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Abstract
Adversarial training has achieved substantial per-
formance in defending image retrieval against
adversarial examples. However, existing stud-
ies in deep metric learning (DML) still suffer
from two major limitations: weak adversary and
model collapse. In this paper, we address these
two limitations by proposing Collapse-Aware
TRIplet DEcoupling (CA-TRIDE). Specifically,
TRIDE yields a stronger adversary by spatially
decoupling the perturbation targets into the an-
chor and the other candidates. Furthermore,
CA prevents the consequential model collapse,
based on a novel metric, collapseness, which is
incorporated into the optimization of perturba-
tion. We also identify two drawbacks of the ex-
isting robustness metric in image retrieval and
propose a new metric for a more reasonable ro-
bustness evaluation. Extensive experiments on
three datasets demonstrate that CA-TRIDE out-
performs existing defense methods in both con-
ventional and new metrics. Codes are available at
https://github.com/michaeltian108/CA-TRIDE.

1. Introduction
Thanks to the massive image data and the development of
Deep Neural Networks (DNNs), image retrieval has experi-
enced substantial advancements. Despite their effectiveness,
deep image retrieval is known to be vulnerable to adversar-
ial examples, i.e. test samples that cause erroneous model
behaviour (Szegedy et al., 2013). Existing work on adversar-
ial attacks against DNN-based image retrieval has explored
deep metric learning (DML) models (Liu et al., 2019; Li
et al., 2021; Chen et al., 2021; Zhou et al., 2021a) and deep
hashing models (Bai et al., 2020; Lu et al., 2021).

To defend DML models against adversarial examples, re-
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Figure 1. Our defense vs. the previous defense. Specifically, we
address the weak adversary by decoupling the updates of perturba-
tion into anchors (A) and positive (P)/negative (N) candidates to
maximize embedding shifts.

cent studies (Zhou et al., 2021b; Zhou & Patel, 2022) have
modified the commonly-used adversarial training (Madry
et al., 2017) from the domain of image classification into
the domain of image retrieval. However, these methods still
suffer from two major limitations:

• Weak adversary is a widely overlooked issue since
existing defenses (Zhou & Patel, 2022; Zhou et al.,
2021b) directly adopt the perturbation method from the
image classification domain without fully exploiting
the triplet structure, which consists of three compo-
nents: positives, negatives, and anchors. As shown in
Figure 1, the existing method perturbs all three compo-
nents simultaneously and allocates the desired embed-
ding shifts among each component, as represented by
the small red shadows, which leads to smaller average
embedding shifts. A detailed qualitative analysis is
presented in Section A of the Appendix.

• Model Collapse is a notorious challenge in DML, im-
peding researchers from training models with hard
samples (Xuan et al., 2020). A collapsed model em-
beds all samples disastrously close and cannot retrieve
semantically similar examples appropriately. Model
collapse becomes inevitable in adversarial training as
it aims at increasing sample hardness. The current
state-of-the-art adversarial training method, Hardness
Manipulation (Zhou & Patel, 2022), avoids model col-
lapse by restricting perturbation strength, consequently
lowering its gained robustness.

In this paper, we address the above limitations by propos-
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ing a novel adversarial training approach to robust image
retrieval, called Collapseness-Aware TRIplet DEcoupling
(CA-TRIDE). A comparison between our CA-TRIDE and
the previous method is illustrated in Figure 1. Generally, our
CA-TRIDE can be applied to any triplet-based DML in a
plug-and-play manner, without making major modifications.

First, our TRIDE aims to address the weak adversary by
decoupling the perturbation updates on the triplets (an-
chors, positive candidates, and negative candidates) into
two phases: anchor perturbation (ANP) and candidate per-
turbation (CAP). Specifically, in the ANP phase, only the
anchor is perturbed, while in the CAP phase, the positive
and negative candidates are perturbed. By alternating be-
tween CAP and ANP, TRIDE incurs larger embedding shifts
and yields a stronger adversary, as represented by the red
shadows in Figure 1. Then, to tackle model collapse caused
by our stronger adversary, CA is proposed to use a novel
metric ‘collapseness’ (denoted as C) to capture intermedi-
ate model states, preventing impending model collapse by
orienting the optimization of TRIDE through C.

In sum, our paper makes the following three contributions:

• We propose CA-TRIDE, a novel approach to adver-
sarial robust image retrieval based on collapse-aware
(CA) and triplet decoupling (TRIDE). In particular, a
new metric called ‘collapseness’ is proposed to capture
the intermediate model states w.r.t. model collapse.

• We validate that CA-TRIDE addresses the two limita-
tions in existing defense: weak adversary and model
collapse, showing that TRIDE yields noticeably larger
embedding shifts, more shrinkage in embedding space
and lower separability, without causing model collapse.

• We identify two drawbacks of the commonly used ro-
bustness evaluation metric, ERS (Zhou et al., 2021b),
and propose a new metric, ARS. Experimental results
on three datasets show that CA-TRIDE outperforms
existing methods in both ERS and ARS by 4∼5%.

2. Related Work
2.1. Image Retrieval and Deep Metric Learning

Image retrieval (Wang et al., 2014) has been thriving as a
surging amount of visual content has become available to the
public. Deep metric learning (DML) is one of the popular
methods to realize such tasks. Two main focuses of current
work in DML are loss functions and data sampling meth-
ods, both of which have a crucial impact on image retrieval
performance (Musgrave et al., 2020). For loss functions,
among other newly proposed losses, such as lifted struc-
ture loss (Oh Song et al., 2016), N-pair loss (Sohn, 2016)
and Multi-Similarity loss (Wang et al., 2019), triplet loss
(Schroff et al., 2015; Yu et al., 2018) has been popular due to

its simplicity and performance. For sampling methods, cur-
rent research focuses on improving the diversity of samples
within a batch to enhance the overall performance. Popular
sampling strategies include random sampling, semi-hard
sampling (Schroff et al., 2015), soft-hard sampling (Roth
et al., 2020), distance-weighted sampling (Wu et al., 2017),
etc. In this paper, we adopt the commonly used triplet loss
for training DML models.

