
A New Branch-and-Bound Pruning Framework for `0-Regularized Problems
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Abstract
We consider the resolution of learning prob-
lems involving `0-regularization via Branch-and-
Bound (BnB) algorithms. These methods explore
regions of the feasible space of the problem
and check whether they do not contain solutions
through “pruning tests”. In standard implementa-
tions, evaluating a pruning test requires to solve
a convex optimization problem, which may re-
sult in computational bottlenecks. In this paper,
we present an alternative to implement pruning
tests for some generic family of `0-regularized
problems. Our proposed procedure allows the si-
multaneous assessment of several regions and
can be embedded in standard BnB implementa-
tions with a negligible computational overhead.
We show through numerical simulations that our
pruning strategy can improve the solving time of
BnB procedures by several orders of magnitude
for typical problems encountered in machine-
learning applications.

1. Introduction
This paper focuses on optimization problems of the form:

p? = infx∈Rn f(Ax) + g(x) (P)

where f : Rm 7→ R ∪ {+∞} is a loss function, A ∈
Rm×n is a given matrix and g : Rn 7→ R ∪ {+∞} is a
regularization function expressed as

g(x) = λ‖x‖0 +
∑n
i=1 h(xi) (2)

for some λ > 0 and h : R 7→ R∪{+∞}. On the one hand,
the so-called “`0-norm” is defined as

‖x‖0 = card({i ∈ J1, nK | xi 6= 0})
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and promotes sparsity in the optimizers of (P) by count-
ing the number of non-zero elements in its argument. On
the other hand, the term h(·) allows to enforce additional
application-specific properties, see e.g., (Bruer et al., 2015;
Bertsimas et al., 2021). Solving problem (P) is of in-
terest in many fields including machine learning, high-
dimensional statistics or signal processing. This problem
is for instance linked to feature selection (Bertsimas et al.,
2016), compressive sensing (Candes et al., 2007), princi-
pal component analysis (Bertsimas & Cory-Wright, 2022),
sparse SVM (Tan et al., 2010) or neural network pruning
(Carreira-Perpinán & Idelbayev, 2018), among others. The
reader can refer to (Tillmann et al., 2021; Bertsimas et al.,
2021) for an extensive review of related applications.

Since (P) is NP-hard (Nguyen et al., 2019), the main
trends of work in the last decades have focused on address-
ing relaxed instances of this problem or inferring its solu-
tions through heuristic procedures (Tropp & Wright, 2010).
However, it has recently been emphasized that the solutions
of the original problem (P) may enjoy much better statis-
tical properties than those obtained by these sub-optimal
strategies (Bertsimas & Van Parys, 2020; Zhong et al.,
2022). Consequently, there has recently been a revived
interest in solving (P) exactly and several studies have
emphasized that discrete-optimization tools can sometimes
provide tractable solutions, see e.g. (Bertsimas et al., 2016).
In this vein, state-of-the-art procedures are mostly based on
BnB algorithms whose process can be specialized to ex-
ploit the structure of (P) and achieve competitive running
times (Ben Mhenni et al., 2022; Hazimeh et al., 2022).

In a nutshell, BnB algorithms solve an optimization prob-
lem by successively: i) dividing the feasible space into
regions and ii) trying to detect regions that cannot con-
tain a minimizer. This second step is commonly referred
to as “pruning test” and is based on the construction of
some lower bounds on the value that the objective function
can take. A standard approach to constructing these lower
bounds is based on the minimization of a convex lower-
approximation of the objective function of (P), called “re-
laxation”. This operation usually dominates the complex-
ity of BnB algorithms and can lead to tractability issues for
some problem instances. In this work, we propose a strat-
egy to alleviate this computational bottleneck.
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1.1. Contributions

We present a novel methodology to implement pruning
tests in BnB algorithms that does not leverage the solu-
tion of a convex optimization problem and show that it can
be embedded at virtually no cost in standard BnB imple-
mentations. Numerical simulations reveal that our strategy
can improve the solving time by several orders of magni-
tude. Our contribution follows some recent lines of work
(Atamturk & Gómez, 2020; Guyard et al., 2022) and ex-
ploits Fenchel-Rockafellar duality (Rockafellar, 1967). In
contrast to these prior contributions which focused on spe-
cific1 instances of problem (P), we introduce a general
framework encompassing a large family of problems typ-
ically encountered in machine learning. Specifically, our
framework applies under the following set of hypotheses:

(H1) The function f(·) is proper, closed and convex.
(H2) The function h(·) is proper, closed and convex.
(H3) x = 0 is an accumulation point2 of dom (h).
(H4) 0 ∈ dom (h) and h(0) = 0.

Hypotheses (H1)-(H4) are verified by many functions en-
countered in standard machine-learning problems. For ex-
ample, this includes least-squares, logistic or hinge losses
(Wang et al., 2020) and terms h(·) constructed as mixed-
norms (Dedieu et al., 2021) or as the logarithm of Bayesian
priors (Polson & Sokolov, 2019).

Finally, the complexity analysis of our method (see Sec-
tion 3.2) is discussed in view of the following assumption
which holds for a wide range of problem instances encoun-
tered in practice, see e.g., Section 4.4.16 in (Beck, 2017):

(H5) The evaluation complexity of the convex conjugate
of f(·) scales as O(m).

1.2. Outline

The rest of the paper is organized as follows. In Section 2,
we introduce the main ingredients of standard BnB algo-
rithms. In Section 3, we then present our new pruning strat-
egy and discuss its impact on the BnB algorithm. Finally,
our method is assessed numerically in Section 4. To ease
our exposition, all the proofs are deferred to Appendix A.

1.3. Notational Conventions

Classical letters (e.g., x), boldface lowercase letters (e.g.,
x) and boldface uppercase letters (e.g., A) represent

1Prior contributions focused on instances defined by specific
choices of the functions f(·) and h(·). These works referred to
their methodology as “screening”. In this paper, we rather use the
terminology “pruning” which is standard in the BnB literature.

2x is said to be an accumulation point of a set C ⊆ R if for all
neighborhoodsN of x, the setN ∩ C \ {x} is nonempty.

scalars, vectors and matrices, respectively. 0 and 1 denote
the all-zero and all-one vectors whose dimension is usu-
ally clear from the context. Vectorial operations involving
equalities or inequalities have to be understood coordinate-
wise. We note xi the i-th entry of a vector x and xS its
restriction to the entries indexed by some set of indices S.
Similarly, we note ai the i-th column of a matrix A and AS
its restriction to the columns indexed by S. Ja, bK corre-
sponds to the set of integers ranging from a to b. The nota-
tions |·| and ·\· are used to denote respectively the cardinal-
ity of a set and the difference between two sets. η(·) stands
for the convex indicator function defined as η(·) = 0 if the
condition in the parentheses is fulfilled and η(·) = +∞
otherwise. We let [x]+ = max(x, 0). Given some proper
function ω(·), we note dom (ω) its domain, ω?(·) its con-
vex conjugate, ω??(·) its convex biconjugate and ∂ω(·) its
subdifferential. We refer to (Beck, 2017) for a precise def-
inition of these notions. Finally, we employ the notational
convention ω(x) =

∑
i ωi(xi) when ω(·) is separable.

2. Branch-and-Bound Algorithms
In this section, we outline the main ingredients of BnB pro-
cedures. We focus on the elements necessary to present our
contribution and refer the reader to Chap. 5 in (Locatelli &
Schoen, 2013) for a thorough description.

2.1. Constructing and Pruning Regions

BnB algorithms partition the feasible space of an optimiza-
tion problem into regions and try to detect those that do not
contain any optimizer. In the specific context of (P), stan-
dard BnB implementations consider regions of the form

X ν =
{

x ∈ Rn | xS0 = 0,xS1 6= 0,xS• ∈ R|S•|
}

(3)

where ν = (S0,S1,S•) is a partition of J1, nK, see
(Ben Mhenni et al., 2020; Hazimeh et al., 2022). Letting

pν = infx∈Rn f(Ax) + g(x) + η(x ∈ X ν), (Pν)

one can therefore deduce that no minimizer of (P) is con-
tained in region X ν when the inequality

pν > p? (5)

is verified. Unfortunately, condition (5) is of little interest
in practice since evaluating pν and p? is an NP-hard task.
A workaround to this issue consists in relaxing (5) as

p̃ν > p̄ (6)

where p̃ν and p̄ are some tractable lower and upper bounds
on pν and p?, respectively. Inequality (6) is often referred
to as “pruning test” since if it is verified, X ν does prov-
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ν0
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Figure 1. Illustration of the BnB decision-tree exploration. We note that a relaxation has to be solved at each node of the tree4 to evaluate
the lower bound (8) involved in pruning test (6). Here, the pruning test is passed for nodes ν2 and ν4.

ably not contain any minimizer of (P) and can therefore
be safely pruned from the optimization problem.

