Wide facilitates the emergence of diverse subgraph
structures within each layer, allowing for a richer set of con-
nections between nodes; resulting in a higher maximum
∆rimdb. Similarly, Sparse Wide has a higher maximum
λimsg compared to Sparse Parallel, indicating the emer-
gence of subgraphs with more distinct spectral properties.
∆r and λ Analysis: Figure 4’s bottom row reveals a strong
correlation between ∆r and λ. ∆r initially decreases, indi-
cating a temporary relaxation of spectral constraints during
dynamic pruning with RigL. Subsequently, it maximizes in
the final training stages, signifying RigL’s ability to guide
the network to reorganize its connectivity, promoting more
structured and favorable spectral characteristics. Similarly,
λ follows a pattern of initial decrease and later maximization.
This implies that RigL’s dynamic sparsity initially results in
less optimal weight organization concerning spectral prop-
erties. However, RigL’s iterative pruning and rewiring dy-
namically adapts the network, aligning weights to enhance
spectral characteristics and increase the spectral gap. Our
analysis demonstrates that DST, as exemplified by RigL,
outperforms static sparse training by optimizing spectral
characteristics for Sparse-IFT; facilitating improved connec-
tivity patterns and a more favorable spectral profile.

5. Empirical Evaluation
Building on insights gained from our ablations discussed
in Section 3.2, we apply Sparse-IFTs to ImageNet, also
demonstrating its advantages for transfer learning in vari-
ous computer vision tasks. Additionally, we highlight the
benefits of Sparse-IFT in the domain of NLP by presenting
results on pre-training GPT (Brown et al., 2020).

5.1. ImageNet and Transfer Learning

We apply the best-performing Sparse-IFT transformations
(Sparse Wide IFT and Sparse Parallel IFT) from CIFAR-100
to ImageNet using ResNet-18. We follow published train-
ing settings for ImageNet (Nvidia, 2023). Both Sparse-IFT
families achieve significantly higher accuracy compared

Table 4: Sparse-IFT on ImageNet. Best result for each
transformation and architecture is highlighted in bold.

MODEL DENSE TRANSFORMATION 0.50 0.75 0.90

RESNET-18 70.9 ± 0.1 SPARSE WIDE 72.7 ± 0.1 73.8 ± 0.2 74.4 ± 0.2
SPARSE PARALLEL 72.7 ± 0.2 73.2 ± 0.2 74.0 ± 0.2

RESNET-34 74.2 ± 0.1 SPARSE WIDE 75.6 ± 0.2 76.4 ± 0.1 76.8 ± 0.3

BOTNET-50 77.5 ± 0.1 SPARSE WIDE 77.9 ± 0.2 78.3 ± 0.2 78.6 ± 0.3

Table 5: Sparse Wide IFT variants of ResNet-18 as back-
bones for: (a) object detection on MS COCO, (b) semantic
segmentation on Cityscapes.

METRIC DENSE 0.50 0.75 0.90

MS COCO
AP 29.3 ± 0.1 31.3 ± 0.1 32.8 ± 0.2 34.5 ± 0.2

AP50 46.2 ± 0.2 49.0 ± 0.2 51.0 ± 0.2 53.5 ± 0.2
AP75 30.9 ± 0.2 33.0 ± 0.2 34.8 ± 0.2 36.5 ± 0.3

CITYSCAPES
MIOU 76.7 ± 0.2 77.9 ± 0.2 78.9 ± 0.2 79.1 ± 0.2
MACC 84.4 ± 0.2 85.1 ± 0.2 85.7 ± 0.2 86.0 ± 0.2

to the dense baseline (see Table 4). Specifically, Sparse
Wide IFT ResNet-18 at 90% sparsity improves over the
dense baseline by 3.5% and matches the accuracy of a dense
ResNet-34 with 2× fewer training FLOPs (refer to Figure 1).
We also apply the best-performing transformation (Sparse
Wide IFT) to ResNet-34 and BotNet-50. Increasing sparsity
consistently improves accuracy, indicating enhanced train-
ing efficiency at higher sparsities. On BotNet-50, a hybrid
ViT model, there is a 1.1% improvement at 90% sparsity.

Transfer Learning on Downstream To show the effec-
tiveness of pre-training our Sparse-IFT classification back-
bones, we evaluate them on 1) object detection on MS
COCO 2017 (Lin et al., 2014b), and 2) semantic segmen-
tation on CityScapes (Cordts et al., 2016). For object de-
tection, we adopt RetinaNet (Lin et al., 2017b) from the
MMDetection open-source toolbox (Chen et al., 2019) and
report results in the standardized training setting. For se-
mantic segmentation, we utilize DeepLabV3+ (Chen et al.,
2018) in the MMSegmenation open-source toolbox (Con-
tributors, 2020). We evaluate ResNet-18 with Sparse Wide
IFT and to ensure FLOP-equivalent comparisons with the
dense backbone, the Sparse-IFT backbones remain sparse
during fine-tuning. Appendix C.3.4 provides more details
on the training setup. We summarize our findings in Table 5,
where using Sparse Wide IFT ResNet-18 backbone leads to
significant accuracy gains across all metrics on both tasks.

5.2. Language Modeling

We pre-train the Sparse Wide IFT GPT-3 Small model at
s ∈ {50%, 75%} from scratch on the Pile (Gao et al., 2020)
dataset using SET (Mocanu et al., 2018), and compare
against the standard dense model. All models were trained
on the Cerebras CS-2 (Cerebras, 2023) following Chin-
chilla (Hoffmann et al., 2022) for obtaining loss-optimal
pre-trained baseline configurations of models. We eval-
uate the models on 5 tasks from the Open LLM leader-

7



Sparse Iso-FLOP Transformations for Maximizing Training Efficiency

Table 6: Average accuracy of Sparse Wide IFT with GPT-3
Small across ARC, HellaSwag, TruthfulQA, MMLU and
Winogrande tasks on the Open LLM Leaderboard.