2.2. Adversarial Attacks in Deep Metric Learning

Adversarial attacks (AAs) against image retrieval primarily
seek to lower the R@1 of image retrieval (Liu et al., 2019;
Tolias et al., 2019; Wang et al., 2020; Feng et al., 2020).
These attacks, such as DAIR (Chen et al., 2021) and QAIR
(Li et al., 2021), are mostly black-box and realized through
repetitive queries to get a subset of the victim model’s train-
ing set, which is subsequently used for optimizing AAs.
Universal adversarial perturbations (UAPs) have also been
explored for image retrieval, which works by utilizing rank-
wise relationships to increase the transferability of AAs (Li
et al., 2019). In addition, Zhou et al. (2021a) explores a
ranking attack that compromises the ranking results, i.e.
improves or decreases the rank of certain candidates.

2.3. Adversarial Defenses in Deep Metric Learning

Current DML defenses against AAs are relatively less ex-
plored. Similar to common adversarial defense practices
in image classification (Zhong & Deng, 2019; Zhang et al.,
2019; Picot et al., 2022; Pang et al., 2020; Zhu et al., 2021),
existing defense methods in DML (Zhou et al., 2021b; Zhou
& Patel, 2022) also rely on adversarial training with a triplet
loss. Specifically, Zhou et al. (2021b) proposed an indi-
rect perturbation method, anti-collapse triplet (ACT), which
pulls positive and negative candidates in the triplet closer
to make them harder to distinguish, which consequently
causes limited robustness. In their later work (Zhou & Pa-
tel, 2022), a direct adversary called hardness manipulation
(HM) (Zhou & Patel, 2022) was proposed and achieved a
better result than ACT. However, as a certain number of
adversaries were found to cause the model to collapse, the
authors had to resort to weak adversaries to prevent such
an issue. In this paper, we specifically address the model
collapse and weak adversary problems in existing defenses
with our proposed CA-TRIDE.

3. Methodology
3.1. Preliminaries

Triplet Loss. Given a triplet T = (A,P,N), the triplet
loss LT is defined as follows:

LT(T) = d(A,P)− d(A,N) + βT (1)
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Figure 2. The working pipeline of our CA-TRIDE defense on a per mini-batch basis. (1) Collapseness-Awareness (CA) first calculates
the proposed collapseness C on the clean triplets to capture model states and then incorporates C into subsequent perturbation optimization.
(2) Triplet Decoupling (TRIDE) decouples the perturbation targets on the triplets into candidate perturbation (CAP) and anchor
perturbation (ANP), which are alternatively implemented across mini-batches during adversarial training, starting with CAP.

where A, P, and N represent the anchors, positive, and neg-
ative examples, respectively. d(·, ·) calculates the average
distance between two samples of the given triplet. βT is the
margin that defines how far the model needs to separate P
from N, usually set within [0.2, 0.8].

LT helps the model learn an embedding space that locates
semantically similar examples as closely as possible. This is
achieved by minimizing d(A,P) and maximizing d(A,N)
until the margin βT is met. Consequently, the goal of ad-
versarial training is otherwise: adversarially maximizing
d(A,P) while minimizing d(A,N).

Hardness. Proposed in the recent work (Zhou & Patel,
2022), the hardness of a triplet T is defined as follows:

H(A,P,N) = d(A,P)− d(A,N), H ∈ [−2, 2] (2)

Hardness determines how difficult a triplet is for a DML
model to distinguish. A negative H signifies easy triplets,
while a positive H denotes hard triplets. The magnitude of
H determines how hard or easy the triplet is.

Adversarial Training (AT) in DML. In contrast to the
standard training, the goal of AT is to learn a robust model
on the adversarial triplet T̃, which is acquired by adding
perturbations δ into the clean triplet T̃ = (Ã, P̃, Ñ) =
(A+ δ,P+ δ,N+ δ).

Specifically, the perturbation δ is optimized by maximizing
hardness H:

argmax
δ

H(Ã, P̃, Ñ) (3)

where δ is bounded by an lp norm ϵ for imperceptibility.
The specific methods for maximizing H could vary across
different methods. For example, the afore-mentioned HM
uses LHM = ||HD − H̃O||22 to generate perturbation to
increase orginal hardness from HO to destination hardness
HD.

After the generation of perturbed triplets, these triplets are
used for training an adversarially robust model Θ by opti-
mizing:

argmin
θ

LT(Ã, P̃, Ñ; Θ) (4)

Our CA-TRIDE is built on AT, as shown in the per mini-
batch working pipeline in Figure 2. Overall, given a mini-
batch of triplets, CA first evaluates model states on clean
triplets using collapseness C. The calculated collapseness
is then fed into subsequent TRIDE to incorporate collapse
awareness for the optimization of perturbations to prevent
model collapse. Specifically, TRIDE starts with CAP and
alternates between CAP and ANP to perturb the triplets with
the dedicated adversarial losses, LCAP and LANP . These
perturbed triplets are then fed into the model for training,
followed by another mini-batch of CA-TRIDE until the
training is finished. The full process of generating perturbed
triplets using CA-TRIDE is described in Algorithm 1. Note
that our CA-TRIDE does not incur any extra epochs but
only changes the number of perturbed samples per epoch.

3.2. Collapse-Aware Adversary (CA)

To incorporate collapse awareness in the optimization of
perturbation and prevent model collapse, we first introduce
collapseness as a novel metric to capture model states proac-
tively and accurately.

Collapseness. Hard triplets (i.e. H > 0) are considered
the main cause of model collapse due to their difficulty in
optimization, according to current research (Xuan et al.,
2020; Schroff et al., 2015). Furthermore, the collapsing
speed and severity depend on how many and how hard these
triplets are. Although an intuitive practice is to use H as a
metric, it is not a feasible option as H only ‘reports’ model
collapse after it occurs and cannot ‘forecast’ it beforehand,
not to mention capturing an impending collapse. Thus,
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Algorithm 1 Generating Adversarial Triplets in CA-TRIDE
Require: Clean triplets T = (A,P,N), maximum PGD

steps M , PGD step size α
Ensure: Adversarial Triplet T̃

1: Initialize T̃0 ← T
2: if CAP then
3: for i← 1 to M do
4: δi ← α∇δLCAP (T̃i−1)
5: T̃i ←

(
A, P̃i−1 + δi, Ñi−1 + δi

)
6: end for
7: else if ANP then
8: for i← 1 to M do
9: δi ← α∇δLANP (T̃i−1)

10: T̃i ← (Ãi−1 + δi,P,N)
11: end for
12: end if
13: return T̃← T̃M

to guide subsequent counter-measurement against model
collapse, we propose Collapsenss as a proactive metric for
model states evaluation, denoted as C:

C(A,P,N) = dω(A,P)− dω(A,N) (5)

dω(·, ·) is a weighting function focusing on anchor-
proximity samples. which is calculated as follows:

dω(A,P) =

∑A,P
i

(
wpi
· d(ai, pi)

)∑P
i wpi

(6)

wpi
= exp

(
− λ

(
d(ai, pi)− min

∀ai∈A,pi∈P
d(ai, pi)

))
(7)

where λ is the attention factor to determine how much atten-
tion C should pay to anchor-proximity samples, and exp(·)
is conventionally adopted to map all inputs into [0, 1], with
a larger weight for closer samples and a smaller value for
others. dω(A,N) can be calculated similarly. Positive C

signals an impending model collapse, while negative C

suggests a moderate hardness for the model.