2.2. Standard Bounding Strategy

The standard strategy to construct the bounds involved in
(6) is as follows. First, an upper bound p̄ on p? can be
computed by evaluating the objective function of (P) at
any feasible point.5 Second, the computation of p̃ν is gen-
erally done by minimizing some convex lower bound on the
objective function of (Pν). More specifically, a standard
choice consists in replacing the term

gν(x) = g(x) + η(x ∈ X ν) (7)

in problem (Pν) by its convex biconjugate denoted
(gν)??(·) in this paper, see Item (i) of Proposition 13.16
in (Bauschke & Combettes, 2017). Hence, a valid choice
for the lower bound in pruning test (6) reads

p̃ν = rν (8)

where
rν = infx∈Rn f(Ax) + (gν)??(x). (Rν)

Problem (Rν) is called a “relaxation” of (Pν) and is usu-
ally addressed by first-order convex optimization meth-
ods (Beck, 2017). The complexity of these algorithms typ-
ically scales as O(mnκ) where κ denotes the number of
iterations performed by the numerical procedure.

2.3. Feasible Space Exploration

In BnB procedures, the partitioning of the feasible set into
regions can be identified with the expansion of a decision

4From the point of view of pruning efficiency, solving (Rν )
at the root node ν0 is unnecessary as the pruning test (6) is never
passed. It is nevertheless common practice to solve it as a wide
range of branching rules used in practice leverage its solutions,
(see e.g., Appendix B.2).

5Many methods allow to construct relevant candidates at a rea-
sonable cost, see e.g., (Wolsey, 1980).

tree where each node corresponds to some region X ν de-
fined as in (3). As illustrated in Figure 1, the exploration
starts at the root node ν0 = (∅, ∅, J1, nK) which corre-
sponds to X ν0 = Rn. For each leaf node ν = (S0,S1,S•)
examined by the BnB procedure, problem (Rν) is solved
and pruning test (6) is evaluated using lower bound (8). If
the test is passed, the corresponding region X ν is pruned
from the problem and the exploration of the tree is stopped
below this node. If the pruning test is not passed, X ν is par-
titioned into two new regions as follows. An index i ∈ S•
is selected and the following two child nodes of ν are cre-
ated:

ν0,i , (S0 ∪ {i},S1,S•\{i}) (10a)

ν1,i , (S0,S1 ∪ {i},S•\{i}). (10b)

This process is repeated until all the leaf nodes of the tree
are such that S• = ∅. In the latter case, (Pν) reduces
to a convex optimization problem which can be commonly
solved to machine precision.

2.4. Pruning Effectiveness and Method Complexity

The computational burden associated to some node ν is
generally dominated by the resolution of (Rν). Since such
a relaxation has to be solved at each node of the decision
tree, the overall complexity of BnB procedures typically
roughly scales linearly with the total number of nodes ex-
plored by the algorithm. On the one hand, we note that
passing pruning test (6) often requires to compute tight
lower bounds on pν , in the sense that pν − rν should be
small. On the other hand, achieving the prescribed tight-
ness usually imposes exploring deep nodes in the decision
tree.6 As a consequence, the number of nodes explored
by BnB procedures may become prohibitively large and
thus lead to impractical solving times. In the next section,
we present a strategy to alleviate this computational bottle-
neck.

6This claim is discussed more precisely in Appendix A.1.
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3. A New Pruning Strategy
In this section, we present our proposed new strategy to
implement pruning test (6). Our exposition is organized
as follows. In Section 3.1, we first discuss another lower
bound on pν and show that the latter can be evaluated at
low cost for a set of nodes in Section 3.2. Using this ob-
servation, we explain in Section 3.3 how the BnB decision
tree can be expanded when several pruning tests exploiting
this lower bound are passed simultaneously. Finally, in Sec-
tion 3.4 we describe how to embed the proposed methodol-
ogy in standard BnB implementations at virtually no cost.

3.1. Exploiting Duality to Construct Lower Bounds

We propose to construct a lower bound on pν that does not
require to solve (Rν). To this end, we follow another line of
work in the BnB literature (Sarin et al., 1988) and leverage
the Fenchel-Rockafellar dual problem (Rockafellar, 1967)
associated to (Rν). Under hypotheses (H1)-(H2), the latter
is given by7

dν = supu∈Rm −f?(−u)− (gν)?(ATu)︸ ︷︷ ︸
, Dν(u)

(Dν)

and verifies the inequality

dν ≤ rν , (12)

which is tight under mild assumptions, see e.g., Proposi-
tion 15.22 in (Bauschke & Combettes, 2017). Hence, set-
ting

p̃ν = Dν(u) (13)

leads to a valid lower bound to implement (6) for any
u ∈ Rm. Regarding inequality (12), we note that lower
bound (13) may not be as tight as the standard one given
in (8). Nevertheless, we show in the sequel that (13) can be
evaluated for several “successors” of node ν at virtually no
cost.

Let us first precise the notion of “successors” of a node ν:

Definition 1. The node ν′ = (S ′0,S ′1,S ′•) is said to be a
successor of ν = (S0,S1,S•) if it verifies

S0 ⊆ S ′0 and S1 ⊆ S ′1. (14)

Moreover, ν′ is said to be a direct successor of ν if it fulfills
property (14) and verifies

(S ′0 \ S0) ∪ (S ′1 \ S1) = {i} (15)

for some i ∈ S•.
7Here, we use the fact that ((gν)??)?(·) = (gν)?(·) un-

der (H2) by Proposition 13.16.

From a BnB tree perspective, direct successors correspond
to the nodes ν0,i and ν1,i described in (10a)-(10b) for some
i ∈ S•.

Interestingly, the objective functions of the dual prob-
lems (Dν) at some node ν and any of its successors share a
similar mathematical structure. To reveal this link, we first
establish the following result in Appendix A.2:

Proposition 1. Let ν = (S0,S1,S•) be a node. Under
(H2)-(H4), the function (gν)?(·) is separable and defined
coordinate-wise for all v ∈ R as

(gνi )?(v) =


0 if i ∈ S0

h?(v)− λ if i ∈ S1

[h?(v)− λ]+ if i ∈ S•.
(16)

As a consequence of Proposition 1, we prove in Ap-
pendix A.3 that the objective function of the dual problem
(Dν) at some node ν verifies a notable relation with that of
its successors. More precisely, letting

∆0(v) , [h?(v)− λ]+ (17a)

∆1(v) , [λ− h?(v)]+ (17b)

for all v ∈ R, we obtain the following property:

Proposition 2. Let ν′ = (S ′0,S ′1,S ′•) be a successor of ν =
(S0,S1,S•). Under (H1)-(H4), we have for all u ∈ Rm:

Dν′(u) = Dν(u) +
∑
i∈S′0\S0

∆0(aT
i u)

+
∑
i∈S′1\S1

∆1(aT
i u).

(18)

From Proposition 2, we note that the term Dν(u) is com-
mon to the objective functions of all the dual problems as-
sociated to the successors of ν. As a consequence, lower
bound (13) can be computed for several successors ν′ of ν
through a single evaluation of this term. In the next sec-
tion, we leverage this observation to jointly evaluate lower
bound (13) at all the direct successors of ν with a complex-
ity scaling as O(mn).

3.2. Evaluation of (13) for All the Direct Successors

In this section, we consider the scenario where one wants
to evaluate lower bound (13) for all the direct successors
of some node ν = (S0,S1,S•). In this case, letting ν′ =
(S ′0,S ′1,S ′•) denote a direct successor of ν, we have that
(18) simplifies to

Dν′(u) = Dν(u) +

{
∆0(aT

i u) if S ′0 \ S0 = {i}
∆1(aT

i u) if S ′1 \ S1 = {i}.
(19)

We thus remark that the evaluation of (13) for all the direct
successors ν′ of ν amounts to computing:
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i) the inner products {aT
i u}ni=1,

ii) the quantity Dν(u),
iii) the terms ∆0(aT

i u) and ∆1(aT
i u) for all i ∈ S•.