MODEL DENSE 0.50 0.75

GPT-3 SMALL 33.8 ± 0.1 34.1 ± 0.2 34.7 ± 0.2

board (Beeching et al., 2023) (i.e., ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2021), TruthfulQA (Lin et al., 2022) and Winogrande (Sak-
aguchi et al., 2019)), and show that the Sparse Wide IFT
GPT-3 Small at 75% sparsity improves the average accuracy
by a noticeable 0.9% (see Table 6). In Appendix D.1, we
provide details on the models and hyperparameters.

6. Wall-Clock Acceleration with Sparse-IFT
Our studies in Section 5 show noticeably improved training
efficiency (test accuracy w.r.t training FLOPs) for Sparse-
IFT models. In this section, we aim to showcase the prac-
ticality of Sparse-IFT models, providing unique hardware
insights for accelerating DNNs with unstructured sparsity,
a perspective notably absent in most existing works. Re-
cent developments, like specialized software kernels and
hardware (e.g., DeepSparse (NeuralMagic, 2021) and Cere-
bras CS-2 (Lie, 2023)) indicate promising gains in realiz-
ing unstructured sparsity benefits during training and in-
ference (Thangarasa et al., 2023). This sets the stage for
examining the impact on inference and training acceleration.

Real-World Inference Acceleration We assess Sparse-
IFT’s inference efficiency using DeepSparse1. Our setup
employs a ResNet-18 model and performs batched inference
of 64 images from ImageNet at 224 × 224 resolution on Intel
Cascade Lake CPUs, known for their AVX-512 support. The
latency (i.e., seconds per batch) is compared between the
dense ResNet-18 model and the Sparse Wide IFT variants at
s ∈ 50%, 75%, 90%}. On an ideal hardware, FLOPs should
directly translate to wall clock time. Therefore, the inference
latency or training time for all Sparse-IFT models should
match that of the dense model, as all models are Iso-FLOP.
This baseline is illustrated by the black dashed line in the left
plot of Figure 5. However, the blue line shows the expected
increases in latency on hardware without unstructured sparse
acceleration support, like the CPUs we benchmarked on,
with a notable 19.5x increase at s = 90%. In contrast, the
green line demonstrates a significant reduction in latency
using DeepSparse, decreasing the latency increase from
19.5x to 3.5x, and showing minimal overhead up to 75%
sparsity. This emphasizes the benefits of optimized kernel
support for sparse inference acceleration, showcasing the
potential for practical deployment of Sparse-IFT models.

1Neural Magic DeepSparse
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Figure 5: Benchmarking unstructured sparsity during (left)
inference on Neural Magic’s DeepSparse runtime and (right)
training acceleration on the Cerebras CS-2. In both setups,
we measure the relative increase in latency or training speed
for Sparse-IFT variants against the dense model.

Real-World Training Acceleration In the right plot of
Figure 5, we evaluate the training efficiency of Sparse-IFT
on the Cerebras CS-2 system, which supports unstructured
sparse training for LLMs2. Our experimental setup involves
pre-training a GPT-3 model on the CS-2. We measured and
compared throughput (i.e., iterations per second), between
the dense GPT-3 model and Sparse Wide IFT variants at
sparsity levels of 50%, 75%, and 90%. As previously men-
tioned, the theoretical baseline (black dashed line) suggests
that since both the dense model and Sparse Wide IFT con-
figurations are Iso-FLOP, training time should not increase
with increasing sparsity. The blue line shows the throughput
for Sparse Wide IFT variants run without any unstructured
sparse acceleration support on the Cerebras CS-2, indicat-
ing a ∼10x increase in training time for the model at 90%
sparsity. A similar degradation in performance would be ex-
pected on traditional Nvidia GPU or Google TPU hardware
as well. In contrast, the green line demonstrates the effect
of utilizing the Cerebras CS-2’s unstructured sparse training
support. Here, we observe a significant reduction in relative
training time, bringing down the increase from ∼10x to
2.82x at 90% sparsity. Additionally, for sparsity levels up
to 75%, we note minimal overhead compared to the dense
model. Detailed benchmarking setups are in Appendix E.

While we do not achieve perfect FLOPs translation with
Sparse-IFT models, our promising results highlight the im-
portance of ML software and hardware co-design for lever-
aging sparsity. The interaction of layer dimensions, sparsity,
and overhead, influenced by hardware architecture, necessi-
tates co-designed sparse techniques for optimal performance.
Our work showcases algorithmic advancements over prior
sparse methods, emphasizing the benefits of sparse training
and winning the hardware lottery (Hooker, 2020).

7. Related Work
Our work aligns with research on overparameterization and
sparsity in DNN training. The required modeling capacity
for a given task is often unknown, leading to training over-