As a cause of model collapse (Xuan et al., 2020), our C can
detect undergoing model collapse and track the model state
proactively by focusing more on neighbouring samples. We
also evaluate both H and C w.r.t. tracking model states to
demonstrate the superiority of C, presented in Section 4.4.

Collapse-aware adversary. With our proposed C, the ad-
versarial goal of our subsequent perturbation optimization
shifts from directing maximizing H into maximizing C:

argmax
δ

C(Ã, P̃, Ñ) (8)

The definition of our collapse-aware adversary is intuitive
as it utilizes the proposed C to optimize its adversary, while

(a) δ = ∆
2

(b) δ = ∆
2

(c) δ = ∆
4

Figure 3. An illustration of how the same desired hardness change
∆ is transferred into sample-wise perturbation δ using different
perturbation methods: (a) CAP, (b) ANP, and (c) existing methods
(i.e. HM and ACT). Our CAP and ANP double the averaged
embedding shift in this specific case.

C also provides feedback for the optimization of the adver-
sary to keep it aware of how well the model handles these
perturbed samples.

In general, the maximization goal in Equation 8 determines
the strength of AT. Since our primary goal of introducing
a collapse-aware adversary is to prevent model collapse
during training, we intuitively keep C ≤ 0 during the op-
timization of all perturbations to ensure that the adversary
does not cause a severe model collapse while remaining
reasonably strong to bring sufficient adversarial robustness.

3.3. Triplet Decoupling (TRIDE)

To address the weak adversary, we propose a new AT
paradigm dubbed TRIDE to decouple the current perturba-
tion method into two stages, candidate perturbation (CAP)
and anchor perturbation (ANP), as shown in Figure 1. Com-
bining with our collapse-aware adversary, Equation 8 can
be rewritten as:

argmax
δ

{
C(Ã,P,N), ANP

C(A, P̃, Ñ), CAP
(9)

As depicted in Figure 2, CAP and ANP are alternated mini-
batch-wise, i.e. one perturbation method per mini-batch.

Given a desired hardness change ∆, the generated perturba-
tion δ varies according to perturbation methods. Besides, the
angular relationships between samples could also influence
δ. To eliminate the influence of angle and provide intuition
on how perturbation methods impact δ, we use a special
case in Figure 3 to illustrate the difference between CAP,
ANP, and the existing method. Analysis of more general
cases can be found in Section A of the Appendix.

We now introduce the adversarial loss for CAP and ANP,
which is designed following the inherent traits of each stage.

Candidate perturbation (CAP). CAP perturbs all candi-
dates (positives and negatives) while keeping the anchors
fixed during perturbation optimization. LCAP is intuitively
designed to maximize the aforementioned ‘collapsness’ C
in Equation 5, by minimizing the following loss function:
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LCAP = max
(
− C, 0

)
(10)

where the max(·) term clips the loss to 0 to terminate the
optimization once C ≥ 0. In this way, the optimization of
CAP becomes collapse-aware and properly stops once the
adversary becomes unacceptably strong for the model, thus
preventing models from confronting severe model collapse.

CAP corrupts the global embedding (all negatives and posi-
tives) and helps the model defend against Ranking attacks
(i.e. manipulating the ranks of one or more samples) by
enhancing global robustness.

Anchor perturbation (ANP). ANP directly pushes the an-
chor away from the positives and towards the negatives.
Similarly to CAP, the goal of LANP is also to maximize C,
given below:

LANP = max
(
− C +∆TR, 0

)
(11)

ANP specializes in efficiently corrupting the local (anchor-
proximity) embeddings, making it a practical implemen-
tation for black-box attacks against retrieval performance
(Chen et al., 2021; Li et al., 2021), i.e. Recall attacks. We
propose a top-rank pair, consisting of a top-rank term ∆TR

and a top-rank triplet LTR, to fully exploit such traits and
help models acquire better resistance against such attacks
through stronger local (top-rank) robustness.

Top-rank pair. The top-rank term ∆TR is designed to push
anchors towards the closest negatives further and maximize
the embedding shift of anchors as C approaches 0, to rein-
force local corruption:

∆TR = emax(C,0)
(
d(A,Nυ)− d(A,A0)

)
(12)

where Nυ represents the top half of negatives, ranked by
their distances to anchors, and A0 stands for original unper-
turbed anchors. The exp(·) term ensures ∆TR only kicks
in as C approaches 0, i.e. A approaches N.

The top-rank triplet LTR is similarly defined using the triplet
loss LT, pairing with ∆TR to help models capture locality:

LTR = γ
(
d(A,Pυ)− d(A,Nυ) + βTR

)
(13)

where γ is a pre-determined coefficient, and Pυ is similarly
defined as Nυ , i.e., the top half of positives, ranked by their
distances to the anchor.

In sum, our top-rank pair, ∆TR and LTR, works collabora-
tively to further boost the local robustness of models against
prevailing black-box attacks deployed on anchors (queries)
(Chen et al., 2021; Li et al., 2021). ∆TR reinforces local
corruption for stronger, more targeted adversaries, while
LTR helps the model to capture locality.

Model training. As delineated in Equation 4, perturbed
triplets generated through TRIDE are subsequently used for
training a robust model by optimizing:

argmin
Θ

{
LT(Ã,P,N; Θ) + LTR, ANP

LT(A, P̃, Ñ; Θ), CAP
(14)

In general, our TRIDE follows the lead of C to push the
model to its limit by alternatively perturbing the triplets
through CAP and ANP, enhancing its global robustness and
local robustness respectively, without incurring disastrous
model collapse. More implementation details can be found
in Appendix C.