The first task can obviously be done with a complexity
O(mn). Moreover, using the definition of Dν(u) in (Dν)
and Proposition 1, we have that the last two tasks can be
implemented with a complexity scaling as O(m + n) and
O(|S•|), respectively, under hypothesis (H5).8 Overall, the
computational burden induced by the evaluation of (13) for
all the direct successors of node ν scales as O(mn). This
is a substantial decrease with respect to the complexity re-
quired to perform the same task for standard lower bound
(8). More specifically, applying κ iterations of some first-
order method to (Rν) leads to a complexity of O(mnκ)
(see Section 2.2). Repeating this operation for all 2|S•|
direct successors of ν then leads to a degradation of the
computation burden by a factor 2|S•|κ.

In fact, we will show in Section 3.4 that the complexity
overhead needed to evaluate lower bound (13) for all the
direct successors of ν can be further reduced from O(mn)
to O(m+ n) within a standard BnB implementation.

3.3. Simultaneous Tests: Effect on the Tree Exploration

The evaluation at low cost of lower bound (13) for all the
direct successors ν′ of ν opens the way to the practical im-
plementation of simultaneous pruning tests for several re-
gions X ν′ . In this section, we investigate how the BnB
decision tree can be expanded if pruning test (6) is passed
simultaneously for several direct successors of some node
ν = (S0,S1,S•).

We first note that {ν0,i | i ∈ S•} ∪ {ν1,i | i ∈ S•}, where
ν0,i and ν1,i have been defined in (10a)-(10b), corresponds
to all the direct successors of ν. Hence, the two sets

Iν0 = {i ∈ S• | Dν0,i(u) > p̄} (20a)
Iν1 = {i ∈ S• | Dν1,i(u) > p̄} (20b)

characterize the direct successors of ν satisfying pruning
condition (6) when implemented with the proposed lower
bound (13) at some dual point u ∈ Rm.9 By definition of
the sets Iν0 and Iν1 , the region

(∪i∈Iν0X
ν0,i) ∪ (∪i∈Iν1X

ν1,i) (21)

does not contain any minimizer of problem (P).

In the rest of this paragraph, we show how the simultaneous
success of several pruning tests can be translated in terms
of deployment of the BnB decision tree. To guide our rea-
soning, we examine two cases and then present a generic
procedure to expand the BnB decision tree in Algorithm 1.

8This is achieved by re-using the computations of task i).
9As discussed in Section 3.4, the dual point u is constructed

from the iterates of the solving procedure addressing (Rν ).

Algorithm 1 Tree expansion based on simultaneous pruning
input: node ν, sets Iν0 , Iν1 defined in (20a)-(20b)

if Iν0 ∩ Iν1 6= ∅ then
Prune X ν from the BnB tree

else
Set ν′ ← ν
forall i ∈ Iν0 ∪ I1 do

Create the two direct successors ν′0,i and ν′1,i to ν′

if i ∈ Iν0 then
Prune X ν

′
0,i and set ν′ ← ν′1,i

else if i ∈ Iν1 then
Prune X ν

′
1,i and set ν′ ← ν′0,i

end
end

end

First, suppose that Iν0 ∩ Iν1 6= ∅, that is there exists some
i ∈ S• such that both ν0,i and ν1,i pass the pruning test (6)
with lower bound (13). SinceX ν = X ν1,i∪X ν0,i , one con-
cludes that no minimizers to problem (P) can be found in
regionX ν which can thus be pruned from the decision tree.
Second, suppose that Iν0 ∩ Iν1 = ∅ but Iν0 ∪ Iν1 6= ∅. We
first examine the case where only one direct successor of
ν passes the pruning test (6) with lower bound (13), i.e.,
Iν0 ∪ Iν1 = {i}, say Iν0 = {i} and Iν1 = ∅ for instance.
Then, one concludes that region X ν0,i does not contain
any solution to problem (P) and can therefore be pruned
from the problem’s feasible set without altering its solu-
tion. From a decision-tree perspective, this information
can be taken into account by: i) creating two new nodes
ν0,i and ν1,i below ν and ii) immediately pruning the re-
gion X ν0,i . If Iν0 ∪Iν1 contains more than one element, the
next proposition suggests that this procedure can be applied
recursively.

Proposition 3. Under (H1)-(H4), we have for all succes-
sors ν′ = (S ′0,S ′1,S ′•) of ν and indices i ∈ S ′•:

Dν0,i(u) > p̄ =⇒ Dν′0,i(u) > p̄ (22a)

Dν1,i(u) > p̄ =⇒ Dν′1,i(u) > p̄. (22b)

A proof of this result can be found in Appendix A.4. Propo-
sition 3 states that if pruning test (6) is passed using lower
bound (13) for some direct successor of node ν, the result
of the test can be propagated to any successor ν′ of ν com-
pliant with the condition i ∈ S ′•. This observation leads
to Algorithm 1 which describes how the BnB decision tree
can be expanded upon the knowledge of Iν0 and Iν1 . Fig-
ure 2 illustrates the output of Algorithm 1 when ν = ν0,
Iν00 = ∅ and Iν01 = {i0, i1}. In comparison to Figure 1,
we observe that the proposed pruning procedure does not
require to solve the relaxations at the nodes ν1, ν2 and ν4,
although ultimately leading to the same expanded tree.
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3.4. Implementation in Branch-and-Bound Methods

In this final section, we discuss how the proposed pruning
strategy, leveraging lower bound (13), can be efficiently in-
tegrated into standard BnB implementations.

We consider the following strategy. Given some node ν
processed by the BnB procedure, we test simultaneously
all the direct successors of ν at each iteration of the solv-
ing process of (Rν). More specifically, letting x̂ ∈ Rn be
the current iterate constructed by the first-order method ad-
dressing (Rν), we evaluate the lower bound (13) with some
dual point verifying

u ∈ −∂f(Ax̂) (23)

and construct the sets Iν0 and Iν1 according to (20a)-(20b).
We defer the discussion on our motivations for choosing
u as in (23) to the next paragraph. We stop (prematurely)
the resolution of (Rν) as soon as Iν0 ∪ Iν1 6= ∅ for some
u ∈ Rm and expand the decision tree as described in Al-
gorithm 1. The BnB algorithm is then continued and this
process is repeated. If none of the pruning tests are passed
during the resolution of (Rν), the standard pruning test us-
ing lower bound (8) is applied and the decision tree is ex-
panded according to standard BnB operations as described
in Section 2.

We devote the rest of the section to motivate the choice
of dual point u ∈ Rm described in (23). From an effec-
tiveness point of view, our rationale is to (try to) maxi-
mize the first term in (19). If strong duality holds between
(Rν) and (Dν), by virtue of Theorem 19.1 from (Bauschke
& Combettes, 2017), this can be achieved by choosing
u ∈ −∂f(Ax?) where x? denotes any minimizer of (Rν).
Since such a minimizer is not available, we use the cur-
rent iterate (denoted x̂ in (23)) of the numerical procedure
solving (Rν) as a surrogate.

From a complexity point of view, this proposed pruning
methodology can be integrated within standard BnB im-
plementations at virtually no cost. Indeed, we notice that
a dual point u ∈ Rm verifying (23) and the correspond-
ing vector ATu ∈ Rn are already computed during the
iterations of many standard first-order methods tailored to
solve (Rν) such as proximal gradient, coordinate descent
or ADMM (Beck, 2017). According to our discussion in
Section 3.1, the complexity overhead required to compute
lower bound (13) associated to all the direct successors of ν
then drops fromO(mn) toO(m+n) since the inner prod-
ucts {aT

i u}ni=1 involved in task i) are already available. We
note that this additional computational burden is negligible
as compared to the complexity of standard first-order meth-
ods which typically scales as O(mn) per iteration.

ν0

Solve (Rν0)

Iν00 = ∅

Iν01 = {i0, i1}
ν0

ν1

i0 → S0

ν2

(Rν2) not solved

ν3

i1 → S0

(Rν1) not solved

ν4

(Rν4) not solved

Figure 2. Impact of simultaneous pruning tests on the BnB tree
exploration. Output of Algorithm 1 when applied with ν = ν0,
Iν00 = ∅ and Iν01 = {i0, i1}.