2Cerebras CS-2 (R2.1.1): Train a Model with Weight Sparsity
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parameterized models to fully exploit learning capabilities
before compressing them into smaller subnetworks.
Overparameterization Nakkiran et al. (2021) show that
DNNs benefit from overparameterization. Subsequently,
several studies have capitalized on overparameterization by
scaling the size of models (Rae et al., 2021; Goyal et al.,
2022) and augmenting existing DNNs to boost modeling
capacity and the accuracy of trained networks (Guo et al.,
2020b; Ding et al., 2019; 2021b; Cao et al., 2022; Vasu et al.,
2022; Liu et al., 2022a). These methods use linear parame-
terizations of the model, making them highly inefficient to
train, and are focused on improving inference throughput.
In contrast, our work is focused on improving the mod-
eling capacity using sparse non-linear parameterizations.
Sparse-IFT enhances accuracy without increasing training
and inference FLOPs compared to the baseline dense model.
Sparse Network Training The Lottery Ticket Hypothe-
sis (Frankle & Carbin, 2018; Frankle et al., 2020) shows
that accurate sparse subnetworks exist in overparameterized
dense networks but require training a dense baseline to find.
Other approaches have proposed frameworks for identify-
ing lottery tickets (Zhou et al., 2019; Ma et al., 2022) but
still require a lot of compute resources. Following this, var-
ious attempts have been made to find the optimal sparse
subnetwork in a single shot. These methods either try to
find the subnetworks at initialization (Tanaka et al., 2020;
Wang et al., 2020a; de Jorge et al., 2020; Lee et al., 2018)
or dynamically during training (Mocanu et al., 2018; Evci
et al., 2020; Jayakumar et al., 2020; Raihan & Aamodt,
2020). However, given a fixed model capacity, these meth-
ods tradeoff accuracy relative to the dense baseline to save
training FLOPs. Stosic & Stosic (2021) and Ramanujan
et al. (2020) increase the search space during sparse training
to retain accuracy; however, do not guarantee FLOPs sav-
ings. In contrast to these methods, our work introduces a set
of non-linear sparse transformations, which increase the rep-
resentational capacity of the network. This approach does
not introduce a new sparse training algorithm, but instead
improves the search space of existing methods, leading to
improved generalization while being efficient to train.
Iso-Parameter vs. Iso-FLOP Recent works have focused
on improving generalization at high sparsity levels. Tech-
niques such as the Erdös-Rényi-Kernel (Evci et al., 2020),
Ideal Gas Quota (Chen et al., 2022), and parameter level-
ing (Golubeva et al., 2021) employ layer-wise sparsity distri-
butions in sparse training to boost accuracies. These meth-
ods, however, target scenarios where models have a fixed pa-
rameter budget (i.e., Iso-Parameter), which does not equate
to similar training FLOPs as the original dense model. Our
work highlights that while transformer-based NLP networks
may not show significant differences between Iso-Parameter
and Iso-FLOP optimization, this distinction becomes critical
in CV networks. In CNNs and heterogeneous ViTs (Wang
et al., 2021; Pan et al., 2021; Wu et al., 2021), the uneven

distribution of parameters and computational costs across
layers necessitates a distinct approach. Optimizing for Iso-
Parameter typically involves pruning later, parameter-rich
layers, thus maintaining performance but not significantly
reducing computational costs. Conversely, optimizing for
Iso-FLOP shifts pruning to early, FLOP-intensive layers,
enhancing performance by addressing both computational
demands and pruning needs. Unlike variable sparsity tech-
niques that adapt to different computational and memory
demands across layers, our method employs a uniform spar-
sity approach, ensuring consistent FLOP reductions across
all layers. This aligns computational costs closely with those
of a fully dense model, achieving significant computational
efficiencies without compromising performance.
Sparse-IFT and Scaling Laws Recent advances in deep
learning highlight the importance of scaling laws, which
provide a systematic framework for optimizing model per-
formance as model size increases. Pioneering scaling laws
work such as ConvNeXt (Liu et al., 2022d), Efficient-
Net (Tan & Le, 2019), large language models (Kaplan et al.,
2020), and vision transformers (Alabdulmohsin et al., 2023)
demonstrate that achieving optimal performance typically
involves tuning multiple training (e.g., learning rate, batch
sizes, etc.) and architectural (e.g., depth, width, resolution,
etc.) hyperparameters. This intricate balance necessitates ex-
tensive experimentation and hyperparameter tuning. Sparse-
IFT introduces a streamlined approach for scaling DNNs,
leveraging a single hyperparameter, the sparsity level, to
enhance model efficiency and accuracy. This method simpli-
fies the optimization process by eliminating the need to tune
multiple factors concurrently. Future research will explore
the integration of Sparse-IFT with scaling laws to address
the challenges of scaling large models. This involves exam-
ining the interplay between Sparse-IFT and various architec-
tural elements, such as depth and width, while maintaining
a constant computational FLOP budget.

8. Conclusion
We introduced Sparse-IFT as a drop-in replacement for
dense layers in DNNs, enhancing test accuracy w.r.t train-
ing FLOPs by increasing representational capacity through
sparsity. The expanded weight space enables effective explo-
ration and exploitation by DST algorithms, facilitating the
discovery of optimal sparse subnetworks. Our spectral anal-
ysis of Sparse-IFT models trained with DST reveals efficient
connectivity and information propagation, correlated with
high-performance networks. Notably, Sparse-IFT consis-
tently outperforms dense models in vision and NLP domains.
Despite current hardware limitations, promising bench-
marks on Cerebras CS-2 and Neural Magic DeepSparse
runtime highlight the need for improved support for unstruc-
tured weight sparsity. We hope our findings encourage the
community to explore unstructured sparsity for improved
model efficiency and performance across applications.
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Impact Statement
The landscape of machine learning (ML) has witnessed an
exponential growth in models, particularly in domains such
as natural language processing and computer vision. How-
ever, this surge in model size has come with a considerable
cost in terms of compute, memory, and energy requirements.
Our approach, Sparse Iso-FLOP Transformations (Sparse-
IFT), represents a significant stride toward mitigating these
resource-intensive demands. Sparse-IFT introduces a novel
approach that enhances the efficiency of training large neural
networks. Remarkably, it achieves improved accuracy while
maintaining the same FLOPs as the original dense baseline
model. Our method holds promise for positive environmen-
tal impacts, given the substantial computational resources
typically associated with training large neural networks.

Models trained with Sparse-IFT require less computing re-
sources and energy to achieve higher model quality, directly
translating to lower deployment costs for real-world applica-
tions. Furthermore, training models with sparsity has been
shown to lead to better generalization (Chen et al., 2022),
a benefit supported by our transfer learning results on com-
puter vision tasks. An additional advantage is the enhanced
efficiency in training larger sparse models, facilitated by the
widespread adoption of AI hardware, such as the Cerebras
CS-2, which accelerates unstructured sparsity. The key here
is achieving sparsity acceleration through a harmonious col-
laboration between hardware support and the development
of sparse ML techniques.

The potential sustainability contribution lies in the fact that,
as sparse ML software and hardware co-design continues to
evolve, we may be able to train more accurate “larger sparse”
networks within the confines of the same computational
budget as a smaller dense model. This paradigm shift could
usher in a more environmentally conscious approach to
deep learning, addressing the concerns associated with the
escalating resource requirements of ever-expanding models.
The seamless integration of these elements ensures that
hardware architectures are optimized to complement sparse
techniques, fostering a sustainable and efficient trajectory
for the future of deep learning.