3.4. Robustness evaluation metrics

Existing metrics. Existing works use ERS as the robust-
ness evaluation metric, including 10 attacks for evaluation
(details can be found in (Zhou et al., 2021b)), which we cat-
egorize into Ranking attacks and Recall attacks. Ranking
attacks, such as CA+ and CA-, evaluate the global robust-
ness (i.e. overall ranking), while Recall attacks focus on
evaluating local robustness by corrupting the proximity of
anchors to lower overall retrieval performance (i.e. R@k).

However, there are issues in ERS that make it infeasible for
reasonable robustness evaluation: (1) Inconsistent similarity
metrics. ERS includes TMA (Tolias et al., 2019), the only
cosine-similarity-based attack, as one of the attacks for ro-
bustness evaluation, which is not appropriate for evaluating
models trained in the Euclidean space. Experimental results
also indicate that TMA yields contradictory results against
all other attacks (see Table.2 and Table.6 in (Zhou & Patel,
2022)). (2) Initial state variations. ERS is calculated using
after-attack results, without considering the variation in the
initial states before attacks. For example, in the CA+ attack
(which raises the rank of a candidate over a query), despite
the randomly selected targets, ERS ignores the variation in
their before-attack ranks, e.g., 50± 1. This introduces noise
into ERS and makes it inaccurate. Similar issues persist
for Recall attacks: since ERS calculates a joint total score,
clean R@1 cannot become a reference for justification.

Adversarial Resistance Score. To solve the issues above,
we remove TMA from evaluation for fairness considera-
tion, and ES:D is also removed as it only considers attack-
incurred embedding shifts and does not necessarily equal
robustness. Specifically, the Adversarial Resistance Score
(ARS) of an attack A against a model M is calculated based
on the actual impact it makes compared to the intention of
the attack, rather than directly using the results, defined as
follows:

RM,A = (1− Or −Oi

Og −Oi
)× 100%, (15)

where Oi refers to the initial value before attacks, Or is the
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Table 1. Robustness of ACT, HM, and our CA-TRIDE under our proposed metric, Adversarial Resistance Score (ARS).

Dataset Defense PGD Benign Example Evaluation Adversarial Example Evaluation (ARS scores) Overall

Method steps R@1 ↑ R@2 ↑ mAP ↑ NMI ↑ CA+ ↑ CA- ↑ QA+ ↑ QA- ↑ ES:R ↑ LTM ↑ GTM ↑ GTT ↑ ARS (%) ↑

CUB

N/A N/A 58.9 66.4 26.1 59.5 3.3 0.0 0.0 0.0 0.0 0.0 23.9 0.0 3.5
ACT 32 27.5 38.2 12.2 43.0 31.0 62.9 30.2 68.5 40.3 34.2 54.2 1.0 40.3
HM 32 34.9 45.0 19.8 47.1 31.0 62.9 33.2 69.8 51.3 47.9 78.2 2.9 47.2
Ours 16 34.9 45.1 19.6 45.6 32.6 68.5 41.8 79.2 61.9 59.0 64.8 5.1 51.6

CARS

N/A N/A 63.2 75.3 36.6 55.6 0.4 0.0 0.0 3.6 0.0 0.0 21.2 0.0 2.8
ACT 32 43.4 54.6 11.8 42.9 36.0 68.4 35.0 70.2 37.6 35.3 47.7 1.6 41.4
HM 32 60.2 71.6 33.9 51.2 38.6 74.8 39.2 75.1 50.3 61.0 76.4 8.8 52.9
Ours 16 60.7 71.2 34.6 49.4 36.0 81.0 47.0 87.5 64.4 66.9 60.8 13.7 57.2

SOP

N/A N/A 62.9 68.5 39.2 87.4 0.2 0.6 0.3 0.9 0.0 0.0 10.0 0.0 1.5
ACT 32 47.5 52.6 25.5 84.9 48.2 90.4 45.4 91.5 44.6 45.5 58.5 15.3 54.9
HM 32 46.8 51.7 24.5 84.7 64.0 96.8 67.4 98.0 83.5 85.0 81.0 45.6 77.7
Ours 16 48.3 53.3 25.9 84.9 65.8 97.1 71.4 97.9 89.4 93.4 82.4 53.1 81.3

Table 2. Robustness of ACT, HM, and our CA-TRIDE under the conventional metric, Empirical Robustness Score (ERS) (Zhou et al.,
2021b).

Dataset Defense PGD Benign Example Evaluation Adversarial Example Evaluation (ERS scores) Overall

Method steps R@1 ↑ R@2 ↑ mAP ↑ NMI ↑ CA+ ↑ CA- ↓ QA+ ↑ QA- ↓ TMA ↓ ES:D ↓ ES:R ↑ LTM ↑ GTM ↑ GTT ↑ ERS↑

CUB

N/A N/A 58.9 66.4 26.1 59.5 0.0 100 0.0 99.9 0.883 1.76 0.0 0.0 14.1 0.0 3.8
ACT 32 27.5 38.2 12.2 43.0 15.5 37.7 15.1 32.2 0.47 0.82 11.1 9.4 14.9 1.0 33.9
HM 32 34.9 45.0 19.8 47.1 15.5 37.7 16.6 30.9 0.75 0.50 17.9 16.7 27.3 2.9 36.0
Ours 16 34.9 45.1 19.6 45.6 16.7 31.1 20.9 21.1 0.97 0.16 21.6 20.6 22.6 5.1 38.6

CARS

N/A N/A 63.2 75.3 36.6 55.6 0.2 100.0 0.1 97.3 0.87 1.82 0.0 0.0 13.4 0.0 3.6
ACT 32 43.4 54.6 11.8 42.9 18.0 32.3 17.5 30.5 0.38 0.76 16.3 15.3 20.7 1.6 38.6
HM 32 60.2 71.6 33.9 51.2 19.3 25.9 19.6 25.7 0.65 0.45 30.3 36.7 46.0 8.8 46.1
Ours 16 60.7 71.2 34.6 49.4 17.7 20.3 23.5 12.9 0.96 0.13 39.1 40.6 36.9 13.7 47.7

SOP

N/A N/A 62.9 68.5 39.2 87.4 0.1 99.3 0.2 99.1 0.85 1.69 0.0 0.0 6.3 0.0 4.0
ACT 32 47.5 52.6 25.5 84.9 24.1 10.5 22.7 9.4 0.25 0.53 21.2 21.6 27.8 15.3 50.8
HM 32 46.8 51.7 24.5 84.7 32.0 4.2 33.7 3.0 0.61 0.20 39.1 39.8 37.9 45.6 61.6
Ours 16 48.3 53.3 25.9 84.9 32.3 3.7 36.0 2.6 0.80 0.14 43.2 45.1 39.8 53.1 62.4

actual attacking result, and Og is the intended result of the
attack, respectively.