4. Numerical Experiments
In this final section, we assess numerically the proposed
pruning strategy to accelerate BnB algorithms addressing
problem (P). We do not focus on the statistical character-
ization of the solutions but refer to (Bertsimas et al., 2020;
Hastie et al., 2020) for a thorough discussion on this topic.

Reproducibility The research presented in this paper is
reproducible. The associated code is open-sourced10 and
all the datasets used in our simulations are publicly avail-
able. Computations were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by
INRIA and including CNRS, RENATER and several uni-
versities as well as other organizations.11 Experiments
were run on a Debian 10 operating system, featuring one
Intel Xeon E5-2660 v3 CPU clocked at 2.60 GHz with 16
GB of RAM.

Solver specifications In our comparisons, we consider
different methods solving problem (P) exactly, that is re-
turning the value of (at least) one minimizer to machine
precision. First, we use Mosek, Cplex and Gurobi
which are off-the-shelf Mixed Integer Program (MIP)
solvers (Anand et al., 2017). Second, we consider the
L0bnb solver (Hazimeh et al., 2022) which is dedicated
to some specific12 instances of problem (Pν). We com-
pare these procedures to a standard BnB implementation
enhanced with the simultaneous pruning tests described in
this paper, noted El0ps.

For the sake of reproducibility, the MIP formulations of
the problem considered are specified in Appendix B.1.
Appendix B.2 details our BnB implementation choices

10https://github.com/TheoGuyard/El0ps
11https://www.grid5000.fr
12Namely with a quadratic function f(·) and a term h(·) corre-

sponding to an `2-norm and/or a bound constraint.
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Figure 3. Performance profiles of different solvers.

and Appendix B.3 gives the expression of the function
(gν)??(·) involved in the relaxations (Rν) for the instances
of problem (P) considered in this section. Finally, the tun-
ing procedure for λ and the hyperparameters involved in
h(·) is described in Appendix B.4.

4.1. Performance on Synthetic Data

In this section, we analyze the performance of different
solvers on synthetic data. We consider instances of prob-
lem (P) defined by

f(·) = 1
2‖y − ·‖

2
2 (24a)

h(·) = η(| · | ≤M) (24b)

for some y ∈ Rm and M > 0. This choice is motivated by
various applications, see e.g., (Tillmann et al., 2021; Bert-
simas et al., 2021; Bertsimas & Johnson, 2023). Our results
are averaged over 100 instances independently generated.

Instance generation For each problem instance, we gen-
erate the rows of A ∈ Rm×n as independent realizations
of a multivariate normal distribution with zero mean and
covariance matrix Σ ∈ Rn×n where each entry (i, j) is
defined as Σij = ρ|i−j| for some ρ ∈ [0, 1). Moreover,
we set y = Ax† + e where x† ∈ Rn has k evenly-
spaced non-zero entries of unit amplitude in absolute value
and where e ∈ Rm is a zero-mean Gaussian noise with
a variance tuned to obtain some signal-to-noise ratio τ =
10 log10(‖Ax†‖22/‖e‖22).

Performance profiles We generate each problem in-
stance as described above with the parameters k = 5,
m = 500, n = 1000, ρ = 0.9 and τ = 10. Figure 3
represents the percentage of instances solved (to machine
precision) by each method within a given time budget.
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Figure 4. Acceleration factor when implementing the simultane-
ous pruning tests in addition to the standard pruning strategy dur-
ing the BnB algorithm.

We notice that regardless of the considered time budget,
our method can solve a larger proportion of instances than
its competitors. In particular, all the problem instances are
solved within a time budget for which no instances have
been solved by the other methods. More specifically, we
observe that our methodology enables an acceleration of
at least one order of magnitude with respect to the other
procedures to solve all the problem instances. In partic-
ular, we mention that the BnB implementation choices of
El0ps are similar to those of L0bnb. This suggests that
the observed improvement in terms of computation time is
essentially due to our simultaneous pruning strategy.

Sensibility study To study more finely the gains permit-
ted by the contribution proposed in this paper, we compare
two different versions of a BnB algorithm. The first one
implements the standard pruning strategy with the lower
bound (8) whereas the second one implements both this
standard strategy and the proposed simultaneous pruning
methodology involving lower bound (13). We generate
synthetic problem instances as described above by varying
one parameter at a time to cover different working regimes.
In Figure 4, we represent the acceleration factor in terms of
solving time obtained by our novel pruning strategy. More
precisely, it is defined as the ratio of the solving times ob-
tained with El0ps where the simultaneous pruning tests
(see Section 3.3) have been disabled and El0ps.

We remark that the gains obtained by our methodology in-
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allowed.

crease with the dimension parameter n and the correlation
parameters ρ. In contrast, the gain does not seem to be
significantly impacted by the sparsity level k or the signal-
to-noise ratio τ . This suggests that depending on the char-
acteristics of the problem, the proposed pruning methodol-
ogy can lead to different gains in terms of running time. We
note nonetheless that in all the tested scenarios, the solving
time is improved by at least a factor 5.

4.2. Performance on Real-World Datasets

In this section, we assess the proposed pruning methodol-
ogy on six real-world datasets.

Problems and datasets We address feature selection
problems, which correspond to typical machine learning
tasks. Each task corresponds to an instance of the loss
function f and two choices of h, as described below. Each
dataset provides a matrix A ∈ Rm×n and a vector y ∈ Rm.
The dimension of each dataset is specified in Table 1.

First, we consider linear regression with the least-squares
loss function:

f(·) = 1
2‖y − ·‖

2
2. (25)

We use the instances of y and A provided by the RI-
BOFLAVIN (Bühlmann et al., 2014) and BCTCGA (Liu
et al., 2018) datasets which are related to vitamin produc-
tion and cancer screening, respectively.

Second, we consider binary classification tasks with the lo-

Dataset f m n

RIBOFLAVIN Least-squares 71 4,088
BCTCGA Least-squares 536 17,322

COLON CANCER Logistic 62 2,000
LEUKEMIA Logistic 38 7,129

BREAST CANCER Squared-hinge 44 7,129
ARCENE Squared-hinge 100 10,000

Table 1. Dimensions of the datasets and data fidelity term f .

gistic loss function:

f(·) = 1T log(1 + exp(−y � ·)) (26)

where � denotes the Hadamard product and the functions
log(·) and exp(·) are taken component-wise. We use in-
stances of y and A from the COLON CANCER (Alon et al.,
1999) and LEUKEMIA (Golub et al., 1999) datasets related
to cancer screening.

Finally, we consider binary classification tasks with the
squared hinge loss:

f(·) = ‖[1− y � ·]+‖22 (27)

where [·]+ is taken component-wise. We use instances of
y and A from the datasets BREAST CANCER and ARCENE
(Chang & Lin, 2011) related to DNA analysis and tumor
categorization, respectively.
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For each dataset, we consider the two following choices:

h(·) = α| · | + η(| · | ≤M) (28a)

h(·) = α| · |2 + η(| · | ≤M) (28b)

where α > 0 and M > 0. These choices are motivated
by the statistical properties of the solutions that can be ob-
tained (Dedieu et al., 2021).

We mention that the Cplex and Gurobi solvers can only
handle linear and quadratic functions. Hence, they can-
not address problem instances involving the logistic loss
(26). Moreover, L0bnb can only handle instances com-
bining functions (25) and (28b).

Performance profiles For each problem instance, we
first calibrate the hyperparameters α > 0 and M > 0 as
explained in Appendix B.4. We then fit a regularization
path (Friedman et al., 2010), that is, we vary the value of
λ to construct solutions with different sparsity levels. We
start at some λ so that the all-zero vector is a solution of
(P) and sequentially decrease its value as long as at least
one solver can solve the problem within one hour. The so-
lution obtained for each value of λ is used as a warm-start
for the problem with the next value of λ considered in the
regularization path.