As we continue to explore the intersection of hardware sup-
port for sparsity and the evolution of sparse ML techniques,
our benchmarking analysis in Section 6 and Appendix E

serves as a practical illustration of the transformative poten-
tial of Sparse-IFT. It not only substantiates the theoretical
promises but also offers a roadmap for future developments
in the pursuit of sustainable and efficient deep learning prac-
tices.
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A. Additional Methodology Details
A.1. Sparse-IFT for Convolutional Layers

In this section, we detail the straightforward extension of the Sparse-IFT family for convolutional layers.

Sparse Wide Similar to the setup for fully connected layers, in the case of convolutional layers, we widen the number of
input and output channels.

Sparse Parallel Similar to the setup for fully connected layers, in the case of convolutional layers, we can implement this
transformation with the use of convolutional branches in parallel.

Sparse Factorized and Sparse Doped Let θl ∈ Rcin×cout×kh×kw represent the weight matrix of a convolutional layer,
where cin, cout, kh, kw denote the input channels, output channels, kernel height, and kernel width, respectively. We
apply low-rank or matrix factorization to the weight matrix by first converting the 4D tensor into a 2D matrix with shape:
(cin ·kh ·kw)× cout. In this setup, we can express θl = UV T , where U ∈ Rcin·kh·kw×d, V ∈ Rcout×d. In this factorization,
U learns a lower-dimensional set of features and is implemented as a convolutional layer with d output channels and kh×kw
filter. V matrix expands this low-dimensional set of features and is implemented as a convolutional layer with 1× 1 filter.

A.1.1. SPARSE-IFT FOR DEPTHWISE CONVOLUTION LAYERS

For a normal convolution layer, all inputs are convolved to all outputs. However, for depthwise convolutions, each input
channel is convolved with its own set of filters. Let θl ∈ Rcin×cout×kh×kw represent the weight matrix of a normal
convolution layer, where cin, cout, kh, kw denote the input channels, output channels, kernel height, and kernel width,
respectively. An equivalent depthwise convolution layer will have weights θdw,l ∈ R1×cout×kh×kw .

Sparse Wide A Sparse Wide depthwise convolution will have weights θswdw,l ∈ R1×ksw·cout×kh×kw . Since the fraction of
non-sparse weights is given by 1− s, the FLOPs required by this transformation are B·(ksw·cout)·kh·kw·(1− s). Setting
these equal to the FLOPs of the original dense θdw,l, we obtain the widening factor ksw = 1

(1−s) . In this case, we do not
scale the input channels as it converts the depthwise convolution to a grouped convolution without an equivalent scaling in
the number of groups.

Other Sparse-IFT Transformations The Sparse Wide IFT generally changes a layer’s input and output channels,
subsequently scaling the following layers in a CNN. However, the other Sparse-IFT transforms (Sparse Parallel, Sparse
Factorized, and Sparse Doped) do not modify a convolution layer’s input or output channels (as seen in Figure 2). This
allows for fine-grained control of what layers to apply the Sparse-IFT transformations. Since depthwise convolutions are an
extreme form of structured sparsity, where some filters interact with only specific input channels, we opt not to sparsify them
when using the other Sparse-IFT transformations and leave the layer unchanged while still maintaining FLOPs equivalent to
the dense baseline. Note that the different convolution layers surrounding the depthwise convolution are still transformed
with Sparse-IFT to increase their representational capacity.

A.2. Controlling for Iso-FLOP

As mentioned before, in our work, we mainly apply a uniform sparsity distribution to the model, which essentially means each
layer is allocated the same level of sparsity. Let N denote a L layered DNN parameterized by ΘN . Let ΘN ∈ {θ1, . . . , θL}
denote the parameters of the DNN. Now, let Ml be the binary mask for layer l ∈ {1, . . . , L} with dimensions corresponding
to the parameters of that layer. The binary mask ml has values of 1 for active weights and 0 for non-active weights. Let θl
be the total number of parameters in l, hence, the sparsity level per layer, sl, is defined as

∑
i,j I(ml(i,j)̸=0)

θl
. The average

sparsity level in the network, s, is then defined as the ratio of the total number of zero parameters to the total number of

parameters. This is expressed as s =
∑L

l=1

∑
i,j I(ml(i,j)̸=0)

ΘN
. Below, we characterize the different scenarios when training

with different sparse training methods:

• Random Static Sparsity: In this case, the sparsity distribution is uniform, ensuring that the sparsity in each layer
matches the target sparsity level. Consequently, the application of Sparse-IFT, parameterized by the sparsity level,
maintains Iso-FLOP equivalence to the original dense model. However, adhering to common practice for computer
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vision networks (e.g., ResNet), we retain the first and last layers (input convolution and output linear layer) as dense to
prevent a significant decline in model quality during pre-training. Consequently, the Sparse-IFT network deviates from
Iso-FLOP to the dense model, introducing additional FLOPs that need consideration.

• Pruning at Initialization: The algorithms, such as SNIP (Lee et al., 2018), GraSP (Wang et al., 2020a),
FORCE (de Jorge et al., 2020), etc., introduce distinct criteria or methods for determining which weights to prune at
initialization, influencing the sparsity distribution. Consequently, the inherent characteristics of these algorithms result
in changes to the sparsity distribution. In the context of Sparse-IFT, despite having an identical total sparse parameter
count to the original dense model, the Sparse-IFT network no longer maintains Iso-FLOP equivalence.

• Dense-to-Sparse Training: Sparse training methods, such as GraNet (Liu et al., 2021a), employ dense-to-sparse
training, initiating training from either a fully dense state or a state less sparse than the target sparsity level. For
instance, GraNet utilizes gradual magnitude pruning (Zhu & Gupta, 2017) at the beginning of training to systematically
reduce the network’s density to the target sparsity level. Consequently, in the context of Sparse-IFT networks, this
configuration no longer maintains Iso-FLOP equivalence to the dense model, as the average training FLOPs surpass
those of the original dense model.