Detailed calculations of ASR for different types of attacks
can be found in Appendix B.

Unlike ERS, our ARS calculates the percentage of change
over the attack’s intention, eliminating the variation in initial
conditions for a more reasonable robustness evaluation.

4. Experiments
In this section, we conduct comprehensive experiments to
demonstrate the effectiveness of our CA-TRIDE, involving
its comparison to other defense baselines, the validation
of CA in preventing model collapse and TRIDE in solv-
ing the weak adversary, and ablation studies on the main
components of our CA-TRIDE.

4.1. Experimental Settings

Models and datasets. We follow the setting of Zhou et al.
(2021b) and use a pre-trained ResNet-18 (He et al., 2015)
with the last layer changed to N=512 as our baseline model.
The triplet margin βT is set as 0.2 for all datasets. Eval-
uations are on three popular datasets in image retrieval
tasks, i.e. CUB-200-2011 (Welinder et al., 2010), Cars-
196 (Krause et al., 2013), and SOP (Oh Song et al., 2016).

We train our models using ADAM(Kingma & Ba, 2014)
optimizer with a 1.0 × 10−3 learning rate, a mini-batch
size of 112, and training epochs of 100 under the above
three datasets. For the top-rank pair, γ = 0.5 and the triplet
margin in LTR βTR is 0.04.

Adversaries. Adversarial perturbation is generated through
PGD (Madry et al., 2017) with an optimization step α =
1/255, 16 iterations and clipped by an l∞ norm of ϵ =
8/255. A progressive PGD step size α is also deployed to
help the model balance between accuracy and robustness.
All CA-TRIDE implementation details are the same unless
specified. Details are given in Section C of the Appendix.

Metrics. Benign results are given as R@1, R@2, mAP,
and NMI following the setting in Zhou & Patel (2022),
while robustness scores are calculated using both the con-
ventional metric, Empirical Robustness Score (ERS)(Zhou
et al., 2021b), and our proposed metric, Adversarial Resis-
tance Score (ARS).

4.2. CA-TRIDE vs. Other Defense Methods

We compare our CA-TRIDE to the existing SOTA methods,
HM (Zhou & Patel, 2022) and ACT (Zhou et al., 2021b),
regarding their performance on both benign and adversarial
examples, based on both ARS and ERS. Results for ARS
are presented in Table 1, and ERS results are given in Table
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Figure 4. Left Column: Our TRIDE leads to lower separability
and larger shrunk embedding distances compared with CAP/ANP,
but the model remains uncollapsed due to our CA. Right Column:
Our collapseness C outperforms hardness H in preventing model
collapse. ⋆ denotes model collapse, i.e. separability ≈ 0 and
heavily shrunk embeddings. The dataset is CUB.

2. From both tables, we can draw the following conclu-
sions: (1) CA-TRIDE significantly outperforms HM and
ACT in almost all attacks under both metrics, which demon-
strates the effectiveness of our CA-TRIDE. This suggests
that CA-TRIDE models can undertake stronger AT with-
out model collapse. (2) CA-TRIDE uses only half the PGD
steps of the previous methods but exhibits higher robust-
ness, at the cost of little or no drop in benign performances.
This implies that our TRIDE settings provide stronger
adversaries and a more efficient AT paradigm.

As for the relatively lower performance of our models in
TMA scores, it does not necessarily mean lower perfor-
mance because all models are trained in the Euclidean space
while TMA is evaluated using cosine similarity. Moreover,
it is noticeable that models with higher overall robustness
(i.e. HM and ours) constantly score lower in TMA than
less robust models (ACT), which contradicts all other at-
tacks. As for GTM, this reflects the trade-off between em-
phasizing local robustness (top-rank samples) and global
robustness (overall samples). In CA-TRIDE, we propose a
top-rank pair to emphasize local robustness. However, GTM
naively pushes the anchor towards the top-1 closest negative
example rather than a subset of top-rank samples, which
contradicts the goal of our top-rank pair that prioritizes top-
half negatives, thus leading to relatively lower scores. The
weakness of GTM is also implied by the non-zero attacking
results on undefended models in Table 1 and Table 2.

Figure 5. Our CA-ANP and CA-CAP cause substantially larger
embedding shifts than HM. The dataset is CUB.

4.3. Validation of CA and TRIDE

In this section, we provide analyses to validate the individual
effectiveness of our CA and TRIDE. To this end, we train
the following models: an NT model trained on vanilla data,
a Naive AT model trained using a conventional adversary,
a CA-CAP model, a CA-ANP model, and a CA-TRIDE
model (i.e. our full implementation).

CA prevents model collapse. To visualize model states,
we calculate the per mini-batch average sample distances
d̄ and use separability, defined as d(a,n)−d(a,p)

d̄
, to evaluate

how well the model separates positive and negative samples.
In particular, normalization by d̄ eliminates the influence of
overall embedding changes.

As shown in the left column of Figure 4, benign training
(black dotted line) maximizes the separation between posi-
tives and negatives, without incurring a decrease in average
sample distances (i.e. d̄). However, naive AT yields a drastic
decrease in d̄ and harms separability by making it largely
negative and fluctuating around 0. We thus summarise em-
bedding shrinkage and entangled samples as two represen-
tative manifestations of model collapse. The separability
of CA-CAP and CA-ANP remains positive during training,
and d̄ undergoes a mild shrinkage. This shows the effective-
ness of collapse awareness in stopping model collapse, i.e.
preventing embedding shrinkage and entangled samples.

Finally, to validate the superiority of C as a novel metric to
track model states proactively, we train two models using
CA-TRIDE but with different metrics: our collapse-aware
adversary and hardness-aware adversary, denoted as C and
H, respectively. Progressive α is disabled for a fairer com-
parison. Results are given in the right column of Figure
4. The behavior of the H-oriented model resembles that
of Naive AT, both of which confront model collapse. The
C-oriented model, on the other hand, behaves similarly to
NT, implying the superiority of our C.