Figure 5 represents the time needed by each solver to con-
struct a solution with a given sparsity level. We observe
that the implementation of the pruning methodology pro-
posed in this paper allows for significant gains in terms of
running time. More precisely, our method outperforms the
other solvers in all the considered scenarios. In compari-
son with off-the-shelf MIP solvers such as Mosek, Cplex,
and Gurobi, the time savings can reach up to four orders
of magnitude in the most favorable cases. Regarding the
specialized solver L0bnb, improvements of up to two or-
ders of magnitude are achievable by our method in the best-
case scenarios.

5. Conclusion
In this paper, we introduce a new methodology to perform
pruning tests in Branch-and-Bound algorithms addressing
`0-regularized optimization problems. Our method is only
grounded on a few hypotheses and can thus be applied
to a large variety of problems, notably in machine learn-
ing. Our numerical results demonstrate that the proposed
methodology significantly reduces solving time compared
to other state-of-the-art methods. It therefore allows to ad-
dress some problem instances that were out of computa-
tional reach so far.

Impact Statement
The goal of our work is to accelerate the solving time of
some particular optimization problems. Our contribution is
primarily methodological and any of its potential societal
impact would only be indirectly related to our work.
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A. Supplementary Material Related to Sections 2 and 3
This section gathers discussions and proofs of the results presented in Sections 2 and 3 of the paper.

A.1. Discussion on Section 2.4

In this paragraph, we give additional details on the relation between the tightness of lower-bound (8) and the depth of the
node at which it is computed. Our claim is grounded on the two results stated in the following lemma:

Lemma 1. Let ν = (S1,S0,S•) be a node of the BnB tree. Then

1. For all successors ν′ of ν, we have rν
′ ≥ rν .

2. If (H2)-(H4) hold and S• = ∅ then rν = pν .

Proof. We prove the two items separately.

1. Let ν′ = (S ′1,S ′0,S ′•) be a successor of ν. By definition of a successor, we observe from (3) that X ν′ ⊆ X ν .
Therefore, using the definitions of gν and gν

′
in (7), we have

gν
′
(·) ≥ gν(·). (29)

Item (ii) of Proposition 13.16 in (Bauschke & Combettes, 2017) then leads to

(gν
′
)??(·) ≥ (gν)??(·). (30)

Thus, we have the inequality f(A·) + (gν
′
)??(·) ≥ f(A·) + (gν)??(·). By taking the infimum on both sides of this

inequality, we obtain the desired result.

2. If (H2)-(H4) hold and S• = ∅, one has (gν)?? = gν from Proposition 1 and Theorem 4.8 in (Beck, 2017). Hence, the
result directly follows.

We now motivate our claim “achieving the prescribed tightness usually imposes exploring deep nodes in the decision tree”
in light of the following analysis.

Let p̄ be an upper bound on p? and ν0 = (S(0)
1 ,S(0)

0 ,S(0)
• ) be a node13 of the BnB tree satisfying S(0)

• 6= ∅ and

pν0 > p̄ ≥ rν0 . (31)

Denote L = |S(0)
• |. The first inequality guarantees that X ν0 definitively excludes any minimizer of (P), while the second

indicates that the pruning test (6) with the lower bound (8) is unsuccessful. We nevertheless demonstrate that for any
sequence {ν`}L`=1 satisfying

∀` ∈ J0, L− 1K : ν`+1 is a direct successor of ν`, (32)

there exists an index `c ∈ J1, LK such that ν`c passes test (6) with the lower bound (8).

Let {ν`}L`=1 be a sequence verifying (32). First, using item 1 of Lemma 1, we have that δ` , rν` − p̄ is a non-decreasing
function of `. Note that the second inequality in (31) leads to δ0 ≤ 0. Moreover, we have that δL > 0 by virtue of the
following arguments: first, the definition of a successor implies that X νL ( X ν0 and therefore pνL ≥ pν0 ; second, we have
from item 2 of Lemma 1 that pνL = rνL ; finally the result follows from the first inequality in (31).

In conclusion, since δL > 0, the pruning test (6) with the lower bound (8) will ultimately succeed if enough successors are
visited by the BnB procedure. Furthermore, the likelihood of the success increases as the BnB procedure explores deeper
nodes in the tree because δ` is a non-decreasing function of `.

13Contrary to the notational convention used in Section 2.3, ν0 does not necessarily refers (here) to the root node (∅, ∅, J1, nK).

11



A New Branch-and-Bound Pruning Framework for `0-Regularized Problems

A.2. Proof of Proposition 1

We first prove the following technical lemma:

Lemma 2. Let ω : R→ R ∪ {+∞} be a closed, convex, proper function and let x0 ∈ dom (ω) be an accumulation point
of dom (ω). Then we have

inf
x∈R\{x0}

ω(x) = inf
x∈R

ω(x). (33)

Proof. We obviously have
inf

x∈R\{x0}
ω(x) ≥ inf

x∈R
ω(x), (34)

so we concentrate on the reverse inequality hereafter.

First, using the fact that x0 is an accumulation point of dom (ω), we have that dom (ω) \ {x0} 6= ∅ and therefore

inf
x∈R

ω(x) = inf
x∈dom (ω)

ω(x) (35)

inf
x∈R\{x0}

ω(x) = inf
x∈dom (ω)\{x0}

ω(x). (36)

It is thus sufficient to prove that
inf

x∈dom (ω)\{x0}
ω(x) ≤ inf

x∈dom (ω)
ω(x). (37)

Second, using the fact that x0 ∈ dom (ω) by hypothesis, we also have

inf
x∈dom (ω)

ω(x) ≤ ω(x0) < +∞. (38)

We then prove (37) by considering two separate cases.

• Assume first that
inf

x∈dom (ω)
ω(x) = ω(x0). (39)

Since x0 is an accumulation point of dom (ω), there exists a sequence {x(i)}i∈N ⊂ dom (ω) \ {x0}.14 From Th. 2.22
in (Beck, 2017), we have that closedness, convexity and properness of ω implies that it is continuous on its domain.15

Hence limi→+∞ ω(x(i)) = ω(x0) and therefore

inf
x∈dom (ω)\{x0}

ω(x) ≤ ω(x0). (40)

Inequality (37) immediately follows by combining (39) and (40).

• Assume now that
inf

x∈dom (ω)
ω(x) < ω(x0) (41)

and denote ωinf ∈ R ∪ {−∞} the latter infimum. By definition of an infimum, there exists a sequence {x(i)}i∈N ⊂
dom (ω) such that ωinf = limi→+∞ ω(x(i)). Let ε > 0 be such that ε < ω(x0) − ωinf . The hypothesis case (41)
therefore implies that there exits iε such that

∀i ∈ N, i ≥ iε =⇒ ω(x(i)) < ω(x0)− ε (42)

and therefore x(i) 6= x0 for all i ≥ iε. On can thus construct a subsequence {x̃(i)}i∈N such that x̃(i) 6= x0 for all
i ∈ N. This implies that {x̃(i)}i∈N ⊂ dom (ω) \ {x0} and one immediately deduces that

inf
x∈dom (ω)\{x0}

≤ lim
i→+∞

ω(x̃(i)) = ωinf (43)

where the equality holds since {ω(x̃(i))}i∈N is a subsequence of a converging sequence. This leads to (37).

14 Such a sequence can be constructed as follows: for all i ∈ N, one chooses x(i) ∈ (C∩B(x0, (i+ 1)−1))\{x0}which is nonempty
by definition of an accumulation point.

15That is for any {x(i)}i∈N ⊂ dom (ω) converging to some limit point x0 ∈ dom (ω), we have limi→+∞ ω(x
(i)) = ω(x0).
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We are now ready to give a proof to Proposition 1. By definition of a convex conjugate function, we have:

∀v ∈ Rn : (gν)?(v) = supx∈Rn vTx− gν(x). (44)

Observing from (7) that gν(·) is separable since both g(·) and η(· ∈ X ν) are separable (see their definitions in (2) and (3),
respectively), we deduce that (gν)?(·) is also separable and is given coordinate-wise by

(gνi )?(v) = supx∈R vx − gνi (x). (45)

Imposing explicitly the constraints defined in X ν , we obtain:

(gνi )?(v) =


supx=0 vx − h(x)− λ‖x‖0 if i ∈ S0

supx 6=0 vx − h(x)− λ‖x‖0 if i ∈ S1

supx∈R vx − h(x)− λ‖x‖0 if i ∈ S•
(46)

We next address the three above cases separately.