To address the FLOPs discrepancy between the Sparse-IFT network trained with non-uniform sparsity distributions (e.g.,
PaI methods or densifying certain layers) and dense-to-sparse training (e.g., GraNet), we employ a binary search to fine-tune
the target sparsity of the network prior to any training. In this process, we set the maximum and minimum values for the
target sparsity level. At each iteration, we profile the FLOPs used by the Sparse-IFT network and compare it to the original
dense model FLOPs. The target sparsity level is adjusted through the binary search, ensuring that the total FLOPs of the
Sparse-IFT network are within 0.0001% of the dense model FLOPs.

B. Graph Analysis of Sparse-IFT with DST
In our analysis, we interpret the Sparse-IFT ResNet-18 models as a series of bipartite compute graphs, where each layer,
{θ1, . . . , θL} in an L layered sparse DNN, takes the form of a square adjacency matrix A. The Ramanujan gap is defined
as ∆r = 2 ∗

√
d− 1 − µ̂(A) (Hoang et al., 2023b;a), where d is the average edge per node, and µ̂(A) is the non-trivial

eigenvalue ofA. Also, we analyze the Iterative Mean Difference Bound, ∆rimdb =
1

|K|
∑|K|

i=1(2
√
di − 1− µ̂(AKi)) (Hoang

et al., 2023b). We train a ResNet-18 model with all members of the Sparse-IFT family using a dynamic sparse training
algorithm (i.e., RigL (Evci et al., 2020)).

∆r Analysis: In Figure 6, we observe that ∆r decreases over the course of training and then maximizes at later stages,
which suggests that the spectral properties of the adjacency matrices are changing dynamically during training. The fact
that ∆r maximizes at later stages and correlates with the Sparse-IFT ResNet-18 model achieving the highest test accuracy
indicates a potential connection between the spectral properties of the adjacency matrices and the model’s performance. The
dynamic changes in ∆r might indicate that the neural network is adapting its structure during training. The network might
be pruning less important connections and reinforcing more important ones, leading to an optimized structure. Moreover, the
increase in ∆r could be related to implicit regularization effects. The spectral properties of the adjacency matrices may play
a role in controlling the model’s capacity, preventing overfitting, and enhancing generalization. The correlation between the
maximization of ∆r at the later stages of training and the highest test accuracy suggests that there is a relationship between
the identified spectral properties and the performance of the Sparse-IFT ResNet-18 model. The maximization of ∆r could
represent an optimal point in the trade-off between sparsity and model accuracy for the given task.

∆rimdb Analysis: The increasing trend of ∆rimdb during training suggests that the overall connectivity boundary across
subgraphs is progressively being enhanced. This could imply that the network is learning to establish more meaningful and
relevant connections within its structure as training progresses. The DST algorithm may be facilitating an adaptive refinement
of connectivity within the network. The observed increase in ∆rimdb could indicate that the model is iteratively adjusting
its connectivity boundaries to improve information flow. ∆rimdb evaluates the average connectivity boundary across all
subgraphs, providing a more comprehensive measure of the network’s overall connectivity changes. The correlation with the
highest performing models at the final stage of training suggests that the average connectivity enhancements captured by
∆rimdb are beneficial for the model’s performance.

16



Sparse Iso-FLOP Transformations for Maximizing Training Efficiency

0.38 0.40 0.42 0.44 0.46
rimdb

0

20

40

60

80
Te

st
 A

cc
ur

ac
y 

(%
)

Sparse Wide IFT (s = 50%)

0

50

100

150

200

Train Epochs

0.36 0.38 0.40
rimdb

0

20

40

60

80

Te
st

 A
cc

ur
ac

y 
(%

)

Sparse Wide IFT (s = 50%)

0

50

100

150

200

Train Epochs

0.20 0.22 0.24 0.26 0.28
rimdb

0

20

40

60

80

Te
st

 A
cc

ur
ac

y 
(%

)

Sparse Factorized IFT (s = 50%)

0

50

100

150

200

Train Epochs

10 0 10
r

0

20

40

60

80

Te
st

 A
cc

ur
ac

y 
(%

)

Sparse Wide IFT (s = 50%)

0

50

100

150

200

Train Epochs

0 5 10
r

0

20

40

60

80

Te
st

 A
cc

ur
ac

y 
(%

)

Sparse Parallel IFT (s = 50%)

0

50

100

150

200

Train Epochs

5 0 5 10
r

0

20

40

60

80

Te
st

 A
cc

ur
ac

y 
(%

)

Sparse Factorized IFT (s = 50%)

0

50

100

150

200

Train Epochs

Figure 6: Top row illustrates the dynamic interplay between the Iterative Mean Difference Bound, ∆rimdb and test accuracy,
and bottom row shows the correlation between the Ramanujan Gap, ∆r and test accuracy throughout the training process.
This illustrates the evolving relationship between spectral graph properties and network performance, shedding light on the
connectivity dynamics of the Sparse-IFT networks trained with DST.

C. Computer Vision: Experimental Settings
C.1. Computer Vision: Pre-Training Settings

CIFAR-100 Our implementation of CIFAR-100 follows the setup from (DeVries & Taylor, 2017) for ResNets. We train
the models for 200 epochs with batches of 128 using SGD, Nesterov momentum of 0.9, and weight-decay of 5×10−4. The
learning rate is initially set to 0.1 and is scheduled to decay to decrease by a factor of 5x after each of the 60th, 120th, and
160th epochs. Following recent advances in improving ResNets, we initialize the network with Kaiming He initialization (He
et al., 2016), zero-init residuals (He et al., 2019), and disable weight-decay in biases and BatchNorm (Ioffe & Szegedy,
2015) layers. For CIFAR-100 experiments with MobileNetV2, MobileViT-S, and BotNet-50, we follow the same training
setup used for ResNet, but the learning rate is scheduled via cosine annealing.