TRIDE solves the weak adversary. To validate the effec-
tiveness of our TRIDE, we compare the averaged embed-
ding shifts caused by perturbations generated using three

7



Collapse-Aware Triplet Decoupling for Adversarially Robust Image Retrieval

Table 3. Ablation study on CA-TRIDE vs. CA-CAP/-ANP. The dataset is CUB.

Defense R@1↑ Adversarial Example Evaluation (ARS scores) Overall Overall

Method CA+↑ CA-↑ QA+↑ QA-↑ ES:R ↑ LTM↑ GTM ↑ GTT ↑ ERS↑ ARS (%) ↑
CA-ANP 34.2 27.4 56.7 35.6 73.3 57.3 61.1 65.8 5.1 34.0 47.8
CA-CAP 33.8 34.2 68.0 52.2 70.8 51.2 47.6 60.7 3.1 37.9 48.5

CA-TRIDE 34.9 32.6 68.5 41.8 79.2 61.9 59.0 64.8 5.1 38.6 51.6

Table 4. Ablation study on the top-rank pair (TPR), i.e. ∆TR+LTR. The dataset is CUB.

Defense R@1↑ Adversarial Example Evaluation (ARS scores) Overall Overall

Method CA+↑ CA-↑ QA+↑ QA-↑ ES:R ↑ LTM↑ GTM ↑ GTT ↑ ERS↑ ARS (%) ↑
w/o TPR 32.7 27.8 60.2 36.6 69.1 46.2 26.3 47.4 0.7 33.3 39.3
w/o LTR 34.6 34.6 70.0 43.4 79.1 57.8 54.9 60.7 4.0 38.4 50.6

CA-TRIDE 34.9 32.6 68.5 41.8 79.2 61.9 59.0 64.8 5.1 38.6 51.6

Figure 6. Ablation study on the attention factor λ.

methods: HM, CAP, and ANP. All values are normalized
similarly as separability to eliminate the influence of em-
bedding shrinkage. As shown in Figure 5, our CA-CAP and
CA-ANP consistently yield larger embedding shifts than
HM, especially in the later stage of the training. Our TRIDE
surpasses HM regarding both average and overall embed-
ding shifts. Here the overall embedding shift equals the
averaged embedding shift multiplied by its corresponding
number of perturbed components, i.e., 1 for ANP, 2 for CAP,
and 3 for HM. This demonstrates the efficacy of TRIDE
in maximizing embedding shifts. Qualitative analysis also
aligns with this result, as discussed in Appendix A. To fur-
ther investigate the individual effectiveness of TRIDE, we
train three model variants without using CA, i.e. a naive
CAP model, a naive ANP model, and a naive TRIDE model.
Their R@1 results are 4.4%, 7.8% and 0.8% respectively,
indicating that, as expected, both CAP/ANP/TRIDE could
yield strong adversaries sufficient to cause model collapse.

4.4. Ablation Studies

In this section, we verify the effectiveness of CA-TRIDE by
providing the ablation experiment results in Table 3 and 4.

TRIDE vs CAP/ANP. As shown in Table 3, TRIDE does
not necessarily reduce the overall strength of AT, and CA-
CAP/ANP models emphasize differently on robustness. CA-

Figure 7. Ablation study on the triplet loss margin βTR in LTR.
The dataset is CUB.

CAP exhibits better robustness in almost all ranking attacks
than CA-ANP, while the latter is more robust against Recall
attacks, aligning with our intention of designing CAP and
ANP. Finally, combining CAP and ANP yields well-rounded
robustness across all attacks and achieves the best overall
robustness.

Top-rank pair. As discussed in Section 3.3, the top-rank
pair is incorporated to reinforce local corruption in ANP and
help the model capture top-rank robustness against Recall
attacks. According to the results presented in Table 4, the
model with only ∆TR already gains over 10% of robustness
boost against all attacks compared to its counterpart without
our top-rank pair, with an impressive enhancement of per-
formance on clean examples. This indicates the novelty of
∆TR regarding the AT efficiency. Furthermore, when paired
with the top-rank triplet LTR, our model further acquires a
noticeable increase in robustness against all Recal attacks,
but at the cost of a marginal drop w.r.t. ranking attacks,
implying a trade off between global and local robustness.

Hyperparameters. We also investigate how our models
behave under different hyperparameters, i.e. the attention

8
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Table 5. Statistical results of inter-/intra-class distances on all
datasets, evaluated using our CA-TRDIE models. Inter/Intra quan-
tifies the level of entanglement of data distribution.

Dataset Inter-Class Intra-Class Entanglement λDistances Distances

CUB 0.287 0.226 0.79 10.0
CARS 0.325 0.256 0.79 9.5
SOP 0.664 0.438 0.66 2.0

factors λ in C and the triplet loss margin βTR in LTR. λ
determines how much attention C should pay to anchor-
proximity samples, as introduced in Equation 5. Larger λ
means more focus on samples closer to anchors and less
focus on the other samples. Note that when λ = 0, our C
falls back to H by treating all examples identically. Results
are presented in Figure 6. Overall, our CA-TRIDE is insen-
sitive to λ, while a too-large λ could further increase the
clean accuracy but harm the robustness. Hence, we choose
the value of λ that yields the closest R@1 performance to
HM for a fair comparison, i.e. 10 for CUB, 9.5 for CARS,
and 2.0 for SOP.

Moreover, as shown in Table 5, we find our settings of λ
on different datasets are correlated with their levels of en-
tanglement, i.e., dintra/dinter, where dintra (dinter) is the
average intra (inter)-class distance of CA-TRIDE trained
models. This correlation aligns with the intuition that more
entangled datasets (i.e., CUB and CARS) require more at-
tention on the anchor-proximity samples to avoid model
collapse, while less entangled datasets such as SOP do not
require much attention to handle such samples.

For βTR in LTR, it functions similarly to the βT in the
triplet loss: determining how hard the model should keep
top-rank positives and negatives separated. Likewise, LTR

is essentially a triplet loss variant calculated using only top-
rank samples instead of all samples, and we thus evaluate
the βTR as a proportion of βT, ranging from 0 to 50%. As
shown in Figure 7, no significant changes in robustness
are found as βTR varies. Therefore, our method is also
insensitive to the hyperparameter βTR. We thus choose the
value of βTR that yields the closest R@1 performance as
HM for a fair comparison, i.e. βTR = 0.2βT.