If i ∈ S0, the first case in (46) simplifies to

(gνi )?(v) = supx=0 vx − h(x) = 0 (47)

where the first equality holds since ‖0‖0 = 0 and the second since h(0) = 0 in virtue of hypothesis (H4).

If i ∈ S1, then

(gνi )?(v) = supx 6=0 vx − h(x)− λ (48)

since ‖x‖0 = 1 for all x 6= 0. As h(·) is closed, convex and proper, the function ω(x) , −vx + h(x) + λ inherits from
these properties. On the one hand, it is easy to see that dom (ω) = dom (h). On the other hand, since 0 is an accumulation
point of dom (h) from (H3), we have from Lemma 2 that

(gνi )?(v) = supx∈R vx − h(x)− λ. (49)

We finally obtain the result by using the definition of the convex conjugate of h.

If i ∈ S•, then

(gνi )?(v) = supx∈R vx − h(x)− λ‖x‖0 (50a)

= max
{

supx=0 vx − h(x)− λ‖x‖0 , supx 6=0 vx − h(x)− λ‖x‖0
}

(50b)

= max
{

supx=0 vx − h(x) , supx 6=0 vx − h(x)− λ
}

(50c)

= max {0, h?(v)− λ} (50d)
= [h?(v)− λ]+ (50e)

where (50c) is obtained by definition of the `0-norm, (50d) follows from the same reasoning as for the case “i ∈ S1”.

A.3. Proof of Proposition 2

Our proof of Proposition 2 leverages the following relation between the dual functions at a node and its direct successors:

Lemma 3. Let ν = (S0,S1,S•) and ν′ = (S ′0,S ′1,S ′•) be two nodes of the BnB tree.

If ν′ is a direct successor of ν, then for all u ∈ Rm:

Dν′(u) = Dν(u) +

{
∆0(aT

i u) if i ∈ S ′0
∆1(aT

i u) if i ∈ S ′1
(51)

where i denotes the unique element of (S ′0 \ S0) ∪ (S ′1 \ S1) defined in (15).

13
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The proof of this result is postponed to the end of the section.

Proof of Proposition 2. Let ν = (S0,S1,S•) and u ∈ Rm. We show that (18) is true by induction on the cardinality of
S• \ S ′• where S ′• denotes the third element in the partition of a successor ν′ of ν. More specifically, we show that

∀k ∈ J0, |S•|K: “For all successor node ν′ = (S ′0,S ′1,S ′•) such that |S• \ S ′•| = k, (18) holds true”.

Initialization. If k = 0, the only successor ν′ of ν satisfying |S• \ S ′•| = k is ν′ = ν. In that case, S ′1 \ S1 = ∅ and
S ′0 \ S0 = ∅ so that (18) trivially holds.

Induction. Let k ∈ J0, |S•| − 1K and assume that our induction hypothesis holds for k. Let also ν′ = (S ′0,S ′1,S ′•) be a
successor of ν such that |S• \ S ′•| = k + 1. Since S• \ S ′• 6= ∅, we can choose i0 ∈ S• \ S ′• and define

νi0 = (S ′0 \ {i0},S ′1 \ {i0},S ′• ∪ {i0}). (52)

On the one hand, the definition of νi0 implies that νi0 is a successor of ν. Hence, our induction hypothesis applied to νi0
leads to

Dνi0 (u) = Dν(u) +
∑

i∈S′0\(S0∪{i0})

∆0(aT
i u) +

∑
i∈S′1\(S1∪{i0})

∆1(aT
i u). (53)

On other hand, the definition of νi0 also implies that ν′ is a direct successor of νi0 . Applying Lemma 3 thus leads to

Dν′(u) = Dνi0 (u) +

{
∆0(aT

i0
u) if i0 ∈ S ′0

∆1(aT
i0

u) if i0 ∈ S ′1.
(54)

One finally obtains (18) by expanding Dνi0 (u) in (54) using the result of (53) and noting that {i0} ∪ S ′0 \ (S0 ∪ {i0}) =
S ′0 \ S0 and {i0}∪S ′1 \ (S1 ∪{i0}) = S ′1 \ S1. Since this rationale holds irrespective of the successor ν′, we conclude that
the induction hypothesis also holds for k + 1, thereby completing the proof.

Proof of Lemma 3. We first expand the definition of the function associated to the dual problem at a given node (see (Dν)).
More specifically, we have for any node ν = (S0,S1,S•) and u ∈ Rm:

Dν(u) = −f?(−u)− (gν)?(u)

= −f?(−u)−
∑
j∈S1

(h?(aT
j u)− λ)−

∑
j∈S•

[h?(aT
j u)− λ]+ (55)

where the first equality holds by definition and the second follows from Proposition 1.

Let ν = (S0,S1,S•) be such that S• 6= ∅ and let ν′ = (S ′0,S ′1,S ′•) be a direct successor of ν. Then, there exists i ∈ S•
such that one of the following situation holds:

S-1) (S ′0,S ′1,S ′•) = (S0 ∪ {i},S1,S• \ {i})

S-2) (S ′0,S ′1,S ′•) = (S0,S1 ∪ {i},S• \ {i}).

Applying (55) to ν′, we first have for any u ∈ Rm:

Dν′(u) = − f?(−u)−
∑
j∈S′1

(h?(aT
j u)− λ)−

∑
j∈S′•

[h?(aT
j u)− λ]+

= − f?(−u)−
∑
j∈S′1

(h?(aT
j u)− λ)−

∑
j∈S•\{i}

[h?(aT
j u)− λ]+

= − f?(−u)−
∑
j∈S′1

(h?(aT
j u)− λ)−

∑
j∈S•

[h?(aT
j u)− λ]+ + [h?(aT

i u)− λ]+ (56)
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where we have used the fact that S ′• = S• \ {i} in both cases S-1) and S-2) to obtain the second equality. We now address
the two cases separately.

In case S-1), we have S ′1 = S1 and (56) becomes

Dν′(u) = −f?(−u)−
∑
j∈S1

(h?(aT
j u)− λ)−

∑
j∈S•

[h?(aT
j u)− λ]+ + [h?(aT

i u)− λ]+

= Dν(u) + [h?(aT
i u)− λ]+ (57)

where we have applied (55) to obtain the second equality.

In case S-2), we have S ′1 = S1 ∪ {i} and (56) becomes

Dν′(u) = −f?(−u)−
∑

j∈S1∪{i}

(h?(aT
j u)− λ)−

∑
j∈S•

[h?(aT
j u)− λ]+ + [h?(aT

i u)− λ]+

= −f?(−u)−
∑
j∈S1

(h?(aT
j u)− λ)−

∑
j∈S•

[h?(aT
j u)− λ]+ + [h?(aT

i u)− λ]+ − (h?(aT
i u)− λ)

= Dν(u) + [h?(aT
i u)− λ]+ − (h?(aT

i u)− λ)

= Dν(u) + [λ− h?(aT
i u)]+ (58)

where the last two equalities follow respectively from (55) and the property x = [x]+ − [−x]+ for all x ∈ R.

Gathering the results given in (57)-(58) and using the definition of ∆0 and ∆1 in (17a)-(17b), one obtains that Dν′(u)
satisfies (51).

A.4. Proof of Proposition 3

Let ν′ = (S ′0,S ′1,S ′•) be a successor of ν = (S0,S1,S•) and u ∈ Rm. Proposition 3 is a direct consequence of the
following two inequalities

Dν′0,i(u) ≥Dν0,i(u) (59a)

Dν′1,i(u) ≥Dν1,i(u). (59b)

We thus establish (59a) and (59b) in the remaining of the section.

Note first that a direct consequence of Proposition 2 is

Dν′(u) ≥ Dν(u) (60)

since all terms {∆0(aT
i u)}i∈S′0\S0 and {∆1(aT

i u)}i∈S′1\S1 are nonnegative.

Let b ∈ {0, 1}. Particularizing Lemma 3 to ν = ν′ and ν′ = ν′b,i –the direct successor of ν′ defined in (10a)– one obtains:

Dν′b,i(u) = Dν′(u) + ∆b(a
T
i u) (61a)

≥ Dν(u) + ∆b(a
T
i u) (61b)

= Dνb,i(u) (61c)

where the inequality follow from (60) (since ν′ is a successor of ν) and the last equality from Lemma 3. This establishes
the result.