ImageNet Our implementation of ImageNet follows the standard setup from (Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014). The image is resized with its shorter side randomly sampled in [256, 480] for scale augmentation (Simonyan &
Zisserman, 2014). A 224 × 224 crop is randomly sampled from an image or its horizontal flop, and then normalized. For
evaluation, the image is first resized to 256 × 256, followed by a 224 × 224 center crop, and then normalized. Following
recent advances in improving ResNets, we initialize the network with Kaiming He initialization (He et al., 2016) and
zero-init residuals (He et al., 2019).

For ResNets, we replicate the settings recommended by Nvidia (Nvidia, 2019), which uses the SGD optimizer with a
momentum of 0.875 and weight decay of 3.0517578125×10−5. We disable weight-decay for biases and BatchNorm layers.
The model is trained with label smoothing (Szegedy et al., 2016) of 0.1 and mixed precision (Micikevicius et al., 2018) for
the standard 90 epochs using a cosine-decay learning rate schedule with an initial learning rate of 0.256 for a batch size of
256. Srinivas et al. (2021) follow the same setup as ResNet for training BotNet-50 on ImageNet, therefore we maintain the
same hyperparameter settings as Nvidia (2019) for our BotNet-50 ImageNet experiments.

Sparsity Setup For enabling the Sparse-IFT transformations, we use the RigL (Evci et al., 2020) algorithm in its default
hyperparameter settings (α = 0.3,∆T = 100), with the drop-fraction (α) annealed using a cosine decay schedule for 75%
of the training run. We keep the first and last layers (input convolution and output linear layer) dense to prevent a significant
degradation in model quality during pre-training, which is standard practice. We account for these additional dense FLOPs
by increasing the sparsity in the remaining layers, similar to Gale et al. (2019) and Liu et al. (2022c).
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C.2. Importance of Non-linearity

We use BatchNorm (Ioffe & Szegedy, 2015) followed by ReLU (Nair & Hinton, 2010) as a non-linearity. We provide
an extended set of empirical results in Table 7 to help validate the importance of training with and without non-linearity
by training configurations of the Sparse Parallel, Factorized, and Doped IFT families at different levels of sparsity. The
results without non-linear activation functions are often worse than the dense accuracy (77%) across all Sparse-IFT family
transformations. We omit Sparse Wide in Table 7 because here we increase the number of channels in the convolutional
layers while maintaining the existing architecture.

Table 7: Evaluation on the importance of utilizing the non-linear activation across different members of Sparse-IFT with
ResNet-18 on CIFAR100 across different values of sparsity (columns). Non-linear activations enhance the representational
capacity of Sparse-IFT, leading to higher accuracy. All reported results are the average over 3 random seeds.

Transformation Non-linear activation 0.50 0.75 0.90

Sparse Factorized ✗ 75.9 ± 0.3 76.6 ± 0.4 76.5 ± 0.4
✓ 77.8 ± 0.4 78.4 ± 0.5 78.9 ± 0.5

Sparse Parallel ✗ 77.1 ± 0.1 77.2 ± 0.2 77.6 ± 0.1
✓ 77.9 ± 0.2 79.1 ± 0.2 78.2 ± 0.2

Sparse Doped ✗ 77.3 ± 0.2 77.1 ± 0.1 76.5 ± 0.2
✓ 78.2 ± 0.1 77.8 ± 0.1 76.9 ± 0.2

C.3. Computer Vision

C.3.1. SPARSE-IFT VS. EXTENDED SPARSE TRAINING SCHEDULES

We provide a direct comparison with sparse training methods (e.g., RigL and SET) in the Iso-FLOP setting (i.e., training
with a longer schedule) to demonstrate the significance of our results with respect to this standard sparse baselines. As
shown in the Table 8, Sparse-IFTs outperform dynamic sparse training methods by a significant margin across all levels of
sparsity. Note, at higher levels of sparsity (e.g., 90%), sparse training methods obtain worse accuracy compared to the FLOP
equivalent dense baseline. In contrast, with Sparse-IFT, we observe higher accuracy across all levels of sparsity evaluated.

C.3.2. SPARSE-IFT ON EFFICIENT COMPUTER VISION ARCHITECTURES

Here, we provide an extended set of results on MobileNetV2, MobileViT-S, and BotNet-50 on CIFAR-100. In particular, we
enable Sparse Wide and Sparse Parallel IFT at 50% and 75% sparsity values (see Table 9).

C.3.3. EVALUATION OF SPARSE-IFT WITH STRUCTURED SPARSITY

Block Sparsity To derive Iso-FLOP configurations with block sparsity, we reuse the analysis done previously with
unstructured sparsity (see Section 2.2) and express the width scaling as a function of sparsity. However, we will search for a
block sparse mask during training instead of an unstructured sparsity mask. We use the method proposed by Hubara et al.
(2021) to search N:M transposable sparsity, which can accelerate both the forward and backward pass during training on
NVIDIA GPUs with Tensor Cores. We use 4:8-T, 2:8-T, and 1:8-T block patterns to obtain 50%, 75%, and 87.5% sparsity,
respectively. Note the 1:8-T block is the closest approximation to a 90% sparsity pattern attainable with a block size of 8.

Table 8: Results with ResNet-18 on CIFAR-100 across different values of sparsity (columns). Best accuracy for each sparse
training method is highlighted in bold. The original dense ResNet-18 model obtains an accuracy of 77.0±0.2. All reported
results are over 3 random seeds.

Dense Transformation Sparse Training Method Epochs 0.50 0.75 0.90

77.0 ± 0.2

Sparse Wide SET 200 · 1
1−s

78.7 ± 0.2 78.4 ± 0.1 76.8 ± 0.1
Sparse Wide RigL 200 · 1

1−s
78.9 ± 0.1 78.8 ± 0.1 76.4 ± 0.2

Sparse Wide RigL 200 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2
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Table 9: Evaluation of Sparse Wide and Sparse Parallel IFT with various compute efficient architectures on CIFAR-100
across different values of sparsity (columns). Using Sparse Parallel IFT, all architectures outperform the dense baseline by a
significant margin.