4.5. Training Time and Computational Cost

Since CA-TRIDE introduces extra operations during AT,
we further compare it to HM regarding training time and
computational cost. Results imply that both are reduced. We
conducted 5 runs of HM and CA-TRIDE on the CUB dataset
with an RTX3090 GPU. On average, CA-TRIDE takes 15%
less training time: 470 vs 550 minutes. We attribute this
efficiency increase of CA-TRIDE to its triplet decoupling
and the halved PGD steps, i.e., 16 (CA-TRIDE) vs. 32

(HM). For the computational cost, since CAP and ANP only
use 2/3 (P and N) and 1/3 (A) of the triplets respectively, our
CA-TRIDE yields only a 1

2 × ( 13 + 2
3 ) =

1
2 computational

cost of HM (and ACT).

4.6. Compatibility of CA-TRIDE

Our CA-TRIDE is a plug-and-play method for other triplet-
based deep metric learning, regardless of datasets, models,
and methods. Specifically, our CA-TRIDE does not change
adversarial training at the system level but at the data sample
level, by simply applying a weight to all samples (via our
CA) and decoupling the perturbation update on them (via
our TRIDE). In particular, it is worth mentioning that the
only tunning possibly required is to find the attention factor
λ for the new dataset or model (if applicable) because as
validated in Table 5, λ is dataset-/model-dependent as it
correlates with the level of entanglement.

5. Limitations and Future Work
Globality vs locality. As presented in Table 1 and 2, our CA-
TRIDE achieves lower results than HM w.r.t. GTM attacks
on both CUB and CARS. This might be due to the conflict
between the design of our top-rank pair and the attacking
mechanism of GTM. A more sophisticated design of the
top-rank pair may potentially mitigate these gaps. Besides,
to trade off globality and locality, we empirically choose the
top-half positives and negatives as top-rank samples when
designing LTR. It is possible to explore further refinement
to such a trade-off in the future.

Attention factor λ. Through our observation in Table 5, the
level of entanglement, i.e., dintra/dinter, and our chosen
attention factor λ are found to be correlated. Therefore, a
more rigorous and adaptive collapse-aware mechanism can
be designed to adjust λ better accordingly.

6. Conclusion
In this paper, we have proposed CA-TRIDE, a novel ap-
proach to training image retrieval models with stronger ad-
versarial robustness. CA-TRIDE addresses two overlooked
limitations: weak adversary and model collapse. Specifi-
cally, TRIDE yields a strong adversary by spatially decou-
pling the optimization of perturbation on the triplets into
ANP and CAP, while CA captures intermediate model states
using a novel metric called collapseness and integrates it
into the subsequent optimization of perturbations. For eval-
uation metrics, we examine the conventional robustness
evaluation metric ERS and identify two drawbacks. Con-
sequently, we propose a new metric called ARS to address
these drawbacks accordingly for reasonable robustness eval-
uations. Extensive experiments on three datasets validate
the superiority of our CA-TRIDE in both ERS and ARS.
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A. Theoretical Analysis of Weak Adversary
In this section, we provide a qualitative analysis of how and why the weak adversary leads to minimized embedding shifts,
which necessitates our triplet decoupling (TRIDE) mechanism.

As discussed in the main text of the paper, the current adversarial perturbation δ is acquired by:

argmax
δ

H(Ã, P̃, Ñ) (16)

Essentially, although the specific adversarial losses Ladv vary across methods, the general goal of Ladv is to maximize H
adversarially. Thus, we denote the consequential change caused by the perturbation as ∆H , defined as follows:

∆H = H(Ã, P̃, Ñ)−H(A,P,N) (17)

As mentioned in the main paper, unlike AT in image classification, AT in DML has multiple choices for perturbation targets
(anchors A, positives P, and negatives N). The average embedding shift of the perturbed targets depends on two factors:
the angle between ān and āp, denoted as θ (Wang et al., 2017), and the perturbation methods, denoted as P. We will then
determine how these factors influence the overall embedding shifts.

(a) P = ANP, θ = π (b) P = CAP, θ = π (c) P = SIP, θ = π

(d) P = ANP, 0 < θ < π (e) P = CAP, 0 < θ < π (f) P = SIP, 0 < θ < π

Figure 8. Demonstration on scenarios of different angle θ and perturbation method. ∆ denotes the average embedding shifts of perturbed
samples. ANP for anchor perturbation (only perturbs anchors), CAP for candidates perturbation (only perturbs candidates), and SIP for
simultaneous perturbation (perturbs all the triplets). π < θ < 2π is omitted due to symmetry.

As shown in Figure 8, θ influences how the perturbation changes the overall hardness. In other words, with the same
embedding shifts, θ determines the proportion of embedding shifts that transfer to ∆H . To calculate this proportion, we
calculate a function γθ of θ. Hence, given γ(θ) and an embedding shift δ, ∆H is given by:

∆H = γθ · δ (18)

According to Figure 8, γθ could range from 0 (θ = 0, i.e., ∆H = 0) to 2 (θ = π, i.e., ∆H = 2δ.)

A.1. Perturbation targets

Perturbation methods P determine the total number of selected targets, (i.e., 1, 2 or 3), influencing how the desired
embedding shift ∆H is allocated to all perturbation targets. A general way to understand the idea is like assigning a certain
amount of tasks (target hardness). The more people (samples) get assigned, the fewer tasks (embedding shifts) each person
would have.

For analysis, we assume that all perturbed targets move identically by ∆. In other words, da,ã = δANP for anchor
perturbation (ANP), and dp,p̃ = dn,ñ = δCAP for candidate perturbation (CAP), and da,ã = dp,p̃ = dn,ñ = δSIP for
simultaneous perturbation (SIP), namely the existing method.

A.2. Calculations

To calculate the averaged embedding shifts given θ and P, we need to determine how much of each perturbed sample needs
to move to achieve the required hardness increase ∆H −H(T). We further drop the term H(T) as it is identical for the
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same initial triplet. Note that to simplify the calculation, we assume all perturbed samples have identical embedding
shifts. We can now qualitatively demonstrate how different perturbation methods P and θ determine the averaged overall
embedding shifts δ given the same ∆H , in a special-to-general manner:

(1) Special case: θ = π. For P = ANP, as shown in Figure 8(a), the gradient to increase d(a, p) aligns with the gradient
to decrease d(a, n), which doubles the hardness shift caused by δANP . Thus, we can obtain the average embedding shift
δANP of ANP follows:

γθ · da,ã = ∆H

2δANP = ∆H

δANP =
∆H

2
(19)

Turning to P = CAP, as demonstrated in Figure 8(b), γθ = 1, and δCAP given as follows:

γθ · dp,p̃ + γθ · dn,ñ = ∆H

δCAP + δCAP = ∆H

δCAP =
∆H

2
(20)

For their combination, SIP leads to the least average embedding shift (as shown in Figure 8(c)), which can be similarly
calculated :

γθ · da,ã + γθ · dp,p̃ + γθ · dn,ñ = ∆H

2δSIP + δSIP + δSIP = ∆H

δSIP =
∆H

4
(21)

In this case, by comparing Equation 19, Equation 20, and Equation 21, the overall average embedding shift of ANP and
CAP is twice the average embedding shift of SIP.