B. Supplementary materials related to Section 4
This section gives supplementary materials to our numerical experiments.

B.1. Mixed-integer Programming Formulations

In our experiments, problem (P) is formulated as a MIP so that it can be handled by commercial solvers like Cplex,
Gurobi and Mosek. For the problem considered in Section 4.1 where f(·) and h(·) are given by (24a)-(24b), we use the
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Penalty (28a) Penalty (28b)

L
os

s
(2

5)



min 1
2‖y −Ax‖22 + λ1Tz + α1Ts

s.t. x ≥ −s
x ≤ s
x ≥ −Mz
x ≤Mz
x ∈ Rn, z ∈ {0, 1}n, s ∈ Rn


min 1

2‖y −Ax‖22 + λ1Tz + α1Ts
s.t. x� x ≤ s� z

x ≥ −Mz
x ≤Mz
x ∈ Rn, z ∈ {0, 1}n, s ∈ Rn

L
os

s
(2

6)



min 1Tu + λ1Tz + α1Ts
s.t. 1 ≥ v + w

u ≥ − log(v) + y �Ax
u ≥ − log(w)
x ≥ −s
x ≤ s
x ≥ −Mz
x ≤Mz
x ∈ Rn, z ∈ {0, 1}n, s ∈ Rn
u ∈ Rm, v ∈ Rm, w ∈ Rm



min 1Tu + λ1Tz + α1Ts
s.t. v + w ≤ 1

u ≥ − log(v) + y �Ax
u ≥ − log(w)
x� x ≤ s� z
−Mz ≤ x ≤Mz
x ∈ Rn, z ∈ {0, 1}n, s ∈ Rn
u ∈ Rm, v ∈ Rm, w ∈ Rm

L
os

s
(2

7)



min ‖w‖22 + λ1Tz + α1Ts
s.t. w ≥ 1− y �Ax

w ≥ 0
x ≥ −s
x ≤ s
x ≥ −Mz
x ≤Mz
x ∈ Rn, z ∈ {0, 1}n
s ∈ Rn,w ∈ Rn



min ‖w‖22 + λ1Tz + α1Ts
s.t. w ≥ 1− y �Ax

w ≥ 0
x� x ≤ s� z
x ≥ −Mz
x ≤Mz
x ∈ Rn, z ∈ {0, 1}n
s ∈ Rn,w ∈ Rn

Table 2. MIP formulations used Section 4. The vectorial inequalities as well as the function log(·) are taken component-wise and �
denotes the Hadamard product.

following formulation  min 1
2‖y −Ax‖22 + λ1Tz

s.t. −Mz ≤ x ≤Mz
x ∈ Rn, z ∈ {0, 1}n

(62)

where an additional binary variable z ∈ {0, 1}n is used to encode the nullity of the entries of the continuous variable
x ∈ Rn. A similar approach can be used to reformulate the problems treated in Section 4.2. We refer the reader to Table 2
for the MIP formulation of each of the problems considered in our numerical simulations.

B.2. Implementation Choices

Our BnB solver follows the standard implementation specified in Section 2 and explores the tree in a “depth-first” fashion,
as presented in Sec. 5.2.2 by (Locatelli & Schoen, 2013). Given some node ν = (S0,S1,S•) where the decision tree must
be expanded, we select an index i ∈ S• to create new nodes (10a)-(10b) as

i ∈ argmaxi′∈S• |x
ν
i′ |. (63)

where xν is the final iterate of the numerical procedure addressing (Rν). We use an approach similar to that considered in
(Hazimeh et al., 2022) to solve numerically problem (Rν). More precisely, we solve a sequence of sub-problems defined
as {

inf f(Ax) + (gν)??(x)
s.t. xi = 0 ∀i /∈ W (Rν

W )

where W ⊆ J1, nK is some working set. Each sub-problem (Rν
W ) is solved by using a classical coordinate descent

procedure. The size of the working set is W increased based on Fermat’s optimality condition violation until no more
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violations occur. More specifically, letting xW ∈ Rn be the output of the numerical procedure addressing (Rν
W ), we let

Wnew =W ∪
{
i | 0 /∈ aT

i ∂f(AxW) + ∂(gνi )??(xWi )
}

and stop the procedure whenWnew =W .

The simultaneous pruning procedure proposed in Section 3 is performed during the resolution of problems (Rν). In view
of our discussion in Section 3.4, we consider that one iteration of the solving process of (Rν) corresponds to the resolution
of one sub-problem (Rν

W ). Stated otherwise, the iterates x̂ ∈ Rn used to implement our pruning methodology in (23) are
the output of the numerical procedure addressing each sub-problem (Rν

W ).

B.3. Technical Implementation Details

Given some node ν = (S0,S1,S•), the BnB algorithm requires characterizing the convex biconjugate (gν)??(·) associated
with gν(·) to construct relaxation (Rν). We derive its expression from the parametrization of the convex conjugate (gν)?(·)
given in Proposition 1. With equation (16), we first observe that (gν)??(x) =

∑n
i=1(gνi )??(xi) where

(gνi )??(x) =


supv∈R xv − 0 if i ∈ S0

supv∈R xv − (h?(v)− λ) if i ∈ S1

supv∈R xv − [h?(v)− λ]+ if i ∈ S•
(65a)

=


η(x = 0) if i ∈ S0

h??(x) + λ if i ∈ S1

supv∈R xv − [h?(v)− λ]+ if i ∈ S•
(65b)

=


η(x = 0) if i ∈ S0

h(x) + λ if i ∈ S1

supv∈R xv − [h?(v)− λ]+ if i ∈ S•.
(65c)

Equalities (65a)-(65b) follow from Definition 4.1 in (Beck, 2017). Equality (65c) follows from Theorem 4.8 in (Beck,
2017) since h(·) is proper, closed and convex under hypothesis (H2). We next provide a closed-form expression of the case
i ∈ S• in (65c) for the three expressions of function h(·) considered in our numerical experiments.

Function h(·) given by (24b) With this parametrization, we have

h?(v) = supx∈R vx − η(|x| ≤M) (66a)
= M |v|. (66b)

Hence, we deduce that h?(v) ≤ λ ⇐⇒ |v| ≤ λ/M , which gives

supv∈R xv − [h?(v)− λ]+ = max
{

sup|v|≤λ/M xv , sup|v|≥λ/M xv − (M |v| − λ)
}

(67a)

= max
{

(λ/M)|x| , sup|v|≥λ/M xv −M |v|+ λ
}
. (67b)

Further, we remark that the supremum in the right member of (67b) lies in {v ∈ R ∪ {+∞} | v ≥ 0} when x ≥ 0 and in
{v ∈ R ∪ {−∞} | v ≤ 0} when x ≤ 0. Therefore, we obtain

sup|v|≥λ/M xv −M |v|+ λ = sup|v|≥λ/M |v|(|x| −M) + λ (68a)

=

{
+∞ if |x| > M

(λ/M)|x| if |x| ≤M
(68b)

= (λ/M)|x|+ η(|x| ≤M). (68c)

Overall, combining (67a)-(67b) with (68a)-(68c) gives

(gνi )??(x) = supv∈R xv − [h?(v)− λ]+ (69a)
= max{(λ/M)|x|, (λ/M)|x|+ η(|x| ≤M)} (69b)
= (λ/M)|x|+ η(|x| ≤M) (69c)

when i ∈ S• in (65c).
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Function h(·) given by (28a) With this parametrization, we have

h?(v) = sup|x|≤M vx − α|x| (70a)

= sup|x|≤M |x|(|v| − α) (70b)

=

{
0 if |v| ≤ α
M(|v| − α) if |v| > α

(70c)

= M [|v| − α]+. (70d)

Hence, we deduce that h?(v) ≤ λ ⇐⇒ |v| ≤ α+ λ/M , which gives

supv∈R xv − [h?(v)− λ]+ = max
{

sup|v|≤α+λ/M xv , sup|v|≥α+λ/M xv −M |v|+Mα+ λ
}

(71a)

= max
{

(α+ λ/M)|x| , sup|v|≥α+λ/M xv −M |v|+Mα+ λ
}

(71b)

Further, we remark that the supremum of the right member in (71b) lies in {v ∈ R ∪ {+∞} | v ≥ 0} when x ≥ 0 and in
{v ∈ R ∪ {−∞} | v ≤ 0} when x ≤ 0. Therefore, we obtain

sup|v|≥α+λ/M xv −M |v|+Mα+ λ = sup|v|≥α+λ/M |v|(|x| −M) +Mα+ λ (72a)

=

{
+∞ if |x| > M

(α+ λ/M)|x| if |x| ≤M
(72b)

= (α+ λ/M)|x|+ η(|x| ≤M). (72c)

Overall, combining (71a)-(71b) with (72a)-(72c) gives

(gνi )??(x) = supv∈R xv − [h?(v)− λ]+ (73a)

= max
{

(α+ λ/M)|x|, (α+ λ/M)|x|+ η(|x| ≤M)
}

(73b)
= (α+ λ/M)|x|+ η(|x| ≤M) (73c)

when i ∈ S• in (65c).