Dense Transformation 0.50 0.75

MobileNetV2 72.4 ± 0.2 Sparse Wide 73.4 73.7
Sparse Parallel 72.9 73.3

MobileViT-S 73.5 ± 0.1 Sparse Wide 74.6 74.8
Sparse Parallel 73.7 74.4

BotNet-50 79.8 ± 0.2 Sparse Wide 80.3 80.6
Sparse Parallel 79.7 80.5

Table 10: Comparison of structured sparse and unstructured sparse methods on CIFAR-100 test accuracy on ResNet-18.

Width Scaling Factor
Transformation Sparsity Type Sparsity 1x 1.41x 2x 3.16x

Low Rank, Linear Structured 0% 74.1 74.3 74.3 73.4
Low Rank, Non-Linear Structured 0% 76.8 76.5 76.0 75.3

Sparse Wide

N:M Block Sparse
(Hubara et al., 2021)

4:8-T 77.1
2:8-T 78.4
1:8-T 78.1

Unstructured Sparse
(Evci et al., 2020)

50% 79.1
75% 79.5
90% 80.1

We also set up and experimented using the method proposed by Jiang et al. (2022) to train with fine-grained sparse block
structures dynamically. However, the algorithm uses agglomerative clustering which led to a much slower runtime and
quickly ran out of memory even at 50% sparsity using the Sparse Wide IFT on a single Nvidia V100 (16 GB).

Low Rank Let klr be the factor with which we widen all layers’ input and output dimensions for low-rank factorization.
We replace all dense layers with low-rank factorization, i.e. θlrl = UlV

T
l , where Ul ∈ R(klr.Din)×d and Vl ∈ R(klr.Dout)×d.

Given a widening factor and equating the FLOPs of this transformation to that of a dense transformation fθ, we obtain the
following expression for rank d: Din.Dout.klr

(Din+Dout
. We evaluate this factorization across different values of width-scaling klr in

Table 10.

C.3.4. EVALUATION ON DOWNSTREAM TASKS

COCO OBJECT DETECTION

This dataset contains 118K training, 5K validation (minival), and 20K test-dev images. We adopt the standard single-scale
training setting (Lin et al., 2017a) where there is no additional data augmentation beyond standard horizontal flipping. For
training and testing, the input images are resized so that the shorter edge is 800 pixels (Lin et al., 2017a). The model is
trained with a batch size of 16, using the SGD optimizer with a momentum of 0.9 and weight decay of 1×10−4. We follow
the standard 1x schedule (12 epochs) using a step learning rate schedule, with a 10x decrease at epochs 8 and 11, an initial
learning rate warmup of 500 steps starting from a learning rate of 2×10−5, and a peak learning rate of 0.01.

Table 11: Object detection results on COCO minival in the RetinaNet framework. Sparse Wide IFT configurations of
RetinaNet outperform the dense baseline by a large margin on all metrics while using similar FLOPs.

Backbone AP AP50 AP75 APS APM APL

Dense 29.3 46.2 30.9 14.7 31.5 39.6
Sparse Wide (50%) 31.3 49.0 33.0 16.6 34.0 42.0
Sparse Wide (75%) 32.8 51.0 34.8 17.3 35.8 43.3
Sparse Wide (90%) 34.5 53.5 36.5 18.6 37.6 45.3
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CITYSCAPES SEMANTIC SEGMENATION

Setup We follow the same training protocol as (Zhao et al., 2017), where the data is augmented by random cropping (from
1024 × 2048 to 512 × 1024), random scaling in the range [0.5, 2], and random horizontal flipping. The model is trained
with a batch size of 16, using the SGD optimizer with a momentum of 0.9 and weight decay of 5×10−4. We follow the 80K
iterations setup from MMSegmentation with an initial learning rate of 0.01 annealed using a poly learning rate schedule
to a minimum of 1×10−4. Similar to most setups that tune hyperparameters (Zhao et al., 2017; Liu et al., 2021c; Wang
et al., 2020b) for reporting the best results, we tune the learning rate for all our models. All our results are reported using a
learning rate of 0.03 for the sparse backbones and 0.01 for the dense baseline.

Table 12: Semantic segmentation results on the Cityscapes val set using DeepLabV3+. Sparse Wide IFT configurations
ResNet-18 backbones outperform the dense baseline on all metrics while using similar FLOPs.

Backbone mIoU mAcc

Dense 76.72 84.40
Sparse Wide (50%) 77.90 85.12
Sparse Wide (75%) 78.92 85.68
Sparse Wide (90%) 79.10 86.01

D. Natural Language Processing: Experimental Settings
D.1. Details for GPT End-to-End Training

We demonstrate the benefits of using Sparse-IFT transformations in the NLP domain by pre-training GPT-3 models and
performing zero-shot eval on downstream tasks from the HuggingFace Open LLM leaderboard. Here, we pre-train the
models on the Pile (Gao et al., 2020) dataset. To train all GPT models, we use the AdamW optimizer (Loshchilov & Hutter,
2017) with β1 = 0.9, β2 = 0.95 and ϵ = 10−8. The global norm is clipped at 1.0, and a weight decay of 0.1 is used. There
is a learning rate warmup over the first 375M tokens, followed by a cosine decay to 10% of the peak learning rate. We
follow the recently published Chinchilla (Hoffmann et al., 2022) recommendations for obtaining loss-optimal pre-trained
baseline configurations of models. The context window size is 2048 following (Brown et al., 2020). Table 13 shows a
detailed breakdown of the model architectures, learning rate, and training settings.

In Tables 13 and 14, we outline the architecture configurations for Sparse Wide IFT 50% and 75% variants. We train the
Sparse Wide GPT-3 models using the dynamic sparse training algorithm, SET (Mocanu et al., 2018) on the Cerebras CS-2
to realize the acceleration from unstructured sparsity. Currently, Cerebras CS-2’s specialized kernels support training with
dynamic unstructured sparsity via SET; therefore, results in this section are reported with SET. In Table 13, nparams is the
total number of trainable parameters, nlayers is the number of decoder layers, and dmodel is the base size of the model. The
feedforward bottleneck is four times the base size, i.e., dff = 4× dmodel. Finally, nheads is the number of attention heads,
and dhead is the dimension of each attention head.