(2) General cases: 0 < θ < π. For ANP, as shown in Figure 8(d), γθ becomes a function of θ. Through geometric
calculation, we obtain the approximation of γθ, given as follows:

γθ = 2cos(
π − θ

2
) (22)

Then, δANP of ANP is calculated as:

γθ · da,ã =∆H

2cos(
π − θ

2
) · δANP =∆H

δANP =
∆H

2cos(
π − θ

2
)

(23)

This result can be verified by simply inserting θ = π into Equation 23, which gives the same result in Equation 19.

Similar to ANP, CAP can be regarded as applying an equivalent perturbation to P and N, with γθ becoming half of ANP,

(i.e., half of 2cos(
π − θ

2
)) :

γθ · dp,p̃ + γθ · dn,ñ =∆H

2× cos(
π − θ

2
) · δCAP =∆H

δCAP =
∆H

2cos(
π − θ

2
)

(24)
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For SIP, δSIP can once again be calculated by combining CAP and ANP:

γθ · da,ã + γθ · dp,p̃ + γθ · dn,ñ =∆H

4cos(
π − θ

2
)δSIP =∆H

δSIP =
∆H

4cos(
π − θ

2
)

(25)

Finally, we can compare SIP with CAP + ANP in more general cases (0 < θ < π) by comparing Equation 23, Equation 24
and Equation 25. Ideally, with the exactly identical θ, ∆CAP,ANP is still two times of δSIP . However, in practical scenarios,
there will be a phase difference most of the time. Hence, the magnitude ratio of CAP + ANP over SIP in more general cases
can be given as follows:

∆CAP,ANP

δSIP
=

2cos(
π − θ1

2
)

cos(
π − θ2

2
)

(26)

For 0 < θ < π, the denominator of the ratio can be regarded as a coefficient ranging from 0 to 1, with most of the time less
than 1. This implies that this denominator mostly acts as an amplifier, making the overall ratio even larger. Due to symmetry,
the scenario when π < θ < 2π is identical to what has been discussed. In other words, despite some variation, Equation
26 aligns with the experimental results shown in Figure 5, which suggests that our CAP + ANP setting outperforms the
extant SIP regarding maximizing the average embedding shift under the same perturbation.

A.3. Conclusions

Our analysis is also validated experimentally in Section 4.2. Our Tride consistently outperforms SIP w.r.t. the average
embedding shift under perturbation, with the largest gap being almost 4 times the averaged embedding shifts of existing
methods (SIP).

Our theoretical analysis and experimental results demonstrate that the existing method leads to a significantly decreased
perturbation-caused embedding shift compared to our TRIDE (CAP+ANP) setting. Consequently, the perturbation generated
likewise is much weaker than the perturbation optimized using TRIDE.

Another reason for TRIDE is that simultaneous perturbation is not a practical method considering many existing attacks
against DML. In black-box scenarios, most existing attacks are achieved by ANP(Li et al., 2021; Chen et al., 2021; Zhou
et al., 2021a; Li et al., 2019), which is more practical and effective.

B. Calculations Details of Adversarial Resistance Scores
Ranking attacks. Ranking attacks intend to manipulate the rank of candidates through adversarial perturbations. Given a
ranking attack Arank, for the ith candidate, we denote its initial rank r for the jth query as ri,j , and its after-attack rank as
r̃i,j . Taking CA+ as an example, the goal of which is to elevate ri,j as much as possible, i.e., r = 0. In other words, for this
trial of CA+ attack, Og = 0, Oi = rij and Or = r̃i,j . Hence, RM,CA+ can be calculated as follows:

RM,CA+
= (1− Or −Oi

Og −Oi
)× 100%,

=
(
1− |ri,j − r̃i,j |

ri,j

)
× 100% (27)

(28)

Similarly, AR all rank attacks (CA+, CA-, QA+, QA-) can be calculated likewise:

RM,(CA+,CA−,QA+,QA−) =
(
1− |ri,j − r̃i,j |

ri,j

)
× 100% (29)
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Note that the final ARS of a ranking attack is calculated by the average of N selected candidates (CA) or queries (QA),
calculated as follows:

RM,Arank
=

1

N

N∑
i,j

(
1− |ri,j − r̃i,j |

ri,j

)
× 100% (30)

Details of CA and QA attacks can be found in (Zhou et al., 2021b).

Recall attacks. The evaluation of Recall attacks is much simpler as these attacks seek to lower the R@1. Thus, given
a model M with initial R@1 µM and its after-attack R@1 µ̃M, all Rrecall attacks’ intention is to lower µM to 0, i.e.,
Og = µM, Oa = µ̃M. Hence, RM,(ES,LTM,GTM) can be calculated as follows:

RM,(ES,LTM,GTM) =
(
1− µM − µ̃M

µM

)
× 100%

=
µ̃M

µM
× 100% (31)

In essence, our proposed ARS quantifies the robustness of a model based on how well the attack achieves its goal on this
model. Initial state variation is eliminated by calculating the difference instead of evaluating pure results.

C. Implementation Details
To help the model balance between learning meaningful information and acquiring robustness, we apply a simple epoch-wise
adjustment strategy to mini-batch sampling and perturbation adding.

For mini-batch sampling, we follow the semi-hard sampling (Schroff et al., 2015), which samples hard examples within a
given range d(a, p) < d(a, n) < d(a, p) + η, and apply an epoch-wise strategy to η:

η = η0(1− (
n

2× ntotal
)2) (32)

where η0 is the preset margin of semi-hard sampling, n stands for the current number of epochs, and ntotal stands for the
total number of epochs.

For progressive step size, we similarly multiply the PGD step size α by n
ntotal

to enable a gradually increasing adversary
strength.
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