Function h(·) given by (28b). With this parametrization, we obtain

h?(v) , sup|x|≤M vx − αx2 (74a)

= − inf |x|≤M αx2 − vx (74b)

=

{
v2

4α if |v| ≤ 2αM

M |v| − αM2 if |v| > 2αM
(74c)

by noting that the scalar defined as the orthogonal projection of v
2α onto the interval [−M,M ] satisfies the necessary and

sufficient first order optimality condition (see e.g. Corollary 3.68 in (Beck, 2017)) associated to the convex minimization
problem involved in (74b). The function h?(·) is continuous, monotone, minimized at v = 0 and one has h?(v) = αM2 at
the threshold |v| = 2αM . In this view, we deduce that

h?(v) ≤ λ ⇐⇒

{
M |v| − αM2 ≤ λ if αM2 ≤ λ
v2

4α ≤ λ if αM2 > λ
(75a)

⇐⇒

{
|v| ≤ αM + λ/M if M ≤

√
λ/α

|v| ≤ 2
√
λα if M >

√
λ/α.

(75b)

By treating the two above cases separately, we next show that

(gνi )??(x) = supv∈R xv − [h?(v)− λ]+ (76a)

=

{
η(|x| ≤M) + ( λM + αM)|x| if M ≤

√
λ/α

η(|x| ≤M) + 2λB(|x|
√
α/λ) if M >

√
λ/α

(76b)
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when i ∈ S• in (65c).

Case M ≤
√
λ/α. We have

supv∈R xv − [h?(v)− λ]+ = max
{

sup|v|≤αM+λ/M xv , sup|v|≥αM+λ/M xv − v2

4α + α[ |v|2α −M ]2+ + λ
}

(77a)

= max
{

sup|v|≤αM+λ/M xv , sup|v|≥αM+λ/M xv − v2

4α + α( |v|2α −M)2 + λ
}

(77b)

= max
{

(αM + λ/M)|x| , sup|v|≥αM+λ/M xv −M |v|+ αM2 + λ
}

(77c)

where equality (77b) holds since M ≤
√
λ/α =⇒ αM + λM ≥ 2αM . Further, we remark that the supremum of

the right member in (77c) lies in {v ∈ R ∪ {+∞} | v ≥ 0} when x ≥ 0 and in {v ∈ R ∪ {−∞} | v ≤ 0} when x ≤ 0.
Therefore, we obtain

sup|v|≥αM+λ/M xv −M |v|+ αM2 + λ = sup|v|≥αM+λ/M |v|(|x| −M) + αM2 + λ (78a)

=

{
+∞ if |x| > M

(αM + λ/M)|x| if |x| ≤M
(78b)

= (αM + λ/M)|x|+ η(|x| ≤M). (78c)

Overall, combining (77a)-(77c) with (78a)-(78c) gives

(gνi )??(x) = max
{

(αM + λ/M)|x|, (αM + λ/M)|x|+ η(|x| ≤M)
}

(79a)
= (αM + λ/M)|x|+ η(|x| ≤M) (79b)

for the case M ≤
√
λ/α.

Case M >
√
λ/α. We have

supv∈R xv − [h?(v)− λ]+ = max
{

sup|v|≤2
√
λα xv , sup|v|≥2

√
λα xv −

v2

4α + α[ |v|2α −M ]2+ + λ
}

(80a)

= max
{

2
√
λα|x| , sup|v|≥2

√
λα xv −

v2

4α + α[ |v|2α −M ]2+ + λ
}
. (80b)

Further, we note that since M >
√
λ/α =⇒ 2αM > 2

√
λα, the right member in equation (80b) splits into

sup|v|≥2
√
λα xv −

v2

4α + α[ |v|2α −M ]2+ + λ (81a)

= max
{

sup2
√
λα≤|v|≤2αM xv − v2

4α + α[ |v|2α −M ]2+ + λ , sup|v|≥2αM xv − v2

4α + α[ |v|2α −M ]2+ + λ
}

(81b)

= max
{

sup2
√
λα≤|v|≤2αM xv − v2

4α + λ , sup|v|≥2αM xv − v2

4α + α( |v|2α −M)2 + λ
}

(81c)

= max
{

sup2
√
λα≤|v|≤2αM xv − v2

4α + λ , sup|v|≥2αM xv −M |v|+ αM2 + λ
}
. (81d)

On the one hand, the left member in equation (81d) can be expressed in closed-form as

sup2
√
λα≤|v|≤2αM xv − v2

4α + λ = λ− inf2
√
λα≤|v|≤2αM

v2

4α − xv (82)

=


2
√
λα|x| if |x| ≤

√
λ/α

αx2 + λ if |x| ∈ ]
√
λ/α,M ]

2αM |x| − αM2 + λ if |x| > M

(83)

by noting that the scalar defined as the orthogonal projection of 2αx onto the interval [2
√
λα, 2αM ] satisfies the necessary

and sufficient first order optimality condition (see e.g. Corollary 3.68 in (Beck, 2017)) associated to the convex minimiza-
tion problem involved in the right-hand side of (82). On the other hand, we remark that the supremum of the right member
in equation (81d) lies in {v ∈ R ∪ {+∞} | v ≥ 0} when x ≥ 0 and in {v ∈ R ∪ {−∞} | v ≤ 0} when x ≤ 0, which
yields

sup|v|≥2αM xv −M |v|+ αM2 + λ = sup|v|≥2αM |v|(|x| −M) + αM2 + λ (84a)

=

{
+∞ if |x| > M

2αM |x| − αM2 + λ if |x| ≤M
(84b)

= 2αM |x| − αM2 + λ+ η(|x| ≤M). (84c)
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By plugging (83) and (84a)-(84c) into each member of (81a)-(81d), we deduce that

sup|v|≥2
√
λα xv −

v2

4α + α[ |v|2α −M ]2+ + λ (85a)

=


max

{
2
√
λα|x| , 2αM |x| − αM2 + λ

}
if |x| ≤

√
λ/α

max
{
αx2 + λ , 2αM |x| − αM2 + λ

}
if |x| ∈ ]

√
λ/α,M ]

max
{

2αM |x| − αM2 + λ , +∞
}

if |x| > M

(85b)

=


2
√
λα|x| if |x| ≤

√
λ/α

αx2 + λ if |x| ∈ ]
√
λ/α,M ]

+∞ if |x| > M

(85c)

where equality (85b) holds since 2
√
λα ≤ 2αM and −αM2 + λ ≤ 0, reminding that we consider the case M >

√
λ/α.

Overall, combining (80a)-(80b) with (85a)-(85c) gives

(gνi )??(x) =


2
√
λα|x| if |x| ≤

√
λ/α

αx2 + λ if |x| ∈ ]
√
λ/α,M ]

+∞ if |x| > M

(86a)

= 2λB(|x|
√
α/λ) + η(|x| ≤M) (86b)

for the case M >
√
λ/α.

B.4. Hyperparameters Calibration

To calibrate the value of λ in (P) and the hyperparameters of the function h(·), we use the l0learn package (Dedieu
et al., 2021) that can approximately solve some specific instances of the problem. More specifically, we call the cv.fit
procedure to perform a grid search over the values of λ and the hyperparameters of the function h(·). For each point in the
grid, an approximate solution x̂ to problem (P) is constructed and an associated cross-validation score is computed. We
select the value of λ and the hyperparameters in h(·) leading to the best cross-validation score. For the synthetic instances
considered in Section 4.1, we only consider the candidates x̂ in the grid with the best F1-score for the support recovery of
the ground truth x†.
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