Evaluation We conducted a comprehensive evaluation of both dense and Sparse Wide IFT GPT-3 Small models, assessing
their performance at 50% and 75% sparsity levels across five distinct tasks on the Open LLM leaderboard (Beeching et al.,
2023) using the LM-eval-harness (Gao et al., 2021). The tasks encompassed ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), TruthfulQA (Lin et al., 2022), MMLU (Hendrycks et al., 2021), and Winogrande (Sakaguchi et al., 2019). In
Table 15, our results reveal that the Sparse IFT GPT-3 Small model at 75% sparsity achieved a notable 0.9% improvement
over the dense baseline, underscoring the efficacy of Sparse Wide IFT in enhancing model performance across a diverse
range of language understanding tasks.

Table 13: Size, architecture, and learning hyperparameters (batch size and learning rate) of the GPT-3 Small model, which is
trained using Chinchilla optimal configurations (≈ 20 tokens per parameter)

Model nparams nlayers dmodel nheads dhead Batch Size Learning Rate Training Tokens

GPT-3 Small 125M 12 768 12 64 256 6×10−4 2.5B
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Table 14: Sizes and architecture definitions of the dense GPT-3 Small model and its Sparse Wide IFT variants.

MODEL TRANSFORMATION SPARSITY nlayers dmodel dFF nheads dhead

GPT-3 SMALL DENSE 0% 12 768 3072 12 64
GPT-3 SMALL SPARSE WIDE 50% 12 1092 4344 12 64
GPT-3 SMALL SPARSE WIDE 75% 12 1536 6144 12 64

Table 15: Performance Evaluation of Dense and Sparse Wide IFT GPT-3 Small Models at 50% and 75% sparsity levels
across five tasks (i.e., ARC, HellaSwag, TruthfulQA, MMLU, and Winogrande) on the Open LLM Leaderboard

MODEL TRANSFORMATION SPARSITY SPARSE METHOD
OPEN LLM LEADERBOARD

ARC HELLASWAG TRUTHFULQA MMLU WINOGRANDE AVERAGE

GPT-3 SMALL
DENSE 0% - 20.8 27.2 47.0 24.6 49.4 33.8

SPARSE WIDE 50% SET 20.6 27.4 47.4 25.6 49.6 34.1
SPARSE WIDE 75% SET 22.1 27.8 47.5 25.6 50.4 34.7

E. Benchmarking Efficiency w.r.t Wall-clock
In this section we provide additional details on the benchmarking setups for inference on Neural Magic DeepSparse (Neural-
Magic, 2021; Iofinova et al., 2021; Kurtz et al., 2020) sparsity-aware runtime and training on the Cerebras CS-2 (Lie, 2023;
Cerebras, 2023) for evaluating the efficiency of Sparse-IFT with respect to the wall-clock time.
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Figure 7: Measured speedup versus theoretical speedup at varying sparsity levels for a GPT-3 layer 12k × 12k matrix
multiplication (MatMul) (Lie, 2021).

Inference Setup We use Neural Magic’s DeepSparse tool for benchmarking Sparse-IFT variants. The benchmarking is
conducted on the Intel Cascade Lake CPUs found on AWS G4dn cloud instances. These instances support the AVX-512
instruction set, which is used by the DeepSparse inference runtime to accelerate unstructured sparsity. We benchmark
different configurations of the Sparse Wide ResNet-18 model with sparsity ∈ {50%, 75%, 90%} for batched inference on
ImageNet. We report runtime for batch-inference of 64 images at 224 × 224 resolution.

Training Setup We evaluate the training efficiency of Sparse-IFT on the Cerebras CS-2 which supports and accelerates
training with unstructured sparsity (both forward and backward passes). We benchmark the training speed measured in
seconds/iteration. Note that the overall FLOPs of models in the GPT family are comprised of matrix multiplication FLOPs
and attention FLOPs. Attention FLOPs (i.e., spent in multi-head attention) scale quadratically with sequence length and are
invariant to weight sparsity. To demonstrate the efficacy of sparse kernels for unstructured weight sparsity, we report our
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results for dense and Sparse Wide variants of the GPT-3 20B model with a sequence length of 256 and batch size of 256.
We benchmark different configurations of Sparse Wide GPT-3 20B with sparsity ∈ {50%, 75%, 90%} and report seconds/
iteration.

Benchmarking Analysis Figure 5 in Section 6 presents the results of benchmarking inference and training of Sparse-IFT
Sparse Wide family. In both setups, we measure the relative increase in latency or training speed for Sparse-IFT variants
against the dense model. Note that configurations of Sparse-IFT at different values of sparsity do not incur a significant
change in the FLOPs compared to the dense model. On ideal hardware, FLOPs should translate directly to wall clock time,
and hence, the inference latency or training time for all configurations of Sparse-IFT should be the same as that of the dense
model (dotted black line). Conversely, when hardware does not support unstructured sparsity, the latency or training time of
Sparse-IFT variants increases with sparsity (blue line).

The results in Figure 5 of Section 6 show that up 75%, there is minimal computational overhead compared to training the
original dense baseline model. At 90% sparsity, our results lie between these two spectrums (green line). Using Neural
Magic’s sparse inference runtime, we observe a significant reduction in inference latency, bringing down the relative increase
in latency from 19.5x to 3.5x. Similiarly, in the case of training on the Cerebras CS-2, we observe a significant reduction in
training-time, bringing down the relative increase from 10.6x to 2.8x. The dense GPT-3 model achieved a throughput of
828.71 iterations per second on the CS-2, while the Sparse Wide IFT variants recorded throughputs of 637.5, 595.3, and
294.3 at respective sparsity levels, resulting in overheads of 1.30x, 1.39x, and 2.82x, respectively.

In Figure 7, we illustrate the achievable benefits of unstructured weight sparsity when utilizing specialized hardware designed
for deep learning, such as the Cerebras CS-2. This figure was regenerated based on the plot in (Lie, 2021).
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